Improved Solvation Models using Boundary Integral Equations

Matthew Knepley and Jaydeep Bardhan

Computational and Applied Mathematics Rice University

Applied Mathematics Colloquium Department of Mathematics UNC Chapel Hill September 16, 2016

RICE

Main Point

Solvation computation can benefit from

$$
\begin{aligned}
& \text { operator simplification, } \\
& \text { and non-Poisson models. }
\end{aligned}
$$

Main Point

Solvation computation can benefit from

operator simplification,

and non-Poisson models.

Main Point

Solvation computation can benefit from

operator simplification,

and non-Poisson models.

Bioelectrostatics

The Natural World

Induced Surface Charge on Lysozyme

Bioelectrostatics

Physical Model

Electrostatic Potential ϕ

Bioelectrostatics

Mathematical Model

We can write a Boundary Integral Equation (BIE) for the induced surface charge σ,

$$
\begin{aligned}
\sigma(\vec{r})+\hat{\epsilon} \int_{\Gamma} \frac{\partial}{\partial n(\vec{r})} \frac{\sigma\left(\vec{r}^{\prime}\right) d^{2} \vec{r}^{\prime}}{4 \pi\left\|\vec{r}-\vec{r}^{\prime}\right\|} & =-\hat{\epsilon} \sum_{k=1}^{Q} \frac{\partial}{\partial n(\vec{r})} \frac{q_{k}}{4 \pi\left\|\vec{r}-\vec{r}_{k}\right\|} \\
\left(\mathcal{I}+\hat{\epsilon} \mathcal{D}^{*}\right) \sigma(\vec{r}) & =
\end{aligned}
$$

where we define

$$
\hat{\epsilon}=2 \frac{\epsilon_{I}-\epsilon_{I I}}{\epsilon_{I}+\epsilon_{I I}}<0
$$

Outline

(1) Approximating the Poisson Operator

- Approximate Operators
- Approximate Boundary Conditions

2) Improving the Poisson Operator

Problem

Boundary element discretizations of solvation:

- can be expensive to solve
- are more accurate than required by intermediate design iterations

Outline

(1) Approximating the Poisson Operator - Approximate Operators

- Approximate Boundary Conditions

Generalized Born Approximation

The pairwise energy between charges is defined by the Still equation:

$$
G_{e s}^{i j}=\frac{1}{8 \pi}\left(\frac{1}{\epsilon_{\| l}}-\frac{1}{\epsilon_{l}}\right) \sum_{i, j}^{N} \frac{q_{i} q_{j}}{r_{i j}^{2}+R_{i} R_{j} e^{-r_{i j}^{2} / 4 R_{i} R_{j}}}
$$

where the effective Born radius is

$$
R_{i}=\frac{1}{8 \pi}\left(\frac{1}{\epsilon_{\| I}}-\frac{1}{\epsilon_{I}}\right) \frac{1}{E_{i}}
$$

where E_{i} is the self-energy of the charge q_{i}, the electrostatic energy when atom i has unit charge and all others are neutral.

GB Problems

- No global potential solution, only energy
- No analysis of the error
- For example, Salsbury 2006 consists of parameter tuning
- No path for systematic improvement
- For example, Sigalov 2006 changes the model
- The same atoms have different radii in different
- molecules,
- solvents
- temperatures
- LOTS of parameters
- Nina, Beglov, Roux 1997

GB Problems

TABLE 2: Atomic Born Radii Derived from Solvent Electrostatic Charge Distribution Tested with Free Energy Perturbation Methods in an Explicit Solvent ${ }^{a}$

- No global potential so atom
radius (\AA)
- No analysis of the erri ${ }^{\circ}$
- For example, Salsbury 20 ca
- No path for systematic ${ }^{\mathrm{H}^{*}}$
- For example, Sigalov $200 \mathrm{c}_{\mathrm{cc}}^{\mathrm{cB}}$ Backbone
C
C
$C A$
1.52 carbonyl oxygen
2.23 peptide nitrogen
$\begin{array}{ll}2.86 & \text { all CA except Gly }\end{array}$
2.38 Gly only

Hydrogens
0.00 all hydrogens

Side Chains
2.67 all residues
2.46 Val, Ile, Arg, Lys, Met, Phe, Thr, Trp, Gln, Glu

