RICE Efficient Numerical Methods for Least-Norm Regularization

D.C. Sorensen

- Collaborator: M. Rojas
- Support: AFOSR and NSF

Least Norm Regularization

$$
\min _{\mathbf{x}}\|\mathbf{x}\|, \text { s.t. }\|\mathbf{b}-\mathbf{A} \mathbf{x}\| \leq \epsilon
$$

- KKT Conditions and the Secular Equation
- LNR: Newton's Method for Dense Problems
- Re-formulation of KKT for Large Scale Problems
- Nonlinear Lanczos: LNR_NLLr \& LNR_NLLx
- Pre-Conditioning: Newton-Like Iterations
- Computational Results

Brief Background

- Standard Trust Region Problem (TRS): $\min _{\mathbf{x}}\|\mathbf{b}-\mathbf{A x}\|$ s.t. $\|\mathbf{x}\| \leq \Delta$.
- Secular Equation: Hebden('73), Moré('77), Morozov('84)
- TRS:

Eldén ('77), Gander('81), Golub \& von Mat ('91)

- Large Scale TRS:
S.('97), Hager('01), Rendl \& Wolkowicz ('01),

Reichel et. al., Rojas \& S. ('02), Rojas Santos \& S. ('08)

- Nonlinear Iterations:

Voss ('04): Non-Linear Arnoldi/Lanczos, Lampe, Voss, Rojas \& S.('09) Improved LSTRS

The KKT Conditions

Underlying Problem : $\min _{\mathbf{x}}\|\mathbf{b}-\mathbf{A x}\|$

Assumption: All error is measurement error in R.H.S.
\mathbf{b} is perturbation of exact data,

$$
\mathbf{b}=\mathbf{b}_{o}+\bar{n} \text { with } \mathbf{A} \mathbf{x}_{o}=\mathbf{b}_{o}, \quad \epsilon \geq\|\bar{n}\| .
$$

Assures solution \mathbf{x}_{o} is feasible .
Lagrangian :

$$
\mathcal{L}:=\|\mathbf{x}\|^{2}+\lambda\left(\|\mathbf{b}-\mathbf{A} \mathbf{x}\|^{2}-\epsilon^{2}\right) .
$$

KKT conditions :

$$
\mathbf{x}+\lambda \mathbf{A}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})=\mathbf{0}, \quad \lambda\left(\|\mathbf{b}-\mathbf{A} \mathbf{x}\|^{2}-\epsilon^{2}\right)=0, \quad \lambda \geq 0
$$

Positive λ KKT Conditions

Some Observations:

- $\|\mathbf{b}\| \leq \epsilon \Leftrightarrow \mathbf{x}=\mathbf{0}$ is a solution,
- $\lambda=0 \Rightarrow \mathbf{x}=\mathbf{0}$,
- $\lambda>0 \Leftrightarrow \mathbf{x} \neq \mathbf{0}$ and $\|\mathbf{b}-\mathbf{A x}\|^{2}=\epsilon^{2}$.

KKT conditions with positive λ :

$$
\mathbf{x}+\lambda \mathbf{A}^{\top}(\mathbf{A x}-\mathbf{b})=\mathbf{0}, \quad\|\mathbf{b}-\mathbf{A} \mathbf{x}\|^{2}=\epsilon^{2}, \quad \lambda>0 .
$$

KKT - Necessary and Sufficient

Optimality Conditions: SVD version

Let $\mathbf{A}=\mathbf{U S V}^{T} \quad$ (short form SVD) Let $\mathbf{b}=\mathbf{U} \mathbf{b}_{1}+\mathbf{b}_{2}$ with $\mathbf{U}^{\top} \mathbf{b}_{2}=\mathbf{0}$.
Then

$$
\|\mathbf{b}-\mathbf{A} \mathbf{x}\|^{2} \leq \epsilon^{2} \Longleftrightarrow\left\|\mathbf{b}_{1}-\mathbf{S V}^{\top} \mathbf{x}\right\|^{2} \leq \epsilon^{2}-\left\|\mathbf{b}_{2}\right\|^{2}=: \delta^{2}
$$

