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What is influence on the market?

Question: Do investors that are portfolio optimizers influence

the market in some way that is different from that of standard

or reference traders?

Related question: Do traders that maintain hedging portfolios

(program traders) influence the market in a particular way?

Also: What effect does statistical arbitrage have on markets?
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Background

The effect of hedgers or program traders has been of interest

at least since 1987. Theoretical studies appeared in the 90’s

(Föllmer and Schweitzer 93, Fray and Stremme 97, Sircar and

Papanicolaou 98, Platten and Schweitzer 98, Schönbucher and

Wilmott 00).

Main result (with a couple of different models), both with anal-

ysis and simulations:

Program traders tend to increase the volatility of the underlying

asset.

Why is this so?

Calibration issues are difficult here, and largely unexplored.
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Back to portfolio optimizers

Do portfolio optimizers influence the market?

Yes, and largely in a ”good” way because they tend to decrease

the volatility

Why do they tend to decrease volatility?
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Analytical model outline

• Assume that there is an incomes process that together with

the underlying asset price process determines the demand for

the asset of the reference traders

• The portfolio optimizers maintain a portfolio made up from

the risky asset and a risk free one by maximizing an expected

utility of their wealth at a target time horizon

• The risky asset price process adjusts so as to satisfy the

demand both from reference traders and from the portfolio

optimizers through a clearing constraint

• This couples the evolution of the asset price process and the

wealth process through the HJB equation for the value of

the wealth and the clearing condition
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Mathematical formulation (Appl Math Fin 08)

Aggregate incomes process:

dYt = µ(Yt, t)dt + η(Yt, t)dBt,

with µ = µ1y and η = η1y

Risky asset price process:

dXt = αXtdt + σXtdBt

Here α and σ are not known but are determined by the market

clearing condition.

Riskless asset price:

dβt = rβtdt

.

Demand of reference traders: D(Xt, Yt, t). We take D(x, y) =

f(yγ/x) and eventually f(z) ∼ z
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Portfolio optimization

The wealth process satisfies

dWt = Wt(π(α − r) + r)dt + WtπσdBt

with W0 = w. Self-financing is assumed.

The allocation fraction π is determined from the HJB equation

Vt + sup
π

[

1

2
Vwwπ2σ2w2 + Vw(π(α − r) + r)w + Vxwσ2πxw

]

+Vxαx +
1

2
Vxxσ2x2 = 0, (1)

for t < T with V (x, w, T ) = u(w), that is satisfied by the optimal

value function

V (x, w, t) = sup
π

Ex,w,t [u(WT )]

with u(w) a utility function.
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Merton theory; portfolio optimizers demand

When the risky asset price process is log normal and the utility

is u(w) = wλ/λ, 0 < λ ≤ 1, then the HJB equation is explicitly

solvable and the allocation fraction is independent of time:

π0 =
α0 − r

σ2
0(1 − λ)

We will assume that the demand of the portfolio optimizers is:

Φ =
πWt

Xt

Therefore, assuming that the total shares in the risky asset are

fixed we have the clearing condition

D(Xt, Yt, t) + Φ(Xt, Wt, t) ≡ S0
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Run through full interaction for ”one time cycle”

Start the incomes process Yt.

Start with an evolution for Xt, that is, with an α and a σ.

Start with a fixed π (from the Merton theory).

Advance the wealth process Wt. Calculate new α and σ from the

clearing condition.

Solve the HJB equation one step back. Get new allocation frac-

tion.

Advance one more cycle.
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Small interaction analysis

Assume that Φ, the demand of the portfolio optimizers is small.

Then the first order correction to a log normal model for Xt is,

for the mean return (drift):

α1 =
π0Wt

XtS0
((π0 − 1)(α0 − r))

and for the volatility:

σ1 = σ0(π0 − 1)
π0Wt

XtS0

Note that σ1 < 0 when 0 < π < 1, the ”normal” case.
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Allocation fraction
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Portfolio allocation to stock at time t = 0, when stock has low

excess returns (left) and high excess returns (right): comparison

between approximation (’x’) and numerical solution of PDE (’o’).
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Local volatility
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Local volatility of the stock at time t = 0, when stock has low

excess returns (left) and high excess returns (right): comparison

between approximation (’x’) and numerical solution of PDE (’o’).
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Summary and conclusions

• Feedback effects can be estimated with ”simple” macro mar-

ket models. For example, both the effect of hedgers and the

effect of portfolio optimizers can be assessed.

• Mathematics: very complex and highly nonlinear PDE prob-

lems already at the simplest level of modeling of feedback

effects.

• Calibration issues are largely untouched. They are quite dif-

ficult. They could provide interesting information of market

trends.

• What about statistical arbitrage?
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