
Trace-Penalty Minimization for

Large-scale Eigenspace Computation

Zaiwen Wen∗ Chao Yang† Xin Liu‡ Yin Zhang§

Updated August 30, 2013

Abstract

The Rayleigh-Ritz (RR) procedure, including orthogonalization, constitutes a major bottleneck in
computing relatively high-dimensional eigenspaces of large sparse matrices. Although operations in-
volved in RR steps can be parallelized to a certain level, their parallel scalability, which is limited by
some inherent sequential steps, is lower than dense matrix-matrix multiplications. The primary moti-
vation of this paper is to develop a methodology that reduces the use of the RR procedure in exchange
for matrix-matrix multiplications. We propose an unconstrained trace-penalty minimization model and
establish its equivalence to the eigenvalue problem. With a suitably chosen penalty parameter, this
model possesses far fewer undesirable full-rank stationary points than the classic trace minimization
model. More importantly, it enables us to deploy algorithms that makes heavy use of dense matrix-
matrix multiplications. Although the proposed algorithm does not necessarily reduce the total number of
arithmetic operations, it leverages highly optimized operations on modern high performance computers
to achieve parallel scalability. Numerical results based on a preliminary implementation, parallelized
using OpenMP, show that our approach is promising.
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1 Introduction

Eigenvalue and eigenvector calculation is a fundamental computational problem with extraordinarily wide-

ranging applications. In the past several decades, a great deal of progress has been made in the development

of efficient algorithms and solvers for various types of eigenvalue problems. Iterative methods are usually

preferred for solving large-scale problems because of their ability to take advantage of sparsity or other struc-

tures existing in the matrices of interest. When a few eigenpairs are needed, the task of sparse matrix-vector

multiplications, which can often be performed efficiently on both sequential and modern parallel comput-

ers, usually constitutes the dominant computational cost. However, as the number of desired eigenpairs

increases, the computational costs in an iterative eigensolver can shift to other linear algebra operations.

There are two types of operations that can potentially become bottlenecks. One is the construction and/or

maintenance of orthonormal bases for subspaces from which approximate eigenvalues and eigenvectors are

extracted at each iteration. This type of operations is often carried out through either a Gram-Schmidt

(including Arnoldi or Lanczos) procedure or a QR factorization at the complexity of at least O(nk2) where

n is the dimension of the target matrix and k is the number of desired eigenpairs. Another potentially

high-cost procedure is the Rayleigh-Ritz (RR) calculation [14] used to extract eigenvalue and eigenvector

approximations from a subspace of dimension p ≥ k. The RR procedure involves solving a p-dimensional

dense eigenvalue problem and assembling the so-called Ritz vectors which are approximate eigenvectors in

the original space. Because the Ritz vectors are mutally orthonormal, the RR procedure can sometimes be

viewed as a way to construct an orthonormal basis also. The complexity for the RR procedure is at least

O(nk2 + k3). When the number k is small, the costs of these two types of operations are minor or even

negligible. However, when k increases to a moderate portion of the matrix dimension n, these costs can

represent a significant, even dominant, portion of the overall cost.

The use of parallel computers can greatly reduce the solution time. However, to make efficient use of

these computers, we must ensure that our algorithm is scalable with respect to the number of processors

or cores. Although the standard Krylov subspace iterative algorithms can be parallelized through the par-

allelization of the sparse matrix vector multiplications (SpMV) and other dense linear algebra operations,

the amount of parallelism is limited because SpMVs must be done in sequence in these algorithms, and

each SpMV can only make effective use of a limited number of processing units in general. Block methods,

such as the locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm [10], the block

Krylov-Schur algorithm [26] and the Chebyshev-Davidson algorithm [24, 25], are more scalable because

more concurrency can be exploited in multiplying a sparse matrix with a block of vectors.

However, block methods have so far not addressed the relatively high cost of performing an RR calcu-

lation at each iteration. Although parallel algorithms for solving the dense projected eigenvalue problem

are available in multi-thread LAPACK [2] libraries for shared-memory paralle computers and in the ScaLA-

PACK [4] library for distributed-memory parallel computers, the parallel efficiency of these algorithms is

often limited to a relatively small number of processors or cores. When a large number of processing units

are involved, the thread or communication overhead can be significant. One way to address this issue is to
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use a “spectrum slicing” algorithm [1, 5, 8] that divides the part of the spectrum of interest into a number

of intervals and compute eigenvalues within each interval in parallel. However, this approach would re-

quire computing interior eigenvalues in each interval which is generally a more difficult task. Moreover, a

good initial guess of the eigenvalues of interest is needed so that the spectrum can be divided in an efficient

manner [1].

In the Chebyshev-Davidson algorithm [24, 25], the number of RR steps is amortized over a large number

of SpMVs because a Chebyshev matrix polynomial filter is applied to a block of vectors before an RR

calculation is performed to update the approximate eigenvectors. However, an apparent drawback of this

algorithm is the difficulty to take advantage of a good pre-conditioner when it is available. In addition, it is

difficult to apply a Chebyshev polynomial filter to generalized eigenvalue problems.

In this paper, we present a block algorithm for computing k algebraically smallest eigenvalues of a real

symmetric matrixA ∈ Rn×n and their corresponding eigenvectors, though the same methodology can easily

be applied to compute the largest eigenvalues and to compute eigenvalues of complex Hermitian matrices.

Our approach starts from the trace minimization formulation for eigenvalue problems. It is well known that

the invariant subspace associated with a set of k algebraically smallest eigenvalues of A yields an optimal

solution to the following trace minimization problem with orthogonality constraints

min
X∈Rn×k

tr(XTAX), s.t. XTX = I. (1)

A major theoretical result of this paper is to establish an equivalence relationship between problem (1) and

the following unconstrained optimization problem

min
X∈Rn×k

fµ(X) :=
1

2
tr(XTAX) +

µ

4
‖XTX − I‖2F , (2)

when the penalty parameter µ > 0 takes suitable finite values. As is well recognized, the objective function

in (2) is the classic quadratic (or Courant) penalty function [6, 13, 18] for the constrained problem (1).

Generally speaking, the classic quadratic penalty model approaches the original constrained problem only

as the penalty parameter µ goes to infinity. However, we show that problem (2) is essentially equivalent

to (1) in terms of finding an optimal eigenspace and it excludes all full-rank non-optimal stationary points

when the penalty parameter µ is appropriately chosen.

We will call the approach of solving model (2) trace-penalty minimization. A key difference between

trace minimization and trace-penalty minimization is that explicit orthogonality of X is no longer required

in the latter, which immediately opens up the possibility of doing far fewer RR steps including far fewer

orthogonalizations and other RR-related operations. In exchange, as will be demonstrated later, more dense

matrix-matrix multiplications are performed (to a less extent, also more SpMV). A major potential advantage

of replacing RR steps by dense matrix-matrix multiplications is that the latter operations have much better

parallel scalability and are highly optimized for modern high performance computers. In addition, one could

incorporate pre-conditioning into trace-penalty minimization in a straightforward manner.

In this paper, we consider applying gradient-type methods to the trace-penalty minimization problem
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(2). These methods can often quickly reach the vicinity of an optimal solution and produce a moderately

accurate approximation. In many applications, rough or moderately accurate approximations are often suf-

ficient. One of such instances is when solving a nonlinear eigenvalue problem, one approximately solves a

sequence of linearized eigenvalue problems one after another (such as in solving the Kohn-Sham equation

in electronic structure calculation by “self-consistent field” iterations [15]). In this paper we evaluate the

efficiency of our algorithm not by measuring the time it takes to compute eigenpairs to a high accuracy close

to machine precision, but rather the time it takes to achieve a moderate accuracy in computed eigenpairs.

Once good estimates are at hand, there exist a number of techniques that can perform further refinements

to obtain a higher accuracy. For example, moderately accurate estimates can be further improved by using

a “spectral slicing” type of algorithm [1, 5, 8]. Another possibility is to apply polynomial filtering to do

refinements. For the proposed trace-penalty minimization problem (2), we have experimented with various

algorithmic options in Matlab, developed a Fortran implementation and parallelize it using OpenMP. Pre-

liminary numerical comparison with some of the existing approaches shows that our approach is promising.

The rest of this paper is organized as follows. We analyze the trace-penalty minimization model in

Section 2. Our algorithms and several implementation details are discussed in Section 3. Numerical results

are reported in Section 4. Finally, we conclude the paper in Section 5.

2 Trace-Penalty Minimization: Model Analysis

For a given real symmetric matrix A = AT ∈ Rn×n, an eigenvalue decomposition of A is defined as

A = QnΛnQ
T
n , (3)

where, for any integer i ∈ [1, n],

Qi = [q1, q2, . . . , qi] ∈ Rn×i, Λi = diag(λ1, λ2, . . . , λi) ∈ Ri×i, (4)

so that QT
i Qi = I ∈ Ri×i and Λi is diagonal. The columns q1, . . . , qn of Qn are eigenvectors of A

associated with eigenvalues λ1, λ2, · · · , λn, respectively, which are assumed to be in an ascending order,

λ1 ≤ λ2 ≤ · · · ≤ λn.

We note the non-uniqueness of eigenvalue decomposition (3). One could not only alter the signs of eigen-

vectors, but also choose different unit eigenvectors associated with eigenvalues of multiplicity greater than

one. For convenience, we will treat (3) as a generic form of decomposition that represents all possible

alternatives.