Must assume $\quad \mathbf{b}=\mathbf{U} \mathbf{b}_{1}+\mathbf{b}_{2}$ with $\left\|\mathbf{b}_{2}\right\| \leq \epsilon$ ($\left\|\mathbf{b}_{2}\right\|>\epsilon \Rightarrow$ no feasible point).

$$
\mathbf{x}+\lambda \mathbf{V S}\left(\mathbf{S V} \mathbf{V}^{T} \mathbf{x}-\mathbf{b}_{1}\right)=\mathbf{0}, \quad\left\|\mathbf{b}_{1}-\mathbf{S V}^{T} \mathbf{x}\right\|^{2}=\delta^{2}, \quad \lambda>0
$$

Manipulate KKT into more useful form:

$$
\begin{gathered}
\left(\mathbf{I}+\lambda \mathbf{S}^{2}\right) \mathbf{z}=\mathbf{b}_{1}, \quad\|\mathbf{z}\|^{2} \leq \delta^{2}, \quad \lambda>0 \\
\mathbf{x}=\lambda \mathbf{V S z} \text { with } \mathbf{z}:=\mathbf{b}_{1}-\mathbf{S V}^{T} \mathbf{x}
\end{gathered}
$$

The Dense LNR Scheme

- Compute $\mathbf{A}=\mathbf{U S V}^{\top}$;
- Put $\mathbf{b}_{1}=\mathbf{U}^{\top} \mathbf{b}$;
- Set $\delta^{2}=\epsilon^{2}-\left\|\mathbf{b}-\mathbf{U b}_{1}\right\|^{2}$;
- Compute $\lambda \geq 0$ and \mathbf{z} s.t.

$$
\left(\mathbf{I}+\lambda \mathbf{S}^{2}\right) \mathbf{z}=\mathbf{b}_{1}, \quad\|\mathbf{z}\|^{2} \leq \delta^{2} ;
$$

- Put $\mathbf{x}=\lambda \mathbf{V S z}$.

Step 4 requires a solver ...

The Secular Equation - Newton's Method

How to compute λ :
We use Newton's Method to solve $\psi(\lambda)=0$ where

$$
\psi(\lambda):=\frac{1}{\left\|\mathbf{z}_{\lambda}\right\|}-\frac{1}{\delta}, \quad \text { where } \quad \mathbf{z}_{\lambda}:=\left(\mathbf{I}+\lambda \mathbf{S}^{2}\right)^{-1} \mathbf{b}_{1} .
$$

Initial Guess -

$$
\lambda_{1}:=\frac{\left\|\mathbf{b}_{1}\right\|-\delta}{\delta \sigma_{1}^{2}}<\lambda_{0} .
$$

Note: With $r:=\operatorname{rank}(\mathbf{A}) \leq n$,

$$
\mathbf{z}_{\lambda}^{\top} \mathbf{z}_{\lambda}=\sum_{j=1}^{r} \frac{\beta_{j}^{2}}{\left(1+\lambda \sigma_{j}^{2}\right)^{2}}+\beta_{o}^{2},
$$

$\beta_{o}^{2}:=\sum_{j=r+1}^{n} \beta_{j}^{2} . \quad$ poles at $-1 / \sigma_{j}^{2}:$ no problem

The Secular Equation

Figure: Graph of Typical Secular Equation

- $\psi(\lambda)$ is concave and monotone increasing for $\lambda \in(0, \infty)$,
- $\psi(\lambda)=0$ has a unique root at $\lambda=\lambda_{0}>0$.
- Newton converges - No safeguarding required

Computational Results, Dense LNR

Problem	Iter	Time	$\frac{\left\\|\mathbf{x}-\mathbf{x}_{*}\right\\|}{\left\\|\mathbf{x}_{*}\right\\|}$
baart	12	57.04	$5.33 \mathrm{e}-02$
deriv2, ex. 1	9	57.18	$6.90 \mathrm{e}-02$
deriv2, ex. 2	9	57.93	$6.59 \mathrm{e}-02$
foxgood	11	59.91	$1.96 \mathrm{e}-03$
i_laplace, ex. 1	12	23.04	$1.67 \mathrm{e}-01$
i_laplace, ex. 3	11	22.88	$1.96 \mathrm{e}-03$
heat, mild	4	60.96	$1.13 \mathrm{e}-03$
heat, severe	9	40.27	$6.95 \mathrm{e}-03$
phillips	9	46.97	$1.32 \mathrm{e}-03$
shaw	11	57.25	$3.14 \mathrm{e}-02$

Table: LNR on Regularization Tools problems, $m=n=1024$.

