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Abstract

We propose and test a simple algorithmic framework for recovering images from blurry and

noisy observations based on total variation (TV) regularization when a blurring point-spread

function is given. Using a splitting technique, we construct an iterative procedure of alternately

solving a pair of easy subproblems associated with an increasing sequence of penalty parameter

values. The main computation at each iteration is three Fast Fourier Transforms (FFTs).

We present numerical results showing that a rudimentary implementation of our algorithm

already performs favorably in comparison with two of the existing start-of-the-art algorithms.

In particular, it runs orders of magnitude faster than a number of existing algorithms for solving

TVL2-based de-convolution problems to good accuracies.

1 Introduction

One of the important tasks in signal processing is to recover signals like images from noisy and

blurry observations. There are many approaches based on statistics [8, 2], Fourier and/or wavelet

transforms [11, 13], or variational analysis [19, 3, 6] for this task. Among them the total variation

regularization [25] has become one of the standard techniques known for preserving sharp discon-

tinuities. The sharp discontinuities in images are edges and object boundaries, often the most

important features to keep and capture in image processing.
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The standard total variation model recovers an image from a blurry and noisy observation f

by solving the problem:

min
u

∫
Ω
‖∇u(x)‖dx+

λ

2

∫
Ω
|Ku(x)− f(x)|2dx (1)

where Ω is an open rectangular domain in R2, K is a given linear blurring operator, f : Ω→ R is the

observed image in L2(Ω), u is the unknown image to restore, and ‖∇u(x)‖ is the Euclidean norm of

the gradient vector ∇u(x) ∈ R2. The term
∫

Ω ‖∇u(x)‖dx is the total variation (TV) of the function

u whenever u is differentiable. We note that in general functions of finite total variations are not

necessarily differentiable (see the book [25] for details). However, since we are only interested in

solving (1) in a discrete domain for digital image processing, we can tacitly assume differentiability

of u and use the expression
∫

Ω ‖∇u(x)‖dx without loss of generality.

In the model (1), the observed image f is formulated as the sum of a Gaussian noise n and a

blurry image Kū resulting from the linear blurring operator K acting on the clean image ū, i.e.,

f(x) = Kū(x) + n(x). (2)

Among all linear blurring operators, many are shift-invariant and can be expressed in the form of

convolution [15]:

(Ku)(x) =
∫

Ω
h(x− s)u(s)ds ≡ (h ? u)(x) (3)

where h is the so-called point spread function (PSF) associated with K. Let F(·) denote the discrete

Fourier transform, and the symbol “◦” the point-wise product. We will base our method on the

property F(Ku) = F(h ? u) = F(h) ◦ F(u); therefore, we assume that K is shift-invariant and its

corresponding PSF h is known.

We now briefly describe some existing state-of-the-art methods for image deblurring. We first

mention the algorithm ForWaRD by Neelanmani, Choi and Baraniuk [14]. It is a hybrid method

based on the Fourier-based deconvolution [11] and the wavelet-vaguelette deconvolution [9]. The

code ForWaRD has exhibited impressive performance for image deblurring in all aspects except

contrast preservation and artifact control. The restored images often have slightly lower contrast

compared to the originals, as well as some ripple artifacts, but its computation is very fast.

Following the pioneering work [20, 19], various numerical methods have been developed for

solving the total variation regularization model (1), which is known for preserving sharp edges while

removing singles of small-scales including noise [7]. Since (1) is a convex minimization problem, a

function u is optimal if and only if it satisfies the first-order optimality condition for (1), which is

the Euler-Lagrange equation:

∇ · ∇u
‖∇u‖

− λK?(Ku− f) = 0, (4)
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along with the Neumann condition on the boundary. To avoid division by zero, it is common to

approximate (4) by:

∇ · ∇u
‖∇u‖a

− λK?(Ku− f) = 0, (5)

where ‖ · ‖a denotes
√
‖ · ‖2 + a2 for some small a > 0, and K? is the adjoint operator of K.