Given a positive integer k ≤ n, it is well known that the eigenvector matrix Qk is a solution to the

trace minimization problem (1). As is stated in the introduction, instead of solving (1) directly, we propose

to solve the trace-penalty minimization problem (2). We first analyze the relationship between the two
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problems (1) and (2), and then derive some useful properties for (2).

2.1 Equivalence and other Properties

We start with the following definition of equivalence.

Definition 2.1. Problem (2) is said to be equivalent to (1) if each of its global minimizers spans a k-

dimensional eigenspace associated with k smallest eigenvalues of A.

The first-order necessary conditions for trace minimization (1) can be written as

AX −X(XTAX) = 0, XTX = I.

On the other hand, the first-order necessary condition for trace-penalty minimization (2) is simply

∇fµ(X) = AX + µX(XTX − I) = 0. (5)

Let L(Rn×k,Rn×k) be the space of linear operators that map Rn×k to Rn×k. The Fréchet derivative of

∇fµ at X , or the Hessian of fµ(X), has the operator form

∇2fµ(X)(S) = AS + µS(XTX − I) + µX(STX +XTS), (6)

from which one can also derive the matrix representation of∇2fµ(X) in terms of Kronecker products.

The first-order necessary condition (5) implies that each stationary point X of (2) spans an invariant

subspace of A, since∇fµ(X) = 0 is obviously equivalent to

AX = X(I −XTX)µ.

Trivially, X = 0 ∈ Rn×k is always a stationary point of (2). We first study this trivial stationary point and

show that it can be eliminated as a minimizer if the penalty parameter µ is sufficiently large.

Lemma 2.2. Let µ > 0. If µ ≤ λ1, the zero matrix X = 0 ∈ Rn×k is the only stationary point of problem

(2); otherwise, it is not a minimizer. Moreover, X = 0 is a maximizer when µ > λn.

Proof. Rearranging (5), we have

(µI −A)X = µX(XTX). (7)

Multiplying XT on both side of (7) yields

XT(µI −A)X = µ(XTX)2. (8)

If µ ≤ λ1, the matrix on the left is negative semidefinite while the one on the right is positive semidefinite,

forcing the only solution X = 0. When µ > λ1, it suffices to note that the Hessian of fµ at X = 0 is
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∇2fµ(0) = I ⊗ (A − µI) which is not positive semidefinite. Finally, we note that ∇2fµ(0) is negative

definite when µ > λn.

The next lemma shows that any stationary point of (2) can be expressed in terms of eigenpairs of A.

Lemma 2.3. Let µ > 0 and (U,D) ∈ Rn×k×Rk×k denote k eigenpairs ofA so thatAU = UD, UTU = I

and D is diagonal. A matrix X ∈ Rn×k is a stationary point of (2) if and only if

X = U [P (I −D/µ)]1/2V T, (9)

where V ∈ Rk×k is an arbitrary orthogonal matrix, and P ∈ Rk×k is a diagonal, projection matrix with

diagonal entries

Pii =

{
0, if µ ≤ Dii,

0 or 1, otherwise.
(10)

In Particular, X is a rank-k stationary point only if P = I and µI −D � 0 (being positive definite).

Proof. We will provide a proof for the case where X is of full-rank. The rank-deficient cases can be proved

along the similar line, though more notationally involved and tedious.

Suppose that X is a full rank stationary point, which spans an invariant subspace of A. Since every

k-dimensional invariant subspace of A can be spanned by a set of k eigenvectors, we can write X = UW

where U consists of k unit eigenvectors of A and W ∈ Rk×k is nonsingular. Upon substituting X = UW

into (7), we derive

U(µI −D)W = µUW (WTW ) ⇔ I −D/µ = WWT ⇔ W = (I −D/µ)1/2V T

for some orthogonal V ∈ Rk×k (which can possibly hold only if µ > Dii for i = 1, 2 · · · , k).

Now we establish the equivalence between the trace-penalty minimization model (2) and the trace min-

imization model (1) for proper µ values.

Theorem 2.4. Problem (2) is equivalent to (1) if and only if

µ > max(0, λk). (11)

Specifically, any global minimizer X̂ of (2) has a singular-value decomposition of the form:

X̂ = Qk(I − Λk/µ)1/2V T (12)

where Qk and Λk are defined as in (4), and V ∈ Rk×k is any orthogonal matrix.

Proof. It can be easily seen from (8) that condition (11) is necessary for the existence of a rank-k stationary

point. On the other hand, suppose that µ satisfies (11). Using Lemma 2.3, it is suffice to consider the
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representation X = UW , where U consists of any k eigenvectors of A and W ∈ Rk×k. Hence, we obtain

2fµ(X) = tr(DWWT) +
µ

2
‖WTW − I‖2F ,

where D = Diag(d) ∈ Rk×k is a diagonal matrix with k eigenvalues of A on the diagonal corresponding to

eigenvectors in U . A short calculation shows that

2fµ(X) =
µ

2
‖WWT + (D/µ− I)‖2F + tr(D)− 1

2µ
tr(D2)

≥ µ

2
‖(D/µ− I)+‖2F + tr(D)− 1

2µ
tr(D2)

=
k∑
i=1

(
µ

2

(
di
µ
− 1

)2

+

+ di −
d2i
2µ

)
≡

k∑
i=1

θ(di),

where (t)+ = max(0, t) and

θ(t) =
µ

2

(
t

µ
− 1

)2

+

+ t− t2

2µ
=

{
t− t2/(2µ), t < µ,

µ/2, t ≥ µ.

Note that θ(t) is monotonically nondecreasing since θ′(t) = 1− t/µ > 0 in (−∞, µ).

Substituting the formulation of X̂ defined in (12) into fµ(X̂), we obtain

2fµ(X̂) = tr(Λk)−
1

2µ
tr(Λ2

k) =

k∑
i=1

θ(λi) ≤ 2fµ(X),

which verifies that X̂ is a global minimizer. This completes the proof.

The next theorem indicates that our trace-penalty minimization model (2) can have far fewer undesirable,

full-rank stationary points than the trace minimization model (1). Hence, when the penalty parameter is suit-

ably chosen, one could reasonably argue that from an optimization point of view trace-penalty minimization

is theoretically more desirable than trace minimization.

Theorem 2.5. If µ ∈ (max(0, λk), λn), then fµ(X) has no local maxima, nor local minima other than

the global minimum attained by X̂ defined in (12). Moreover, if µ ∈ (max(0, λk), λk+p) where λk+p is

the smallest eigenvalue greater than λk, then all k-dimensional stationary points of fµ(X) must be global

minimizers.

Proof. To prove the first statement, we show that for µ ∈ (max(0, λk), λn) any stationary point other than

the global minimizers can only be saddle points.

Without loss of generality, consider stationary points in the form of (9) with V = I , that is

X̂ = U [P (I −D/µ)]1/2 = U [(I −D/µ)P ]1/2, (13)
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where AU = UD, UTU = I , and D is diagonal. The proof still holds for an arbitrary orthogonal matrix

V since the function value fµ(X̂) is invariant with respect to V . Substituting (13) into the Hessian formula

(6), we obtain

∇2fµ(X̂)(S) = AS − S(µ(I − P ) +DP ) + µX̂(STX̂ + X̂TS). (14)

We next show that there exists two different matrices S ∈ Rn×k such that tr(ST∇2fµ(X̂)(S)) < 0 and

tr(ST∇2fµ(X̂)(S)) > 0, respectively, unless the stationary point X̂ is constructed from eigenvectors asso-

ciated with a set of k smallest eigenvalues which corresponds to the global minimum.

First assume that X̂ has full rank. Then µI � D and P = I in (13). Letting P = I in (14) yields

∇2fµ(X̂)(S) = AS − SD + µX̂(STX̂ + X̂TS).

For S = U , we have STX̂ = X̂TS = (I −D/µ)1/2 and

tr(ST∇2fµ(X̂)(S)) = 0 + 2 tr(µI −D) > 0.

On the other hand, if X̂ is not a global minimizer, without loss of generality we can assume that U contains

qj but not qi where λi < λj . Let S contain all zero columns except a single nonzero column that is qi at the

position so that the only nonzero column of SD is qiλj . For such an S, we have STX̂ = 0 and

tr(ST∇2fµ(X̂)(S)) = qTi (Aqi − qiλj) + µ tr(STX̂(STX̂ + X̂TS)) = (λi − λj) + 0 < 0.

Hence, all full-rank stationary points are saddle points except the global minimizers.

We now consider the rank-deficient case, namely, there exists at least one zero entry in the diagonal of

P , say Pii = 0 for some i ∈ [1, k]. Let Ū be the remaining matrix after deleting the i-th column from U .

Since rank(Ū) = k − 1, there must exist at least one column, denoted by qj , of Qk that is not contained in

Ū . Then it holds qTj Ū = 0 and qTj Aqj ≤ λk. Let S contain all zero columns except one nonzero column

that is qj at the i-th position so that both SP = 0 and STX̂ = 0. Consequently, in view of (14) we have

tr(ST∇2fµ(X̂)(S)) = qTj Aqj − µ+ µ tr(STX̂(STX̂ + X̂TS)) ≤ (λk − µ) + 0 < 0.

