Exact Solutions in Linear and Integer Programming

Francois de Lucy
"The development of linear programming is -- in my opinion -- the most important contribution of the mathematics of the 20th century to the solution of practical problems arising in industry and commerce."

Top Ten Algorithms of the Century

Top Ten Algorithms of the Century

Professor Richard Tapia

Professor Richard Tapia
"Cook, second place sucks."

Example: sgpf5y6 (Mittelmann LP test set)

Cplex 7.I Primal
Cplex 7.I Dual
Cplex 9.0 Primal
Cplex 9.0 Dual
Cplex II.0 Primal
Cplex II. 0 Dual
XPress-I5 Primal
XPress-I5 Dual
CPL-I.02.0I
GLPK-4.7
QSopt Primal
QSopt Dual
Soplex I.2.2
6484.44
6406.78
6484.47
6425.87
6484.46
6380.45
6344.30
6480.95
6463.66
6419.94
6480.33
6473.33

- sgpf5y6 LPValue

Mathematical Programming Computation

Nature,Vol. 395, I October I998

news and views

Kepler's conjecture confirmed

Neil J. A. Sloane

One of the oldest unsolved problems in mathematics appears to have been settled. On 9 August, Thomas C. Hales announced that he had proved Kepler's assertion of 1611 that no packing of spheres can be denser than a face-centred-cubic lattice.
|n face-centred-cubic packing (Fig. 1), seen in the piles of oranges in any grocer's I shop, the spheres occupy 0.7405 of the total space available. Ambrose Rogers remarked in 1958 that "many mathematicians believe and every physicist knows" that no denser packing is possible. So why has it taken 387 years for a proof to be found?

There are three reasons. First, technical difficulties come from the fact that the density of a packing is defined as the limit of the fraction of space occupied by the balls as the number of balls goes to infinity. This means that (say) a million balls can be thrown away without changing the density.

Second, even if one considers only packings without any obvious gaps, there are still

Figure 1 Cannonballs stacked in a face-centredcubic lattice (Arlington, Virginia, about 1863). There is no denser way to do it.
theorists as well as mathematicians are interested in determining the densest sphere packings in dimensions above three. The sampling theorem of information theory says that a signal containing no frequencies above W hertz can be reconstructed from samples taken every $1 /(2 W)$ seconds. So a signal that lasts for T seconds can be represented by $2 W T$ samples. Just as three numbers specify the coordinates of a point in three-dimensional space, so these $2 W T$ samples specify a point in $2 W T$-dimensional space. The whole waveform is specified by a single point in $2 W T$-dimensional space. Similar signals are represented by nearby points, dissimilar signals by well-separated points. So one of the fundamental problems in communication theory is determining the densest packing of balls in high-dimensional spaces.

This geometrical way of representing signals, at the heart of Shannon's mathematical theory of communication ${ }^{9}$, underlies the high-speed modems that we now take for granted. One of the most common coding schemes in use today works so well because the signals are represented as points in eightdimensional space.

Many beautiful packings are known in high dimensions, and have fascinating and unexpected connections with other branch-

Thomas C. Hales

Nature,Vol. 424, 3 July 2003

news feature

Does the proof stack up?

Think peer review takes too long? One mathematician has waited four years to have his paper refereed, only to hear that the exhausted reviewers can't be certain whether his proof is correct. George Szpiro investigates.

Grocers the world over know the most efficient way to stack spheres - but a mathematical proof for the method has brought reviewers to their knees.

A proof of the Kepler conjecture

By Thomas C. Hales*

To the memory of László Fejes Tóth
"Floating-point arithmetic was used freely in obtaining these bounds. The linear programming package CPLEX was used (see www.cplex.com). However, the results, once obtained, could be checked rigorously as follows."

General Information
Editorial Board
Submissions
Information
Subscription
Information
Online Index:
1884-Present
Related Links
Contact Information
Search
Editors' Statements

Editor's Announcement

To encourage the submission of excellent short papers to the Annals, the editors announce that Annals papers under 20 printed pages in length will be published on an accelerated schedule. We will also make efforts to expedite the refereeing of excellent short papers.

Statement by the Editors on Computer-Assisted Proofs

Computer-assisted proofs of exceptionally important mathematical theorems will be considered by the Annals.
The human part of the proof, which reduces the original mathematical problem to one tractable by the computer, will be refereed for correctness in the traditional manner. The computer part may not be checked line-by-line, but will be examined for the methods by which the authors have eliminated or minimized possible sources of error: (e.g., round-off error eliminated by interval artihmetic, programming error minimized by transparent surveyable code and consistency checks, computer error minimized by redundant calculations, etc. [Surveyable means that an interested person can readily check that the code is essentially operating as claimed]).

We will print the human part of the paper in an issue of the Annals. The authors will provide the computer code, documentation necessary to understand it, and the computer output, all of which will be maintained on the Annals of Mathematics website online.

General Information
Editorial Board
Submissions
Information
Subscription
Information
Online Index:
1884-Present
Related Links
Contact Information
Search
Editors' Statements

Editor's Announcement

To encourage the submission of excellent short papers to the Annals, the editors announce that Annals papers under 20 printed pages in length will be published on an accelerated schedule. We will also make efforts to expedite the refereeing of excellent short papers.

