Row by row methods for semidefinite programming

Donald Goldfarb¹

¹Joint work with Zaiwen Wen, Shiqian Ma and Katya Scheinberg Department of Industrial Engineering and Operations Research Columbia University

> Tapia 70 Conference May 29, 2009

> > ・ロト ・四ト ・ヨト ・ヨト 三日

Semidefinite programming (SDP)

- $X \in S^n$, the space of real symmetric $n \times n$ matrices
- $b \in \mathbb{R}^m$, $C \in S^n$ and $A^{(i)} \in S^n$ are problem parameters
- The inequality $X \succeq 0$ means X is positive semidefinite

• Inner product:
$$\langle C, X \rangle := \sum_{j=1}^{n} \sum_{k=1}^{n} C_{j,k} X_{j,k}$$

Optimization problem

$$\min_{X \in S^n} \quad \langle C, X \rangle$$
s.t. $\langle A^{(i)}, X \rangle = b_i, \quad i = 1, \cdots, m,$
 $X \succeq 0$

< 同 > < 三 > .

Overview: cracking positive semidefiniteness $X \succeq 0$

- Solving a sequence of barrier functions
 - $\log \det X^{-1}$ is a self-concordant barrier function
 - Interior point methods (primal, dual, primal-dual): potential reduction algorithms, path-following methods
 - Other penalty and barrier functions
- Maximum eigenvalue function
 - Spectral bundle method
- Eigenvalue decomposition
 - Newton-CG augmented Lagrangian method
 - Boundary point method
- Change of variables $X = RR^{\top}$
 - Nonlinear programming approaches via low-rank factorization

・ 同 ト ・ ヨ ト ・ ヨ ト

Expressing $X \succ 0$ by Schur complement

• Assume $X \in S^n$ is partitioned as $\begin{pmatrix} \xi & y^\top \\ y & B \end{pmatrix}$, where $\xi \in \mathbb{R}$,

 $y \in \mathbb{R}^{n-1}$ and $B \in S^{n-1}$ is nonsingular

• Factorization:

$$X = \begin{pmatrix} 1 & y^{\top}B^{-1} \\ 0 & I \end{pmatrix} \begin{pmatrix} \xi - y^{\top}B^{-1}y & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} 1 & 0 \\ B^{-1}y & I \end{pmatrix}$$

Positive definiteness and Schur complement:

 $X \succ 0 \iff B \succ 0$ and $(X/B) := \xi - y^{\top} B^{-1} y > 0$

Cholesky factorization: B := LL^T.
ξ - y^TB⁻¹y > 0 ⇔ ||L⁻¹y||² ≤ ξ (second-order cone)

ヘロン 人間 とくほ とくほ とう

Constructing SOC constraint row by row

• Given $X^k \succ 0$, we can fix the principal submatrix

$$B := X_{1^{c},1^{c}}^{k} = \begin{pmatrix} X_{2,2}^{k} & \cdots & X_{2,n}^{k} \\ \cdots & \cdots & \cdots \\ X_{n,2}^{k} & \cdots & X_{n,n}^{k} \end{pmatrix}$$

and let
$$\xi := X_{1,1}$$
 and $y := X_{1^c,1} := (X_{1,2}, \cdots, X_{1,n})^\top$
• The variable X now is $\begin{pmatrix} \xi & y^\top \\ y & B \end{pmatrix} := \begin{pmatrix} \xi & y^\top \\ y & X_{1^c,1^c}^k \end{pmatrix}$

- SOC constraint: $\xi y^{\top} B^{-1} y \ge \nu$ for $\nu > 0$
- In general: $\xi := X_{i,i}$, $y := X_{i^c,i}$ and $B := X_{i^c,i^c}^k$