- The same atoms hav ϵ_{cd}
2.44 Ile , Leu, Arg, Lys
- molecules,
- solvents
- temperatures
- LOTS of parameters
- Nina, Beglov, Roux 1997

CD, CG
1.98

Asp, Glu, Asn, Gln
CB, CG, CD
CE*, CD*
CE*
, CD*
1.98

CE*, CD* ${ }^{*}, \mathrm{CZ}^{*}, \mathrm{CH} 2$
2.00

Pro only
Tyr, Phe rings
$\mathrm{CE} \quad 2.10 \quad$ Met only
$\begin{array}{lll}\mathrm{CZ}, \mathrm{CE} & 2.80 & \text { Arg, Lys }\end{array}$
$\begin{array}{lll}\text { OE*, OD* } & 1.42 & \text { Glu, Asp, Asn, Gln } \\ \text { OG* } & 1.64 & \text { Ser, Thr }\end{array}$
$\begin{array}{lll}\text { OG* } & 1.64 & \text { Ser, Thr } \\ \text { OH } & 185 & \text { Tyr only }\end{array}$
$\begin{array}{lll}\text { NH*, NE, NZ } & 2.13 & \text { Arg, Lys } \\ \text { NE2, ND2 } & 2.15 & \text { Gln, Asn }\end{array}$

NE2, ND2	2.15	Gln, Asn
NE2, ND1	2.31	His only

$\begin{array}{lll}\mathrm{NE} & \mathrm{S}^{*} & 2.40 \\ \text { Trp }\end{array}$
S* 2.00 Met, Cys
${ }^{a}$ Patches N-term and C-term CAT, CAY: $2.06 \AA$. CY: $2.04 \AA$. OY: $1.52 \AA$. NT: $2.23 \AA$. * refers to a wild card character.

Bioelectrostatics

Mathematical Model

The reaction potential is given by

$$
\phi^{R}(\vec{r})=\int_{\Gamma} \frac{\sigma\left(\vec{r}^{\prime}\right) d^{2} \vec{r}^{\prime}}{4 \pi \epsilon_{1}\left\|\vec{r}-\vec{r}^{\prime}\right\|}=C \sigma
$$

which defines $G_{e s}$, the electrostatic part of the solvation free energy

$$
\begin{aligned}
\Delta G_{e s} & =\frac{1}{2}\left\langle q, \phi^{R}\right\rangle \\
& =\frac{1}{2}\langle q, L q\rangle \\
& =\frac{1}{2}\left\langle q, C A^{-1} B q\right\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
& B q=-\hat{\epsilon} \int_{\Omega} \frac{\partial}{\partial n(\vec{r})} \frac{q\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}}{4 \pi\left\|\vec{r}-\vec{r}^{\prime}\right\|} \\
& A \sigma=\mathcal{I}+\hat{\epsilon} \mathcal{D}^{*}
\end{aligned}
$$

BIBEE

Approximate \mathcal{D}^{*} by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Eigenvectors: BEM $e_{i} \cdot e_{j}$ BIBEE/P
Coulomb Field Approximation: uniform normal field

$$
\left(1-\frac{\hat{\epsilon}}{2}\right) \sigma_{C F A}=B q
$$

Lower Bound:

no good physical motivation

$$
\left(1+\frac{\hat{\epsilon}}{2}\right) \sigma_{L B}=B q
$$

BIBEE

Approximate \mathcal{D}^{*} by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Coulomb Field Approximation: uniform normal field

$$
\left(1-\frac{\hat{\epsilon}}{2}\right) \sigma_{C F A}=B q
$$

Preconditioning:

 consider only local effects$$
\sigma_{P}=B q
$$

Eigenvectors: BEM $e_{i} \cdot e_{j}$ BIBEE/P

BIBEE Bounds on Solvation Energy

Theorem: The electrostatic solvation energy $\Delta G_{e s}$ has upper and lower bounds given by

$$
\frac{1}{2}\left(1+\frac{\hat{\epsilon}}{2}\right)^{-1}\langle q, C B q\rangle \leq \frac{1}{2}\left\langle q, C A^{-1} B q\right\rangle \leq \frac{1}{2}\left(1-\frac{\hat{\epsilon}}{2}\right)^{-1}\langle q, C B q\rangle,
$$

and for spheres and prolate spheroids, we have the improved lower bound,

$$
\frac{1}{2}\langle q, C B q\rangle \leq \frac{1}{2}\left\langle q, C A^{-1} B q\right\rangle,
$$

and we note that

$$
|\hat{\epsilon}|<\frac{1}{2} .
$$

Energy Bounds:

Proof: Bardhan, Knepley, Anitescu, JCP, 130(10), 2008
I will break the proof into three steps,

- Replace C with B
- Symmetrization
- Eigendecomposition
shown in the following slides.
We will need the single layer operator \mathcal{S} for step 1 ,

$$
\mathcal{S} \tau(\vec{r})=\int \frac{\tau\left(\vec{r}^{\prime}\right) d^{2} \vec{r}^{\prime}}{4 \pi\left\|\vec{r}-\vec{r}^{\prime}\right\|}
$$

Energy Bounds: First Step

Replace C with B

The potential at the boundary Γ given by

$$
\phi^{\text {Coulomb }}(\vec{r})=C^{\top} q
$$

can also be obtained by solving an exterior Neumann problem for τ,

$$
\begin{aligned}
\phi^{\text {Coulomb }(\vec{r})} & =\mathcal{S} \tau \\
& =\mathcal{S}\left(\mathcal{I}-2 \mathcal{D}^{*}\right)^{-1}\left(\frac{2}{\hat{\epsilon}} B q\right) \\
& =\frac{2}{\hat{\epsilon}} \mathcal{S}\left(\mathcal{I}-2 \mathcal{D}^{*}\right)^{-1} B q
\end{aligned}
$$

so that the solvation energy is given by

$$
\frac{1}{2}\left\langle q, C A^{-1} B q\right\rangle=\frac{1}{\hat{\epsilon}}\left\langle\mathcal{S}\left(\mathcal{I}-2 \mathcal{D}^{*}\right)^{-1} B q,\left(\mathcal{I}+\hat{\epsilon} \mathcal{D}^{*}\right)^{-1} B q\right\rangle
$$

Energy Bounds: Second Step

Quasi-Hermiticity

Plemelj's symmetrization principle holds that

$$
\mathcal{S D}^{*}=\mathcal{D S}
$$

and we have

$$
\mathcal{S}=\mathcal{S}^{1 / 2} \mathcal{S}^{1 / 2}
$$

which means that we can define a Hermitian operator H similar to \mathcal{D}^{*}

$$
H=\mathcal{S}^{1 / 2} \mathcal{D}^{*} \mathcal{S}^{-1 / 2}
$$

leading to an energy

$$
\frac{1}{2}\left\langle q, C A^{-1} B q\right\rangle=\frac{1}{\hat{\epsilon}}\left\langle B q, \mathcal{S}^{1 / 2}(\mathcal{I}-2 H)^{-1}(\mathcal{I}+\hat{\epsilon} H)^{-1} \mathcal{S}^{1 / 2} B q\right\rangle
$$

Energy Bounds: Third Step

Eigendecomposition

The spectrum of \mathcal{D}^{*} is in $\left[-\frac{1}{2}, \frac{1}{2}\right)$, and the energy is

$$
\frac{1}{2}\left\langle q, C A^{-1} B q\right\rangle=\sum_{i} \frac{1}{\hat{\epsilon}}\left(1-2 \lambda_{i}\right)^{-1}\left(1+\hat{\epsilon} \lambda_{i}\right)^{-1} x_{i}^{2}
$$

where

$$
H=V \wedge V^{\top}
$$

and

$$
\vec{x}=V^{\top} \mathcal{S}^{1 / 2} B q
$$

Energy Bounds: Diagonal Approximations

The BIBEE approximations yield the following bounds

$$
\begin{aligned}
\frac{1}{2}\left\langle q, C A_{C F A}^{-1} B q\right\rangle & =\sum_{i} \frac{1}{\hat{\epsilon}}\left(1-2 \lambda_{i}\right)^{-1}\left(1-\frac{\hat{\epsilon}}{2}\right)^{-1} x_{i}^{2} \\
\frac{1}{2}\left\langle q, C A_{P}^{-1} B q\right\rangle & =\sum_{i} \frac{1}{\hat{\epsilon}}\left(1-2 \lambda_{i}\right)^{-1} x_{i}^{2} \\
\frac{1}{2}\left\langle q, C A_{L B}^{-1} B q\right\rangle & =\sum_{i} \frac{1}{\hat{\epsilon}}\left(1-2 \lambda_{i}\right)^{-1}\left(1+\frac{\hat{\epsilon}}{2}\right)^{-1} x_{i}^{2}
\end{aligned}
$$

where we note that

$$
|\hat{\epsilon}|<\frac{1}{2}
$$

BIBEE Accuracy

Electrostatic solvation free energies of met-enkephalin structures

Snapshots taken from a 500-ps MD simulation at 10-ps intervals.
Bardhan, Knepley, Anitescu, JCP, 2009.