Rudin and Osher [19] applied the artificial time marching method, equivalent to the steepest

descent method,

u← u+ ∆t
(
∇ · ∇u
‖∇u‖

− λK?(Ku− f)
)

(6)

for solving (5). This method is easy to implement, but converges slowly due to poor conditioning

of the diffusion operator ∇ · (∇(·)/‖∇(·)‖a). To address this difficulty, in [24, 5] Vogel and Oman

proposed a “lagged diffusivity” procedure that solves the following equations for u(n+1) iteratively,

∇ ·

(
∇u(n+1)

‖∇u(n)‖a

)
− λK?(Ku(n+1) − f) = 0, (7)

with the Neumann boundary condition. In [4], Chan, Golub and Mulet introduced the primal-dual

formulation:

∇ · −→w − λK?(Ku− f) = 0, (8)
−→w ‖∇u‖ − ∇u = 0, (9)

which is then solved by Newton’s method. Recently, Goldfarb and Yin [10] proposed a unified

approach for various total variation models including (1) based on second-order cone programming.

They model problem (1) as a second-order cone program, which is then solved by modern interior-

point methods. Standard interior-point methods for second-order cone programs require K?K to be

explicitly expressed, and a matrix involving K and K? to be factorized at every iteration. Thus this

approach requires excessive memory and becomes impractical for large-scale problems. However,

this method yields highly accurate solutions that can be used as references for evaluating solution

qualities of other methods.

In this paper, we propose a simple algorithmic framework for solving (1) that does not require

any modification to the non-differentiable term ‖∇u‖. We first replace the gradient ∇u by a

new variable w, and then penalize the discrepancy between w and ∇u by the quadratic penalty

term (β/2)
∫

Ω ‖w − ∇u‖
2dx. Our method then alternately updates w and u with an increasing

penalty parameter β until “convergence”. At each iteration, the dominant computation is three fast

Fourier transforms (FFTs), or alternatively three discrete cosine transforms (DCTs). The proposed

framework is so simple that our MATLAB implementation contains only a few dozen lines. Yet, in
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numerical experiments our MATLAB code competes comfortably with C/C++ implementations of

two state-of-the-art algorithms.

The rest of the paper is organized as follows. In Section 2, we describe a discrete model of (1)

for digital gray-scale images and present the proposed algorithmic framework in details. In Section

3, we compare a very basic implementation of the proposed algorithm to the lagged diffusivity

and ForWaRD algorithms by conducting numerical experiments on four test images with either

motion or Gaussian blurring and additive white noise. Finally, we offer some concluding remarks

in Section 4.

2 An FFT-based algorithm–FTVd

2.1 A New Formulation

We begin by introducing a new variable w to represent the gradient term ∇u in model (1), gener-

ating an equivalent, constrained convex minimization problem:

min
u,w

∫
Ω
‖w‖dx+

λ

2

∫
Ω
|Ku− f |2dx (10)

s.t. w(x) = ∇u(x), x ∈ Ω.

We consider the L2-norm-square penalty formulation

min
w,u

∫
Ω
‖w‖dx+

λ

2

∫
Ω
|Ku− f |2dx+

β

2

∫
Ω
‖w −∇u‖2dx (11)

where β > 0 is the penalty parameter. It is well-known (see [1], for example) that as β goes to

infinity, the solution of the convex minimization problem (11) converges to that of (10), or of (1).

For practical purposes, it suffices to seek a solution of (11) for a sufficiently large β in order to

approximate the solution of (1) to a requested accuracy.

Let us consider the discrete form of the problem. We let matrix f ∈ RN×N represent a two-

dimensional gray-scale digital image, where each component fij is the intensity value of pixel (i, j)

for i, j ∈ {1, 2, · · · , N}. Similarly, we let matrix u ∈ RN×N represent the unknown image to

be restored. For simplicity we have tacitly assumed that the images are square images, though

rectangular images can be treated in exactly the same way.

Let us define the forward finite difference operator ∂+ : RN×N → RN×N ⊗ RN×N by

(∂+u)ij :=

 (∂+
1 u)ij

(∂+
2 u)ij

 :=

 ui+1,j − uij

ui,j+1 − uij

 ∈ R2, (12)

for i, j = 1, · · · , N with appropriate boundary adjustments for i = N and j = N . We mention that

other finite difference operators also work in the proposed algorithmic framework as long as they

can be represented as discrete convolution operators.
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Under the above definitions, the corresponding discrete form of (11) is

min
w,u

N∑
i,j=1

‖wij‖+
β

2

N∑
i,j=1

‖(∂+u)ij −wij‖2 +
λ

2
‖Ku− f‖2F , (13)

where K : RN×N → RN×N is a discrete convolution operator, ‖ · ‖F is the Frobenius norm, and

wij =

 (w1)ij

(w2)ij

 ∈ R2, i, j ∈ {1, 2, · · · , N}.

