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Abstract

Consider an over-determined linear system AT x ≈ b and an under-determined linear

system By = c. Given b = AT x̂+h, under what conditions x̂ will minimize the residual

AT x− b in `1-norm (i.e., ‖h‖1 = minx ‖AT x− b‖1)? On the other hand, given c = Bh,

under what conditions h will be the minimum `1-norm solution of By = c? These

two “solution-recovery” problems have been the focus of a number of recent works.

Moreover, these two problems are equivalent under appropriate conditions on the data

sets (A, b) and (B, c). In this paper, we give deterministic conditions for these solution-

recoverary problems and raise a few open questuions. Some of the results in this paper

are already known or partially known, but our derivations are different and thus may

provide different perspectives.

1 Introduction

Let us consider the `1-norm approximation of an over-determined linear system:

(O1) : min
x∈<p

‖AT x − b ‖1 (1)

where A ∈ <p×n with p < n and b ∈ <n, and the minimum `1-norm solution to an under-

determined linear system:

(U1) : min
y∈<n

{‖y‖1 : By = c} (2)
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where B ∈ <q×n with q < n and c ∈ <q. To avoid trivial cases, we always assume that b

and c are nonzero vectors.

1.1 Solution Recovery Problems

We are concerned with the so-called solution recovery problems associated with (O1) and

(U1). For problem (O1) with a given right-hand side

b = AT x̂ + h, (3)

the question is under what conditions one can recover the solution x̂ by minimizing the

residual AT x − b in `1-norm; i.e., under what conditions

x̂ = arg min
x

‖AT x − b‖1. (4)

We note that (4) implies ‖h‖1 = minx ‖AT x− b‖1. This solution recovery problem will also

be called an error-correction problem, where the vector h represents errors.

For problem (U1) with a given right-hand side

c = Bh, (5)

the question is under what conditions one can recover the vector h by seeking the minimum

`1-norm solution to the equation By = c; i.e., under what conditions

h = arg min
y

{‖y‖1 : By = c}. (6)

These solution-recovery problems have recently been studied by a number of authors

(for example, see [3, 4, 5, 6, 7, 8, 11, 12]), and many intriguing results have been obtained.

1.2 Conic Programing Representations

A conic program in <n is to minimize a linear function over the intersection of an affine

space with a cone; more specifically,

min
z

{fT z : Cz = d, z ∈ K}, (7)

where f ∈ <n, C ∈ <m×n (m < n), d ∈ <m, and K is a pointed, closed convex cone in <n.

Such a conic program always has a dual program,

max
u

{dT u : f − CTu ∈ K∗}, (8)
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where K∗ is the dual cone of K defined as

K∗ := {x ∈ <n : xT z ≥ 0, ∀z ∈ K}.

In particular, the following two cones,

K1 := {(y, ξ) ∈ <n ×< : ‖y‖1 ≤ ξ}, (9)

K∞ := {(v, η) ∈ <n ×< : ‖v‖∞ ≤ η}, (10)

are the dual cone of each other.

If both (7) and (8) have strictly feasible points, then they achieve optimality if and only

if they both attain a same (finite) objective value.

It is not difficult to verify that problems (O1) and (U1) are equivalent to, respectively,

the following two conic programs

min
x,y,ξ

{ξ ∈ < : AT x + y = b, (y, ξ) ∈ K1}, (11)

min
y,ξ

{ξ ∈ < : By = c, (y, ξ) ∈ K1}, (12)

whose dual conic programs are, respectively,

max
v

{bT v : Av = 0, (v, 1) ∈ K∞}, (13)

max
w

{cT w : (BT w, 1) ∈ K∞}. (14)

For any x ∈ <p and any dual feasible point v of (13), weak duality holds

bT v = (b − AT x)T v ≤ ‖AT x − b‖1 ‖v‖∞ ≤ ‖AT x − b‖1.

Since both the primal and dual programs (11) and (13) are strictly feasible, optimality is

attained at an x ∈ <p and a dual feasible v if and only if the strong duality bT v = ‖AT x−b‖1

holds. For an elementary introduction to the topic of convex conic programming, see [1],

for example.

