
Fixed Point Methods for
Embedding Large Graphs

Michael W. Trosset

Department of Statistics

Indiana University

This research was supported by a grant from the Office of Naval Research.

RAT70, May 2009 1

Dimension Reduction

Multivariate data are usually represented as points in an ambient feature space, e.g.,
y1, . . . , yn ∈ <q.

By dimension reduction, we mean the representation of y1, . . . , yn as x1, . . . , xn ∈ <d

for d < q.

Some dimension reduction techniques construct x1, . . . , xn by linear operations. For
example, extracting the first d principal components of y1, . . . , yn is equivalent to
projecting y1, . . . , yn into the best-fitting affine linear subspace of ≤ d dimensions.

We consider several techniques for nonlinear dimension reduction, each motivated
by the conceit that y1, . . . , yn lie on a low-dimensional manifold in <q.

Definition: A subset M ⊂ <q is called a smooth manifold of dimension p iff each
y ∈ M has a neighborhood that is diffeomorphic to an open subset of <p.

Techniques for manifold learning attempt to localize structure in the ambient space,
then exploit properties of manifolds to construct the low-dimensional representation.

RAT70, May 2009 2

Manifold Learning

• Tenenbaum, de Silva & Langford (2000). A global geometric framework for
nonlinear dimensionality reduction. Science, 290:2319–2323.

Isomap “seeks to preserve the intrinsic geometry of the data, as captured in the
geodesic manifold distances between all pairs of data points.”

• Roweis & Saul (2000). Nonlinear dimensionality reduction by locally linear
embedding. Science, 290:2323–2326.

The same weights that locally reconstruct yi from its neighbors in the feature
space should also reconstruct xi from its neighbors in the representation space.

• Belkin & Niyogi (2003). Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Computation, 15:1373–1396.

“Drawing on the correspondence between the graph Laplacian, the Laplace-
Beltrami operator on the manifold, and the connections to the heat equation. . . ”

RAT70, May 2009 3

Example: Isomap

Suppose that y1, . . . , yn lie on a manifold in a high-dimensional Euclidean space.

Fix ε > 0. The ε-Isomap embedding of y1, . . . , yn ∈ <q as x1, . . . , xn ∈ <d is
constructed as follows:

1. Construct Graph Let wij = ‖yi − yj‖ if ‖yi − yj‖ < ε and wij = 0 otherwise.
Define a weighted graph G with n vertices as follows: vertices i and j are
connected iff wij > 0, in which case edge i ∼ j is weighted by wij.

2. Compute Proximities Let δij denote the shortest path distance in G between
vertices i and j, in which case ∆ = [δij] and ∆2 = [δ2ij] are dissimilarity matrices.

3. Embed Proximities Embed ∆2 in <d by classical multidimensional scaling
(CMDS). CMDS solves the nonlinear least squares problem problem of approxi-
mating fallible inner products with Euclidean inner products. The global solution
can be computed from the d largest eigenvalues and corresponding eigenvectors
of a dense symmetric n× n matrix.

RAT70, May 2009 4

Embedding

Given n objects and pairwise proximities, either dissimilarities ∆ = [δij] or similarities
Γ = [γij], we want to represent the objects as x1, . . . , xn ∈ <d.

Inner product methods embed as follows:

1. Estimate inner products, bij, from proximities.

2. Approximate the bij with Euclidean inner products, 〈xi, xj〉, e.g., by minimizing
the strain criterion, ∑

i∼j

(〈xi, xj〉 − bij)2 .

Distance methods embed by approximating dissimilarities with Euclidean distances,
‖xi − xj‖, e.g., by minimizing the raw stress criterion,∑

i∼j

wij (‖xi − xj‖ − δij)2 .

RAT70, May 2009 5

Minimizing the Raw Stress Criterion

The weighted raw stress criterion is

σ(X) =
∑
i∼j

wij [dij(X)− δij]2 ,

where dij = ‖xi − xj‖ and wij ≥ 0.

Minimizing σ() requires numerical optimization. One popular technique constructs
an initial configuration by minimizing strain (classical MDS), then minimizes σ() by
the Guttman majorization algorithm (GMA), a fixed point method that converges
to a connected set of stationary X.