2.2 Alternating Minimization

We will solve problem (13) by alternately minimizing the objective function with respect to w while

fixing u, and vice versa. As such, we need to solve two types of subproblems. One is the so-called

“w-subproblem” for a fixed u:

min
w

N∑
i,j=1

(
‖wij‖+

β

2
‖wij − (∂+u)ij‖2

)
, (14)

where we observe that the objective function, which consists of the first two terms in (13), is

separable for each wij .

The other subproblem is the “u-subproblem” for a fixed w:

min
u

λ

2
||Ku− f ||2F +

β

2
||∂+

1 u− w1||2F +
β

2
||∂+

2 u− w2||2F (15)

where ∂+
1 u = [(∂+

1 u)ij ] ∈ RN×N , w1 = [(w1)ij ] ∈ RN×N , and so on. It is easy to see that the above

objective function is just another expression of the last two terms in (13).

Obviously, the effectiveness of our alternating minimization approach will largely depend on

how fast we can solve the two subproblems. We now show that indeed these two subproblems can

be solved by very fast procedures.

It is not difficult to verify that the w-subproblem permits a closed-form solution:

wij = max
(
‖(∂+u)ij‖ −

1
β
, 0
)

(∂+u)ij

‖(∂+u)ij‖
, 1 ≤ i, j ≤ N, (16)

where we follow the convention 0 · (0/0) = 0. The calculation in (16) has a linear-time complexity

of order O(N2) for an N by N image. Hence, the w-subproblem can be solved quickly.

The u-subproblem is a linear least-squares problem with a special structure; that is, the three

involved linear operators, K, ∂+
1 and ∂+

2 , are all discrete convolutions. Hence, according to the

well-known convolution theorem (see [23], for example), these operators become point-wise products

under the Fourier transform (as well as under a number of other transforms).
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Let F(u) denote the discrete Fourier transform of u, and similarly for other quantities in RN×N .

Since the Fourier transform does not change the Frobenius norm (Parseval’s theorem) and converts

convolutions into point-wise products, the least squares problem (15) takes the following form in

the Fourier frequency domain:

min
u
||F(h) ◦ F(u)−F(f)||2F + γ

(
||F(∂+

1 ) ◦ F(u)−F(w1)||2F + ||F(∂+
2 ) ◦ F(u)−F(w2)||2F

)
where “◦” denotes element-wise multiplication and γ = β/λ. After solving the above problem

for F(u), we take an inverse discrete Fourier transform, F−1(·), to obtain the solution to the

u-subproblem (15) in the image space, that is,

u = F−1

(
F(h)∗ ◦ F(f) + γ

(
F(∂+

1 )∗ ◦ F(w1) + F(∂+
2 )∗ ◦ F(w2)

)
F(h)∗ ◦ F(h) + γ

(
F(∂+

1 )∗ ◦ F(∂+
1 ) + F(∂+

2 )∗ ◦ F(∂+
2 )
)) (17)

where “∗” denotes complex conjugacy and the division is element-wise.

For any given β > 0, we will solve problem (13) by applying formulas (16) and (17) alternately,

starting from an initial u. For our convex program (13), this alternating minimization procedure

will have guaranteed convergence (for example, see [22]).

We observe that in the right-hand side of (17) only w1 and w2 change at every iteration. Hence

the solution of the u-subproblem (15) requires two fast Fourier transforms and one inverse transform

and a total complexity in the order of O(N2 log(N2)) = O(N2 log(N)). Clearly, the discrete Fourier

transform F can be replaced by the discrete cosine transform, which also avoids the use of complex

conjugacy. The discrete cosine transform entails the same complexity O(N2 log(N)) as the discrete

Fourier transform, but implies an even extension of the data rather than a periodic extension with

the discrete Fourier transform. This difference in boundary conditions may affect the accuracies of

image processing. For further discussion on this topic, we refer the interested reader to the book

[16].