1.3 Equivalence

In the context of solution recovery, Candés and Tao (see [5], for example) have already

observed the equivalence of problems (O1) and (U1) under the conditions AT B = 0 and

c = Bb. Here we give a slightly more general statement and a proof for it. This equivalence

will allow us to concentrate on studying just one of the two problems.
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Proposition 1 (Equivalence). Let both A ∈ <p×n and B ∈ <q×n be of full-rank with

p + q = n. Then (11) and (12) are identical if and only if

ABT = 0 and c = Bb. (15)

Moreover, under this equivalence, if x∗ solves (O1), then b − AT x∗ solves (U1); and if y∗

solves (U1), then (AAT )−1A(b − y∗) solves (O1).

Proof. We observe that the conic programs (11) and (12) differ only in their defining affine

spaces. Obviously, the two programs become identical if and only if the two involved affine

spaces are the same; namely, Y1 = Y2 where

Y1 := {b − AT x ∈ <n : x ∈ <p}, Y2 := {y ∈ <n : By = c}.

For arbitrary y = b − AT x ∈ Y1 to satisfy By = c, there must hold (BAT )x ≡ Bb − c for

all x ∈ <p, which is possible if and only if (15) holds. Therefore, Y1 ⊂ Y2 if and only if (15)

holds. On the other hand, points in Y2, satisfying By = c, have the form

y = BT (BBT )−1c + (I − BT (BBT )−1B)z

for arbitrary z ∈ <n. Therefore, for y ∈ Y2

b − y = BT (BBT )−1(Bb − c) + (I − BT (BBT )−1B)(b − z).

It is now easy to see that (15) is necessary and sufficient for b− y to be in the range of AT ,

or in other words for y ∈ Y1. This proves that Y2 ⊂ Y1 if and only if (15) holds.

The rest of the proposition can be verified by substitutions.

From this point on, we will always assume that (15) holds so that (O1) and (U1) are

equivalent. Under this equivalence, without loss of generality we will need only to study

(O1), knowing that every result for (O1) has an equivalent counterpart for (U1).

A linear program corresponding to the dual conic program (13) is

max
v

{bT v : Av = 0, −1 ≤ v ≤ 1}. (16)

It is worth noting that the feasibility set of the dual program (16) is the intersection of the

unit cube in <n,

Cn = {v ∈ <n : ‖v‖∞ ≤ 1}, (17)

with the null space of A (or the column-space of BT ). This set (intersection) is invariant

with respect to actual choices of bases for the involved subspace.
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1.4 General Tso’s Problem

We now continue with a puzzle. Once upon a time, General Tso [2] received two coded

messages bi ∈ <n, i = 1, 2, from an agent behind the enemy line. Both messages were en-

coded from the same original message x̂ ∈ <p by multiplying x̂ with a nonsingular encoding

matrix E ∈ <n×n. However, the received messages were corrupted by unknown vectors

hi ∈ <n, i = 1, 2, respectively; that is, bi = Ex̂+hi, i = 1, 2. General Tso knew, other than

cooking chickens, what the encoding matrix E was and the fact that no message component

was corrupted twice (i.e., h1 and h2 did not have non-zero entries at the same position).

The General tried to minimize ‖Ex − b1‖1 + ‖Ex − b2‖1, corresponding to problem (O1)

with A = [ET ET ] and bT = (bT
1 bT

2 ), and obtained a solution x∗. Now the question is, was

he able to exactly decode the true message x̂; in other words, was x∗ = x̂? This question

will be answered later.

It is interesting to note that the above question is asked regardless of the actual values

of E and hi’s? Therefore, an affirmative answer would imply that, at least in this case,

whether or not the exact solution x̂ can be recovered is invariant with respect to the actual

values of E and hi’s.

1.5 Notations

For any h ∈ <n, we partition the index set {1, 2, · · · , n} into two disjoint subsets: the

support set S(h) and its complement – the zero set Z(h); more precisely,

S(h) = {i : hi 6= 0, 1 ≤ i ≤ n}, Z(h) = {1, · · · , n} \ S(h). (18)

We will sometimes omit the dependence of a partition (S,Z) on h when either it is clear

from the context, or (S,Z) is not associated with any particular h.

For any index set J , |J | is the cardinality of J . For any matrix A ∈ <p×n and any

index subset J ⊂ {1, 2, · · · , n}, AJ ∈ <p×|J | denotes the sub-matrix of A consisting of

those columns of A whose indices are in J . For a vector h ∈ <n, however, hJ denotes the

sub-vector of h with those components whose indices are in J .