SDP		SOCP	restriction	I	
min X∈S ⁿ	$\langle {\cal C}, {\cal X} angle$		$\min_{[\xi;y]\in\mathbb{R}^n}$	$\widetilde{c}^{ op}[\xi;y]$	
s.t.	$\mathcal{A}(X) = b,$	\implies	s.t.	$\widetilde{A}[\xi; y] = \widetilde{b},$	
	$X \succeq 0,$			$\xi - y^\top B^{-1} y \ge \nu,$	

where $\nu > 0$ and

$$\widetilde{c} := \begin{pmatrix} C_{i,i} \\ 2C_{i^c,i} \end{pmatrix}, \quad \widetilde{A} := \begin{pmatrix} A_{i,i}^{(1)} & 2A_{i,i^c}^{(1)} \\ \cdots & \cdots \\ A_{i,i}^{(m)} & 2A_{i,i^c}^{(m)} \end{pmatrix} \text{ and } \widetilde{b} := \begin{pmatrix} b_1 - \left\langle A_{i^c,i^c}^{(1)}, B \right\rangle \\ \cdots \\ b_m - \left\langle A_{i^c,i^c}^{(m)}, B \right\rangle \end{pmatrix}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Algorithm 1: A row-by-row (RBR) method prototype

Set $X^1 \succ 0$, $\nu \ge 0$ and k := 1. while not converge do for $i = 1, \dots, n$ do Solve the SOCP subproblem for *i*-th row/column. Update $X_{i,i}^k := \xi$, $X_{i^c,i}^k := y$ and $X_{i,i^c}^k := y^{\top}$. Set $X^{k+1} := X^k$ and k := k + 1.

Application: the maxcut SDP relaxation

The RBR subproblem for SDP with only diagonal element constraints:

$$\begin{array}{ll} \min_{X \in \mathcal{S}^n} & \langle \mathcal{C}, X \rangle & \min_{y \in \mathbb{R}^{n-1}} & \widehat{\mathcal{C}}^\top y \\ \text{s.t.} & X_{i,i} = 1, & \Longrightarrow & \sup_{y \in \mathbb{R}^{n-1}} & \widehat{\mathcal{C}}^\top y \\ & X \succeq 0, & \text{s.t.} & 1 - y^\top B^{-1} y \ge \nu \end{array}$$

Closed-form solution of the RBR subproblem

If $\gamma := \hat{c}^\top B \hat{c} > 0$, the solution of the RBR subproblem is

$$\mathbf{y} = -\sqrt{rac{\mathbf{1}-
u}{\gamma}}\mathbf{B}\widehat{\mathbf{c}}.$$

Otherwise, the solution is y = 0.

< 回 > < 回 > .

Interpretation in terms of log-barrier approach

Consider the logarithmic barrier problem

$$\begin{array}{ll} \min_{X \in S^n} & \langle C, X \rangle - \sigma \log \det X \\ \text{s.t.} & X_{ii} = 1, \forall i = 1, \cdots, n, \quad X \succeq 0 \end{array}$$

• Key:
$$det(X) = det(B)(1 - y^{\top}B^{-1}y)$$

The RBR subproblem is:

$$\min_{\boldsymbol{y}\in\mathbb{R}^{n-1}} \quad \widehat{\boldsymbol{c}}^{\top}\boldsymbol{y} - \sigma\log(1-\boldsymbol{y}^{\top}\boldsymbol{B}^{-1}\boldsymbol{y})$$

whose solution is $y = -\frac{\sqrt{\sigma^2 + \gamma} - \sigma}{\gamma} B\hat{c}$, where $\gamma := \hat{c}^{\top} B\hat{c}$.

• Equal to the pure RBR method if $\nu = 2\sigma \frac{\sqrt{\sigma^2 + \gamma - \sigma}}{\gamma}$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Convergence for general function

Consider the RBR method for solving

$$(P) \qquad \begin{array}{l} \min_{X \in S^n} & f(X) - \sigma \log \det X \\ \text{s.t.} & L \leq X \leq U, \quad X \succ 0 \end{array}$$

- f(X) is a convex function of X
- L, U ∈ Sⁿ are constant matrices and L ≤ X ≤ U means that L_{i,j} ≤ X_{i,j} ≤ U_{i,j} for all i, j = 1, · · · , n

Theorem

Let $\{X^k\}$ be a sequence generated by the row-by-row method for solving (P). Then every limit point of $\{X^k\}$ is a global minimizer of (P).