KKT For Large Scale Problems

Original Form KKT:

$$
\mathbf{x}+\lambda \mathbf{A}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})=\mathbf{0}, \quad\|\mathbf{b}-\mathbf{A} \mathbf{x}\|^{2}=\epsilon^{2}, \quad \lambda>0
$$

Solution Space Equations:

$$
\left(\mathbf{I}+\lambda \mathbf{A}^{T} \mathbf{A}\right) \mathbf{x}=\lambda \mathbf{A}^{T} \mathbf{b}
$$

Residual Space Equations:
Multiply on left by \mathbf{A} and add -b to both sides gives:

$$
\mathbf{A x}-\mathbf{b}+\lambda \mathbf{A A}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})=-\mathbf{b}
$$

Put $\mathbf{r}=\mathbf{b}-\mathbf{A x}$ and adjust λ to obtain

$$
\left(\mathbf{I}+\lambda \mathbf{A} \mathbf{A}^{T}\right) \mathbf{r}=\mathbf{b}, \quad\left\|\mathbf{r}_{\lambda}\right\|=\epsilon
$$

Set $\mathbf{x}_{\lambda}=\lambda \mathbf{A}^{T} \mathbf{r}$.

Projected Equations

Large Scale Framework (J-D Like):

- Build a Search Space $\mathcal{S}=$ Range(V)
- Solve a projected problem restricted to \mathcal{S}
- Adjoin new descent direction \mathbf{v} to search space

$$
\mathbf{V} \leftarrow[\mathbf{V}, \mathbf{v}] ; \quad \mathcal{S} \leftarrow \operatorname{Range}(\mathbf{V})
$$

Solution Space Equations :
Put $\mathbf{x}=\mathbf{V} \hat{\mathbf{x}}$ and multiply on left by \mathbf{V}^{\top}

$$
\left(\mathbf{I}+\lambda(\mathbf{A V})^{T}(\mathbf{A V})\right) \hat{\mathbf{x}}=\lambda(\mathbf{A V})^{\top} \mathbf{b} .
$$

Residual Space Equations:
Put $\mathbf{r}=\mathbf{V} \hat{\mathbf{r}}$ and multiply on left by \mathbf{V}^{\top}

$$
\left(\mathbf{I}+\lambda\left(\mathbf{V}^{\top} \mathbf{A}\right)\left(\mathbf{V}^{\top} \mathbf{A}\right)^{\top}\right) \hat{\mathbf{r}}=\mathbf{V}^{\top} \mathbf{b}, \quad\left\|\mathbf{r}_{\lambda}\right\|=\epsilon .
$$

Set $\mathbf{x}_{\lambda}=\lambda \mathbf{A}^{T}(\mathbf{V} \hat{\mathbf{r}})$.

Secular Equation for Projected Equations

In both \mathbf{r} and \mathbf{x} iterations the Secular Equation is

$$
\left\|\left(\mathbf{I}+\lambda \mathbf{S}^{2}\right)^{-1} \mathbf{b}_{1}\right\|=\delta
$$

Can use Secular Equation Solver from dense LNR Both Cases: $\mathbf{b}_{1}=\mathbf{W}^{T} \mathbf{V}^{T} \mathbf{b}$

- \mathbf{x} - iteration: $\mathbf{W S U}^{T}=\mathbf{A V}$
- \mathbf{r} - iteration: $\mathbf{W S U}^{T}=\mathbf{V}^{T} \mathbf{A}$

Nonlinear Lanczos r-Iteration

Repeat until convergence:

- Put $\mathbf{r}=\mathbf{V} \hat{\mathbf{r}}$ and express $\mathbf{b}=\mathbf{V} \hat{\mathbf{b}}+\mathbf{f}$ with $\mathbf{V}^{\top} \mathbf{f}=0$.
- Take $\mathbf{W S U}^{T}=\mathbf{V}^{T} \mathbf{A}$ (short-form SVD)
- Solve Secular Equation

$$
\left\|\left(\mathbf{I}+\lambda \mathbf{S}^{2}\right)^{-1} \mathbf{b}_{1}\right\|=\epsilon \text { with } \mathbf{b}_{1}=\mathbf{W}^{\top} \hat{\mathbf{b}}
$$

- Put $\mathbf{x}_{\lambda}=\lambda \mathbf{A}^{T} \mathbf{V} \hat{\mathbf{r}}=\lambda \mathbf{U S}\left(\mathbf{W}^{T} \hat{\mathbf{r}}\right)=\mathbf{U S z} \lambda$, where $\mathbf{z}:=\mathbf{W}^{\top} \hat{\mathbf{r}}=\left(\mathbf{I}+\lambda \mathbf{S}^{2}\right)^{-1} \mathbf{b}_{1}$.
- Nonlinear Lanczos Step: Get new search direction $\mathbf{v}=\left(\mathbf{I}-\mathbf{V} \mathbf{V}^{T}\right)\left(\mathbf{b}-\mathbf{A} \mathbf{x}_{\lambda}\right)$ Set $\mathbf{v} \leftarrow \mathbf{v} /\|\mathbf{v}\|$
Update basis $\mathbf{V} \leftarrow[\mathbf{V}, \mathbf{v}]$

Nonlinear Lanczos x-Iteration

Repeat until convergence:

- Compute WSU ${ }^{T}=\mathbf{A V}$ (short form SVD) Express $\mathbf{b}=\mathbf{W} \hat{\mathbf{b}}+\mathbf{f}$ with $\mathbf{W}^{T} \mathbf{f}=\mathbf{0}$
Set $\delta=\sqrt{\epsilon^{2}-\mathbf{f}^{T} \mathbf{f}}$.
- Solve Secular Equation

$$
\left\|\left(\mathbf{I}+\lambda \mathbf{S}^{2}\right)^{-1} \mathbf{b}_{1}\right\|=\delta \quad \text { with } \quad \mathbf{b}_{1}=\mathbf{W}^{T} \hat{\mathbf{b}}
$$

- Put $\mathbf{x}_{\lambda}=\lambda \mathbf{V}(\mathbf{U S z})$ where $\mathbf{z}=\left(\mathbf{I}+\lambda \mathbf{S}^{2}\right)^{-1} \mathbf{b}_{1}$.
- Nonlinear Lanczos Step:

Compute $\mathbf{r}=\mathbf{b}-\mathbf{A} \mathbf{x}_{\lambda}$
Obtain search direction $\mathbf{v}=\left(\mathbf{I}-\mathbf{V} \mathbf{V}^{T}\right)\left(\lambda \mathbf{A}^{T} \mathbf{r}\right)$
Normalize $\mathbf{v} \leftarrow \mathbf{v} /\|\mathbf{v}\|$
Update the basis $\mathbf{V} \leftarrow[\mathbf{V}, \mathbf{v}]$

Analysis of Local Minimization Step

KKT: $\left(\mathbf{I}+\lambda \mathbf{A A}^{T}\right) \mathbf{r}=\mathbf{b}$ with $\|\mathbf{r}\|=\epsilon$.
Given λ,

$$
\min _{\mathbf{r}}\left\{\frac{1}{2} \mathbf{r}^{T}\left(\mathbf{I}+\lambda \mathbf{A A}^{T}\right) \mathbf{r}-\mathbf{b}^{T} \mathbf{r}\right\} \equiv \min _{\mathbf{r}} \varphi(\mathbf{r}, \lambda)
$$

Steepest Descent Direction:

$$
\begin{gathered}
\mathbf{s}=-\nabla_{\mathbf{r}} \varphi(\mathbf{r}, \lambda)=-\left[\left(\mathbf{I}+\lambda \mathbf{A} \mathbf{A}^{T}\right) \mathbf{r}-\mathbf{b}\right]=(\mathbf{b}-\mathbf{A} \mathbf{x}-\mathbf{r}) \\
\hat{\mathbf{v}}=\left(\mathbf{I}-\mathbf{V} \mathbf{V}^{T}\right) \mathbf{s}=\left(\mathbf{I}-\mathbf{V} \mathbf{V}^{T}\right)(\mathbf{b}-\mathbf{A} \mathbf{x})
\end{gathered}
$$