We call a vector a binary vector if all its components take value either −1 or +1 (not

zero or one). We use Bk to denote the set of binary vectors in <k.

We use λmax(·) and λmin(·) to denote the maximum and minimum, respectively, eigen-

values of matrices; and similarly, σmax(·) and σmin(·) for singular values.
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2 Necessary and Sufficient Conditions

Lemma 1. Let h ∈ <n be given and (S,Z) := (S(h), Z(h)). Then x̂ solves (O1) if and

only if there exists vZ ∈ <|Z| that satisfies

AZvZ = −AS sign(hS), ‖vZ‖∞ ≤ 1; (19)

or in geometric terms, if and only if the null space of A intersects with the (n − |S|)-
dimensional face of the unit cube Cn defined by vS = sign(hS).

Proof. By strong duality, x̂ solves (1) if and only if there exists a dual feasible solution

v ∈ <n of (13), satisfying Av = 0 and ‖v‖∞ ≤ 1, such that the duality gap is closed at x̂

and v = (vZ , vS). Namely,

bT v ≡ hT v = hT
SvS + hT

ZvZ = hT
SvS = ‖h‖1 ≡ ‖AT x̂ − b‖1.

The equality hT
SvS = ‖h‖1 holds with ‖vS‖∞ ≤ 1 if and only if vS = sign(hS); and v =

(vZ , sign(hS)) is dual feasible if and only if vZ satisfies the conditions in (19). Moreover,

the geometric interpretation is obvious.

Remark 1. The result in Lemma 1 is unchange if A is replaced by RA for any nonsingular

p × p matrix R since the equation (19) is invariant with respect to such a transformation.

Hence, this result, as well as all the results in the rest of the paper, depends only on the

subspace A ⊂ <n spanned by the rows of A, but not on A itself. Furthermore, it depends on

the support and the signs of the corruption vector h, but not on its magnitude.

The results below follows from Lemma 1 in a straightforward way.

Theorem 1. Let T consist of subsets of {1, 2, · · · , n}. Then x̂ solves (O1) for any h such

that S(h) ∈ T and |S(h)| ≤ k if and only if for any S ∈ T with |S| = k and any binary

vectors u ∈ Bk the system

AZv = −ASu, ‖v‖∞ ≤ 1 (20)

has a solution v ∈ <n−k, where Z is the complement of S in {1, 2, · · · , n}.
Moreover, if T includes all subsets of {1, 2, · · · , n}, then x̂ solves (O1) for any h with

|S(h)| ≤ k if and only if the null space of A intersects with all (n− k)-dimensional faces of

the unit cube Cn in <n.

Remark 2. After obtaining the above geometric condition, we learned that Rudelson and

Veshynin [11] had recently derived the same result by a different approach based on convex

geometry.

6



Next we introduce numbers that completely characterize the solution recoverability of

(O1) for given sparsity levels of corruption vectors h.

Definition 1. Let A ⊂ <n be a p-dimensional subspace spanned by the rows of A ∈ <p×n.

For k ∈ {1, 2, · · · , n − 1}, define

ζA(k) := max
|S|=k

max
u∈Bk

min
v∈<n−k

{‖v‖∞ : AZv = −ASu} , (21)

where the left-most maximum is taken over (S,Z) partitions of {1, 2, · · · , n}.

For any given subspace A, the numbers ζA(k) are independent of the choice of basis and

non-decreasing as k increases. They are computable in theory, but not so easily in practice.

The following result is a direct consequence of Theorem 1.

Theorem 2. The vector x̂ solves (O1) for any h with |S(h)| ≤ k if and only if

ζA(k) ≤ 1. (22)

Now we apply the theory developed above to a few specific cases. The following result

gives an affirmative answer to General Tso’s question given at the beginning (when the

`1-norm minimization problem involved has a unique solution).

Corollary 1. Let A ∈ <n×2n such that A = [ET ET ] and h ∈ <2n be such that hihn+i = 0,

i = 1, 2, · · · , n. Then x̂ solves (O1).

Proof. We can assume, with reordering if necessary, that S(h) ⊂ {1, 2, · · · , n}. Set vS+n =

−sign(hS) and the rest of vZ -components to zeros. Then the equation (19) is satisfied

because ET
Z vZ = ET

S+nvS+n ≡ −ET
S (sign(hS)). Moreover, ‖vZ‖∞ = 1. So Lemma 1

applies.

