
User’s Guide for YALL1:

Your ALgorithms for L1 Optimization

Yin Zhang

Department of CAAM

Rice University, Houston, Texas, 77005

(CAAM Technical Report TR09-17)

(Versions: beta3 5-13-09; beta4 5-25-09; beta5 6-18-09)

Abstract

This User’s Guide describes the functionality and basic usage of the Matlab package
YALL1 for L1 minimization. The one-for-six algorithm used in the YALL1 solver is
briefly introduced in the appendix.

1 Introduction

YALL1 stands for “Your ALgorithms for L1”. It is a Matlab solver that at present can be
applied to the following six L1-minimization models:

(BP) minx∈Cn ‖Wx‖w,1, s.t. Ax = b, (1)

(L1/L1) minx∈Cn ‖Wx‖w,1 + (1/ν)‖Ax− b‖1, (2)

(L1/L2) minx∈Cn ‖Wx‖w,1 + (1/2ρ)‖Ax− b‖22, (3)

(BP+) minx∈Rn ‖x‖w,1, s.t. Ax = b and x ≥ 0, (4)

(L1/L1+) minx∈Rn ‖x‖w,1 + (1/ν)‖Ax− b‖1, s.t. x ≥ 0, (5)

(L1/L2+) minx∈Rn ‖x‖w,1 + (1/2ρ)‖Ax− b‖22, s.t. x ≥ 0, (6)

where ν, ρ ≥ 0, A ∈ Cm×n, b ∈ Cm, x ∈ Cn (for the first three) or x ∈ Rn (for the last
three) and W ∈ Cn×n is a unitary matrix serving as a sparsifying basis. Also ‖ · ‖w,1 is the
weighted L1 (semi-) norm defined as

‖x‖w,1 ,
n∑
i=1

wi|xi| (7)

1

for any given nonnegative vector w ∈ Rn. Here BP stands for “basis pursuit”, a name
commonly attached to model (1) in the signal processing community [1]. Other names are
more or less self-evident. The second terms in objective functions are commonly referred
to as fidelity terms.

In general, the first two problems are not linear programs for a complex variable x ∈ Cn,
but they reduce to linear programs when x is real. Moreover, it is well-known that unlike
the L2-norm square used in the L1/L2 and L1/L2+ models, the L1-norm penalty functions
used in the L1/L1 and L1/L1+ models are exact; that is, when ν is sufficiently small, the
L1/L1 (L1/L1+) model reduces to the BP (BP+) model.

1.1 Scaling of A

The scaling of the measurement matrix A is important to the performance of YALL1.
YALL1 version beta-3 requires A to have, or to be scaled to have, orthonormal rows so that

AA∗ = I.

This requirement is no longer necessary for YALL1 version beta-4. However, such orthonor-
malization is still recommended, whenever it is computationally reasonable to do, because
it generally makes our algorithms more robust.

If orthonormalization is computationally too expensive, then one should at least consider
to normalize the rows of A so that they all have the unit length, i.e.,

‖eTi A‖2 = 1, i = 1, 2, · · · ,m.

If the rows of A are neither orthonormalized nor normalized, then YALL1 may be prone
to slow convergence. (Normalizing the columns, instead of rows, of A will also help.)

2 Quick Start

YALL1 can be downloaded from the website:

http://www.caam.rice.edu/~optimization/L1/YALL1/

It has a simple Matlab interface with 3 inputs and 1 output:

x = yall1(A, b, opts);

where the input A is either a matrix A ∈ Cm×n or a structure of two function handles (see
more information below), b ∈ Cm and the output is x ∈ Cn. All these quantities can be real

2

or complex. The input variable opts is a structure carrying input options that control the
behavior of the algorithm. An optional output, Out, can also be requested that contains
some secondary output information.

After downloading and unzipping the package, you will have a new directory: YALL1-xx
where “xx” will vary with YALL1 versions. Get into this directory and run the Matlab
script Run Me 1st.m, which sets necessary path and tries to compile a C++ code for fast
Walsh-Hadamard transform into a Matlab mex file (as such you will need a relevant compiler
installed on your system).

