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Semidefinite programming (SDP)

X ∈ Sn, the space of real symmetric n × n matrices
b ∈ Rm, C ∈ Sn and A(i) ∈ Sn are problem parameters
The inequality X � 0 means X is positive semidefinite

Inner product: 〈C,X 〉 :=
n∑

j=1

n∑
k=1

Cj,kXj,k

Optimization problem

min
X∈Sn

〈C,X 〉

s.t.
〈

A(i),X
〉

= bi , i = 1, · · · ,m,

X � 0
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Overview: cracking positive semidefiniteness X � 0

Solving a sequence of barrier functions
log det X−1 is a self-concordant barrier function
Interior point methods (primal, dual, primal-dual): potential
reduction algorithms, path-following methods
Other penalty and barrier functions

Maximum eigenvalue function
Spectral bundle method

Eigenvalue decomposition
Newton-CG augmented Lagrangian method
Boundary point method

Change of variables X = RR>

Nonlinear programming approaches via low-rank
factorization
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Expressing X � 0 by Schur complement

Assume X ∈ Sn is partitioned as
(
ξ y>

y B

)
, where ξ ∈ R,

y ∈ Rn−1 and B ∈ Sn−1 is nonsingular
Factorization:

X =

(
1 y>B−1

0 I

) (
ξ − y>B−1y 0

0 B

)(
1 0

B−1y I

)

Positive definiteness and Schur complement:

X � 0⇐⇒ B � 0 and (X/B) := ξ − y>B−1y > 0

Cholesky factorization: B := LL>.
ξ − y>B−1y > 0⇐⇒ ‖L−1y‖2 ≤ ξ (second-order cone)
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Constructing SOC constraint row by row

Given X k � 0, we can fix the principal submatrix

B := X k
1c ,1c =

X k
2,2 · · · X k

2, n
· · · · · · · · ·

X k
n, 2 · · · X k

n,n


and let ξ := X1,1 and y := X1c ,1 := (X1,2, · · · ,X1,n)>

The variable X now is
(
ξ y>

y B

)
:=

(
ξ y>

y X k
1c ,1c

)
SOC constraint: ξ − y>B−1y ≥ ν for ν > 0
In general: ξ := Xi,i , y := Xic ,i and B := X k

ic ,ic
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Solving RBR subproblem

SDP SOCP restriction

min
X∈Sn

〈C,X 〉

s.t. A(X ) = b,
X � 0,

=⇒

min
[ξ;y ]∈Rn

c̃>[ξ; y ]

s.t. Ã [ξ; y ] = b̃,

ξ − y>B−1y ≥ ν,

where ν > 0 and

c̃ :=

(
Ci,i

2Cic ,i

)
, Ã :=

A(1)
i,i 2A(1)

i,ic

· · · · · ·
A(m)

i,i 2A(m)
i,ic

 and b̃ :=


b1 −

〈
A(1)

ic ,ic ,B
〉

· · ·
bm −

〈
A(m)

ic ,ic ,B
〉
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Row-by-Row (RBR) algorithm prototype

Algorithm 1: A row-by-row (RBR) method prototype
Set X 1 � 0, ν ≥ 0 and k := 1.
while not converge do

for i = 1, · · · ,n do
Solve the SOCP subproblem for i-th row/column.
Update X k

i,i := ξ, X k
ic ,i := y and X k

i,ic := y>.

Set X k+1 := X k and k := k + 1.
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Application: the maxcut SDP relaxation

The RBR subproblem for SDP with only diagonal element constraints:

min
X∈Sn

〈C,X 〉

s.t. Xi,i = 1,
X � 0,

=⇒
min

y∈Rn−1
ĉ>y

s.t. 1− y>B−1y ≥ ν

Closed-form solution of the RBR subproblem

If γ := ĉ>Bĉ > 0, the solution of the RBR subproblem is

y = −

√
1− ν
γ

Bĉ.

Otherwise, the solution is y = 0.
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Interpretation in terms of log-barrier approach

Consider the logarithmic barrier problem

min
X∈Sn

〈C,X 〉 − σ log det X

s.t. Xii = 1,∀i = 1, · · · ,n, X � 0

Key: det(X ) = det(B)(1− y>B−1y)

The RBR subproblem is:

min
y∈Rn−1

ĉ>y − σ log(1− y>B−1y)

whose solution is y = −
√
σ2+γ−σ
γ Bĉ, where γ := ĉ>Bĉ.

Equal to the pure RBR method if ν = 2σ
√
σ2+γ−σ
γ
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Convergence for general function

Consider the RBR method for solving

(P)
min
X∈Sn

f (X )− σ log det X

s.t. L ≤ X ≤ U, X � 0

f (X ) is a convex function of X
L,U ∈ Sn are constant matrices and L ≤ X ≤ U means
that Li,j ≤ Xi,j ≤ Ui,j for all i , j = 1, · · · ,n

Theorem

Let {X k} be a sequence generated by the row-by-row method
for solving (P). Then every limit point of {X k} is a global
minimizer of (P).
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Failure on a SDP with general linear constraints

Consider the SDP

min X11 + X22 − log det(X )

s.t. X11 + X22 ≥ 4, X � 0.

Initial point:
(

1 0
0 3

)
and optimal solution:

(
2 0
0 2

)
.