GMA can be interpreted as a weighted gradient method. It does not use second-order
information about σ().

RAT70, May 2009 6

Digression

Researchers once thought that σ() had many nonglobal minimizers. For example,
Groenen (1993) used SMACOF-1 (a popular implementation of GMA) to study
one 17 × 17 dissimilarity matrix and apparently found 1098 local minimizers. This
understanding led some researchers to apply expensive global optimization methods,
e.g., tunneling, simulated annealing, genetic algorithms, etc.

Kearsley, Tapia & Trosset (1998) proposed a globalized Newton’s method for
minimizing σ() and showed that SMACOF-1 tends to stop prematurely. In numerical
experiments. . .

• SMACOF-1 exhibited better global behavior and Newton exhibited better local
behavior.

• In contrast to SMACOF-1, Newton consistently found the same minimum stress
value from different initial configurations, including putative minimizers returned
by SMACOF-1.

RAT70, May 2009 7

For more information. . .

Groenen (1993). The Majorization Approach to Multidimensional Scaling, DSWO Press.

Trosset and Mathar (1997). On the existence of nonglobal minimizers of the stress criterion for metric

multidimensional scaling. Proceedings of the Statistical Computing Section, American Statistical

Association, pp. 158–162.

Kearsley, Tapia, and Trosset (1998). The solution of the metric stress and sstress problems in

multidimensional scaling using Newton’s method. Computational Statistics, 13:369–396.

Malone, Tarazaga, and Trosset (2002). Better initial configurations for metric multidimensional

scaling. Computational Statistics and Data Analysis, 41:143–156.

RAT70, May 2009 8

Extreme Multidimensional Scaling

Trosset and Groenen (2005). Multidimensional scaling algorithms for large data sets.

Suppose that n is large. Instead of CMDS followed by GMA. . .

1. Construct an initial configuration by the method of standards:

• Embed a fixed number of anchor points; then, individually position the
remaining points in relation to the anchor points. This construction is O(n).
• Instead of minimizing a traditional error criterion, use a fast heuristic that

solves Ax = bi, where A is d× d, for b1, . . . , bn−d−1.

2. Decrease σ() by several iterations of a new diagonal majorization algorithm
(DMA). Use O(n) dissimilarities and stop after a fixed number of iterations.

RAT70, May 2009 9

Linear Embedding

Let δij denote the dissimilarity of objects i and j.

For d = 1, suppose that x1 and x2 have been embedded. Individually embed each
remaining xi by solving the 1× 1 linear system induced by

‖x− x1‖2 = δ2i1

‖x− x2‖2 = δ2i2,

viz.,
Ax = [2 (x1 − x2)]x =

(
x2

1 − x2
2

)
−
(
δ2i1 − δ2i2

)
= bi.

Thus, we position each xi so that it minimizes

‖Ax− bi‖2 =
[
(x− x1)2 − δ2i1

]2
+
[
(x− x2)2 − δ2i2

]2
−2
[
(x− x1)2 − δ2i1

] [
(x− x2)2 − δ2i2

]
.

RAT70, May 2009 10

For d > 1,

• Kearsley, Tapia, Trosset (1998); Dong & Wu (2002)

Suppose that x1, . . . , xd+1 have been embedded. Individually embed each
remaining xi by solving the d× d linear system Ax = bi induced by

‖x− x1‖2 = δ2i1
...

‖x− xd+1‖2 = δ2i,d+1.

• FastMap (Faloutsos & Lin, 1995)

Choose an initial axis, embed in the initial axis, update the δ2ij by “projecting”
into an orthogonal hyperplane H, choose a second axis in H, embed the updated
δ2ij in the second axis, etc.

RAT70, May 2009 11

Guttman Majorization Algorithm

The stationary equation ∇σ(X) = 0 can be written as V X = B(X)X, where

V =
∑
i<j

wij (ei − ej) (ei − ej)
t

and B(X) are n× n matrices. This suggests an iterative algorithm:
choose Xk+1 to solve

V X = B (Xk)Xk, i.e., solve d linear systems, V x = bk.

GMA has traditionally been written as

Xk+1 = V †B (Xk)Xk = Γ (Xk) ,

where Γ is the Guttman transform.