・ 回 ト ・ ヨ ト ・ ヨ ト

Consider the SDP

$$\begin{array}{ll} \min & X_{11} + X_{22} - \log \det(X) \\ \text{s.t.} & X_{11} + X_{22} \geq 4, \quad X \succeq 0. \end{array}$$

• Initial point:
$$\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$
 and optimal solution: $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$.

The RBR subproblems are

$$\begin{array}{ll} \mbox{min} & X_{11} - \log(3X_{11} - X_{12}^2), \mbox{ s.t. } X_{11} \geq 1, \\ \mbox{min} & X_{22} - \log(X_{22} - X_{12}^2), \mbox{ s.t. } X_{22} \geq 3 \end{array}$$

• Optimal solutions of subproblems are, respectively, $X_{11} = 1$, $X_{12} = 0$ and $X_{12} = 0$, $X_{22} = 3$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Row-by-row augmented Lagrangian method

We consider the following augmented Lagrangian approach:

- Given $\mu > 0$, we start from $X^1 \succ 0$ and $b^1 := b$.
- Solve the quadratic penalty function

$$X^k := rg\min_X \langle \mathcal{C}, X
angle + rac{1}{2\mu} \|\mathcal{A}(X) - b^k\|_2^2, ext{ s.t. } X \succeq 0,$$

and update
$$b^{k+1} := b + \frac{\mu}{\mu^k} (b^k - \mathcal{A}(X^k)).$$

The RBR subproblem

$$\min_{\substack{(\xi;y)\in\mathbb{R}^n\\ \text{s.t.}}} \quad \widetilde{c}^\top \begin{pmatrix} \xi\\ y \end{pmatrix} + \frac{1}{2\mu^k} \left\| \widetilde{A} \begin{pmatrix} \xi\\ y \end{pmatrix} - \widetilde{b} \right\|_2^2$$

s.t. $\xi - y^\top B^{-1} y \ge \nu.$

- Solving the RBR subproblem essentially corresponds to minimizing the unconstrained function obtained by subtracting σ log(ξ − y^TB⁻¹y) from the objective function
- Convergence of the RBR method for minimizing this log-barrier function
- The convergence of our augmented Lagrangian framework follows from the standard theory for the augmented Lagrangian method for minimizing a strictly convex function subject to linear equality constraints; see Bertsekas, Rockafellar and etc.

イロン 不良 とくほう 不良 とうほ

Application: the maxcut SDP relaxation

Since
$$\left\|\widetilde{A}\begin{pmatrix}\xi\\y\end{pmatrix} - \widetilde{b}\right\|^2 = (\xi - b_i^k)^2$$
, we have:

The RBR subproblem

• If $\hat{c} \neq 0$, the solution is: $\xi = b_i^k + \mu^k (\lambda - c)$ and $y = -\frac{1}{2\lambda} B \hat{c}$, where λ is the unique real root of the cubic equation:

$$\varphi(\lambda) := 4\mu^k \lambda^3 + 4(b_i^k - \mu^k c - \nu)\lambda^2 - \gamma = 0.$$

・ 「「」 ・ ・ 三 ト ・ 三 ト ・

Application: nuclear-norm matrix completion

Given a matrix $M \in \mathbb{R}^{p \times q}$ and an index set

$$\Omega \subseteq \{(i,j) \mid i \in \{1,\cdots,p\}, j \in \{1,\cdots,q\}\},\$$

the nuclear norm matrix completion problem is

$$\begin{array}{ll} \min_{\boldsymbol{W} \in \mathbb{R}^{p \times q}} & \|\boldsymbol{W}\|_{*} \\ \boldsymbol{s}.t. & \boldsymbol{W}_{ij} = \boldsymbol{M}_{ij}, \ \forall \ (i,j) \in \Omega, \end{array}$$

which is equivalent to the SDP problem

$$\begin{array}{ll} \min_{X \in S^n} & \textit{Tr}(X) \\ s.t. & X := \begin{bmatrix} X^{(1)} & W \\ W^\top & X^{(2)} \end{bmatrix} \succeq 0 \\ & W_{ij} = M_{ij}, \ \forall \ (i,j) \in \Omega. \end{array}$$