The RBR subproblems are

min X11 − log(3X11 − X 2
12), s.t. X11 ≥ 1,

min X22 − log(X22 − X 2
12), s.t. X22 ≥ 3

Optimal solutions of subproblems are, respectively,
X11 = 1, X12 = 0 and X12 = 0, X22 = 3
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Row-by-row augmented Lagrangian method

We consider the following augmented Lagrangian approach:
Given µ > 0, we start from X 1 � 0 and b1 := b.
Solve the quadratic penalty function

X k := arg min
X
〈C,X 〉+

1
2µ
‖A(X )− bk‖22, s.t. X � 0,

and update bk+1 := b + µ
µk

(
bk −A(X k )

)
.

The RBR subproblem

min
(ξ;y)∈Rn

c̃>
(
ξ
y

)
+

1
2µk

∥∥∥∥Ã
(
ξ
y

)
− b̃

∥∥∥∥2

2

s.t. ξ − y>B−1y ≥ ν.
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Convergence Properties

Solving the RBR subproblem essentially corresponds to
minimizing the unconstrained function obtained by
subtracting σ log(ξ − y>B−1y) from the objective function
Convergence of the RBR method for minimizing this
log-barrier function
The convergence of our augmented Lagrangian framework
follows from the standard theory for the augmented
Lagrangian method for minimizing a strictly convex function
subject to linear equality constraints; see Bertsekas,
Rockafellar and etc.
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Application: the maxcut SDP relaxation

Since
∥∥∥∥Ã
(
ξ
y

)
− b̃

∥∥∥∥2

= (ξ − bk
i )2, we have:

The RBR subproblem

min
X∈Sn

〈C,X 〉

s.t. Xi,i = 1,
X � 0,

=⇒
min

(ξ;y)∈Rn
cξ + ĉ>y +

1
2µk (ξ − bk

i )2

s.t. ξ − y>B−1y ≥ ν.

If ĉ 6= 0, the solution is: ξ = bk
i +µk (λ− c) and y = − 1

2λBĉ,
where λ is the unique real root of the cubic equation:

ϕ(λ) := 4µkλ3 + 4(bk
i − µkc − ν)λ2 − γ = 0.
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Application: nuclear-norm matrix completion

Given a matrix M ∈ Rp×q and an index set

Ω ⊆ {(i , j) | i ∈ {1, · · · ,p}, j ∈ {1, · · · ,q}},

the nuclear norm matrix completion problem is

minW∈Rp×q ‖W‖∗
s.t . Wij = Mij , ∀ (i , j) ∈ Ω,

which is equivalent to the SDP problem

minX∈Sn Tr(X )

s.t . X :=

[
X (1) W
W> X (2)

]
� 0

Wij = Mij , ∀ (i , j) ∈ Ω.
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Application: nuclear-norm matrix completion

Partition the vector y into the subvectors ŷ and ỹ , whose
elements are in and not in the set Ω, respectively.

The residual is:
∥∥∥∥Ã
(
ξ
y

)
− b̃

∥∥∥∥ = ‖ŷ − b̃‖

The RBR subproblem

min
(ξ;y)∈Rn

ξ +
1

2µk

∥∥∥ŷ − b̃
∥∥∥2

2
,

s.t. ξ − y>B−1y ≥ ν,
B =

(
X k
α,α X k

α,β

X k
β,α X k

β,β

)
,

whose optimal solution is
ξ =

1
2µk ŷ>(b̃ − ŷ) + ν,

ŷ =
(

2µk I + X k
α,α

)−1
X k
α,αb̃, ỹ =

1
2µk X k

β,α(b̃ − ŷ).
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Numerical Results

The maxcut SDP relaxation
The test problems whose size ranging from n = 1000 to
n = 4000 are based on graphs generated by “rudy”
Two variants: PURE-RBR-M and ALAG-RBR-M

The nuclear-norm matrix completion problem
Gaussian random matrices ML and MR and set M = MLM>R
Sample a subset Ω of m entries uniformly at random
Sampling ratio (SR): m/(pq)
Ratio “FR”: r(p + q − r)/m < 1

Codes were written in C Language MEX-files in MATLAB
(Release 7.3.0) and all experiments were performed on a
Dell Precision 670 workstation with an Intel Xeon 3.4GHZ
CPU and 6GB of RAM.
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Numerical Results: the maxcut SDP relaxation

Table: Average ratio of DSDP CPU time to RBR CPU time

PURE-RBR-M ALAG-RBR-M DSDP
n ε = 10−3 ε = 10−6 ε = 10−1 ε = 10−4

1000 82.2 11.4 75.9 12.1 1
2000 146.9 20.7 140.4 17.8 1
3000 201.8 27.1 190.3 24.1 1
4000 196.0 26.2 180.2 22.8 1

rel.err in obj 10−3 10−5 10−3 10−5
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Numerical Results: the maxcut SDP relaxation

1000 1500 2000 2500 3000 3500 4000
10

−1

10
0

10
1

10
2

10
3

SDP matrix dimension

C
P

U
 (

se
co

nd
s)

 

 

PURE−RBR−M: ε=10−3
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Figure: Relationship between CPU time and SDP matrix dimension
for the maxcut SDP relaxation
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Numerical Results: the maxcut SDP relaxation
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Figure: Relationship between cycles and SDP matrix dimension for
the maxcut SDP relaxation
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Numerical Results: nuclear-norm matrix completion
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Figure: Relationship between CPU time and SDP matrix dimension
for SDP matrix completion
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Numerical Results: nuclear-norm matrix completion
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Figure: Relationship between cycles and SDP matrix dimension for
SDP matrix completion
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