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Introduction

Eigenvalue problems form an important class of problems in
scientific computing. The algorithms to solve them are powerful,
yet far from obvious! Here we review the theory of eigenvalues
and eigenvectors. Algorithms are discussed in later lectures.

From now own, let A be square (m × m).

Let x 6= 0 ∈ IRm.

Then x is an eigenvector of A and λ ∈ IR is its corresponding
eigenvalue if Ax = λx.

The idea is that the action of A on a subspace S of IRm can act like
scalar multiplication.

This special subspace S is called an eigenspace.

The set of all the eigenvalues of a matrix A is called the spectrum
of A, denoted Λ(A).
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Eigenvalue decomposition

An eigenvalue decomposition of A is a factorization

A = XIX−1

where X is nonsingular and I is diagonal.

Such a decomposition does not always exist!

The definition can be rewritten as

AX = XI

A[x1|x2| . . . |xn] = [x1|x2| . . . |xn]











λ1

λ1

. . .
λn











This makes it clear that

Axj = λjxj
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Geometric multiplicity

The geometric multiplicity of an eigenvalue λ is the number of
linearly independent eigenvectors associated with it.

The set of eigenvectors corresponding to a single eigenvalue
(plus the zero vector) forms a subspace of IRm known as an
eigenspace.

The eigenspace corresponding to λ ∈ Λ(A) is denoted Eλ.

Eλ is an invariant subspace of A :

AEλ ⊆ Eλ

The dimension of Eλ can then be interpreted as geometric
multiplicity of λ.

The maximum number of linearly independent eigenvectors that
can be found for a given λ.
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Characteristic polynomial

The characteristic polynomial p(A) of A is the degree-m
polynomial

pA(z) = det(zI − A)

Theorem

λ is an eigenvalue of A if and only if pA(λ) = 0

Even in A is real, λ could be complex! However, if A is real, any
complex λ must appear in complex conjugate pairs.

If A is real and λ = a + ib is an eigenvalue, then so is λ∗ = a − ib.
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Algebraic multiplicity

The polynomial pA(z) can be written as

pA(z) = (z − λ1)(z − λ2) . . . (z − λm)

for some numbers λj ∈ C (the roots of the polynomial).

Each λj is an eigenvalue of A, and in general may be repeated,

λ2 − 2λ + 1 = (λ − 1)(λ − 1)

The algebraic multiplicity of an eigenvalue λ as the multiplicity of
λ as a root of pA(z).

An eigenvalue is simple if its algebraic multiplicity is 1.

Theorem

If A ∈ IRm×m, then A has m eigenvalues counting algebraic multiplicity.
In particular, if the roots of pA(z) are simple, then A has m distinct
eigenvalues.
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Similarity transformations (1)

If X ∈ IRm×m is nonsingular, then

A −→ X−1AX

is called a similarity transformation of A.

Two matrices A and B are similar if there is a similarity
transformation of one to the other.

There is X ∈ IRm×m is nonsingular, then

B = X−1AX

Many properties are shared by matrices that are similar.
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Similarity transformations (2)

Theorem

If X is nonsingular, then A and X−1AX have the same characteristic
polynomial, eigenvalues, and algebraic and geometric multiplicities.

Theorem

The algebraic multiplicity of an eigenvalue λ is at least as large as its
geometric multiplicity.
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Defective eigenvalues and matrices (1)

A generic matrix will have algebraic and geometric multiplicities
that are equal (to 1) since eigenvalues are often not repeated.

However, this is certainly not true of every matrix!

Consider,

A =





2 0 0
0 2 0
0 0 2



 B =





2 1 0
0 2 1
0 0 2





Both A and B have a single eigenvalue λ = 2 with algebraic
multiplicity 3.
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Defective eigenvalues and matrices (2)

For A, we can choose 3 linearly independent eigenvectors, e1, e2,
e3. So, the geometric multiplicity of A is 3. However, for B, we
only have 1 linearly independent eigenvector, e1. So, the
geometric multiplicity of B is 1.

An eigenvalue whose algebraic multiplicity is greater than its
geometric multiplicity is called a defective eigenvalue.

A matrix that has at least one defective eigenvalue is a defective
matrix i.e., it does not possess a full set of m linearly independent
eigenvectors.

Every diagonal matrix is non-defective, with algebraic multiplicity
of every eigenvalue λ equal to its geometric multiplicity (equal to
the number of times it occurs on the diagonal).
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Diagonalizability

Non-defective matrices are precisely those matrices that have an
eigenvalue decomposition.

Theorem

A ∈ IRm×m is non-defective if and only if it has an eigenvalue
decomposition

A = XΛX−1

In view of this, another term for non-defective is diagonalizable.
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Determinant and trace

Both the trace of A ∈ IRm×m (tr(A) =
∑m

j=1 ajj) and its determinant
are related to its eigenvalues.

Theorem

tr(A) =
∑m

j=1 λj and det(A) =
∏m

j=1 λj
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Orthogonal diagonalization (1)

A may have m linearly independent eigenvectors. Sometimes
hese vectors can be chosen to be orthogonal.

In such cases we say that A is orthogonally diagonalizable; i.e.,
there exists an orthogonal matrix Q such that

A = QΛQT

Such a decomposition is both an eigenvalue decomposition and
a SVD (except possibly for the signs of the elements of λ).

Theorem

A symmetric matrix is orthogonally diagonalizable and its eigenvalues
are real.
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Orthogonal diagonalization (2)

This is not the only class of orthogonally diagonalizable matrices.

It turns out that the entire class of orthogonally diagonalizable
matrices has an elegant characterization.

We say that a matrix is normal if AAT = ATA

. Then we have

Theorem

A matrix is orthogonally digonalizable if and only if it is normal.
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Schur factorization

This final factorization is actually the most useful in numerical
analysis because all matrices (even defective ones) have a
Schur factorization

A = QTQT

where Q is orthogonal and T is upper-triangular.

Since A and T are similar, the eigenvalues of A appear on the
diagonal of T.

Theorem

Every square matrix A has a Schur factorization.
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Eigenvalue-revealing factorizations (1)

We have just described three eigenvalue-revealing factorizations.

Factorizations where the matrix is reduced to a form where the
eigenvalues can simply be read off.
We summarize them as follows:

1 A diagonalization A = XΛX−1 exists if and only if A is non-defective.
2 An orthogonal diagonalization A = QΛQT exists if and only if A is

normal.
3 An orthogonal triangularization (Schur decomposition)A = QTQT

always exists.
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Eigenvalue-revealing factorizations (2)

To compute eigenvalues, we will construct one of these
factorizations.

In general, we will use the Schur decomposition since it applies
to all matrices without restriction and it uses orthogonal
transformations, which have good stability properties.

If A is normal, then its Schur factorization will have a diagonal T.

Moreover, if A is symmetric, we can exploit this symmetry to
reduce A to diagonal form with half as much work or less than is
required for general A.
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Gershgorin circle

Let A be a complex n × n matrix, with entries (aij).

For i ∈ 1, . . . , n write Ri =
∑

j6=i |aij| where |aij| denotes the
complex norm of aij.

Let D(aii, Ri) be the closed disc centered at aii with radius Ri.
Such a disc is called a Gershgorin disc.

Theorem

Every eigenvalue of A lies within at least one of the Gershgorin discs
D(aii, Ri).

Theorem

The eigenvalues of A must also lie within the Gershgorin discs Cj

corresponding to the columns of A.

For a diagonal matrix, the Gershgorin discs coincide with the
spectrum. Conversely, if the Gershgorin discs coincide with the
spectrum, the matrix is diagonal.
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