Assuming that everything goes as it is supposed, then you will be able to run most of
the demo files in the Demos directory, though a few demo files require extra material to be
downloaded (see the Readme.txt file in the directory for more details).

Among the 3 input variables of YALL1, b is an m-vector, and A can be (i) an m × n
matrix, (ii) a Matlab structure, or (iii) a Matlab function handle. In case (ii), the Matlab
structure, say A, should have two fields:

A.times -- a function handle for A*x,

A.trans -- a function handle for A’*y,

representing the action of an m × n matrix. That is, A.times(·) is a linear function from
Cn to Cm, and A.trans(·) from Cm to Cn. For an example on how such a structure A is
defined, see the function pdct operator.m in the Utilities directory. Case (iii) is added
to YALL1 version beta-5, where the Matlab function represented by a handle A should have
two modes:

A(x,1) represents A*x,

A(x,2) represents A’*y.

The input variable opts will be specified in detail later. Here we just mention that the
option opts.tol specifies the stopping tolerance and must be set by user.

The YALL1 directory contains a simple Matlab script, quick start.m that invokes
YALL1 to solve a random problem. Version beta-5 adds another script quick start2.m

that demonstrates the use of partial discrete Walsh-Hadamart matrix as sensing matrix,
and the use of the discrete cosine transform (DCT) matrix as a sparsifying basis.

3 How to Specify a Model?

As is mentioned, YALL1 can be applied to 6 models: BP, L1/L1, L1/L2, BP+, L1/L1+
and L1/L2+. A model is selected through the input Matlab structure opts.

3

• BP Model. By default, YALL1 solves the BP model (1) without the need for any
specifications.

• L1/L1 Model. To solve the L1/L1 model (2), assign a positive value to the parameter
ν represented by the field opts.nu. For example, set opts.nu = 0.5. Experiments
show that usually ν < 1 should be advisable. As is noted earlier, L1/L1 reduces to
BP whenever ν is sufficiently small (but how small is small is problem-dependent).
Also, assigning zero to the field opts.nu has the same effect as not setting this field
at all.

• L1/L2 Model. To solve the L1/L2 model (3), assign a positive value to the parameter
ρ represented by the field opts.rho. For example, set opts.rho = 1e-3. Usually,
the ρ value should be chosen fairly close to zero.

(The behavior of the mixed model has not been carefully studied. Although setting
both ν > 0 and ρ > 0 at the same time is allowable, it is not advisable at this point.)

• Models with Nonnegativity. Simply set opts.nonneg = 1. For example, the
L1L1+ model (5) is solved when opts.nu = 0.5 and opts.nonneg = 1. If you set
opts.nonneg = 1 and also use a sparsifying basis W , then you are really assuming
that Wx is nonnegative.

• Weighted L1-Norm. By default, YALL1 assumes the uniformly weighted L1-norm:

wi = 1, i = 1, · · · , n.

To specify a non-unformly weighted L1-norm, set opts.weights = w; where w ∈ Rn

can be any nonnegative vector.

• Sparsifying Basis. A sparsifying basis is a unitary matrix W ∈ Cn×n. In YALL1,
such a W is represented by a structure opts.basis with two fields:

opts.basis.times -- a function handle for W*x,

opts.basis.trans -- a function handle for W’*x.

See the function wavelet basis.m in the Utilities directory for an example. Please
be cautioned that not every wavelet transform in the Matlab Wavelet Toolbox can be
represented by a unitary matrix or be applied to complex vectors.

• General Matrix A. In YALL1 version beta-4, if A does not satisfy AA∗ = I, set
opts.nonorth = 1.

4

4 List of Input Options

The following are the input options that can be reset by the user. The values in the brackets
“[]” are default values.

opts.tol = [set by user] (stopping tolerance)

opts.print = [0],1,2; (levels of printout)

opts.maxit = [9999]; (maximum iterations)

opts.nu = [0]; (> 0 for L1/L1 model)

opts.rho = [0]; (> 0 for L1/L2 model)

opts.nonneg = [0]; (1 for nonnegativity)

opts.basis = [identity]; (sparsifying basis W)

opts.mu = [set by code] (penalty parameter)

opts.weights = [1]; (weights for L1-norm)

opts.nonorth = [0]; (set to 1 if A*A’ =/= I)

opts.stepfreq = [1]; (see explanation below)

The penalty parameter µ can be altered by opts.mu, but this should be done only when
the code cannot satisfactorily solve your problem using its default value for µ.

