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Outline

I Brief Intro to Model Reduction for Dynamical Systems

I Reduced Basis Trajectory Time Integration for MD

I The Symmetric SVD: Reduced Dimension MD Simulation
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LTI Systems and Model Reduction

Time Domain

ẋ = Ax + Bu

y = Cx

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, n >> m, p

Frequency Domain

sx = Ax + Bu

y = Cx

Transfer Function

H(s) ≡ C(sI− A)−1B, y(s) = H(s)u(s)
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Model Reduction

Construct a new system {Â, B̂, Ĉ} with LOW dimension k << n

˙̂x = Âx̂ + B̂u

ŷ = Ĉx̂

Goal: Preserve system response

ŷ should approximate y

Projection: x(t) = V ˆx(t) and V ˙̂x = AVx̂ + Bu
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Model Reduction by (Krylov) Projection

Approximate x ∈ SV = Range(V) k-diml. subspace
i.e. Put x = Vx̂, and then force

WT [V ˙̂x − (AVx̂ + Bu)] = 0

ŷ = CVx̂

If WTV = Ik , then the k dimensional reduced model is

˙̂x = Âx̂ + B̂u

ŷ = Ĉx̂

where Â = WTAV, B̂ = WTB, Ĉ = CV.
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Moment Matching ↔ Krylov Subspace Projection

Padé via Lanczos (PVL)

Freund, Feldmann

Bai

Multipoint Rational Interpolation

Grimme

Gallivan, Grimme, Van Dooren

Gugercin, Antoulas, Beattie
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Gramian Based Model Reduction

Proper Orthogonal Decomposition (POD)
Principle Component Analysis (PCA)

ẋ(t) = f(x(t),u(t)), y = g(x(t),u(t))

The gramian

P =

∫ ∞

o
x(τ)x(τ)Tdτ

Eigenvectors of P

P = VS2VT

Orthogonal Basis
x(t) = VSw(t)
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PCA or POD Reduced Basis

Low Rank Approximation

x ≈ Vk x̂k(t)

Galerkin condition – Global Basis

˙̂xk = VT
k f(Vk x̂k(t),u(t))

Global Approximation Error (H2 bound for LTI)

‖x− Vk x̂k‖2 ≈ σk+1

Snapshot Approximation to P

P ≈ 1

m

m∑
j=1

x(tj)x(tj)
T
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SVD of Snapshot Trajectory (Conformations)

X = [x(t1), x(t2), . . . , x(tm)]

SVD of X:

X = VSWT ≈ VkSkW
T
k

where

VTV = WTW = In S = diag(σ1, σ2, · · · , σn)

with σ1 ≥ σ2 ≥ · · · ≥ σn.
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SVD Compression

m
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Image Compression - Feature Detection

original rank = 10

rank = 30 rank = 50



POD in CFD

Extensive Literature

Karhunen-Loéve, L. Sirovich

Burns, King

Kunisch and Volkwein

Many, many others

Incorporating Observations – Balancing

Lall, Marsden and Glavaski

K. Willcox and J. Peraire
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POD for LTI systems

Impulse Response: H(t) = C(tI− A)−1B, t ≥ 0

Input to State Map: x(t) = eAtB

Controllability Gramian:

P =

∫ ∞

o
x(τ)x(τ)Tdτ =

∫ ∞

o
eAτBBT eAT τdτ

State to Output Map: y(t) = CeAtx(0)

Observability Gramian:

Q =

∫ ∞

o
eAT τCTCeAτdτ
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Balanced Reduction (Moore 81)

Lyapunov Equations for system Gramians

AP + PA
T

+ BB
T

= 0 A
TQ+QA + C

T
C = 0

With P = Q = S : Want Gramians Diagonal and Equal

States Difficult to Reach are also Difficult to Observe

Reduced Model Ak = WT
k AVk , Bk = WT

k B , Ck = CkVk

I PVk = WkSk QWk = VkSk

I Reduced Model Gramians Pk = Sk and Qk = Sk .
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Hankel Norm Error estimate (Glover 84)

Why Balanced Realization?

