Row by row methods for semidefinite programming

Donald Goldfarb ${ }^{1}$

${ }^{1}$ Joint work with Zaiwen Wen，Shiqian Ma and Katya Scheinberg
Department of Industrial Engineering and Operations Research
Columbia University

Tapia 70 Conference
 May 29， 2009

Semidefinite programming (SDP)

- $X \in S^{n}$, the space of real symmetric $n \times n$ matrices
- $b \in \mathbb{R}^{m}, C \in S^{n}$ and $A^{(i)} \in S^{n}$ are problem parameters
- The inequality $X \succeq 0$ means X is positive semidefinite
- Inner product: $\langle C, X\rangle:=\sum_{j=1}^{n} \sum_{k=1}^{n} C_{j, k} X_{j, k}$

Optimization problem

$$
\begin{array}{cl}
\min _{X \in S^{n}} & \langle C, X\rangle \\
\text { s.t. } & \left\langle A^{(i)}, X\right\rangle=b_{i}, \quad i=1, \cdots, m, \\
& X \succeq 0
\end{array}
$$

Overview: cracking positive semidefiniteness $X \succeq 0$

- Solving a sequence of barrier functions
- $\log \operatorname{det} X^{-1}$ is a self-concordant barrier function
- Interior point methods (primal, dual, primal-dual): potential reduction algorithms, path-following methods
- Other penalty and barrier functions
- Maximum eigenvalue function
- Spectral bundle method
- Eigenvalue decomposition
- Newton-CG augmented Lagrangian method
- Boundary point method
- Change of variables $X=R R^{\top}$
- Nonlinear programming approaches via low-rank factorization

Expressing $X \succ 0$ by Schur complement

- Assume $X \in S^{n}$ is partitioned as $\left(\begin{array}{cc}\xi & y^{\top} \\ y & B\end{array}\right)$, where $\xi \in \mathbb{R}$, $y \in \mathbb{R}^{n-1}$ and $B \in S^{n-1}$ is nonsingular
- Factorization:

$$
X=\left(\begin{array}{cc}
1 & y^{\top} B^{-1} \\
0 & l
\end{array}\right)\left(\begin{array}{cc}
\xi-y^{\top} B^{-1} y & 0 \\
0 & B
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
B^{-1} y & 1
\end{array}\right)
$$

Positive definiteness and Schur complement:

$$
X \succ 0 \Longleftrightarrow B \succ 0 \text { and }(X / B):=\xi-y^{\top} B^{-1} y>0
$$

- Cholesky factorization: $B:=L L^{\top}$.
- $\xi-y^{\top} B^{-1} y>0 \Longleftrightarrow\left\|L^{-1} y\right\|^{2} \leq \xi$ (second-order cone)

Constructing SOC constraint row by row

- Given $X^{k} \succ 0$, we can fix the principal submatrix

$$
B:=X_{1,, 1 c}^{k}=\left(\begin{array}{ccc}
X_{2,2}^{k} & \cdots & X_{2, n}^{k} \\
\cdots & \cdots & \cdots \\
X_{n, 2}^{k} & \cdots & X_{n, n}^{k}
\end{array}\right)
$$

and let $\xi:=X_{1,1}$ and $y:=X_{1 c, 1}:=\left(X_{1,2}, \cdots, X_{1, n}\right)^{\top}$

- The variable X now is $\left(\begin{array}{cc}\xi & y^{\top} \\ y & B\end{array}\right):=\left(\begin{array}{cc}\xi & y^{\top} \\ y & x_{1}^{k}, 1 c\end{array}\right)$
- SOC constraint: $\xi-y^{\top} B^{-1} y \geq \nu$ for $\nu>0$
- In general: $\xi:=X_{i, i}, y:=X_{i c, i}$ and $B:=X_{i c, i c}^{k}$