The option opts.nonorth is available after version beta-4 (for specifying that AA∗ 6= I),
and opts.stepfreq after beta-5 (see below).

4.1 Tolerance Value

The option opts.tol specifies the stopping tolerance and must be set by the user. To get
the best performance, its value should be set more or less consistent with the noise levels in
the observed data b. In most practical situations where noise inevitably exists, opts.tol
values between 1E-2 to 1E-4 should generally be sufficient. Setting a tolerance value much
lower than noise level would only prolong computational time without the benefit of getting
a higher accuracy.

4.2 Step Calculation Frequency (AA∗ 6= I)

A new option opts.stepfreq is added after version beta-5 that specifies the frequency of
calculating the exact steepest descent step-length when AA∗ 6= I (which requires computing
AA∗v for a vector v). The default value for opts.stepfreq is 1, meaning that the exact
step-length calculation is preformed at every iteration. Setting opts.stepfreq to integers
greater than 1 would reduce computational time, but increase the risk of non-convergence.

5

(Our computational experience suggests that opts.stepfreq = 10 could still work well on
average problems, but for difficult problems even opts.stepfreq = 2 could cause failure.)

5 Feedbacks

The author welcomes and appreciates feedbacks from users. Please send your bug reports
and suggestions to the email address: yzhang@rice.edu.

Appendix: A 3-line Algorithm for 6 Problems

YALL1 versions beta-3 and beta-4 utilize a single and simple algorithm to solve all the six
models (1)–(6), hence a one-for-six algorithm. It is derived from the classic approach of
Alternating Direction Method, or ADM, that minimizes augmented Lagrangian functions
through an alternating minimization scheme and updates the multiplier after each sweep.
The convergence of such algorithms has been well analyzed in the literature (see [2], for
example, and the references thereof). Such algorithms can also be characterized as first-
order primal-dual algorithms because they explicitly update both primal and dual variables
at every iteration.

ADM-like approaches can be applied to models (1)–(6) and their duals, potentially
leading to a large number of possible first-order primal-dual algorithm variants. A study of
a few such first-order primal-dual algorithms will be presented in a forthcoming paper [3].

In the sequel, let us assume that W = I; otherwise a change of variable x̂ = Wx would
bring the problem into the desired form with the matrix A replaced by AW ∗ that still has
orthonormal rows.

L1/L1 “⊂” BP

We first demonstrate that the L1/L1 model (2) can be readily solved as a BP problem.
Note that (2) (with W = I) has an equivalent form

min
x∈Cn,r∈Cm

{
‖x‖w,1 +

1
ν
‖r‖1 : Ax+ r = b

}
,

or, after a change of variable and multiplying both sides by a constant,

min
(x,r)∈Cn+m


∥∥∥∥∥
(
x

r

)∥∥∥∥∥
ŵ,1

:
[A νI]√

1 + ν2

(
x

r

)
=

b√
1 + ν2

 . (A-1)

6

Model (A-1) has the same form as the BP model (1), but with (A, b, x) replaced by
(Aν , bν , xr) and w ∈ Rn augmented to ŵ ∈ Rn+m (here weighted L1-norm for fidelity
can be easily handled as well), where

Aν =

[
A νI

]
√

1 + ν2
, bν =

b√
1 + ν2

and xr =

(
x

r

)
. (A-2)

The new coefficient matrix Aν has the property that

AA∗ = I =⇒ AνA
∗
ν = I, (A-3)

which has a nice consequence in our implementation. Consequently, the L1/L1 model (2)
can be solved by any algorithm for the BP model (1).