On the other side, let S contain all zero columns except that the i-th column is qn. For any integer l ∈ [1, k],

if the column Ul = qn, then it follows from Lemma 2.3 that Pll = 0 and qTn X̂l = 0. Otherwise, the

column Ul 6= qn, thus qTnUl = 0 which implies qTn X̂ = 0. By our assumption, µ < qTnAqn = λn. Hence,

tr(ST∇2fµ(X̂)(S)) = λn − µ > 0. This complete the proof of the first statement.

The second part of this theorem is a direct consequence of the full-rank requirement and the stationary-

point expression (9) which, together, demands µI � D. Hence, for µ ∈ (max(0, λk), λk+p), D can only

have a set of k smallest eigenvalues of A on its diagonal.
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2.2 Error Bounds between Optimality Conditions

After establishing the equivalence between our trace-penalty minimization model (2) and the original trace

minimization model (1), we investigate the relationship between the first-order optimality conditions of the

two models, which would play an important role in setting the stopping tolerance for an iterative algorithm

to solve (2).

Given any approximate solutionX of (2), an orthonormal basis for the range space ofX , say Y (X), is a

feasible solution of (1). Specifically, let X be of full rank and X = UΣV T denote the partial (or economy-

form) singular value decomposition (SVD) of X , where U ∈ Rn×k and V ∈ Rk×k have orthonormal

columns, and Σ ∈ Rk×k is a diagonal matrix with the singular values ofX on its diagonal. Then a particular

choice for Y (X) is

Y (X) , U. (15)

Consequently, the violation of the first-order necessary conditions of the trace minimization (1) can be

measured by the Frobenious norm of the residual

R(X) , AY (X)− Y (X)
(
Y (X)TAY (X)

)
. (16)

Lemma 2.6. Let µ > max(0, λk), and∇fµ(X) and R(X) be defined as in (5) and (16), respectively. Then

‖R(X)‖F ≤ σ−1min(X)‖∇fµ(X)‖F , (17)

where σmin(X) is the smallest singular value of X . Moreover, for any global minimizer X̂ and any ε > 0,

there exists δ > 0 such that whenever ‖X − X̂‖F ≤ δ,

‖R(X)‖F ≤
1 + ε√

1− λk/µ
‖∇fµ(X)‖F . (18)

Proof. Recall that X = UΣV T where the columns of U form an orthonormal basis for the range space of

X . Projecting∇fµ(X) onto the null space of XT and using the definition of R(X) in (16), we obtain

(I − UUT)∇fµ(X) = (I − UUT)(AX + µX(XTX − I))

= (I − UUT)AX = (I − UUT)AUΣV T

= R(X)ΣV T.

A rearrangement of the above equality givesR(X) = (I−UUT)∇fµ(X)V Σ−1,which leads to (17) through
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the following steps,

‖R(X)‖F = ‖(I − UUT)∇fµ(X)V Σ−1‖F
≤ ‖(I − UUT)∇fµ(X)V ‖F ‖Σ−1‖2
= ‖(I − UUT)∇fµ(X)‖F σ−1min(X)

≤ σ−1min(X) ‖∇fµ(X)‖F ,

where the last inequality is due to the fact that I − UUT is a projection.

To see the second part of this lemma, we recall Theorem 2.4 that gives σmin(X̂) =
√

1− λk/µ at any

global minimizer X̂ . This completes the proof.

2.3 The Hessian at Solution

An important quantity for smooth unconstrained optimization is the condition number of the Hessian at a

solution, which is defined (in Euclidean norm) as

κ(∇2fµ(X̂)) =
λmax(∇2fµ(X̂))

λmin(∇2fµ(X̂))
,

where λmax(·) (or λmin(·)) stands for the largest (or the smallest) eigenvalue of the referred matrix, and X̂

is a global minimizer of (2). Obviously, κ is infinity when the involved matrix is singular.

If k = 1 and λ1 < λ2, according to Theorem 2.4 there exists exactly two isolated global minimizers

for (2) at which the Hessian of fµ is nonsingular. If λ1 = λ2, however, the Hessian of fµ becomes singular

throughout the solution set since the multiplicity is greater than one.

In the case of k > 1, it follows from Theorem 2.4 that there is no isolated global minimizer. Hence,

the Hessian at any solution is singular. If fact, let P = −P T ∈ Rk×k be any nonzero skew-symmetric

matrix. Then we can easily verify from (5) and (6) that for S = X̂P 6= 0, ∇2fµ(X̂)(S) = ∇fµ(X̂)P = 0,

implying Hessian singularity. Clearly, this singularity manifold, defined by S = X̂P , lies within the optimal

eigenspace spanned by the columns of X̂ , which directly reflects the fact that the optimal solution set

is a connected non-singleton set. However, from the viewpoint of numerical computation, such type of

singularity is benign since we would be equally satisfied with any point in the solution set.

The following result, Lemma 2.7, examines the restricted condition number of the Hessian outside of

the optimal eigenspace. Specifically, the definition is

κ
(
∇2fµ(X̂)

∣∣∣Q⊥k ) ,
max

S∈Rn×k

{
tr(ST∇2fµ(X̂)(S)) : tr(STS) = 1, STQk = 0

}
min

S∈Rn×k

{
tr(ST∇2fµ(X̂)(S)) : tr(STS) = 1, STQk = 0

} . (19)
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Lemma 2.7. Let k > 1, µ > max(0, λk) and X̂ be any global minimizer of fµ in (2). Then

κ
(
∇2fµ(X̂)

∣∣∣Q⊥k ) =
λn − λ1
λk+1 − λk

. (20)

Proof. Consider any S ∈ Rn×k such that STQk = 0 and tr(STS) = 1. In view of (6) and (12),

ST∇2fµ(X̂)(S) = STAS + µSTS(X̂TX̂ − I) = STAS − STSV ΛkV
T, (21)

where V ∈ Rk×k is orthogonal. Since the columns of S are contained in the eigenspace associated with

{λk+1, · · · , λn} and tr(STS) = 1, we obtain

λk+1 ≤ tr(STAS) ≤ λn. (22)

On the other hand, we note that tr(STS(V ΛkV
T − λ1I)) ≥ 0 and tr(STS(λkI − V ΛkV

T)) ≥ 0, since

both are traces for products of symmetric positive semidefinite matrices. These two inequalities imply that

λ1 ≤ tr(STSV ΛkV
T) ≤ λk, (23)

given the fact that tr(STS) = 1. From (21), (22) and (23) we deduce

λk+1 − λk ≤ tr
(
ST∇2fµ(X̂)(S)

)
≤ λn − λ1, (24)

which proves that the left-hand side of (20) is no greater than the right hand side of (20). Furthermore,

the lower and upper bounds in (24) are attained at the n × k rank-one matrices S = [0 · · · 0 qk+1] and

S = [qn 0 · · · 0], respectively. Therefore, the equality in (20) must hold, which completes the proof.

Not surprisingly, one can expect some difficulty arising from the existence of a narrow gap λk+1 − λk
(also known as a cluster at a critical location) relative to the total spectrum length λn − λ1. This difficulty

represents a common challenge to eigensolvers in general. However, since the extreme cases are attained

by rank-one matrices, the worst-case conditioning in (20) is unlikely to happen in practice as converging

iterates remain full rank near a solution.

2.4 Extensions

It is not difficult to see that our analysis in this section, as well as the algorithmic framework described in

the next section, can be extended to the generalized eigenvalue problem:

min
X∈Rn×k

tr(XTAX), s.t. XTBX = I, (25)

11



where B is symmetric and positive definite. In this case, the trace-penalty minimization model is simply

min
X∈Rn×k

fµ(X) :=
1

2
tr(XTAX) +

µ

4
‖XTBX − I‖2F . (26)

In fact, by change of variable Z = B
1
2X (where the symmetric matrix B

1
2 satisfies B

1
2B

1
2 = B), the

generalized eigenvalue problem (25) can be converted to a standard eigenvalue problem

min
Z∈Rn×k

tr(ZTĀZ), s.t. ZTZ = I, (27)

where Ā = B−
1
2AB−

1
2 . As a result, our model analysis, directly applicable to (27), can be translated to

(26) in a straightforward manner. For example, Theorem 2.4 gives the global minimizers of (27) as

Z = Q̄k(I − Λk/µ)V T,

where Λk is diagonal with k smallest eigenvalues of Ā on its diagonal that also happen to be the generalized

eigenvalues of the matrix pair (A,B), and Q̄k consists of corresponding eigenvector of Ā. By the change of

variables Z = B
1
2X , then

X = Qk(I − Λk/µ)V T, (28)

where Qk = B−
1
2 Q̄k consists of the generalized eigenvectors associated with the k smallest generalized

eigenvalues in Λk. Naturally, the equivalence of the trace-penalty minimization model (26) to the trace

minimization model (25) requires that µ > max(0, λk) where λk is a k-th smallest generalized eigenvalue

of the matrix pair (A,B).

Another useful extension is to find eigenvectors in the orthogonal complement of the column-space of a

given U such that UTU = I , that is:

min
X∈Rn×k

tr(XTAX), s.t. XTBX = I, UTX = 0. (29)

The variation (29) can arise from a deflation procedure where U is constructed from already converged

eigenvectors. The trace-penalty minimization model corresponding to (29) is

min
X∈Rn×k

fµ(X) :=
1

2
tr(XTAX) +

µ

4
‖XTBX − I‖2F , s.t. UTX = 0. (30)

Starting from X0 such that UTX0 = 0, a projected-gradient method for solving (30) has the form Xj+1 =

Xj−αj(I − UUT)∇fµ(Xj) which is just a slight modification of regular gradient methods to be discussed

in details in the next section.