Solving RBR subproblem

SDP

$\min _{X \in S^{n}}\langle C, X\rangle$

SOCP restriction

$\begin{array}{ll}\text { s.t. } & \mathcal{A}(X)=b, \quad \Longrightarrow \\ & X \succeq 0,\end{array}$ $\min _{\mid \xi \cdot y] \in \mathbb{R}^{n}} \tilde{c}^{\top}[\xi ; y]$ $[\xi ; y] \in \mathbb{R}^{n}$

$$
\begin{array}{ll}
\text { s.t. } & \widetilde{A}[\xi ; y]=\widetilde{b} \\
& \xi-y^{\top} B^{-1} y \geq \nu
\end{array}
$$

where $\nu>0$ and

$$
\widetilde{c}:=\binom{C_{i, i}}{2 C_{i c, i}}, \quad \widetilde{A}:=\left(\begin{array}{cc}
A_{i, i}^{(1)} & 2 A_{i, i c}^{(1)} \\
\cdots & \cdots \\
A_{i, i}^{(m)} & 2 A_{i, i c}^{(())}
\end{array}\right) \text {and } \widetilde{b}:=\left(\begin{array}{c}
b_{1}-\left\langle A_{i c, i c}^{(1)}, B\right\rangle \\
\ldots \\
b_{m}-\left\langle A_{i c, i c}^{(m)}, B\right\rangle
\end{array}\right)
$$

Row-by-Row (RBR) algorithm prototype

```
Algorithm 1: A row-by-row (RBR) method prototype
Set \(X^{1} \succ 0, \nu \geq 0\) and \(k:=1\).
while not converge do
    for \(i=1, \cdots, n\) do
            Solve the SOCP subproblem for \(i\)-th row/column.
    Update \(X_{i, i}^{k}:=\xi, X_{i c, i}^{k}:=y\) and \(X_{i, i c}^{k}:=y^{\top}\).
    Set \(X^{k+1}:=X^{k}\) and \(k:=k+1\).
```


Application: the maxcut SDP relaxation

The RBR subproblem for SDP with only diagonal element constraints:

$$
\begin{array}{cl}
\min _{X \in S^{n}} & \langle C, X\rangle \\
\text { s.t. } & X_{i, i}=1, \quad \Longrightarrow \quad \min _{y \in \mathbb{R}^{n-1}} \widehat{c}^{\top} y \\
& X \succeq 0,
\end{array} \quad \text { s.t. } \quad 1-y^{\top} B^{-1} y \geq \nu
$$

Closed-form solution of the RBR subproblem

If $\gamma:=\widehat{\boldsymbol{c}}^{\top} B \widehat{\boldsymbol{c}}>0$, the solution of the RBR subproblem is

$$
y=-\sqrt{\frac{1-\nu}{\gamma}} B \widehat{c} .
$$

Otherwise, the solution is $y=0$.

Interpretation in terms of log-barrier approach

- Consider the logarithmic barrier problem

$$
\begin{array}{ll}
\min _{X \in S^{n}} & \langle C, X\rangle-\sigma \log \operatorname{det} X \\
\text { s.t. } & X_{i i}=1, \forall i=1, \cdots, n, \quad X \succeq 0
\end{array}
$$

- Key: $\operatorname{det}(X)=\operatorname{det}(B)\left(1-y^{\top} B^{-1} y\right)$
- The RBR subproblem is:

$$
\min _{y \in \mathbb{R}^{n-1}} \hat{c}^{\top} y-\sigma \log \left(1-y^{\top} B^{-1} y\right)
$$

whose solution is $y=-\frac{\sqrt{\sigma^{2}+\gamma}-\sigma}{\gamma} B \widehat{c}$, where $\gamma:=\widehat{\boldsymbol{c}}^{\top} B \widehat{\boldsymbol{c}}$.

- Equal to the pure RBR method if $\nu=2 \sigma \frac{\sqrt{\sigma^{2}+\gamma}-\sigma}{\gamma}$

Convergence for general function

Consider the RBR method for solving

$$
\begin{array}{ll}
& \min _{X \in S^{n}} \\
(P) & f(X)-\sigma \log \operatorname{det} X \\
\text { s.t. } & L \leq X \leq U, \quad X \succ 0
\end{array}
$$

- $f(X)$ is a convex function of X
- $L, U \in S^{n}$ are constant matrices and $L \leq X \leq U$ means that $L_{i, j} \leq X_{i, j} \leq U_{i, j}$ for all $i, j=1, \cdots, n$

Theorem

Let $\left\{X^{k}\right\}$ be a sequence generated by the row-by-row method for solving (P). Then every limit point of $\left\{X^{k}\right\}$ is a global minimizer of (P).