Crowded Protein Solution

Important for drug design of antibody therapies

BIBEE Scalability

Yokota, Bardhan, Knepley, Barba, Hamada, CPC, 2011.

Outline

(1) Approximating the Poisson Operator - Approximate Operators

- Approximate Boundary Conditions

Bioelectrostatics

Physical Model

Electrostatic Potential ϕ

Kirkwood's Solution (1934)

The potential inside Region I is given by

$$
\Phi_{I}=\sum_{k=1}^{Q} \frac{q_{k}}{\epsilon_{1}\left|\vec{r}-\vec{r}_{k}\right|}+\psi,
$$

and the potential in Region II is given by

$$
\Phi_{I /}=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{C_{n m}}{r^{n+1}} P_{n}^{m}(\cos \theta) e^{i m \phi} .
$$

Kirkwood's Solution (1934)

The reaction potential ψ is expanded in a series

$$
\psi=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} B_{n m} r^{n} P_{n}^{m}(\cos \theta) e^{i m \phi}
$$

and the source distribution is also expanded

$$
\sum_{k=1}^{Q} \frac{q_{k}}{\epsilon_{1}\left|\vec{r}-\vec{r}_{k}\right|}=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{E_{n m}}{\epsilon_{1} r^{n+1}} P_{n}^{m}(\cos \theta) e^{i m \phi}
$$

Kirkwood's Solution (1934)

By applying the boundary conditions, letting the sphere have radius b,

$$
\begin{aligned}
\left.\Phi_{l}\right|_{r=b} & =\left.\Phi_{I I}\right|_{r=b} \\
\left.\epsilon_{l} \frac{\partial \Phi_{l}}{\partial r}\right|_{r=b} & =\left.\epsilon_{l l} \frac{\partial \Phi_{I I}}{\partial r}\right|_{r=b}
\end{aligned}
$$

we can eliminate $C_{n m}$, and determine the reaction potential coefficients in terms of the source distribution,

$$
B_{n m}=\frac{1}{\epsilon_{l} b^{2 n+1}} \frac{\left(\epsilon_{I}-\epsilon_{I I}\right)(n+1)}{\epsilon_{I} n+\epsilon_{l l}(n+1)} E_{n m}
$$

Approximate Boundary Conditions

Theorem: The BIBEE boundary integral operator approximations

$$
\begin{aligned}
A_{C F A} & =\mathcal{I}\left(1+\frac{\hat{\epsilon}}{2}\right) \\
A_{P} & =\mathcal{I}
\end{aligned}
$$

have an equivalent PDE formulation,

$$
\begin{aligned}
\epsilon_{l} \Delta \Phi_{C F A, P} & =\sum_{k=1}^{Q} q_{k} \delta\left(\vec{r}-\vec{r}_{k}\right) & \left.\frac{\epsilon_{I}}{\epsilon_{\|}} \frac{\partial \Phi_{I}^{C}}{\partial r}\right|_{r=b}=\frac{\partial \Phi_{\| I}}{\partial r}-\left.\frac{\partial \psi_{C F A}}{\partial r}\right|_{r=b} \\
\epsilon_{\|} \Delta \Phi_{C F A, P} & =0 & \quad \text { or } \\
\left.\Phi_{\|}\right|_{r=b} & =\left.\Phi_{\| \|}\right|_{r=b} & \left.\frac{3 \epsilon_{l}-\epsilon_{\| I}}{\epsilon_{l}+\epsilon_{\| I}} \frac{\partial \Phi_{I}^{C}}{\partial r}\right|_{r=b}=\frac{\partial \Phi_{\|}}{\partial r}-\left.\frac{\partial \psi_{P}}{\partial r}\right|_{r=b},
\end{aligned}
$$

where Φ_{1}^{C} is the Coulomb field due to interior charges.