The principle of trace-penalty minimization can in fact be applied to other types of eigenvalue problems,

but for the sake of space we will leave further extensions to future work.

12



3 Algorithmic Framework

3.1 Gradient Methods for Trace-Penalty Minimization

The trace-penalty minimization model proposed in the previous section is an unconstrained nonconvex min-

imization problem. There are many well-studied approaches for this problem, such as the steepest descent

gradient, the conjugate gradient, the Newton’s and Quasi-Newton methods. Considering the scale of the

eigenvalue computation of interest, in this paper we focus on the gradient-type methods of the form:

Xj+1 = Xj − αj∇fµ(Xj), (31)

where the superscript j denotes the j-th iteration and αj is the step size.

Although the penalty function may have multiple stationary points, Theorem 2.5 shows that when µ is

chosen slightly above λk ≥ 0, then rank-k stationary points are likely to be all global minimizers. The

following lemma suggests that iterates generated by (31) will most likely remain full rank.

Proposition 3.1. Let Xj+1 be generated by (31) from a full-rank iterate Xj . Then Xj+1 is rank-deficient

only if 1/αj is one of the k generalized eigenvalues of the problem:

[(Xj)T∇fµ(Xj)]u = λ[(Xj)T(Xj)]u. (32)

On the other hand, if αj < σmin(Xj)/‖∇fµ(Xj)‖2, then Xj+1 is of full rank.

Proof. Suppose that Xj+1 is rank deficient. Then there exists an nonzero vector u such that Xj+1u = 0. In

view of (31), we have

Xju− αj∇fµ(Xj)u = 0. (33)

Hence, (32) holds under λ = 1/αj after multiplying both sides of (33) by (Xj)T/αj . Due to the full rank

of Xj , (Xj)T(Xj) is positive definite. The expression of the gradient in (5) implies that (Xj)T∇fµ(Xj)

is symmetric. Therefore, (32) is a generalized symmetric eigenvalue problem. The second part of the

proposition follows directly from (33).

We next present a few strategies for choosing the step size αj . Given an arbitrary direction D ∈ Rn×k,

the objective function fµ(X + αD) is a quartic function of α; precisely,

fµ(X + αD) =
1

2
tr(XTAX) +

µ

4
tr(BTB) +

(
tr(DTAX) +

µ

2
tr(BTW )

)
α

+
(

tr(DTAD) +
µ

2
tr(BTH) +

µ

4
tr(WTW )

)
α2

+
(µ

2
tr(WTH)

)
α3 +

(µ
4

tr(HTH)
)
α4, (34)

whereB = XTX−I ,W = DTX+XTD andH = DTD. The steepest descent gradient method computes

the step size by using an one-dimensional exact minimization, i.e., αj = argmin fµ(Xj − α∇f(Xj)),
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which is determined by a root of the cubic equation dfµ(Xj − α∇f(Xj)/dα = 0. Note that µ > 0 and

tr(HTH) > 0 for ∇fµ(X) 6= 0, a positive root always exits. Although executing exact line searches along

each steepest descent direction often converges slowly, it has been demonstrated in [21, 22] that mixing it

with some other step sizes in an alternative fashion can accelerate convergence significantly.

Another successful approach is to use line search with a Barzilai-Borwein (BB) size [3]. Let

Sj := Xj −Xj−1 and Y j = ∇fµ(Xj)−∇fµ(Xj−1). (35)

The BB step size is

αjBB1 =
tr((Sj)TY j)

‖Y j‖2F
or αjBB2 =

‖Sj‖2F
tr((Sj)TY j).

(36)

Since Sj = αj−1∇fµ(Xj−1), the computation of the BB step sizes only requires to store one intermediate

matrix Y j in (35). When n and k are huge or when storage becomes a critical factor, one can still compute

a so-called partial BB step size by using (36) but with a pre-selected small subset of columns of both Sj and

Y j , making the storage of an extra Y -matrix unnecessary. A simple heuristic line search scheme that we

will use is to shorten the step size, whenever necessary, by back-tracking αj = αδh, where α is one of the

BB step sizes in (36), δ ∈ (0, 1) and h is the smallest positive integer satisfying the condition

fµ(Xj − αδh∇f jµ) ≤ 2fµ(Xj). (37)

It is known that certain global convergence properties can be guaranteed in theory by more elaborate line

search conditions such as non-monotone line search conditions in [7, 9, 23]. We have found, however, that

on our trace-penalty function fµ(X) condition (37) has performed efficiently and reliably.

At the end of trace-penalty minimization, a Rayleigh-Ritz (RR) step is necessary to compute Ritz-pairs

as approximations to eigenpairs. Specifically, in our context the RR step corresponding to a given matrix

X ∈ Rn×k is defined by the following steps.

1. Orthogonalize and normalize X to obtain U so that UTU = I .

2. Compute the projection UTAU and its eigenvalue decomposition V TΣV .

3. Assemble the Ritz-pairs into the matrix-pair (Y,Σ) where Y = UV .

For convenience, we will refer the above RR procedure as a map (Y,Σ) = RR(X).

In Algorithm 1 below, we specify a basic version of a method for trace-penalty minimization, called

“EigPen-B”, which uses the first BB step formula in (36), the simple line search condition (37), and a

termination rule

‖∇fµ(Xj)‖F ≤ ε, (38)

where ε > 0 is a prescribed tolerance.
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Algorithm 1: Eigenspace by Penalty – basic version (EigPen-B)

Initialize X0 ∈ Rn×k and estimate µ ∈ (λk, λn). Set ε, δ ∈ (0, 1) and j = 0.
Compute initial step α = ‖X0‖F /‖∇fµ(X0)‖F .
while ‖∇fµ(Xj)‖F > ε do

compute the smallest natural number h so that αδh satisfying (37);
update Xj+1 = Xj − αj∇fµ(Xj);
compute α using the first formula in (36);
increment j and continue.

Execute the RR procedure (X,Σ) = RR(Xj).

The memory requirement of Algorithm 1 is as follows. Four n by k matrices, X , AX , ∇fµ(X) and Y

defined in (35), are required. As mentioned earlier, the need for storing Y can be essentially eliminated if

partial BB step sizes are computed (without obvious performance degradation in our experiments).

3.2 Enhancement by Restarting

Algorithm EigPen-B often works quite well in practice. However, a typical behavior of gradient methods

is that they can reduce the objective function rather rapidly at an initial stage, but the amount of reduction

can become extremely small as iterates get closer to a solution. In trace-penalty minimization, it has been

observed that restarting the gradient method with a modified X can usually help accelerate convergence and

achieve a higher accuracy more quickly. In this subsection, we describe a restarting strategy for trace-penalty

minimization that utilizes more than one RR step. In addition to accelerating convergence, the restarting

strategy provides a more reliable termination procedure by examining more than one set of Ritz-pairs.

We now demonstrate how RR steps can help speed up trace-penalty minimization. Let

Y = argmin
X∈Rn×k

{fµ(X) : X ∈ S}, (39)

where X ∈ S means that every column of X is in the subspace S. Let XJ be the iterate generated by the

EigPen-B algorithm after J iterations. Clearly, as long as XJ ∈ S there holds

fµ(Y ) ≤ fµ(XJ). (40)

On the other hand, consider the subspace trace minimization problem

U = argmin
X∈Rn×d

{
tr(XTAX) : XTX = I, X ∈ S

}
, (41)

where d is the dimension of the subspace S. Clearly, the RR step (U,Σ) = RR(XJ) is equivalent to

solving (41) for S = span{XJ} (assuming that XJ ∈ Rn×k has full rank) so that UTAU = Σ is diagonal

(otherwise, replace U by UV where UTAU = V ΣV T).

We now show that a “better point” Y for trace-penalty minimization in (39) and (40) can be explicitly
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constructed from the RR step output (U,Σ) = RR(XJ). We first consider the simple case S = span{XJ}.

Lemma 3.2. Let S = span{XJ} where XJ ∈ Rn×k has full rank, and let U be defined in (41) so that

UTAU = Σ is diagonal. Then a Y in (39) has the form Y = U(I − Σ/µ)1/2, provided that µI � Σ.

Now we prove a more general result that contains the above as a special case.

Lemma 3.3. Let S ⊇ span{XJ} have dimension d ≥ k, and U be defined in (41) so that UTAU = Σ

is diagonal whose diagonal elements are arranged in an ascending order. Then a matrix Y in (39) has the

form Y = UkD where Uk consists of the first k columns of U , and D ∈ Rk×k is a diagonal matrix whose

i-th diagonal element is

Dii = max

(
0, 1− 1

µ
Σii

)1/2

, i = 1, 2, · · · , k. (42)

Proof. Since U ∈ Rn×d is a basis of S, the solution of (39) can be expressed as X = UW for some

W ∈ Rd×k. Substituting X = UW into (39) and noting that UTAU = Σ and UTU = I , we reduce (39) to

min
W∈Rd×k

fµ(UW ) =
1

2
tr(WTΣW ) +

µ

4
‖WTW − I‖2F . (43)

Using the fact that Σ is a diagonal matrix, it can be verified (see Theorem 2.4) that W =
(
D 0

)T
, with

the diagonal matrix D defined as in (42), is indeed a solution of (43). Therefore, Y = UW = UkD.