Failure on a SDP with general linear constraints

Consider the SDP

$$
\begin{array}{ll}
\min & X_{11}+X_{22}-\log \operatorname{det}(X) \\
\text { s.t. } & X_{11}+X_{22} \geq 4, \quad X \succeq 0 .
\end{array}
$$

- Initial point: $\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$ and optimal solution: $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$.
- The RBR subproblems are

$$
\begin{array}{ll}
\min & X_{11}-\log \left(3 X_{11}-X_{12}^{2}\right), \text { s.t. } X_{11} \geq 1, \\
\min & X_{22}-\log \left(X_{22}-X_{12}^{2}\right), \text { s.t. } X_{22} \geq 3
\end{array}
$$

- Optimal solutions of subproblems are, respectively, $X_{11}=1, X_{12}=0$ and $X_{12}=0, X_{22}=3$

Row-by-row augmented Lagrangian method

We consider the following augmented Lagrangian approach:

- Given $\mu>0$, we start from $X^{1} \succ 0$ and $b^{1}:=b$.
- Solve the quadratic penalty function

$$
X^{k}:=\arg \min _{X}\langle C, X\rangle+\frac{1}{2 \mu}\left\|\mathcal{A}(X)-b^{k}\right\|_{2}^{2}, \text { s.t. } X \succeq 0
$$

and update $b^{k+1}:=b+\frac{\mu}{\mu^{\kappa}}\left(b^{\kappa}-\mathcal{A}\left(X^{\kappa}\right)\right)$.

The RBR subproblem

$$
\begin{aligned}
\min _{(\xi ; y) \in \mathbb{R}^{n}} & \tilde{c}^{\top}\binom{\xi}{y}+\frac{1}{2 \mu^{k}}\left\|\tilde{A}\binom{\xi}{y}-\widetilde{b}\right\|_{2}^{2} \\
\text { s.t. } & \xi-y^{\top} B^{-1} y \geq \nu .
\end{aligned}
$$

Convergence Properties

- Solving the RBR subproblem essentially corresponds to minimizing the unconstrained function obtained by subtracting $\sigma \log \left(\xi-y^{\top} B^{-1} y\right)$ from the objective function
- Convergence of the RBR method for minimizing this log-barrier function
- The convergence of our augmented Lagrangian framework follows from the standard theory for the augmented Lagrangian method for minimizing a strictly convex function subject to linear equality constraints; see Bertsekas, Rockafellar and etc.

Application: the maxcut SDP relaxation

Since $\left\|\tilde{A}\binom{\xi}{y}-\widetilde{b}\right\|^{2}=\left(\xi-b_{i}^{K}\right)^{2}$, we have:

The RBR subproblem

$$
\begin{aligned}
& \min _{X \in S^{n}}\langle C, X\rangle \\
& \text { s.t. } \quad X_{i, i}=1 \text {, } \\
& \Longrightarrow \quad(\xi ; y) \in \mathbb{R}^{n} \\
& c \xi+\hat{c}^{\top} y+\frac{1}{2 \mu^{k}}\left(\xi-b_{i}^{k}\right)^{2} \\
& X \succeq 0 \text {, } \\
& \text { s.t. } \quad \xi-y^{\top} B^{-1} y \geq \nu .
\end{aligned}
$$

- If $\widehat{c} \neq 0$, the solution is: $\xi=b_{i}^{k}+\mu^{k}(\lambda-c)$ and $y=-\frac{1}{2 \lambda} B \widehat{c}$, where λ is the unique real root of the cubic equation:

$$
\varphi(\lambda):=4 \mu^{k} \lambda^{3}+4\left(b_{i}^{k}-\mu^{k} c-\nu\right) \lambda^{2}-\gamma=0 .
$$