Statement by the Editors on Computer-Assisted Proofs

Computer-assisted proofs of exceptionally important mathematical theorems will be considered by the Annals.
The human part of the proof, which reduces the original mathematical problem to one tractable by the computer, will be refereed for correctness in the traditional manner. The computer part may not be checked line-by-line, but will be examined for the methods by which the authors have eliminated or minimized possible sources of error (e.g., round-off error eliminated by interval artihmetic) programming error minimized by transparent surveyable code and consistency checks, computer error minimized by redundant calculations, etc. [Surveyable means that an interested person can readily check that the code is essentially operating as claimed]).

We will print the human part of the paper in an issue of the Annals. The authors will provide the computer code, documentation necessary to understand it, and the computer output, all of which will be maintained on the Annals of Mathematics website online.

What's new? | Help | Sign in

The Flyspeck Project

Introduction

The purpose of the flyspeck project is to produce a formal proof of the Kepler Conjecture. The name 'flyspeck' comes from matching the pattern /f.*p.*k/ against an English dictionary. FPK in turn is an acronym for "The Formal Proof of Kepler."

Internal Links

- Flyspeck Wiki
- Formalizing the Text This is a proposal about how to formalize the written text of the proof
- IMO -demo A demo on using HOL Light, including Harrison's IMO problem video.

License: MIT License
Labels: theoremproving, keplerconjecture
Featured Downloads:
flypaper.pdf
Featured Wiki Pages:
Show all

Show all FlyspeckFactSheet

FormalText

HolLightDemo1
Groups: Flyspeck disucssion

Project owners:
Join project
seanmcl, TCHales
Project members:
florian.rabe, allegristas

External Links

- Flyspeck Google Group
- code for 1998 proof
- McLaughlin's revision of the kepler code
- QED Manifesto

Searching

Exact LP Code
 D. Applegate, S. Dash, D. Espinoza

Applegate and Still (1995)
Kwappik et al. (2003)
Koch (2004)
Simplex Alg -> Basis Solve Rational Linear System Check Optimality Conditions

Implementation based on QSopt

- Increase precision on the fly (GNU-MP package)
- Full simplex code with steepest edge pricing
- Rational approximations of floating-point results to avoid rational linear solves (continued fractions)
- Callable library for modifying LP models
- Large scale instances

> QSopt _ex vs QSopt
> 625 Test Instances from GAMS World

	Geom Mean	QSopt Seconds
Small	5.7	15.8
Medium	5.2	414.6
Large	1.8	3621.5

Use of QSopt_ex

Solve each Kepler LP
Store exact dual LP solution
Verify Kepler bounds via LP duality
Computations carried out in the ML language

Sean McLaughlin

Rational Number Reconstruction

$$
\begin{aligned}
& \text { Legendre } \\
& \left|\alpha-\frac{p}{q}\right|<\frac{1}{2 q^{2}}, \text { then } \frac{p}{q} \text { occurs as a convergent for } \alpha \\
& \text { Continued Fraction Expansion }
\end{aligned}
$$

Modular Reconstruction

$n q \equiv p \bmod M$ with $M>2 q^{2}$, then we can construct $\frac{p}{q}$ Extended Euclidean Algorithm
von zur Gathen and Gerhard (1999), Wang and Pan $(2003,2004)$

Solving Rational Linear Systems

Dixon (1982): p-adaic lifting Wiedemann (1986): solving over finite fields

Computational Studies
LaMacchia and Odlyzko (1990), Eberly et al. (2006),Wan (2006) LinBox C++ Software

"These default values indicate to CPLEX to stop when an integer feasible solution has been proved to be within 0.01% of optimality."

Accurate Gomory Cuts

Sanjeeb Dash, Ricardo Fukasawa, Marcos Goycoolea

Any hope for a solution?
 RSA-2048 (Formerly \$200,000) MIPs with 7,000 Variables

Dan Steffy: Chvatal/MIR Closures of Horner Systems

Optimizing Irrational Functions

 Example: Euclidean TSP
28.71937

28.71936

Exact Geometric Computation: LEDA, CGAL, CORE Yap (2003) -- survey paper

Sum of Square Roots Problem

Garey, Graham, Johnson (STOC I976), Ron Graham in early 1980s, O'Rourke (American Math Monthly 198I)
$a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ integers (k-bit)
$\left|\sum \sqrt{a_{i}}-\sum \sqrt{b_{i}}\right| \neq 0$
How small can this value be?
Polynomial bound on number of bits?
$\geq\left(2 n-\frac{3}{2}\right) k$ (Qian and Wang 2006), $\leq 4 k 2^{2 n}$ (Burnikel et al. 2000)

Branch-and-Bound with Increasing Precision

Cannot Discard LPs with Integer Optimal Solutions
Must Explore Search Tree to reach all Indistinguishable Tours

I, I88 edges after duality elimination

615 edges after depth-I branching

Optimal Tour

48 States in I0 Days

Maura Gatensby:
"There is more poetry in walking in the footsteps of giants."

G N STAGLEO
 PRESENTS

TONE DEF

November 6, 2007