In Algorithm 2 below, we present our trace-penalty minimization algorithm with restarting, which is

used to perform numerical experiments presented in the next section. The algorithm, called EigPen, contains

two loops. The inner loop is stopped once the condition

‖∇fµ(Xj)‖F ≤ εi max(1, ‖AXj‖F) (44)

is met, where εi ∈ (0, 1) is a prescribed tolerance. Then an RR step is executed to construct Ritz-pairs and

termination criteria are checked for the outer loop. If the algorithm does not stop, then a smaller tolerance

εi+1 = δεεi is set where δε ∈ (0, 1), and a better iterate is constructed from which the algorithm restarts the

next round of inner iterations by calling EigPen-B.

The RR restart approach allows flexibility to integrate other techniques into EigPen. For example, at the

j-th iteration, if one chooses the subspace S in problem (41) to be S = span
{
Xj−1, Xj , AXj

}
, then the

RR step would generate a step similar to those in the LOBPCG algorithm [10]. A key difference between

LOBPCG and EigPen is that RR steps constitute the main workhorse of the former, but are utilized only a

few times in the latter.

3.3 Penalty Parameter Adjustment

We now describe our approach to choosing penalty parameter µ. Theorem 2.4 states that µ > max(0, λk) is

necessary and sufficient for the equivalence between (1) and (2). A more restrictive range for µ is given in

16



Algorithm 2: Eigenspace by Penalty – enhanced version (EigPen)

Initialize X̄0 ∈ Rn×k and estimate µ ∈ (λk, λn). Set ε0, δ, δε ∈ (0, 1) and i = j = 0.
while “not converged” do

Set Xj = X̄i and compute α = ‖Xj‖F /‖∇fµ(Xj)‖F .
while ‖∇fµ(Xj)‖F > εi ·max(1, ‖AXj‖F) do

compute the smallest integer h so that αj = αδh satisfying (37);
update Xj+1 = Xj − αj∇fµ(Xj);
compute α using the first formula in (36);
increment j and continue.

Execute the RR procedure (X,Σ) = RR(Xj) and let X̄i+1 = X(I − Σ/µ)
1
2 .

Update the tolerance εi+1 = δεεi and increment i.

Theorem 2.5 that eliminates all full-rank stationary points but the global minimizers. However, it requires

the extra work of estimating, at the least, λk+1. On the other hand, Lemma 2.6 suggests that µ should not

be too close to λk, otherwise ill-conditioning could arise in trace-penalty minimization. On balance, we

adopt a tractable strategy of choosing µ > λk (which is positive after a shifting if necessary) and keeping it

reasonably close to λk, without attempting to make µ smaller than the next smallest eigenvalue.

Given an initial matricesX0 ∈ Rn×k whose columns are normalized, the kth smallest eigenvalue λk can

be estimated by the maximal value of the diagonal entries of (X0)TAX0, which provides an initial choice

µ = max(c1, c2 max(diag((X0)TAX0))), (45)

where c1 > 0 and c2 > 1 are two constants for safeguarding. Another estimation of µ comes from the

structure of the minimizer X̂ given in (12), which yields the eigenvalue decomposition

µ(I − X̂TX̂) = V ΛkV
T, (46)

where V and Λk are defined in Theorem 2.4. Once a “good” iterate Xj is at hand after some iterations dur-

ing trace-penalty minimization, the relationship (46) implies that λk can be estimated from the maximum

eigenvalues of I − (Xj)TXj , i.e., λ̄jk = µλmax(I − (Xj)TXj). Since the computational cost of approx-

imating the largest eigenvalue of a k × k matrix is relatively low, the penalty parameter µ can be updated

during trace-penalty minimization by the formula

µ = max(c1, c2λ̄
j
k). (47)

A more accurate estimate of λk becomes available after an RR step is executed and the k-th Ritz-value θk is

at hand. Then we use the formula

µ = max(c1, c2θk). (48)
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In favorable cases where the gap between λk and λk+1 is relatively large, our strategy of choosing µ

slightly larger than λk would have a good chance to satisfy both µ > 0 and µ ∈ (λk, λk+1), provided that

λk > 0. In order to ensure λk > 0, our current strategy is to first scale the matrix A by σ ≈ |λ1|, assuming

that λ1 < 0, and then add a positive shift ω > 1, obtaining

Â =
1

σ
A+ ωI (49)

that is at least close to being positive semidefinite. After performing trace-penalty minimization to Â, the

above scale and shift can be easily reversed to recover the eigenvalues of A.

To estimate λ1, we note that the well-known Gershgorin circle theorem implies that

λ1 ≥ u1 := min
i=1,...,n

Aii −∑
j 6=i
|Aij |

 .

In addition, the relationship between matrix norms implies that

u2 :=
max(‖A‖∞, ‖A‖F )√

n
≤ ‖A‖2 = max(|λ1|, |λn|).

Hence, without too much computation a reasonable value of σ in (49) is taken as

σ = max(min(|u1|, u2), 1). (50)

As long as σ is not much smaller than |λ1|, setting ω to a moderate number between 1 to 10 usually works

well in our tests. In our numerical experiments, we always take the safe value of ω = 10.

4 Numerical Experiments

In this section, we test the performance of EigPen as a general solver for computing a set of smallest

eigenvalues and their corresponding eigenvectors of sparse matrices.

4.1 Solvers, Test Matrices and Platform

We choose to compare EigPen with two state-of-the-art eigensolvers: the locally optimal preconditioned

conjugate gradient (LOBPCG) algorithm and the preconditioned iterative multi-method eigensolver [16, 17]

(PRIMME, version 1.1)1. Both EigPen and LOBPCG are implemented in Fortran and parallelized by using

OpenMP. Instead of using the official version of LOBPCG — BLOPEX2, we adopt an implementation

previously developed by the second author of this paper, since this version supports operations in blocks

of vectors while none of current BLOPEX implementations does (up to the writing of the present paper in
1Downloadable from http://http://www.cs.wm.edu/˜andreas/software
2Downloadable from http://code.google.com/p/blopex
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2013). The algorithmic framework of our LOBPCG version is the same as BLOPEX. PRIMME is written

in the C language and it is compiled using the OpenMP flags and linked to the same BLAS and LAPACK

libraries as EigPen and LOBPCG. We also compared EigPen with an OpenMP version of ARPACK [12].

Because the performance of ARPACK is much worse than that of EigPen except for a few problems, we

choose not to report its performance here. The poor performance of ARPACK is mainly due to the lack of

effective parallelization for SpMVs since they are performed one vector at a time. Since ARPACK is built

on top of BLAS2, the relative poor performance of dense matrix operations also contributed to the poor

performance.

In order to exhibit the fundamental algorithmic difference between EigPen and LOBPCG, we do not

add any well-known acceleration or stabilization techniques such as deflation to their implementations.

The block sizes of EigPen and LOBPCG are set to the same number so that both solvers consume almost

the same amount of memory. On the other hand, PRIMME is a sophisticated software package based on

Davidson/Jacobi-Davidson iteration. Instead of computing all eigenvectors in a single large block as is done

in LOBPCG and EigPen, PRIMME calculates a few eigenpairs at a time using a windowed approach with

locking. In addition, it is enhanced by a few special techniques, such as restarting and stagnation-proof

locking, etc. These techniques can potentially be used to improve the performance of EigPen and LOBPCG

also, but is currently not implemented in these codes.

We select a set of thirteen sparse test matrices3 whose dimension n, the number of nonzero components

nnz and sparsity are listed in Table 1. Many of these matrices are produced by PARSEC [11], a real space

density functional theory (DFT) based code for electronic structure calculation in which the Hamiltonian

is discretized by using finite difference. Since the smallest absolute value of the matrix “shallow water1”

is as large as O(108) that causes trouble for PRIMME to converge, we divide the matrix by the number

σ = 5.7769× 109 as is defined by (50) and denote the scaled matrix by “shallow water1s”.

Table 1: Problem characteristics
Name n nnz 100× nnz

n2 %

Andrews 60000 410077 0.01%
C60 17576 212390 0.07%
c 65 48066 204247 0.01%
cfd1 70656 948118 0.02%

finance 74752 335872 0.01%
Ga10As10H30 113081 3114357 0.02%

Ga3As3H12 61349 3016148 0.08%
OPF3754 15435 82231 0.03%

shallow water1 81920 204800 <0.01%
Si10H16 17077 446500 0.15%
Si5H12 19896 379247 0.10%

SiO 33401 675528 0.06%
wathen100 30401 251001 0.03%

We perform most of our numerical experiments on a single node of Hopper4, a Cray XE6 supercomputer

maintained at the National Energy Research Scientific Computer Center (NERSC) in Berkeley. The node

consists of two twelve-core AMD “MagnyCours” 2.1-GHz processors with a total of 32 gigabyte (GB)
3Downloadable from http://www.cise.ufl.edu/research/sparse/matrices
4Detailed information is available at http://www.nersc.gov/users/computational-systems/hopper/
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shared memory. However, memory access bandwidth and latency are nonuniform across all cores. Each

core has its own 64 kilobytes (KB) L1 and 512 KB L2 caches. One 6-MB L3 cache shared among 6

cores on the Magny-Cours processor. There are four DDR3 1333-MHz memory channels per twelve-core

“MagnyCours” processor.