Application: nuclear-norm matrix completion

Given a matrix $M \in \mathbb{R}^{p \times q}$ and an index set

$$
\Omega \subseteq\{(i, j) \mid i \in\{1, \cdots, p\}, j \in\{1, \cdots, q\}\},
$$

the nuclear norm matrix completion problem is

$$
\begin{array}{ll}
\min _{W \in \mathbb{R}^{p \times a}} & \|W\|_{*} \\
\text { s.t. } & W_{i j}=M_{i j}, \forall(i, j) \in \Omega,
\end{array}
$$

which is equivalent to the SDP problem

$$
\begin{array}{ll}
\min _{X \in S^{n}} & \operatorname{Tr}(X) \\
\text { s.t. } & X:=\left[\begin{array}{cc}
X^{(1)} & W \\
W^{\top} & X^{(2)}
\end{array}\right] \succeq 0 \\
& W_{i j}=M_{i j}, \forall(i, j) \in \Omega .
\end{array}
$$

Application: nuclear-norm matrix completion

- Partition the vector y into the subvectors \widehat{y} and \tilde{y}, whose elements are in and not in the set Ω, respectively.
- The residual is: $\left\|\widetilde{A}\binom{\xi}{y}-\widetilde{b}\right\|=\|\widehat{y}-\widetilde{b}\|$

The RBR subproblem

$$
\begin{aligned}
\min _{(\xi ; y) \in \mathbb{R}^{n}} & \xi+\frac{1}{2 \mu^{k}}\|\hat{y}-\widetilde{b}\|_{2}^{2}, \quad B=\left(\begin{array}{ll}
X_{\alpha, \alpha}^{k} & X_{\alpha, \beta}^{k} \\
X_{\beta, \alpha}^{k} & X_{\beta, \beta}^{k}
\end{array}\right),
\end{aligned}
$$

whose optimal solution is

$$
\left\{\begin{array}{l}
\xi=\frac{1}{2 \mu^{k}} \widehat{y}^{\top}(\widetilde{b}-\widehat{y})+\nu, \\
\widehat{y}=\left(2 \mu^{k} I+X_{\alpha, \alpha}^{k}\right)^{-1} X_{\alpha, \alpha}^{k} \widetilde{b}, \quad \widetilde{y}=\frac{1}{2 \mu^{k}} X_{\beta, \alpha}^{k}(\widetilde{b}-\widehat{y}) .
\end{array}\right.
$$

Numerical Results

- The maxcut SDP relaxation
- The test problems whose size ranging from $n=1000$ to $n=4000$ are based on graphs generated by "rudy"
- Two variants: PURE-RBR-M and ALAG-RBR-M
- The nuclear-norm matrix completion problem
- Gaussian random matrices M_{L} and M_{R} and set $M=M_{L} M_{R}^{\top}$
- Sample a subset Ω of m entries uniformly at random
- Sampling ratio (SR): $m /(p q)$
- Ratio "FR": $r(p+q-r) / m<1$
- Codes were written in C Language MEX-files in MATLAB (Release 7.3.0) and all experiments were performed on a Dell Precision 670 workstation with an Intel Xeon 3.4GHZ CPU and 6GB of RAM.

Numerical Results: the maxcut SDP relaxation

Table: Average ratio of DSDP CPU time to RBR CPU time

	PURE-RBR-M		ALAG-RBR-M		DSDP
n	$\epsilon=10^{-3}$	$\epsilon=10^{-6}$	$\epsilon=10^{-1}$	$\epsilon=10^{-4}$	
1000	82.2	11.4	75.9	12.1	1
2000	146.9	20.7	140.4	17.8	1
3000	201.8	27.1	190.3	24.1	1
4000	196.0	26.2	180.2	22.8	1
rel.err in obj	10^{-3}	10^{-5}	10^{-3}	10^{-5}	

Numerical Results: the maxcut SDP relaxation

Figure: Relationship between CPU time and SDP matrix dimension for the maxcut SDP relaxation

Numerical Results: the maxcut SDP relaxation

Figure: Relationship between cycles and SDP matrix dimension for the maxcut SDP relaxation

Numerical Results: nuclear-norm matrix completion

Figure: Relationship between CPU time and SDP matrix dimension for SDP matrix completion

Numerical Results: nuclear-norm matrix completion

Figure: Relationship between cycles and SDP matrix dimension for SDP matrix completion