Since $\mathbf{r}=\mathbf{V} \hat{\mathbf{r}}$ implies $\left(\mathbf{I}-\mathbf{V} \mathbf{V}^{\top}\right) \mathbf{r}=\mathbf{0}$.
LNR_NLLr step adjoins full steepest descent direction
Adjoin $\mathbf{v}=\hat{\mathbf{v}} /\|\hat{\mathbf{v}}\|$ to search space $\mathcal{S}_{+}=$Range($\left.[\mathbf{V}, \mathbf{v}]\right)$
Note: \mathcal{S}_{+}contains $\min \varphi$ along the steepest descent direction.
Next iterate: Decrease at least as good as steepest descent.

Pre-Conditioning: Newton-Like Iterartion

General Descent Direction:

$$
\mathbf{s}=-\mathbf{M}\left[\left(\mathbf{I}+\lambda \mathbf{A} \mathbf{A}^{T}\right) \mathbf{r}-\mathbf{b}\right]=\mathbf{M}(\mathbf{b}-\mathbf{A} \mathbf{x}-\mathbf{r}),
$$

\mathbf{M} is S.P.D. and $\mathbf{x}=\lambda \mathbf{A}^{\top} \mathbf{r}$.
Orthogonal decomposition (noting $\mathbf{r}=\mathbf{V} \hat{\mathbf{r}}$) will give
$\mathbf{b}-\left(\mathbf{I}+\lambda \mathbf{A} \mathbf{A}^{T}\right) \mathbf{r}=\left(\mathbf{I}-\mathbf{V} \mathbf{V}^{T}\right)\left[\mathbf{b}-\left(\mathbf{I}+\lambda \mathbf{A} \mathbf{A}^{T}\right) \mathbf{r}\right]=\left(\mathbf{I}-\mathbf{V} \mathbf{V}^{T}\right)(\mathbf{b}-\mathbf{A x})$.
Thus, orthogonalizing s against Range(V) and normalizing gives:

$$
\hat{\mathbf{v}}=\left(\mathbf{I}-\mathbf{V} \mathbf{V}^{T}\right) \mathbf{M}\left(\mathbf{I}-\mathbf{V} \mathbf{V}^{T}\right)(\mathbf{b}-\mathbf{A} \mathbf{x}), \quad \mathbf{v}=\hat{\mathbf{v}} /\|\hat{\mathbf{v}}\|,
$$

The full pre-conditioned or Newton-like step is adjoined. Adjoin $\mathbf{v}=\mathbf{s} /\|\mathbf{s}\|$ to search space $\mathcal{S}_{+}=\operatorname{Range}([\mathbf{V}, \mathbf{v}])$ Next iterate: Decrease at least as good as Newton-like step.

What if $\hat{\mathbf{v}}=0$?

Iteration Terminates with Solution

$$
0=(\mathbf{b}-\mathbf{A} \mathbf{x})^{T} \hat{\mathbf{v}}=(\mathbf{b}-\mathbf{A x})^{T}\left(\mathbf{I}-\mathbf{V} \mathbf{V}^{T}\right) \mathbf{M}\left(\mathbf{I}-\mathbf{V} \mathbf{V}^{T}\right)(\mathbf{b}-\mathbf{A x})
$$