We use the multi-threaded version of the Cray Scientific Libraries package, LibSci, which includes

multi-threaded versions BLAS and LAPACK subroutines optimized for Cray XE6. While each individual

sparse matrix-vector multiplication (SpMV) is not parallelized in all solvers, a loop-level parallelization is

applied so that the columns of AX are computed in parallel whenever X contains multiple columns. We

also implement a block version of the Davidson algorithm. Without using a preconditioner, the algorithm

is essentially a steepest descent algorithm directly applied to (1). Because its performance in our tests has

been found to be clearly poorer compared to other algorithms discussed in this section, we do not include its

timing measurements in the numerical results presented in this section. The block Krylov-Schur algorithm

[26] and the (block) Chebyshev-Davidson algorithm [24, 25] are not included in our comparison, partly

because suitable Fortran/OpenMP implementations of these algorithms were unavailable for our tests.

4.2 Termination Rules and Parameters

All tests on the aforementioned machine Hopper are run as batch jobs with a maximum wall-clock time

limit of 6 hours. We terminate both EigPen and LOBPCG when the relative residual norm (defined below)

for every Ritz-pair (ui, θi) is smaller than a prescribed tolerance tol, that is,

resi(U) =
‖Aui − θiui‖2
max(1, |θi|)

≤ tol, i = 1, · · · , nev, (51)

where nev is the number of smallest eigenvalues to be computed, ui is the i-th column of U that satisfies

UTU = I , and θi = uTi Aui (recall that for EigPen we need to perform an RR step to obtain the Ritz-pair).

We also terminate an algorithm when the number of iterations reaches a maximum of 10,000, but this limit

was never reached in our experiments. For LOBPCG and EigPen, we set the dimension of X (denoted by

k) to be slightly larger than nev to improve the convergence. Specifically, k is set to nev× 1.1 (round to the

nearest integer).

In EigPen, the initial penalty parameter µ is computed by (45) and it is updated by (47) at most three

times in the first outer iteration of EigPen. After an RR step is executed, µ is set according to (48) and

is fixed throughout the next round of inner iterations. The constants c1 = 0.1 and c2 = 1.1 are used in

(45), (47) and (48). The initial tolerance ε0 is set to tol and the backtracking constant δ is set to 0.25. The

parameter δε is adjusted dynamically according to the number of the converged eigenvectors (denoted by
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k1) that satisfy the condition resi ≤ tol, for i = 1, . . . , nev, after each RR step:

δε =



0.1, if k1 = 0,

0.5, if k1 ≤ 0.9 nev,

0.6, if k1 ≤ 0.95 nev,

0.7, otherwise.

As is already mentioned, in order to facilitate the selection of our penalty parameter µ in EigPen we perform

scaling and shifting as in (49) where σ is given by (50) and ω = 10 is always used.

The basic termination rule of PRIMME is

‖Aui − θiui‖2 ≤ tol, i = 1, · · · , nev. (52)

To prevent stagnation, PRIMME also employs certain heuristics to declare near-convergence of a Ritz pair

even when (52) is not satisfied. Due to the existence of such heuristics, we keep the stopping rules of

PRIMME intact, which of course differ from (51). Since the magnitude of many eigenvalues is of order

O(1) for the tested matrices, the two stopping rules (51) and (52) are nevertheless comparable to a large

extent. Throughout our experiments, we set the PRIMME parameters

primme.maxBasisSize = max(100,min(500, 0.5nev)),

primme.maxBlockSize = 10.

Our experiments show that, at least on the particular computer node and the particular set of test problems,

the above parameter setting provides overall better performance than the default PRIMME settings (though

it might not be the best possible since our tuning was not exhaustive).

4.3 Overall Performance

We first report the overall performance of ARPACK, LOBPCG and EigPen on the test matrices listed in

Table 1. The number of smallest eigenvalues (nev) to be computed is roughly 1% of the dimension of A.

All algorithms are run in parallel with 24 cores. No preconditioner is used in these tests.

Our experiments are performed using two different tolerance values tol = 10−3 and tol = 10−4.

The total wall-clock times taken by the three solvers are presented in Table 2. Whenever a code terminates

abnormally (either a run is stopped prematurely or the maximum wall-clock time limit of 6 hours is reached),

the corresponding entry in the table is marked by “– –”.

We observe from Table 2 that LOBPCG did not succeed on three matrices: c 65, Ga10As10H30 and

Ga3As3H12 for tol = 10−4. In general, EigPen is faster than LOBPCG, especially on larger problems,

with only one significant exception on the matrix c 65 for tol = 10−3. EigPen is also mostly faster than

PRIMME except on the matrix C60 and c 65 for tol = 10−3. For tol = 10−4, the comparison results
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Table 2: A comparison of total wall-clock time (“– –” are abnormal terminations)
tol = 10−3 tol = 10−4

Matrix nev LOBPCG PRIMME EigPen LOBPCG PRIMME EigPen
Andrews 600 646 525 248 1129 581 601

C60 200 38 23 35 53 27 47
c 65 500 572 757 5944 – – 820 6612
cfd1 700 1983 4250 703 2890 3103 1327

finance 700 1668 1359 639 4679 1108 901
Ga10As10H30 1000 8439 3691 2538 – – 3997 4125

Ga3As3H12 600 9639 1086 760 – – 1309 1183
OPF3754 200 22 23 13 43 28 22

shallow water1s 800 1799 2734 420 3782 1842 1247
Si10H16 200 89 40 33 100 47 62

Si5H12 200 100 49 32 115 57 38
SiO 400 307 214 134 1866 249 231

wathen100 300 344 154 137 1109 164 289

between EigPen and PRIMME are mixed, with no clear speed advantage for either. We should point out

that our current implementation of EigPen is still rather preliminary and its relative performance deteriorates

as tol decreases, which is a limitation of EigPen at this point. Its performance can be improved by using

better restarting and locking strategies similar to those used in PRIMME. For example, we have found by

additional experiments that the performance of EigPen on matrix c 65, which has created most difficulties

for EigPen, can indeed be significantly improved by a proper locking strategy.

In Table 3, we report the number of iterations performed by LOBPCG (denoted by “LOBPCG-iter”),

the total number of gradient descent steps and the number of RR steps performed by EigPen (denoted by

“EigPen-(GD,RR)” together in parentheses). The minimal, average and maximal number of the RR steps

is, respectively, 1, 5.5 and 12. It is worth emphasizing that EigPen makes only a few RR calls, whereas

LOBPCG calls RR at every iteration.

Table 3: The number of iterations performed by LOBPCG and EigPen
tol = 10−3 tol = 10−4

Matrix LOBPCG-iter EigPen-(GD,RR) LOBPCG-iter EigPen-(GD,RR)
Andrews 71 (113, 5) 86 (299, 5)

C60 50 (178, 9) 65 (266, 6)
c 65 167 (5368,12) 2180 (6011,11)
cfd1 135 (253, 4) 205 (523, 4)

finance 119 (235, 5) 533 (348, 4)
Ga10As10H30 317 (334, 5) 130 (590, 5)

Ga3As3H12 499 (310, 3) 465 (550, 3)
OPF3754 34 (86, 1) 79 (152, 1)

shallow water1s 96 (108, 4) 242 (236, 6)
Si10H16 87 (150, 8) 100 (316, 7)
Si5H12 90 (134, 5) 103 (176, 5)

SiO 83 (175, 5) 415 (332, 7)
wathen100 165 (320, 5) 808 (746, 6)

We next show the accuracy of the computed eigenpairs, as well as that of the computed minimum trace

values. We should point out that when tol is relatively large, the i-th Ritz value θi may be closer to λj for

j > i than to λi. In this case, we may miss some eigenvalues even though the convergence criterion (51) is

satisfied for all i ≤ nev. To measure the accuracy of the computation, we compute the relative difference

between θi and the true eigenvalue λi computed in advance by ScaLAPACK [4]. The maximum relative
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errors among all eigenvalues, which is measured by

errθ = max
i=1,...,nev

|θi − λi|
max(1, |λi|)

,

are reported in Table 4, and the relative errors between the sum of the nev eigenvalues, defined by

errtrace =
|
∑nev

i=1 θi −
∑nev

i=1 λi|
max(1, |

∑nev
i=1 λi|)

,

are presented in Table 5. From these tables, we see that LOBPCG and EigPen achieve the same level

of accuracy on most problems. Compared with the other two solvers, PRIMME generally obtains better

accuracy in computed eigenvalues except on the matrices cfd1 and shallow water1s (though it does not

produce more accurate eigenvectors, as is shown below).