2.3 A Continuation Algorithm: FTVd

How well the solution of (13) approximates that of (1) or its constrained equivalent (10) depends

on the magnitude of β which determines the amount of penalty applied to the discrepancy between

∇u and w in the squared L2-distance. In practice, β cannot be too small because it would allow

∇u = w to be violated excessively. Though it may be tempting to set β to a very large value

from outset to force an accurate w-approximation to ∇u, using a single large β value is far from

desirable. It should be clear from the w-updating formula (16) that the larger the β is, the less

the amount of update applied to w (and subsequently to u), making the algorithm take tiny steps

and many more iterations. Therefore, we should choose β in a way that balances the speed and
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accuracy considerations. We achieve this by a continuation strategy using an increasing sequence

of β. That is, we start with a small β value and gradually increase it to a desired level, while

using the approximate solution obtained for the current β value as the initial guess for the next β

value. From a theoretical point of view, we try to approximately follow the path (w(β), u(β)) from

a small β value to infinity, where the pair (w(β), u(β)) represent the solution of (13) (assuming it

is unique) for any fixed β > 0.

To test the viability of the proposed continuation (or path-following) algorithmic framework,

we choose to implement a most basic version of the framework, which we call “Fast Total Variation

de-convolution” or FTVd, as is given below.

Algorithm FTVd:

Input: f , tol > 0 and λ > 0

Initialize: u = f , up = 0 and β > 0 and βmax � 0

While β < βmax, Do

While ‖u− up‖F ≥ tol ‖up‖F , Do

1) Save the previous iterate: up = u.

2) Compute w according to (16) for fixed u.

3) Compute u according to (17) for fixed w.

End Do

Increase β .

End Do

Output: u

This procedure contains two loops of iterations where each outer iteration corresponds to a

fixed β value. One can easily modify the above framework to make it more flexible. For example,

one could implement an adaptive tolerance that varies with β from one outer iteration to another,

or use some other stopping criterion for the inner iterations.

In our numerical experiments, we used the following “default” parameter setting. We set the

initial value of β to 4, its terminal value to βmax = 220, and the inner-loop tolerance to tol =

5.0 × 10−4 constantly. At the end of each outer iteration, we double the value of β. This very

basic version of implementation has proved to be sufficiently effective to serve the purpose of our

proof-of-concept experiments.
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3 Numerical Experiments

In model (1), the parameter λ controls the amount of penalty applied to the L2-distance square

between Ku and f . According to (2), the squared L2-distance between Kū and f , where ū is

the true clean image, is equal to the variance of the additive Gaussian noise n. Therefore, an

appropriate λ should give a solution u of (1) satisfying ‖Ku− f‖ ≈ ‖Kū− f‖. In our experiments,

we have observed, as others have, that when λ was too large the restored images were noisy; when

λ was too small, the restored images were blocky and had small-scale details missing. The issue of

how to select λ is important but beyond the scope of this work. In our experiments, we used the

formula λ = 0.05/max(σ2, 10−12) for images with intensity scaled to the range [0, 1], where σ is

the standard deviation of the Gaussian noise in (2). This formula is based on the observation that

λ should be inversely proportional to the noise variance, while the constant 0.05 was determined

empirically so that the restored images had reasonable signal-to-noise ratios (SNRs) and relative

errors (their precise definitions are given in Subsection 3.4). This formula is sufficient for the

purpose of our experimentation, but not meant for general use. For one thing, it cannot be applied

when the value of σ is unknown, which is normally the case in practice. More practical techniques

exist for choosing λ, often by testing on a small window of image. The reader interested in the

topic of selecting λ is referred to [21] for a study on the relationship between λ and the geometric

scales of u.

3.1 Overall Impressions with Various Algorithms

We mentioned several popular algorithms for solving the TV deblurring model (1) in the intro-

duction, and tested all of them except the algorithm (PD) by Chan, Golub and Mulet [4] based

on the primal-dual equations (8) and (9) due to technical difficulties. Here we briefly describe

our experience with these algorithms. In the next subsection, we present in greater details the

comparison results between FTVd and the lagged diffusivity algorithm (LD) and between FTVd

and ForWaRD.