M S.P.D. $\Rightarrow \mathbf{0}=\left(\mathbf{I}-\mathbf{V} \mathbf{V}^{T}\right)(\mathbf{b}-\mathbf{A x}) \Rightarrow \mathbf{b}-\mathbf{A} \mathbf{x}=\mathbf{V z}$ for some \mathbf{z}
$\mathbf{z}=\mathbf{V}^{T}(\mathbf{b}-\mathbf{A} \mathbf{x})=\hat{\mathbf{b}}-\lambda \mathbf{V}^{T} \mathbf{A} \mathbf{A}^{T} \mathbf{r}=\left(\mathbf{I}+\lambda \mathbf{V}^{T} \mathbf{A} \mathbf{A}^{T} \mathbf{V}\right) \hat{\mathbf{r}}-\lambda \mathbf{V}^{T} \mathbf{A} \mathbf{A}^{T} \mathbf{V} \hat{\mathbf{r}}=\hat{\mathbf{r}}$.
Substitute $\mathbf{z}=\hat{\mathbf{r}}$ to get $\mathbf{b}-\mathbf{A x}=\mathbf{r}$
$\|\mathbf{r}\|=\epsilon \Rightarrow$ KKT conditions satisfied $\Rightarrow \mathbf{x}=\lambda \mathbf{A}^{T} \mathbf{r}$ is solution
x - iteration LNR_NLLx has analogous properties

Computational Results, LNR_NLLr

Problem	Oult	Inlt	MVP	Time	Vec	$\frac{\left\\|\mathbf{x}-\mathbf{x}_{L N R}\right\\|}{\left\\|\mathbf{x}_{L N A}\right\\|}$	$\frac{\left\\|\mathbf{x}-\mathbf{x}_{*}\right\\|}{\left\\|\mathbf{x}_{*}\right\\|}$
baart	1	12.0	35	0.09	12	$1.5 \mathrm{e}-11$	$5.3 \mathrm{e}-02$
deriv2, ex. 1	33	3.4	99	0.44	44	$7.8 \mathrm{e}-03$	$7.0 \mathrm{e}-02$
deriv2, ex. 2	31	3.4	95	0.40	42	$8.2 \mathrm{e}-03$	$6.6 \mathrm{e}-02$
foxgood	1	11.0	35	0.09	12	$5.3 \mathrm{e}-13$	$2.0 \mathrm{e}-03$
illaplace, ex. 1	7	4.0	47	0.16	18	$2.2 \mathrm{e}-02$	$1.7 \mathrm{e}-01$
i_laplace, ex. 3	4	4.0	41	0.13	15	$2.6 \mathrm{e}-03$	$3.2 \mathrm{e}-03$
heat, mild	25	2.0	83	0.33	36	$1.2 \mathrm{e}-03$	$5.5 \mathrm{e}-04$
heat, severe	29	3.1	91	0.37	40	$2.3 \mathrm{e}-03$	$7.5 \mathrm{e}-03$
phillips	5	4.2	43	0.11	16	$9.4 \mathrm{e}-04$	$1.4 \mathrm{e}-03$
shaw	1	11.0	35	0.09	12	$2.3 \mathrm{e}-09$	$3.1 \mathrm{e}-02$

Table: LNR_NLLr on Regularization Tools problems, $m=n=1024$.

Computational Results, LNR_NLLx

Problem	Oult	Inlt	MVP	Time	Vec	$\frac{\left\\|\mathbf{x}-\mathbf{x}_{\text {LNR }}\right\\|}{\left\\|\mathbf{x}_{\text {LNR }}\right\\|}$	$\frac{\left\\|\mathbf{x}-\mathbf{x}_{*}\right\\|}{\left\\|\mathbf{x}_{*}\right\\|}$
baart	1	7.0	67	0.16	22	$4.2 \mathrm{e}-11$	$5.3 \mathrm{e}-02$
deriv2, ex. 1	17	3.3	115	0.32	38	$1.6 \mathrm{e}-02$	$7.5 \mathrm{e}-02$
deriv, ex. 2	16	3.3	112	0.30	37	$1.5 \mathrm{e}-02$	$7.1 \mathrm{e}-02$
foxgood	1	6.0	67	0.16	22	$3.7 \mathrm{e}-10$	$1.9 \mathrm{e}-03$
ilaplace, ex. 1	1	7.0	67	0.20	22	$1.7 \mathrm{e}-06$	$1.7 \mathrm{e}-01$
i_laplace, ex. 3	1	6.0	67	0.20	22	$2.7 \mathrm{e}-08$	$1.9 \mathrm{e}-03$
heat, mild	27	2.0	145	0.48	48	$1.1 \mathrm{e}-03$	$4.1 \mathrm{e}-04$
heat, severe	15	3.1	109	0.29	36	$3.5 \mathrm{e}-03$	$9.1 \mathrm{e}-03$
phillips	1	5.0	67	0.16	22	$2.9 \mathrm{e}-05$	$1.3 \mathrm{e}-03$
shaw	1	7.0	67	0.16	22	$1.7 \mathrm{e}-12$	$3.1 \mathrm{e}-02$

Table: LNR_NLLx on Regularization Tools problems, $m=n=1024$.