Table 4: A comparison of errθ among different solvers
tol = 10−3 tol = 10−4

Matrix LOBPCG PRIMME EigPen LOBPCG PRIMME EigPen
Andrews 4.58e-05 1.61e-07 4.58e-05 4.58e-05 2.93e-09 4.58e-05

C60 4.34e-05 2.45e-06 4.34e-05 4.34e-05 2.74e-08 4.34e-05
c 65 4.79e-05 1.54e-08 4.79e-05 – – 2.15e-10 4.79e-05
cfd1 1.19e-05 1.60e-04 2.44e-04 5.37e-07 6.92e-07 6.90e-06

finance 4.80e-05 2.44e-06 8.02e-05 4.80e-05 3.60e-08 4.80e-05
Ga10As10H30 4.97e-05 2.82e-07 4.97e-05 – – 3.65e-09 4.97e-05

Ga3As3H12 4.69e-05 9.43e-08 4.69e-05 – – 7.45e-10 4.69e-05
OPF3754 3.46e-05 2.17e-15 3.46e-05 3.46e-05 1.47e-15 3.46e-05

shallow water1s 1.29e-04 1.25e-04 3.22e-04 4.88e-05 2.07e-07 4.88e-05
Si10H16 4.33e-05 3.44e-07 4.33e-05 4.33e-05 5.50e-09 4.33e-05

Si5H12 3.86e-05 2.02e-07 3.86e-05 3.86e-05 1.87e-09 3.86e-05
SiO 4.81e-05 2.01e-07 4.81e-05 4.81e-05 8.67e-10 4.81e-05

wathen100 3.17e-05 6.14e-08 3.17e-05 3.17e-05 5.24e-10 3.17e-05

Table 5: A comparison of errtrace among different solvers
tol = 10−3 tol = 10−4

Matrix LOBPCG PRIMME EigPen LOBPCG PRIMME EigPen
Andrews 1.94e-07 2.98e-08 4.56e-07 1.07e-07 4.65e-10 1.07e-07

C60 4.91e-08 6.03e-08 7.84e-09 9.01e-08 8.87e-10 9.01e-08
c 65 8.20e-07 1.19e-09 8.20e-07 – – 1.68e-11 8.20e-07
cfd1 3.50e-04 9.51e-04 3.57e-03 1.43e-06 7.62e-06 2.00e-05

finance 5.02e-07 2.82e-07 1.39e-06 3.91e-07 3.86e-09 3.91e-07
Ga10As10H30 3.10e-07 5.42e-08 3.07e-07 – – 7.91e-10 3.10e-07

Ga3As3H12 1.01e-06 1.74e-08 1.01e-06 – – 2.12e-10 1.01e-06
OPF3754 8.09e-07 1.97e-16 8.09e-07 8.09e-07 1.97e-16 8.09e-07

shallow water1s 6.85e-06 3.44e-06 1.65e-05 1.62e-06 3.32e-08 1.62e-06
Si10H16 3.16e-06 1.76e-07 3.16e-06 3.16e-06 2.41e-09 3.16e-06

Si5H12 1.20e-07 4.28e-08 1.20e-07 5.50e-07 5.36e-10 5.50e-07
SiO 1.29e-06 2.02e-08 1.17e-06 1.29e-06 2.14e-10 1.29e-06

wathen100 3.05e-07 1.09e-08 7.67e-08 3.05e-07 1.46e-10 3.05e-07

To measure the accuracy of the approximate eigenvectors, we also report the maximum residual error

defined by

errres = max
i=1,...,nev

resi

in Table 6. We observe that EigPen ususally returns a slightly smaller residual error than LOBPCG in this
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set of tests. On most matrices, the accuracy of PRIMME-computed eigenvectors is overall comparable to

that of those computed by the other two solvers. However, since heuristics are occasionally invoked by

PRIMME to declare near-convergence of some Ritz pairs, the final accuracy can sometimes be larger than

the given tolerance, for example, on the matrices cfd1 and shallow water1s for tol = 10−3.

Table 6: A comparison of errres among different solvers
tol = 10−3 tol = 10−4

Matrix LOBPCG PRIMME EigPen LOBPCG PRIMME EigPen
Andrews 9.36e-04 7.18e-04 6.34e-04 9.20e-05 6.31e-05 4.37e-05

C60 8.82e-04 7.99e-04 6.98e-04 9.31e-05 8.29e-05 7.22e-05
c 65 9.78e-04 1.12e-04 1.57e-04 – – 1.10e-05 4.62e-05
cfd1 9.84e-04 1.09e-03 5.57e-04 9.80e-05 9.92e-05 8.70e-05

finance 9.83e-04 7.89e-04 7.34e-04 9.96e-05 7.50e-05 8.34e-05
Ga10As10H30 9.95e-04 9.53e-04 6.47e-04 – – 8.89e-05 4.80e-05

Ga3As3H12 9.08e-04 9.61e-04 9.91e-04 – – 7.96e-05 5.85e-05
OPF3754 3.03e-04 2.45e-08 2.61e-04 9.09e-05 2.55e-09 9.14e-08

shallow water1s 8.70e-04 1.28e-03 9.21e-04 9.61e-05 9.59e-05 5.88e-05
Si10H16 9.72e-04 8.69e-04 8.31e-04 9.01e-05 7.81e-05 9.27e-06

Si5H12 8.88e-04 7.98e-04 7.74e-04 9.78e-05 7.78e-05 8.92e-05
SiO 9.85e-04 7.18e-04 9.89e-04 9.68e-05 8.02e-05 4.59e-05

wathen100 9.71e-04 6.30e-04 6.99e-04 7.72e-05 7.07e-05 6.18e-05

We understand that, under fixed test conditions, the performance of most solvers can in principle be

optimized by extensively tuning parameters which we obviously did not attempt to do. The purpose of

our numerical experiments in this section is not to pick winners for solving a particular problem set on a

particular machine. Instead, we wish to establish that a preliminary code based on the proposed trace-penalty

formulation could perform competitively under a rather generic setting, and even favorably under suitable

conditions as we will show next.

4.4 Performance profile and dependency on eigenspace dimension

In this subsection, we examine how the three solvers perform when the number of desired eigenpairs (nev)

increases. For brevity, we only show results for two matrices Andrews and Ga3As3H12, but similar profiles

can be observed for other matrices as well.

In the following experiments, we set the convergence tolerance to tol = 10−2 and nev to a set of in-

creasing values {500, 1000, 1500, 2000, 2500, 3000}. We run all solvers on all 24 cores of the one computer

node of Hopper. The wall-clock time measurements are plotted against nev for all solvers in Figure 1. We

observe that EigPen always takes less amount of time to run than LOBPCG or PRIMME. The difference

in wall-clock time increases quickly as nev increases. This observation suggests that the benefit of using

EigPen become increasingly greater as nev becomes larger at least when the convergence tolerance is rel-

atively large. The key reason that EigPen performs much better than LOBPCG for large nev is that, by

performing far fewer RR steps, it is able to leverage BLAS3 operations that are highly optimized for Hopper

(and other high performance computers). On the other hand, the current version of PRIMME is not imple-

mented in a way to take full advantage of high performance BLAS3/BLAS2 operations because it operates

sequentially on matrices of small block sizes.

The tolerance tol = 10−2 used in Figure 1 may be considered too loose for some circumstances. We
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Figure 1: A comparison of wall-clock times by LOBPCG, PRIMME and EigPen to compute nev eigenpairs
of the matrices Andrews and Ga3As3H12 as nev increases.

did try the same experiment with tol = 10−3 and obtained similar results. However, since LOBPCG

terminated abnormally on both nev = 1000 and nev = 1500 with tol = 10−3, we decide not to present the

graphs for tol = 10−3 with incomplete data. With all other conditions equal, as the value of tol decreases,

the observed performance gap between EigPen (as it is implemented now) and others seems to gradually

narrow and diminish.

In Figure 2, we show run times of four categories: sparse matrix vector multiplications (SpMV), dense

matrix-matrix operations (BLAS3, including subroutines DGEMM, DSYMM, DSYRK, DSYTRS, DPOTRF, and

DTRSM in BLAS and LAPACK), dense matrix-vector operations (BLAS2, including subroutin DGEMV in

BLAS), Rayleigh-Ritz (RR, subroutines DSYGVD, DSYEVD, DGESVD in LAPACK) calculations, and

matrix copying (the DLACPY subroutine in LAPACK). These are the major computational components of

both EigPen and LOBPCG, albeit in different proportions. Two clarifications are in order here. Firstly, we

categorize these subroutines only at the highest solver level. As such, any call to DGEMM inside the subrou-

tine DSYEVD, for example, is not counted as in the BLAS3 category. Secondly, although the “correctness”

of such a classification scheme may be debatable, it does not alter the overall fact, as is clearly shown by

our computational results, that the category BLAS3 is much more scalable than the category RR on our test

platform.

The run time of each category is measured in terms of the percentage of wall-clock time spent in that

category over the total wall-clock time. We can clearly see that for EigPen the run time of BLAS3 domi-

nates the entire computation in almost all cases. The BLAS3 time increases steadily as nev increases from

500 to 3000, while the SpMV time decreases steadily. The run time of RR is negligible. However, since

our implementation of EigPen performs extra matrix copying when computing the gradient difference Y j

defined in (35) for the BB step size computation, the cost associated with such data movement is notable. In

LOBPCG, the relative cost of SpMV also decreases as nev increase. However, the run time of RR increases

more rapidly as nev increases. When nev ≥ 1500, the run time of RR is higher than that of BLAS3. Note
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that the RR time for LOBPCG seems out of proportion when nev is equal to 1000 and 1500 for the matrix

Ga3As3H12. The reason is that we have to perform a few singular value decompositions (SVD) to repair

a rank deficient basis in LOBPCG and the cost of SVD is counted in RR. The rank deficiency is caused

by eigenvalues clusters near the 1000th and the 1500th eigenvalues. In PRIMME, the run time of BLAS2

increases steadily as nev increases. For most cases, the run time of BLAS2 accounts for more than 40% of

the total wall-clock time and the time percentage of the BLAS3 (of all sizes, large or small) is around 20%.

On the other hand, the BLAS2 routine DGEMV is rarely called in either LOBPCG or EigPen.