The artificial time-marching algorithm [20] can be easily implemented in MATLAB. It is a

good choice if one is satisfied with below-average solution accuracies. When higher accuracies

were required, it took a large number of iterations, each with a small step size governed by the

CFL condition. The second-order cone programming (SOCP) approach on the contrary attained

solutions with at least five digits of accuracy but took longer times and a large amount of memory

for processing mid/large-sized images. The size 512×512 is close to the limit of what the SOCP

solver Mosek [12] can handle on a workstation with 2Gb of memory. The paper [10] presented

a comprehensive comparison between the artificial time-marching algorithm and the second-order
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cone programming approach. We did not test PD, but expect its performance to be similar to SOCP

since PD also solves large systems of linear equations in the framework of Newton’s method. We

also tested the recent method [18] based on an iterative reweighted norm algorithm, and obtained

consistent speed and accuracies as reported by the authors. In particular, it was slower than the

lagged diffusivity algorithm (LD) for solving the TV deblurring model (1) (though faster on a

pure denoising model, as well as those with the L1-fidelity). Therefore, the algorithm LD was most

efficient among those described in the introduction for solving model (1) besides our new algorithm.

The algorithm ForWaRD dose not solve model (1), but utilizes sophisticated techniques based on

the Fourier and wavelet transforms. It is very fast, but generate outputs with somewhat different

characteristics.

Clearly, there are many other deblurring algorithms that are not included in our discussion and

comparison, but a more exhaustive comparison is beyond the scope of this work.

3.2 Codes and Test Platforms

From our computational experience, we consider the LD algorithm to be a good representative

for those algorithms that solve the TV deblurring model (1), and ForWaRD to be one for other

deblurring algorithms. Therefore, we chose to compare FTVd with LD and ForWaRD on both

quality and speed. We mention that while FTVd is written entirely in MATLAB, the cores of LD

and ForWaRD are written in C/C++ with MATLAB calling interfaces.

All comparisons between FTVd and LD were performed under Linux v2.6.9 and MATLAB v7.2

running on a 64-bit SUN workstation with an AMD Opteron 148 CPU and 3GB of memory. The

C++ code of LD was a part of the library package NUMIPAD [17] and was compiled with gcc

v3.4.6.

Since we could not compile ForWaRD under the same environment as LD or vice versa, we

had to run all comparisons between FTVd and ForWaRD under Windows XP and MATLAB

v7.0 running on a Dell Laptop with a Pentium M 1.70 GHz CPU and 512 MB of memory. The

pre-compiled code of ForWaRD was downloaded from the webpage of the Rice DSP group at

http://www.dsp.rice.edu/software/ward.shtml.

3.3 Original, Blurry, and Noisy Images

We obtained two gray-scale images, France (512×512) and Man (1024×1024) given in Figure 1,

from the Internet at http://decsai.ugr.es/cvg/dbimagenes/index.php. The image France has

sharp texts with a simple background that is smooth in the upper half. In contrast to France, the

image Man consists of complex components in different scales, with different patterns, and under
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inhomogeneous illuminations. Both image are suitable for our deblurring experiments.

(a) France: 512×512 (b) Man: 1024×1024

Figure 1: Original Test Images

We first scaled the intensities of the original images into the range between 0 and 1 before

we began our experiments. We tested two typical types of blurring effects: motion and Gaussian

(out-of-focus), applying motion blurring to France and Gaussian blurring to Man, each with two

levels of severity. Specifically, we used the functions “fspecial” and “imfilter” from the MATLAB

Image Processing Toolbox with the types “motion” and “gaussian”, and then added to the resulting

blurry images the Gaussian white noise with a mean 0 and a standard deviation 1.e-3. With the

“motion” blurring, we set the angle parameter “theta” to 135 and the motion distance parameter

“len” to two different values 21 and 91 corresponding to the medium and severe levels of blurring,

respectively. With the “medium” Gaussian blurring, we set the blurring window size “hsize” equal

to 21 and the standard deviation “sigma” equal to 5, and with the “severe” Gaussian blurring, 41

and 10, respectively.

We summarize the information on the four test images in Table 1. The test images themselves

are given in the first rows of Figures 4 and 5. It is worth mentioning that we use the terms

“medium” and “severe” primarily for convenience of reference, knowing that the severity of these

levels may be interpreted differently by others.