An application of Theorem 1 gives the following necessary and sufficient conditions for

matrices consisting of repeated orthogonal matrices.

Corollary 2. Let A be a p × 2rp matrix consisting of 2r copies of a (p × p) orthogonal

matrix. Then x̂ solves (O1) for any h with |S(h)| ≤ k if and only if k ≤ r.

Proof. Let A = [Q · · · Q] where Q is orthogonal and repeats 2r times. The sufficiency part

can be proven in a similar fashion as in Corollary 1. For the necessity part, suppose that

k = r + 1. One can pick ui = 1, i = 1, · · · , r + 1, all corresponding to q1 — the first column

of Q. As such, ASu = (r + 1)q1. Now there are only (r − 1) q1-columns left in AZ , and

the rest of columns in AZ are all orthogonal to q1. Hence, there can be no solution to the

equation (20), and x̂ cannot be a solution to (O1).

7



3 Sufficient Conditions

Unlike the necessary and sufficient conditions in the preceding section, we need to impose

extra requirements in order to obtain sufficient conditions.

Definition 2. Let C ∈ <p×n with p < n and S ⊂ {1, 2, · · · , n}. We say that (i) C is

uniformly rank-p if rank(CS) = p whenever |S| ≥ p; and (ii) C is uniformly full-rank if

rank(CS) = min(p, |S|) for any S. (Clearly, C is uniformly full-rank implies that C is

uniformly rank-p.)

Remark 3. The above properties are really properties for the range of C, not just for C

itself, since any matrix of the form RC for some p × p nonsingular matrix R would share

the same property with C. These properties typically hold for random subspaces with high

probability.

Theorem 3 (Kernel Condition). Let A ∈ <p×n be full-rank and B ∈ <q×n be uniformly

full-rank such that BAT = 0 and p + q = n. Then x̂ solves (O1) for any h ∈ <n with

|S(h)| ≤ k ≤ q if

max
|S|=k

‖(BT
S BS)−1BT

S BZ‖1 ≤ 1, (23)

where the maximum is taken over all partitions (S,Z) with |S| = k.

Proof. Let (S,Z) be a partition with |S| = k ≤ q. Hence, BT
S ∈ <k×q with k ≤ q. First

observe that for any binary vector u ∈ Bk,

min
v

{‖v‖∞ : AZv + ASu = 0} ⇔ min
w

{‖BT
Zw‖∞ : BT

S w = u}.

Every solution of the equation BT
S w = u is of the form w = BS(BT

S BS)−1u + z for some

z ∈ <q satisfying BT
S z = 0. Therefore,

max
u∈Bk

min
v

{‖v‖∞ : AZv = −ASu}

= max
u∈Bk

min
w

{‖BT
Z w‖∞ : BT

S w = u}

= max
u∈Bk

min
z

{‖BT
Z (BS(BT

S BS)−1u + z)‖∞ : BT
S z = 0}

≤ max
u∈Bk

‖BT
ZBS(BT

S BS)−1u‖∞ (24)

= ‖BT
ZBS(BT

S BS)−1‖∞ = ‖(BT
S BS)−1BT

S BZ‖1.

Substituting the above inequality into the definition (21), we have

ζA(k) ≤ max
|S|=k

‖(BT
S BS)−1BT

S BZ‖1.
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Setting the right-hand side less than or equal to one and invoking Theorem 2, we obtain

(23) and complete the proof.

Theorem 4 (Range Condition). Let A ∈ <p×n be uniformly rank-p. Then x̂ solves (O1)

for any h with |S(h)| ≤ k ≤ n − p if

max
|Z|=n−k

‖AT
S (AZAT

Z)−1AZ‖1 ≤ 1, (25)

where the maximum is taken over all partitions (S,Z) with |Z| = n − k.

Proof. Let (S,Z) be a partition with |S| = k ≤ n − p. Hence, AZ ∈ <p×(n−k) with

p ≤ n − k. Since all the solutions to the equation AZv = −ASu can be written into the

form v = −AT
Z(AZAT

Z)−1ASu + w where AZw = 0, we have

max
u∈Bk

min
v

{‖v‖∞ : AZv = −ASu}

= max
u∈Bk

min
w

{‖ − AT
Z(AZAT

Z)−1ASu + w‖∞ : AZw = 0}

≤ max
u∈Bk

‖AT
Z(AZAT

Z)−1ASu‖∞ (26)

= ‖AT
Z(AZAT

Z)−1AS‖∞ = ‖AT
S (AZAT

Z)−1AZ‖1.