RAT70, May 2009 12

GMA: Equal Weights

If wij = c for i 6= j, then

V = c
∑
i<j

(ei − ej) (ei − ej)
t = cn

(
I − ee

t

n

)
,

V † =
1
cn

(
I − ee

t

n

)
, and

B(X)X = c
∑
i<j

δij
dij(X)

(ei − ej) (ei − ej)
t
X.

B(X)X is already centered, so V †B(X)X is

1
n

∑
i<j

δij
dij(X)

 yt
ij1
...

yt
ijn

 , where yijs =

 xi − xj s = i
xj − xi s = j

0 s 6= i, j

 .

RAT70, May 2009 13

GMA: General Weights

Because col(V) = e⊥, Ṽ = V + eet > 0.

Instead of computing V † and V †B(Xk)Xk, we can obtain Xk+1 by solving

Ṽ X = B (Xk)Xk = Bk.

To compute K iterations, one must solve Ṽ x = b with Kd choices of b. Because
Ṽ > 0, we can do so as follows:

1. Compute the Cholesky decomposition Ṽ = LLt.
This requires approximately n3/6 multiplications.

2. To solve each LLtx = b,

(a) Backsolve the triangular system Ly = b to obtain ỹ; then
(b) Backsolve the triangular system Ltx = ỹ to obtain x̃.

This requires approximately dn2 multiplications per iteration.

RAT70, May 2009 14

From GMA to DMA

The diagonal majorization algorithm is based on the observation that

V =


∑
w1s

. . . −wij
. . .

−wij
. . . ∑

wns


is dominated by its diagonal, which suggests approximating V with diag(V).

For future use, note that the symmetric matrix

2 diag(V)− V =


∑
w1s

. . . wij
. . .

wij
. . . ∑

wns



RAT70, May 2009 15

is diagonally dominant, hence positive semidefinite. It follows that

trace
[
(X − Y)t [2 diag(V)− V] (X − Y)

]
≥ 0,

hence

trace
(
XtV X

)
≤

trace
(
Xt [2 diag(V)]X

)
− 2 trace

(
Xt [2 diag(V)− V]Y

)
+ c(Y).

RAT70, May 2009 16

Gradient Interpretation

Because etX = 0, an iteration of GMA is

Xk+1 = Xk −Xk +Xk+1 = Xk − V †V Xk + V †B (Xk)Xk

= Xk −
1
2
V † 2 [V Xk −B (Xk)Xk]

= Xk −
1
2
V † ∇σ (Xk) .

DMA replaces V with 2 diag(V): an iteration of DMA is

Xk+1 = Xk −
1
2

[2 diag(V)]−1 ∇σ (Xk) .

To understand why DMA works, we revisit de Leeuw’s (1988) convergence analysis
of GMA.

RAT70, May 2009 17

Majorization

De Leeuw (1988) showed that

σ(X) ≤ ωY (X) = c(Y) + trace
(
XtV X

)
− 2 trace

(
XtB(Y)Y

)
.

If X is centered, then we can write

ωY (X) = c(Y) + trace
(
XtV X

)
− 2 trace

(
XtV V †B(Y)Y

)
= c(Y) +

∥∥X − V †B(Y)Y
∥∥2

V
.

The minimizer of ωY (X) is
X∗ = V †B(Y)Y.

GMA sets Y = Xk and solves V X = B(Xk)Xk to obtain Xk+1.

RAT70, May 2009 18

To derive DMA, recall that

trace
(
XtV X

)
≤

trace
(
Xt [2 diag(V)]X

)
− 2 trace

(
Xt [2 diag(V)− V]Y

)
+ c(Y).

It follows that

σ(X) ≤ ωY (X) = c(Y) + trace
(
XtV X

)
− 2 trace

(
XtB(Y)Y

)
≤ ω̄Y (X) = c(Y) + trace

(
Xt [2 diag(V)]X

)
−

2 trace
(
Xt [2 diag(V)− V +B(Y)]Y

)
= c(Y) + trace

(
Xt [2 diag(V)]X

)
−

2 trace
(
Xt [2 diag(V)] [2 diag(V)]−1 [2 diag(V)− V +B(Y)]Y

)
= c(Y) +

∥∥∥X − [2 diag(V)]−1 [2 diag(V)− V +B(Y)]Y
∥∥∥2

2 diag(V)
.