個人 くほん くほん 一日

Application: nuclear-norm matrix completion

 Partition the vector y into the subvectors ŷ and ỹ, whose elements are in and not in the set Ω, respectively.

• The residual is:
$$\left\| \widetilde{A} \begin{pmatrix} \xi \\ y \end{pmatrix} - \widetilde{b} \right\| = \| \widehat{y} - \widetilde{b} \|$$

The RBR subproblem

$$\begin{array}{ll} \min_{(\xi; y) \in \mathbb{R}^n} & \xi + \frac{1}{2\mu^k} \left\| \widehat{y} - \widetilde{b} \right\|_2^2, \\ \text{s.t.} & \xi - y^\top B^{-1} y \geq \nu, \end{array} \quad B = \begin{pmatrix} X_{\alpha, \alpha}^k & X_{\alpha, \beta}^k \\ X_{\beta, \alpha}^k & X_{\beta, \beta}^k \end{pmatrix},$$

whose optimal solution is

$$\begin{cases} \xi = \frac{1}{2\mu^k} \widehat{y}^\top (\widetilde{b} - \widehat{y}) + \nu, \\ \widehat{y} = \left(2\mu^k I + X_{\alpha,\alpha}^k \right)^{-1} X_{\alpha,\alpha}^k \widetilde{b}, \quad \widetilde{y} = \frac{1}{2\mu^k} X_{\beta,\alpha}^k (\widetilde{b} - \widehat{y}). \end{cases}$$

Numerical Results

- The maxcut SDP relaxation
 - The test problems whose size ranging from n = 1000 to n = 4000 are based on graphs generated by "rudy"
 - Two variants: PURE-RBR-M and ALAG-RBR-M
- The nuclear-norm matrix completion problem
 - Gaussian random matrices M_L and M_R and set $M = M_L M_R^{\top}$
 - Sample a subset Ω of *m* entries uniformly at random
 - Sampling ratio (SR): m/(pq)
 - Ratio "FR": r(p + q r)/m < 1</p>
- Codes were written in C Language MEX-files in MATLAB (Release 7.3.0) and all experiments were performed on a Dell Precision 670 workstation with an Intel Xeon 3.4GHZ CPU and 6GB of RAM.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Numerical Results: the maxcut SDP relaxation

Table: Average ratio of DSDP CPU time to RBR CPU time

	PURE-RBR-M		ALAG-RBR-M		DSDP
n	$\epsilon = 10^{-3}$	$\epsilon = 10^{-6}$	$\epsilon = 10^{-1}$	$\epsilon = 10^{-4}$	
1000	82.2	11.4	75.9	12.1	1
2000	146.9	20.7	140.4	17.8	1
3000	201.8	27.1	190.3	24.1	1
4000	196.0	26.2	180.2	22.8	1
rel.err in obj	10 ⁻³	10 ⁻⁵	10 ⁻³	10 ⁻⁵	

Row by row methods for semidefinite programming

э

ъ

Numerical Results: the maxcut SDP relaxation

Figure: Relationship between CPU time and SDP matrix dimension for the maxcut SDP relaxation

Numerical Results: the maxcut SDP relaxation

Figure: Relationship between cycles and SDP matrix dimension for the maxcut SDP relaxation

Numerical Results: nuclear-norm matrix completion

Figure: Relationship between CPU time and SDP matrix dimension for SDP matrix completion

Numerical Results: nuclear-norm matrix completion

Figure: Relationship between cycles and SDP matrix dimension for SDP matrix completion