Comparison: LNR_NLLr\& LNR_NLLx(time and storage)

(a)

(b)

Figure: Time (a) and number of vectors (b) required by LNR_NLLr (dark) and LNR_NLLx (clear), $m=n=1024$.

Performance on Rectangular Matrices

Problem heat, mild

Method / $m \times n$		utlt	Inlt	MVP	Time	Vec	\|x-x
LNR	1024×300	7			0.2	300	$5.21 \mathrm{e}-03$
LNR_NLLr	1024×300	38	2.8	109	0.22	49	$5.22 \mathrm{e}-03$
LNR_NLLX	1024×300	22	3.1	130	0.21	43	5.99e-03
LNR	300×1024	7	-	-	0.30	1024	$5.18 \mathrm{e}-03$
LNR_NLLr	300×1024	37	2.8	107	0.35	48	$5.11 \mathrm{e}-0$
LNR_NL	300×102	21	3	127	0.17	42	5.76e

Table: Performance of LNR, LNR_NLLr, and LNR_NLLx

Convergence History on Problem heat, mild

Iteration no. vs $\left|\psi\left(\lambda_{k}\right)\right|$ (dense) and $\left\|\mathbf{b}-\mathbf{A} \mathbf{x}_{k}\right\|$ (sparse) $m=1024, n=300$

(LNR)
$m=300, n=1024$

(LNR)

(LNR_NLLr)

(LNR_NLLr)

(LNR_NLLx)

(LNR_NLLx)

Image Restoration

\triangleright Recover an Image from Blurred and Noisy Data
\triangleright Digital Photo was Blurred using blur from Hansen
\triangleright Data Vector b: Blurred and Noisy Image, a one-D array
\triangleright Noise Level in $\mathbf{b}=\mathbf{b}_{o}+\bar{n}$ was $\|\bar{n}\| /\left\|\mathbf{b}_{o}\right\|=10^{-2}$
\triangleright Original photograph: 256×256 pixels, $n=65536$.
$\triangleright \mathbf{A}=$ Blurring Operator returned by blur.

Method / noise level	Outlt	Inlt	MVP	Time	Vec	$\frac{\left\\|\mathbf{x}-\mathbf{x}_{*}\right\\|}{\left\\|\mathbf{x}_{*}\right\\|}$
LNR_NLLr / 10^{-2}	1	4.0	35	0.79	12	$1.08 \mathrm{e}-01$
LNR_NLLx $/ 10^{-2}$	1	4.0	67	2.10	22	$1.08 \mathrm{e}-01$
LNR_NLLr $/ 10^{-3}$	41	3.0	115	46.67	52	$7.13 \mathrm{e}-02$
LNR_NLLx/10	10^{-3}	6	3.0	82	3.87	27

Table: Performance LNR_NLLr , LNR_NLLx on Image Restoration.

Image Restoration: Paris Art, $n=65536$

True image

LNR_NLLr restoration

Blurred and noisy image

LNR_NLLx restoration

Summary

- CAAM TR10-08 Efficient Numerical Methods for Least-Norm Regularization, D.C. Sorensen and M. Rojas
- TR09-26 Accelerating the LSTRS Algorithm, J. Lampe, M. Rojas, D.C. Sorensen, and H. Voss
- http://www.caam.rice.edu/ sorensen/

Least Norm Regularization: $\min _{\mathbf{x}}\|\mathbf{x}\|$, s.t. $\|\mathbf{b}-\mathbf{A x}\| \leq \epsilon$

- KKT Conditions and the Secular Equation
- Newton's Method for Dense Problems
- Re-formulation of KKT for Large Scale Problems
- Nonlinear Lanczos: LNR_NLLr \& LNR_NLLx
- Pre-Conditioning: Newton-Like Iterations
- Computational Results