RAT70, May 2009 19

Diagonal Majorization Algorithm

The minimizer of ω̄Y (X) is

X∗ = [2 diag(V)]−1 [2 diag(V)− V +B(Y)]Y

= Y +
1
2

diag(V)−1 [B(Y)− V]Y.

DMA sets Y = Xk and computes

Xk+1 = Xk +
1
2

diag(V)−1 [B (Xk)− V]Xk.

After computing [B(Xk)− V]Xk, DMA requires 2dn additional multiplications per
iteration.

In contrast, after computing B(Xk)Xk, GMA with general wij requires dn2 addi-
tional multiplications per iteration, plus an initial n3/6 multiplications to compute a
Cholesky factor.

RAT70, May 2009 20

Experiment 1

n = 2818 documents, d = 5, equal weights.

Raw Stress Criterion, 20 iterations of PCA-GMA v LIN-GMA,

•

• • • • • • • • • • • • • • • • • • • •

•

• • • • • • • • • • • • • • • • • • • •

-

-

-

-

-

-

-

-

-

-

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

How much does this cost?

RAT70, May 2009 21

Computational expense (in seconds):

PCA-GMA LIN-GMA
Data input 45.48 45.08
Preprocessing 0.16 0.16
Initial configuration 9.11 <0.01
Recover dissimilarities 0.32
Initial stress evaluation 0.42 0.46
20 iterations w/ stress evaluation 24.28 24.16

Notice that. . .

• PCA is surprisingly affordable, but orders of magnitude more expensive than
LIN. LIN-GMA with one iteration is substantially less expensive and produces a
substantially better configuration than PCA.

• Stress evaluation is expensive. Unlike general methods for numerical optimization,
GMA does not require evaluation of the objective function—we only computed
values in order to monitor progress. Eliminating this extravagance substantially
decreases the expense of GMA.

RAT70, May 2009 22

Now let wij = 0.4/(0.4 + δij) when δij < 0.6 and wij = 0 otherwise, resulting in
58% of the pairs having zero weight.

Weighted Raw Stress Criterion, 20 iterations of LIN-GMA v LIN-DMA

•

• • • • • • • • • • • • • • • • • • • •

•

•

•
• • • • • • • • • • • • • • • • • •

-

-

-

-

-

-

-

-

-

-

-

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

How much does this cost?

RAT70, May 2009 23

Computational expense (in seconds):

LIN-GMA LIN-DMA
Data input 45.23 45.54
Preprocessing 0.30 0.33
Initial configuration 0.01 0.01
Initial stress evaluation 0.26 0.28
Cholesky factorization 47.96
20 iterations w/ stress evaluation 23.01 14.07

RAT70, May 2009 24

Finally, we set wij = 1 for 6k “cycles” of δij, e.g., i ↔ i ± 1, i ↔ i ± 2, etc. and
wij = 0 otherwise. (Thus, for k = 7, DMA uses ≈ 3% of the 3969153 δij.)

We compare the cpu-stress tradeoff for 20 iterations of LIN-GMA with all wij = 1
versus LIN-DMA with k = 1 : 9.

•

•

•••••••••

-

-

-

-

-

-

-

-

-

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

| |

For d and k fixed, a fixed number of iterations of LIN-DMA requires O(n) operations.
We expect the tradeoff to increasingly favor LIN-DMA as n increases.

RAT70, May 2009 25

Experiment 2

n = 17, 000 objects, n(n− 1)/2 = 144, 491, 500 pairwise dissimilarities.

y1, . . . , yn ∈ <5; δij = ‖yi − yj‖ · exp (Z/100), where Z ∼ Normal(0, 1).

With this model, a typical distance is 2 and a typical error is 1%, i.e., ±0.02.

Embed ∆ = [δij] in <5 using LIN-DMA with 54 cycles.

Initial raw stress criterion: 3,058,174
After 200 DMA iterations: 57,921

A typical error in the initial configuration is ±0.145; a typical error after 200
iterations is ±0.020.

2 stress evaluations: 86.5 seconds
Total embedding time: 66.0 seconds

RAT70, May 2009 26