Figures 1 and 2 clearly demonstrate that the advantages of the EigPen algorithm are due to fewer

Rayleigh-Ritz calculations. This advantage is more pronounced when the number of eigenpairs to be com-

puted (nev) is large because the cost of Rayleigh-Ritz calculation grows rapidly with respect to nev (and

k). Although the complexity of the Rayleigh-Ritz calculation is the same as that associated with the dense

matrix-matrix operations required for updating the approximate solution in EigPen, dense matrix-matrix op-

erations can be implemented efficiently on modern high performance parallel computers whereas it is more

difficult to achieve the same level of efficiency for RR calculations. As a result, by keeping the number of

Rayleigh-Ritz calcuations small in EigPen and making use of more BLAS3 operations, we can make it more

efficient than LOBPCG and PRIMME for large nev values.

4.5 Parallel scalability

In this subsection, we examine parallel scalability of LOBPCG, PRIMME and EigPen. For brevity, we again

only show results for the Andrews and Ga3As3H12 matrices using nev = 1500, although similar results

can be seen for other test problems as well. We define the speedup factor for running a code on p cores as

speedup-factor(p) =
wall-clock time for a single core run

wall-clock time for a p-core run
.

We only run 5 iterations for LOBPCG and EigPen and set primme.maxMatvecs = 5000 for PRIMME

since the speedup factor should remain essentially unchanged as more iterations are performed.

Figure 3 shows the speedup factors associated with SpMV, BLAS3, RR and DLACPY, as well as the

overall computation, when the parallelized Fortran codes are run with 2, 4, 8, 16 and 24 cores. As we

can clearly see from the figure that the speedup factors for BLAS3 are nearly perfect when LOBPCG and

EigPen are run on as many as 24 cores. The scalability of SpMV is almost as good for the Ga3As3H12

problem. But it is slightly worse beyond 8 cores for the Andrews matrix, which we believe is due to a higher

sparsity of the Andrews matrix that makes the effect of thread overhead more prominent in parallel SpMV

calculations. However, the speedup factor for RR increases slowly with respect to the number of cores up

to 8 cores, then it starts to decrease. Because computation in EigPen is heavily dominated by BLAS3 (and

to a lesser extent by SpMV) that scales much better than RR, the overall scalability of EigPen is better

than that of LOBPCG. In PRIMME, the operations SpMV and RR show little or no speedup throughout,

while BLAS2 and BLAS3 operations provide a degree of initial speedup from 2 to 4 cores but no speedup

afterwards from 8 to 24 cores. The best observed speedup factor for BLAS2 and BLAS3 is around 2 when
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4 cores are used. Our experiments indicates that as the parameter primme.maxBlockSize increases

to 50 or 100, the speedup factor of BLAS3 can reach a healthy level, but the total wall-clock time does

not necessarily improve accordingly. On this particular computer node and this set of test problems, our

experiments suggest that primme.maxBlockSize = 10 appear to be a near optimal value, providing a

good balance between scalability and running time, which was the reason that this value has been selected

in our tests. The existing implementation of PRIMME has limited scalability because a small number of

eigenpairs is computed at a time, making it a sequential process. Conceptually, it is possible to divide

the spectrum into subintervals in advance and simultaneously run PRIMME all intervals. But this type of

approach has its own difficulties in terms of appropriate strategies for dividing the spectrum, maintaining

orthogonality, and making sure no eigenvalue is missed or double counted, to name a few.

4.6 Preconditioning for EigPen

One can also introduce a preconditioner in EigPen similar to LOBPCG. The use of a preconditioner essen-

tially amounts to a change of variable in the form of Y = LX . If an appropriate nonsingular L is chosen,

substituting X = L−1Y into (2) yields a problem with a better conditioned Hessian. It is straightforward to

show that a preconditioned gradient method can be described by

Xj+1 = Xj − αjM−1∇fµ(Xj), (53)

where M = LTL is the preconditioner.

We now demonstrate that the performance of EigPen can be improved by preconditioning using two ma-

trices “Benzene” and “SiH4” generated from KSSOLV [20] — a MATLAB toolbox for solving the Kohn-

Sham equations in electronic structure calculation. The Kohn-Sham problem is discretized by a planewave

expansion of the eigenfunctions. We choose to use KSSOLV because it is well known that good precondi-

tioners are available for planewave discretized Kohn-Sham Hamiltonian [19], and these preconditioners are

diagonal in Fourier space, making their applications extremely cheap. Our experiments in this subsection

are performed in MATLAB on a Dell Precision M4700 workstation with Intel i7-3720QM CPU at 2.60GHz

(×8) and 16GB of memory running Ubuntu 12.04 and MATLAB 2011b. For this experiment, we choose to

use our MATLAB code for the convenience of interfacing with the MATLAB toolbox KSSOLV and utilizing

MATLAB’s built-in complex arithmetics.

In order to clearly see the effect of preconditioning, we compare Algorithm 1 using the unpreconditioned

scheme (31) and the preconditioned scheme (53), respectively, with the tolerance ε = 10−10. The dimension

n of the matrices are reported in Table 7. The number of eigenvalues to be computed is set to the number

of occupied states of the corresponding molecular system. The number of iterations and the CPU time in

seconds required by the two schemes, without and with preconditioning, are presented in Table 7. The

corresponding iteration history of the gradient norm {‖∇fµ(Xj)‖F } are depicted in Figure 4. It is clear

that preconditioning can improve the performance of EigPen significantly.

We should point out that it is generally not easy to identify an effective and efficient preconditioner for an
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Table 7: A comparison: iteration number and CPU time without and with precondition
problem without precondition with precondition

matrix n nev iter time iter time
SiH4 2103 4 126 2.1 62 1.1

Benzene 8407 15 220 53.5 105 26.1

eigenvalue problem. An ideal preconditioner should be close to A−1 so that the first term of the Hessian (6)

associated with the transformed problem becomes well conditioned. Yet, the pre-conditioner itself should

not be too ill-conditioned; otherwise, the subsequent terms in (6) may become ill-conditioned, possibly

making the entire Hessian ill-conditioned. The purpose of presenting the above example is not to promote a

particular pre-conditioner, but rather to demonstrate the fact that EigPen can indeed take advantage of a good

pre-conditioner whenever it is available. The issue of preconditioning for our approach certainly remains a

topic of further and more careful study.

5 Conclusion

The objective of this paper is to develop an algorithmic approach with elevated parallel scalability in order

to effectively utilize massively parallel computers for large-scale eigenspace computation. We propose and

study an unconstrained optimization model, called trace-penalty minimization, that requires no orthogo-

nality. Theoretically, with properly chosen penalty parameter values the proposed formulation yields the

optimal eigenspace with fewer undesirable saddle points than the classic trace minimization model. Com-

putationally, it enables unconstrained optimization techniques to compute approximate eigenspaces and,

consequently, cut down the use of the Rayleigh-Ritz (RR) procedure.

In most existing eigensolvers, basis orthogonalization and dense eigenvalue decomposition together

in the RR procedure constitute the dominant computational tasks and become a formidable bottleneck in

reaching high parallel scalability. Our approach greatly reduces the number of RR calls in exchange for

BLAS3-rich matrix operations, mainly dense matrix-matrix multiplications, that are highly scalable. Given

that dense matrix-matrix multiplications have typically been optimized in high-performance mathematical

libraries, our approach has the potential to take advantages of tens or hundreds of thousands-way concur-

rency on modern multi/many-core systems.

As a first step of numerical evaluation, we test our new eigensolver EigPen, based on solving the trace-

penalty model by a gradient method, coded in Fortran and parallelized using OpenMP, in comparison to

two state-of-the-art solvers. On a 24-core computer node, EigPen already provides competitive or even

favorable performance when high-precision solutions are not required. Most importantly, our numerical

results do confirm that EigPen clearly demonstrates a higher degree of parallel scalability, precisely due to

the property that its computations are dominated by highly optimized BLAS3 operations instead of by the

RR procedure (including orthogonalization) as in other solvers.

The performance of EigPen can be further improved in several aspects, including speeding up con-

vergence and improving accuracy, with the help of a number of techniques such as deflation and locking,
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polynomial filtering, and Newton-type methods. Two particularly important topics of investigation are (i) a

comprehensive study of preconditioning issues, and (ii) a careful evaluation of the parallel efficiency of our

approach using the Message Passing Interface (MPI).
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(a) Andrews: EigPen

500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

nev

p
e

rc
e

n
ta

g
e

 o
f 

w
a

ll 
cl

o
ck

 t
im

e
 (

%
)

 

 

SpMV

BLAS3

RR

DLACPY

(b) Ga3As3H12: EigPen
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(c) Andrews: LOBPCG
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(d) Ga3As3H12: LOBPCG
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(e) Andrews: PRIMME
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(f) Ga3As3H12: PRIMME

Figure 2: A comparison of timing profile among EigPen, LOBPCG and PRIMME.
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(a) Andrews: EigPen
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(b) Ga3As3H12: EigPen
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(c) Andrews: LOBPCG
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(d) Ga3As3H12: LOBPCG
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(e) Andrews: PRIMME
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(f) Ga3As3H12: PRIMME

Figure 3: A comparison of speedup factor among EigPen, LOBPCG and PRIMME.
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(a) Benzene
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Figure 4: The iteration history of gradient norm on benzene and SiH4 without/with preconditioning.
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