I Hankel singular values =
√

λ(PQ)

I Model reduction H∞ error (Glover)

‖y − ŷ‖2 ≤ 2× (sum neglected singular values)‖u‖2
I Extends to MIMO

I Preserves Stability

Key Challenge

I Approximately solve large scale Lyapunov Equations
in Low Rank Factored Form
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CD Player Impluse Response

n = 120 k = 11 , tol = 5e-3
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CD Player Impluse Response

k = 17 , tol = 5e-4
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CD Player Impluse Response

k = 31 , tol = 5e-5
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CD Player - Hankel Singular Values
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Reduction of Second Order Systems

Mẍ + Gẋ + Kx = Bu
y(t) = Cx(t)

→ M̂¨̂x + Ĝ ˙̂x + K̂x̂ = B̂u

ŷ(t) = Ĉx̂(t)

where M̂ = VTMV, etc. with VTV = I.

Key Point: Preserve Second Order Form
– DO NOT convert to First Order Sys.

Keeps Physical Meaning - can be built
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Applications

Mechanical Systems Electrical Systems MEMS devices

e.g. Building Model N = 26394, k = 200 (ROM)
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Error Bound for Second Order Systems

A. Antoulas, C. Teng

Controllability Gramian - Impulse Response

P :=

∫ ∞

0
x(t)x(t)∗dt.

Reduce with Dominant Eigenspace P: PV1 = V1S1

Bounded H2 norm of error system E = Σ− Σ̂

‖E‖2H2
≤ Cotr{S2}

Key: Expression for P in frequency domain.
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PCA Model Reduction for Molecular Dynamics

• Rachel Vincent • Monte Pettitt
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Classical Equations of Motion

Molecular dynamics (MD) simulation is a computational tool used
to study a molecular system as it evolves through time. Newton’s
second law of motion governs atomic motion in MD:

Mr̈(t) = −∇V(r(t)).

I r(t) = vector of atomic coordinates at time t
= [x1t y1t z1t · · · xNat yNat zNat ]

T

I M = diagonal matrix of atomic masses

I V(r(t)) = potential energy function
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Time Step Barrier ∝ fs

Example: DHFR (dihydrofolate reductase), 23,558 atoms

To realize a microsecond simulation with a time step of
2 fs would require about 13 months of simulation

time when utilizing 126 processors.

Time with respect to simulation using the NAMD program (Not
Another Molecular Dynamics program) on an Origin 2000
R10000/250.
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PCA Reduced Basis Simulation

MVÿ(t) = −∇V(Vy(t)) → M̂ÿ(t) = −VT∇V(Vy(t))

1. Initial Basis V: truncated SVD of short traditional MD
trajectory using ARPACK.

2. Approximate the reduced basis potential energy with Radial
Basis Fit.

3. Update reduced basis positions y and velocities ẏ in k
dimensions using the approximate potential.

4. Reconstruct 3ND trajectory r = Vy.

5. Update and truncate reduced basis and perform full space
correction as needed.
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Remarks

I Butane (n = 42):
80% to 90% of the total motion with 10 - 15 LSVs (24% - 36%

DOF)

Reduced Simulation times order of seconds
Traditional MD simulation took several minutes.

I BPTI(n = 2700):
80% to 90% of the total motion with 300 - 500 LSVs (11% - 19%

DOF)

Reduced Simulation times order of minutes
Traditional MD simulation took several hours.
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Symmetry Preserving SVD (Mili Shah)

Collaboration with the Physical and Biological Computing Group

I Lydia Kavraki

I Mark Moll

I David Schwarz

I Amarda Shehua

I Allison Heath
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Symmetry in HIV-1 protease

Backbone representation of HIV-1 protease (from M. Moll)

bound to an inhibitor (shown in orange)
Uses PCA dimension reduction of Molecular Dynamics Simulations

Symmetry across a plane should be present
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Animation: Symmetric SVD Approximation
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click below figures for movies
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Finding the Plane of Symmetry

Suppose

X = [x1, x2, . . . , xn] and Y = [y1, y2, . . . , yn]

are two sets of points symmetric across a plane

Exact symmetry condition:

Y = (I− 2wwT )X,

where w is the normal to the (hyper-) Plane of Symmetry

H = {x : wTx = 0}

Remark: In Numerical Linear Algebra (I− 2wwT ) is a
Householder Transformation or Elementary Reflector
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Best Approximate Plane of Symmetry

Symmetry condition with Noise:

Y = (I− 2wow
T
o )X + E,

Problem: Compute a unit vector w that gives the best
Approximate Plane of Symmetry

min
w
‖Y − (I− 2wwT )X‖F ,

Solution:

(XYT + YXT )v = vλmin, w = v

gives the normal w to the best approximate plane of symmetry
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Supressing Outlier Effects

Iteratively determine diagonal weighting matrix Dw

The i-th diagonal of Dw is 1/discrepancy,

discrepancy = ‖yi − (I− 2wwT )xi‖
Problem: Compute a unit vector w that gives the best

Weighted Approximate Plane of Symmetry

min
v
‖[Y − (I− 2vvT )X]Dw‖F ,

Solution:

(XD2
wYT + YD2

wXT )v = vλmin, w← v

gives the normal w to the best weighted approximate plane of
symmetry
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Finding Normal to “Best” Plane of Symmetry
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The Symmetric SVD Approximation

If WX2 = X1 + E where W = blockdiag(I− 2wwT )

min
WX̂2=X̂1

∥∥∥∥(
X1

X2

)
−

(
X̂1

X̂2

)∥∥∥∥2

F

and
(

X̂1

X̂2

)
= USVT

Solved by:

U =
1√
2

(
U1

U2

)
, S =

√
2S1, V = V1. and U2 = WU1,

with

U1S1VT
1 = 1

2 (X1 + WX2)
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Symmetric Major Modes: HIV-1 protease

I Major mode regular SVD is red

I Major mode SYMMETRIC SVD is blue

I 3120 atoms (3*3120=9360 degrees of freedom)

I MD trajectory consisted of 10000 conformations (NAMD)

I SVD and SymSVD used P ARPACK on a Linux cluster

I dual-processor nodes; 1600MHz AMD Athlon processors, 1GB
RAM per node. 1GB/s Ethernet connection . 12 Processors
= 6 nodes.

I First 10 standard singular vectors: 88 secs.

I First 10 symmetric singular vectors: 131 secs.
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Animation: Symmetric SVD on HIV1 Protease

click for movie

Red = Unsymmetric Blue = Symmetric

First SVD mode – Symmetric vs. Unsymmetric
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Rotational Symmetry
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Xj = WXj−1, j = 1 : k − 1, where W = I−QGQT

Ip − G is a rotation Xk = X0.
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Finding the Axis of Rotation

q is an axis of rotation iff QTq = 0

qTW = qT (I−QGQT ) = qT ⇒ qTX0 = qTXj

Let M = (k − 1)X0 −
∑k−1

j=1 Xj

min
‖q‖=1

‖MTq‖ (= 0 if exact symmetry holds)

Good for noisy data

(for another condition see Minovic,Ishikawa and Kato )
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Best Rotationally Symmetric Approximation

If Wk−jXj = X0 + Ej , j = 1 : k − 1

min
bXj+1=WbXj

∥∥∥∥∥∥
 X0

:
Xk−1

−
 X̂0

:

X̂k−1

∥∥∥∥∥∥
2

F

=
1

k

k−1∑
j=0

‖Ej‖2F ,

[
X̂T

0 . . . X̂T
k−1

]T
= USVT with U =

1√
k

[
UT

0 . . .UT
k−1

]T

U0S0V
T
0 =

1

k
(X0 + Wk−1X1 + Wk−2X2 + ... + WXk−1).

S =
√

kS0 V = V0 Uj = WjU0, j = 0, 1, 2, ..., k − 1
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Animation: Rotationally Symmetric SVD
Approximation
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click below figures for movies
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Animation: Rotationally Symmetric SVD on HIV1

click for movie

Red = Unsymmetric Blue = Symmetric

Second SVD mode – Rotationally Symmetric vs. Unsymmetric
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Potential for Symmetric SVD

I Obtain a Symmetric PCA reduced dimension approximate
trajectory

I Test Hypothesis of Symmetry in an Unknown Protein

I Locate Symmeteric Sub-Structures

Things to Do:

I Improve convergence rate for finding w

I Give a complete analysis of convergence

I Give a complete analysis of discrepancy weighting

I Extend to more complex symmetries

I Find New Applications
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Contact Info.

e-mail: sorensen@rice.edu

web page: www.caam.rice.edu/ ˜ sorensen/

ARPACK: www.caam.rice.edu/software/ARPACK/