The blurring kernels were applied to the two original images by the MATLAB function “imfilter”

with the “circular” option. In this setting, images are assumed to be periodic, so the pixels outside

the left part of the image boundary are assumed to be identical to those on the right and the same
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Table 1: Information on Test Images

Test Image Original Image Size Blurring Type Location

1 France 512 × 512 “medium” motion Figure4

2 France 512 × 512 “severe” motion Figure 4

3 Man 1024 × 1024 “medium” Gaussian Figure 5

4 Man 1024 × 1024 “severe” Gaussian Figure 5

applies to the top and bottom. The “circular” boundary with the blurring kernels is assumed by

FTVd in calculating the finite differences at the far-ends of the boundaries where either i = N or

j = N . We are not entirely certain what boundary condition has been implemented in the LD code.

However, we conducted tests with different boundary conditions applied to blurrings, and observed

little difference in overall deblurring quality or running time by any of the codes, apparently due

to the fact that the test images are much larger in size than the blurring kernels.

3.4 Comparisons in Quality and Speed

The quality of restored images are measured by their SNRs and relative errors to the original clean

images. SNR stands for the signal-to-noise ratio, defined as 10 times the 10-based logarithm of the

ratio of signal variance to noise variance. The relative error is defined as the norm of error over

that of the clean image in Frobenius norm. The higher the SNR or the lower the relative error, the

better the quality of restoration. The SNRs and relative errors of the restored images are plotted

in Figures 2 and 3, respectively.

For motion deblurring, the TV-based algorithms FTVd and LD yielded images with higher

SNRs. While FTVd computed the solutions of (1) with satisfactory accuracies in both tests, LD

ran into numerical difficulty in the second test on the image France with severe motion blurring.

As it stagnated before meeting its convergence tolerance, LD generated an output with an SNR

lower than that of FTVd, and a higher relative error compared to that of the ForWaRD output. In

the third and fourth tests on the image Man with two levels of Gaussian blurring, ForWaRD and

FTVd performed equally well and were only slightly better than LD. However, the bar charts do

not tell some visual differences between their restorations.

The input and restored images are given in Figures 4 (France) and 5 (Man), where the first

rows contain the input images (with the more severely blurred on the right), the second and third

rows contains corresponding restored images by ForWaRD and FTVd, respectively. The restored

images by LD are not included in the figures as they are visually similar to those by FTVd.
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Figure 2: SNRs (higher is better) of restored images by ForWaRD, LD and FTVD: from left to

right, bar groups 1, 2, 3 and 4 correspond to the tests on the input images with medium motion,

severe motion, medium Gaussian, and severe Gaussian blurrings, respectively.
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Figure 3: Relative errors (lower is better) of restored images by ForWaRD, LD and FTVD: from

left to right, bar groups 1, 2, 3 and 4 correspond to the tests on the input images with medium

motion, severe motion, medium Gaussian, and severe Gaussian blurrings, respectively.
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By carefully examining the images in Figure 4, we can visualize some important differences

between the restored images by ForWaRD (in the middle row) and those by FTVd (in the bottom

row). Generally, the artifacts of ghost texts or rings can be found in the outputs of ForWaRD. This

is especially evident in the image on the right of the second row in which a ghost copy of the word

“France” is clearly visible on the background. In that image, the upper half of the background also

significantly loses smoothness. Contrary to ForWaRD’s loss of recovery quality due to increased

motion, little difference can be found in the two output images by FTVd in the third row. These

test indicate that FTVd is likely more robust in correcting the motion blurring than ForWaRD.

In the two Gaussian deblurring tests presented in Figure 5, both methods performed well but

differences can still be found. The results of ForWaRD have reduced contrast compared to the

blurry inputs while those of FTVd do not lose contrast at all. Comparing the two recoveries of

Man from severe gaussian blurring (the second and third images on the right column), the one

from ForWaRD contains multiple rings (or ripples) parallel to the object edges in the image, while

that from FTVd looks shaper but more blocky. By purely eyeballing the restored images, our

preferences are given to the results of FTVd.

Tables 2 and 3 give computer running times on the four tests. As is already mentioned, FTVd

was tested on both the Windows and Linux platforms since we were unable to make either one of

the third-party codes LD and ForWaRD to work cross-platform. From the two tables, we see that

ForWaRD ran about twice as fast as FTVd under Linux. On the other hand, FTVd was orders of

magnitude faster than LD under Windows, with the performance gap widening as the image size

increased.