Approximate Boundary Conditions

Theorem: For spherical solute, the BIBEE boundary integral operator approximations have eigenspaces are identical to that of the original operator.

BEM eigenvector $e_{i} \cdot e_{j}$ BIBEE/P eigenvector

Proof of PDE Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.
In order to show that these PDEs are equivalent to the original BIEs,

- Start with the fundamental solution to Laplace's equation $G\left(r, r^{\prime}\right)$
- Note that $\int_{\Gamma} G\left(r, r^{\prime}\right) \sigma\left(r^{\prime}\right) d \Gamma$ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof of PDE Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.
In order to show that these PDEs are equivalent to the original BIEs,

- Start with the fundamental solution to Laplace's equation $G\left(r, r^{\prime}\right)$
- Note that $\int_{\Gamma} G\left(r, r^{\prime}\right) \sigma\left(r^{\prime}\right) d \Gamma$ satisfies the bulk equation and decay at infinity
- Insertion into the anproximate BC gives the BIBEE boundary integral approximation

Proof of PDE Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.
In order to show that these PDEs are equivalent to the original BIEs,

- Start with the fundamental solution to Laplace's equation $G\left(r, r^{\prime}\right)$
- Note that $\int_{\Gamma} G\left(r, r^{\prime}\right) \sigma\left(r^{\prime}\right) d \Gamma$ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof of PDE Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.
In order to show that these PDEs are equivalent to the original BIEs,

- Start with the fundamental solution to Laplace's equation $G\left(r, r^{\prime}\right)$
- Note that $\int_{\Gamma} G\left(r, r^{\prime}\right) \sigma\left(r^{\prime}\right) d \Gamma$ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary, \mathcal{D}^{*} is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary, \mathcal{D}^{*} is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.
In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary, \mathcal{D}^{*} is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.
In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary, \mathcal{D}^{*} is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.
In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary, \mathcal{D}^{*} is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

The result does not hold for general boundaries.

Series Solutions

Note that the approximate solutions are separable:

$$
\begin{aligned}
B_{n m} & =\frac{1}{\epsilon_{1} n+\epsilon_{2}(n+1)} \gamma_{n m} \\
B_{n m}^{C F A} & =\frac{1}{\epsilon_{2}} \frac{1}{2 n+1} \gamma_{n m} \\
B_{n m}^{P} & =\frac{1}{\epsilon_{1}+\epsilon_{2}} \frac{1}{n+\frac{1}{2}} \gamma_{n m}
\end{aligned}
$$

If $\epsilon_{I}=\epsilon_{\|}=\epsilon$, both approximations are exact:

Series Solutions

Note that the approximate solutions are separable:

$$
\begin{aligned}
B_{n m} & =\frac{1}{\epsilon_{1} n+\epsilon_{2}(n+1)} \gamma_{n m} \\
B_{n m}^{C F A} & =\frac{1}{\epsilon_{2}} \frac{1}{2 n+1} \gamma_{n m} \\
B_{n m}^{P} & =\frac{1}{\epsilon_{1}+\epsilon_{2}} \frac{1}{n+\frac{1}{2}} \gamma_{n m} .
\end{aligned}
$$

If $\epsilon_{I}=\epsilon_{\| I}=\epsilon$, both approximations are exact:

$$
B_{n m}=B_{n m}^{C F A}=B_{n m}^{P}=\frac{1}{\epsilon(2 n+1)} \gamma_{n m} .
$$

Asymptotics

BIBEE/CFA is exact for the $n=0$ mode,

$$
B_{00}=B_{00}^{C F A}=\frac{\gamma_{00}}{\epsilon_{2}}
$$

whereas BIBEE/P approaches the exact response in the limit $n \rightarrow \infty$:

Asymptotics

BIBEE/CFA is exact for the $n=0$ mode,

$$
B_{00}=B_{00}^{C F A}=\frac{\gamma_{00}}{\epsilon_{2}}
$$

whereas BIBEE/P approaches the exact response in the limit $n \rightarrow \infty$:

$$
\lim _{n \rightarrow \infty} B_{n m}=\lim _{n \rightarrow \infty} B_{n m}^{P}=\frac{1}{\left(\epsilon_{1}+\epsilon_{2}\right) n} \gamma_{n m}
$$