Dual BP “⊂” Dual L1/L2

It is well known that as ρ→ 0, the solution of the L1/L2 model (3) converges to that of the
BP model (1). On the other hand, when we consider the duals of the two, then the dual
of (3) reduces to that of (1) exactly when ρ = 0. To see this relationship, we only need to
derive and compare the dual of (3),

max
y∈Cm

{Re(b∗y)− ρ

2
‖y‖22 : A∗y ∈ Bw}, (A-4)

with that of (1),
max
y∈Cm

{Re(b∗y) : A∗y ∈ Bw}, (A-5)

where
Bw , {z ∈ Cn : |zi| ≤ wi, i = 1, · · · , n}. (A-6)

Therefore, one can use a single algorithm to solve both (A-4) with ρ > 0 and (A-5) with
ρ = 0, while the latter contains model (2) as a special case.

Models with Nonnegativity

Models with nonnegativity can be treated in a totally analogous manner. The dual of the
L1/L2+ model (6) and the BP+ model (4) have exactly the same forms as those of (A-4)
and (A-5), respectively, except that the definition of Bw is changed to

Bw , {z ∈ Rn : zi ≤ wi, i = 1, · · · , n}. (A-7)

7

We note that a minor modification to the above definition of Bw is required if a BP+
model is from an L1/L1+ model where the variable is xr defined as in (A-2), consisting of
two parts in which the x-part is nonnegative but the r-part is not.

A crucial fact is that the projections onto these slightly different sets Bw are all trivial
and inexpensive because they are all “boxes”.

Your 1-for-6 Algorithm

Models (1)-(6) can be solved by a single algorithm. Such an algorithm can be called one-
for-six (or 1-for-6): one algorithm solving six problems. (In fact, this algorithm can solve
more than 6 models if one counts the mixed model where both ν > 0 and ρ > 0).

A number of 1-for-6 algorithms can be derived. The main algorithm used in YALL1
beta versions is derived from applying ADM to an augmented Lagrangian function of the
dual program (A-4) with a penalty parameter µ > 0. Let Pw be the orthogonal projection
onto the box Bw where the definition of Bw can vary. The algorithm in YALL1 version
beta-3 has the basic form:

yk+1 = αAzk − β(Axk − b), (A-8a)

zk+1 = Pw

(
A∗yk+1 + xk/µ

)
, (A-8b)

xk+1 = xk + γµ
(
A∗yk+1 − zk+1

)
, (A-8c)

where γ ∈ (0, (1 +
√

5)/2),

α =
µ

µ+ ρ
and β =

1
µ+ ρ

. (A-9)

This algorithm is a first-order primal-dual algorithm since that the primal variable x and
dual variables y and z (a dual slack) are updated at every iteration. The algorithm used
in YALL1 version beta-4 is a modifed version of the above algorithm that allows general
A-matrices not necessarily satisfying AA∗ = I.

Depending on the definition of Bw, when ρ > 0 the algorithm solves either the L1/L2 or
the L1/L2+ model; and when ρ = 0 it solves either the BP or the BP+ model if ν = 0, or
either the L1/L1 or the L1/L1+ model if ν > 0 and (A, b) is replaced by (Aν , bν). (Is this
1-for-6 algorithm wonderful? At the very least, it saved me tons of programming time.)

As is mentioned earlier, a number of other first-order primal dual algorithms can be
derived in which primal and dual variables are alternatingly updated. Some of these algo-
rithms will be presented in a forthcoming paper [3]. We plan to implement other algorithms
in YALL1 once we determine that they can bring enhanced performance and/or further
problem-solving capacities.

8

Acknowledgments

The author would like to thank a group of users, colleagues and students inside and outside of
Rice University who helped test previous versions of the code and provided useful feedbacks.

References

[1] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic Decomposition by Basis
Pursuit. SIAM J. Scientific Computing 20: 33-61, 1998.

[2] R. Glowinski. Numerical Methods for Nonlinear Variational Problems. Springer-Verlag,
New York, Berlin, Heidelberg, Tokyo, (1984).

[3] J. Yang and Y. Zhang. A Study of Algorithms and Models for Sparse Solution Recovery
via `1-Minimization. In preparation.

9