Table 2: Running Time in Seconds of FTVd and ForWaRD on Windows Platform

Code Test 1 Test 2 Test 3 Test 4 Language

FTVd 27.5 43.3 165.1 184.2 MATLAB

ForWaRD 17.5 17.6 89.2 91.1 C

Ratio 1.57 2.46 1.85 2.02 Mean 1.97

Table 3: Running Time in Seconds of LD and FTVd on Linux Platform

Code Test 1 Test 2 Test 3 Test 4 Language

LD 167.6 1305.2 9304.9 43972.4 C++

FTVd 11.7 19.4 85.9 93.7 MATLAB

Ratio 14.3 67.3 108.3 469.3 Mean 164.8
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We can safely draw a few definitive conclusions from our numerical comparison on both quality

and speed. FTVd clearly wins over LD for better quality and faster speed. Since LD compares

favorably to many other existing algorithms for solving model (1), the lead of FTVd obviously

extends over to those algorithms. Compared to the Fourier/wavelet-based algorithm ForWaRD,

FTVd appears superior in solution quality for the tested cases and, in the meantime, is not far be-

hind in speed, especially after taking into consideration the efficiency differences between MATLAB

and C/C++ languages.

3.5 More on FTVd

As is mentioned, the per-iteration computation of FTVd algorithm is dominated by three fast

Fourier transforms (or Fourier-related transforms), each at the cost of O(N2 log(N)). The question

is how many iterations are needed in general for FTVd to attain a required accuracy and how they

vary with the size of input image.

For tests 1 through 4, the total inner iteration numbers taken by our simple version of FTVd

(with the given “default” parameter values) are, respectively, 41, 67, 58 and 65. These total inner

iteration numbers are very reasonable, given that there were 19 outer-iterations corresponding to

the given β-sequence {22, 23, · · · , 220}. On average, the inner iteration number needed for a single

β value falls approximately in the range of 2 to 3.5. Given that three FFTs are required by each

inner iteration, the total numbers of FFTs taken range from 120 to 200 for the four test cases.

We note that the two cases of “severe blurring”, tests 2 and 4, required more iterations than those

required by the corresponding two cases of “medium blurring”, and the gap is more pronounced

from test 1 to test 2 where motion blurrings were used. This observation indicates that more

severe blurrings, corresponding to larger blurring kernels in convolution, may require more FTVd

iterations, which should perhaps be expected. To further investigate how the number of iterations

is affected by the size of input, we also tested FTVd on images of different sizes while fixing blurring

kernels. In these tests, the number of iterations stayed at a constant level as the image size increased

from 128 × 128 to 1024 × 1024.

Naturally, the number of iterations varies with parameter values of the algorithm. We have

experimented with different values and observed that, within the given basic framework, there is

generally a tradeoff between number of iterations and solution accuracy. Our “default” parameter

values seem to achieve a reasonable balance.

Upon examining detailed timing information for FTVd, we see that over two thirds of computing

time was spent on solving the u-subproblem, i.e., on FFTs and related calculations in (17), while the

rest one third was shared by solving the w-subproblem, finite-defferencing on u, checking stopping
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criterion for inner iterations, and so on. In particular, FFTs alone consumed about 63% of total

computational effort in FTVd.

Our experiments indicate that FTVd is capable of producing highly accurate solutions, relative

to many other iterative algorithms, in a moderate number of iterations. FTVd appears to be

numerically stable and insensitive to badly scaled data because, for one thing, it does not require,

explicitly or implicitly, any (N2 by N2) matrix operations like some algorithms do such as lagged

diffusivity. Our experiments have shown that even as βmax continues to increases beyond 220, the

relative error continues to decrease with no sign of numerical instability, until machine precision is

almost reached.

4 Conclusions

We have demonstrated that FTVd is a simple yet computationally efficient algorithmic framework

for solving the TV deblurring model (1). The algorithm is based on replacing ∇u in the total

variation term by a new variable w and then penalizing the discrepancy between the two, as

measured by L2-norm square. The resulting functional can be easily minimized with respect to

either w or u while fixing the other, leading to our alternating minimization procedure. The

convergence of this procedure readily follows from existing results.