Now the theorem follows from the same arguments as in the proof of Theorem 3.

Remark 4. In each of the above proofs, only one relaxation (replacing an equality by an

inequality) is made in, respectively, (24) and (26). In fact, no relaxation is made when

k = q (so BT
S and AZ become square and nonsingular), and consequently conditions (23)

and (25) both become necessary and sufficient.

To further relax the left-hand side of (23), we observe that for some index j,

‖(BT
S BS)−1BT

S BZ‖1 = ‖(BT
S BS)−1BT

S BZej‖1

≤
√

k ‖(BT
S BS)−1BT

S ‖2 ‖BZej‖2

≤
√

k λ1/2
max((B

T
S BS)−1) max

1≤i≤n
‖Bei‖2

≤
√

k λ
−1/2
min (BT

S BS) max
1≤i≤n

‖Bei‖2.

Consequently, we obtain the following condition after setting the squares of the above less

than or equal to one, taking the maximum over S and rearranging.
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Lemma 2. Let B ∈ <q×n with p + q = n be uniformly full-rank such that BAT = 0. Then

x̂ solves (O1) for any h with |S(h)| ≤ k ≤ q if

1

k
min
|S|=k

λmin(B
T
S BS) ≥ max

1≤i≤n
‖Bei‖2

2, (27)

where the minimum is taken over all partitions (S,Z) with |S| = k.

We note that so far we have been careful in saying that “x̂ solves (O1)” instead of “x̂

is recovered by solving (O1)”. However, the two statements are equivalent whenever the

solution is unique which can be expected under appropriate conditions.

4 Open Questions

It is worth reiterating that the solution recoverablity by solving (O1) (or (U1) for that

matter) depends on (i) the range or kernel of AT but not specifically on the matrix A itself;

and (ii) the support of error vector h but not the values of h.

We need to introduce a couple of more notations before we raise some open questions.

Definition 3. For a given integer n > 0, let Fn−k be the set of (n − k)-dimensional faces

(or in short (n − k)-faces) of the unit cube Cn ⊂ <n. Clearly,

|Fn−k| = 2k

(

n

k

)

.

Let Sn(q) be the set of all q-dimensional subspaces of <n. For any S ∈ Sn(q), let ω(S, q, k)

be the number of members of Fn−k that S intersects with. Moreover, let

Ωn(q, k) = max
S∈Sn(q)

ω(S, q, k).

Given p < n and k < n, it is not difficult to see that the ratio Ωn(n− p, k)/|Fn−k | is the

best-scenoria probability of recovering x̂ from (O1) (i.e., minx ‖AT x−b‖1) where A ∈ <p×n,

b = AT x̂ + h, and h has k non-zeros that may occur equally likely at any set of k indices.

An analogous interpretation can be made for the under-determined problem (U1).

Recently, a great deal of progress (see for example, [3, 4, 5, 6, 7, 8, 11, 12]) has been

made for the solution recovery problems when the matrix A or B is random (in particular,

when the entries are i.i.d standard Gaussian or Bernoulli with the equal probability).

Remark 5. In a nutshell, it has been established that when the row-column ratio of the

matrix A or B is fixed, then asymptotically (as n → ∞) solutions can be recovered at a high

and increasing probability, as long as the number of non-zeros in the error vector h does not

exceed a small fraction of its length n.
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In the following, we raise some questions of deterministic and finite nature, rather than

probabilistic and asymptotic. These questions appear to be unsolved at this point.

Open Questions

1. In general, for q < n and k < n

Ωn(q, k) =?

Short of it, can one find tight bounds on Ωn(q, k)?

2. Is it possible to construct a deterministic subspace S ∈ Sn(q) so that

ω(S, q, k) = Ωn(q, k)?

Short of it, can one construct a deterministic subspace S ∈ Sn(q) so that ω(S, q, k) is

provably close to Ωn(q, k)?

A partial answer to the first question can be derived from recent results in [9] and

[10] by examining the neighborliness of centrally symmetric polytopes. In particular, using

Theorem 1.1 in [10], one can derive that

Ω2q(q, k) = |F2q−k|, ∀ k ≤ q

400
. (28)

This deterministic bound on k is, to the best of our knowledge, tighter than the best

available probabilistic bound of today.
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