In our tests, FTVd produced restored images with either similar or better quality in compari-

son to that of two state-of-the-art algorithms. To the best of our knowledge, the simple version of

FTVd implemented in this paper already appears to be the fastest algorithm developed so far for

solving the deblurring model (1) with total variation regularization, as it requires a relatively small

number of iterations at the cost of roughly three FFTs per iteration. In addition, the algorithm

can be easily extended to cases of total variation of higher-order differential operators, as well as

to other transforms such as discrete cosine transform. Given its simplicity, speed, numerical sta-

bility and extendibility, we believe that FTVd is a promising algorithmic framework for numerical

de-convolution with various total variation regularizations. Of course, further theoretical and com-

putational studies are certainly needed for us to better understand the convergence properties of

the FTVd framework and to develop more efficient path-following strategies for its implementation.
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We are grateful to Paul Rodŕıguez and Brendt Wohlberg at the Los Alamos National Lab for

valuable discussions and making their algorithm library NUMIPAD [17] available to us. The work

of Y. Wang and W. Yin has been supported by the latter author’s internal faculty research grant

15



from the Dean of Engineering at Rice University. The work of Y. Zhang has been supported in

part by NSF Grant DMS-0405831.

References

[1] M. Avriel. Nonlinear Programming: Analysis and Methods. Printice-Hall, Inc, Englewood

Cliffs, New Jersey, 1976.

[2] A. S. Carasso. Linear and nonlinear image deblurring: A documented study. SIAM J. Numer.

Anal., 36(6):1659–1689, 1999.

[3] A. Chambolle and P. L. Lions. Image recovery via total variation minimization and related

problems. Numer. Math., 76(2):167–188, 1997.

[4] T. F. Chan, G. H. Golub, and P. Mulet. A nonlinear primal-dual method for total variation-

based image restoration. SIAM J. Sci. Comput., 20:1964–1977, 1999.

[5] T. F. Chan and P. Mulet. On the convergence of the lagged diffusivity fixed point method in

total variation image restoration. SIAM J. Numer. Anal., 36(2):354–367, 1999.

[6] T. F. Chan and J. Shen. Theory and computation of variational image deblurring. IMS Lecture

Notes, 2006.

[7] T. F. Chan, J. Shen, and L. Vese. Variational PDE models in image processing. Notice of

Amer. Math. Soc., 50:14-26, Jan. 2003.

[8] G. Demoment. Image reconstruction and restoration: Overview of common estimation struc-

tures and problems. IEEE Trans. Acoust., Speech, Signal Process., 37(12):2024–2036, 1989.

[9] D. L. Donoho. Nonlinear solution of linear inverse problems by wavelet-vaguelette decompos-

tion. Appl. Comput. Harmon. Anal., 2:101–126, 1995.

[10] D. Goldforb and W. Yin. Second-order cone programming methods for total variation-based

image restoration. SIAM J. Sci. Comput., 27(2):622–645, 2005.

[11] A. K. Katsaggelos. Digital Image Restoration. Springer-Verlag, 1991.

[12] Mosek ApS Inc. The Mosek optimization tools, version 4, 2006.

[13] R. Neelamani, H. Choi, and R. G. Baraniuk. Wavelet-based deconvolution for ill-conditioned

systems. In Proc. IEEE ICASSP, volume 6, pages 3241–3244, Mar. 1999.

16



[14] R. Neelamani, H. Choi, and R. G. Baraniuk. ForWaRD: Fourier-wavelet regularized deconvo-

lution for ill-conditioned systems. IEEE Trans. signal proc., 52:418–433, Feb. 2004.

[15] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. Prentice Hall Inc,

New Jersey, 1989.

[16] K. R. Rao and P. Yip. Discrete Cosine Transform : Algorithms, Advantages, and Applications.

Academic Press, Boston, 1990.
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Figure 4: The first row contains images with medium (left) and severe (right) motion blurrings.

The second row contains corresponding restored images by ForWaRD, and the third row by FTVd.
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Figure 5: The first row contains images with medium (left) and severe (right) Gaussian blurrings.

The second row contains corresponding restored images by ForWaRD, and the third row by FTVd.
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