Asymptotics

In the limit $\epsilon_{1} / \epsilon_{2} \rightarrow 0$,

$$
\begin{aligned}
\lim _{\epsilon_{1} / \epsilon_{2} \rightarrow 0} B_{n m} & =\frac{\gamma_{n m}}{\epsilon_{2}(n+1)} \\
\lim _{\epsilon_{1} / \epsilon_{2} \rightarrow 0} B_{n m}^{C F A} & =\frac{\gamma_{n m}}{\epsilon_{2}(2 n+1)}, \\
\lim _{\epsilon_{1} / \epsilon_{2} \rightarrow 0} B_{n m}^{P} & =\frac{\gamma_{n m}}{\epsilon_{2}\left(n+\frac{1}{2}\right)},
\end{aligned}
$$

so that the approximation ratios are given by

$$
\frac{B_{n m}^{C F A}}{B_{n m}}=\frac{n+1}{2 n+1}, \quad \frac{B_{n m}^{P}}{B_{n m}}=\frac{n+1}{n+\frac{1}{2}}
$$

Improved Accuracy

BIBEE/I interpolates between BIBEE/CFA and BIBEE/P

Bardhan, Knepley, JCP, 2011.

Basis Augmentation

We examined the more complex problem of protein-ligand binding using trypsin and bovine pancreatic trypsin inhibitor (BPTI), using electrostatic component analysis to identify residue contributions to binding and molecular recognition.

Basis Augmentation

Looking at an ensemble of synthetic proteins, we can see that BIBEE/CFA becomes more accurate as the monopole moment increases, and BIBEE/P more accurate as it decreases. BIBEE// is accurate for spheres, but must be extended for ellipses.

Basis Augmentation

For ellipses, we add a few low order multipole moments, up to the octopole, to recover 5\% accuracy for all synthetic proteins tested.

Spheres

Ellpsoids

Resolution

Boundary element discretizations of the solvation problem:

- can be expensive to solve
- Bounding the electrostatic free energies associated with linear continuum
models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009
- are more accurate than required by intermediate design iterations
contributions of molecular binding, Kreienkamp, et al., Molecular-Based
Mathematical Biology, 2013

Resolution

Boundary element discretizations of the solvation problem:

- can be expensive to solve
- Bounding the electrostatic free energies associated with linear continuum models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009
- are more accurate than required by intermediate design iterations
- Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding, Kreienkamp, et al., Molecular-Based Mathematical Biology, 2013

Resolution

Boundary element discretizations of the solvation problem:

- can be expensive to solve
- Bounding the electrostatic free energies associated with linear continuum models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009
- are more accurate than required by intermediate design iterations
- Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding, Kreienkamp, et al., Molecular-Based Mathematical Biology, 2013

Outline

(1) Approximating the Poisson Operator

(2) Improving the Poisson Operator

Origins of Electrostatic Asymmetry

Improving the Poisson Operator

Origins of Electrostatic Asymmetry

Origins of Electrostatic Asymmetry

Main Idea

Solvation-Layer Interface Condition (SLIC)

Instead of assuming the model and energy and deriving the radii,

$$
\epsilon_{l} \frac{\partial \Phi_{I}}{\partial n}=\epsilon_{\| l} \frac{\partial \Phi_{I I}}{\partial n}
$$

Main Idea

Solvation-Layer Interface Condition (SLIC)

assume the energy and radii and derive the model.

$$
\left(\epsilon_{l}-\Delta \epsilon h\left(E_{n}\right)\right) \frac{\partial \Phi_{I}}{\partial n}=\left(\epsilon_{I I}-\Delta \epsilon h\left(E_{n}\right)\right) \frac{\partial \Phi_{I I}}{\partial n}
$$

Main Idea

Solvation-Layer Interface Condition (SLIC)

Using our correspondence with the BIE form,

$$
\left(\mathcal{I}+h\left(E_{n}\right)+\hat{\epsilon}\left(-\frac{1}{2} \mathcal{I}+\mathcal{D}^{*}\right)\right) \sigma=\hat{\epsilon} \sum_{k=1}^{Q} \frac{\partial G}{\partial n}
$$

where h is a diagonal nonlinear integral operator.

$$
h\left(E_{n}\right)=\alpha \tanh \left(\beta E_{n}-\gamma\right)+\mu
$$

where
α Size of the asymmetry
β Width of the transition region
γ The transition field strength
μ Assures $h(0)=0$, so $\mu=-\alpha \tanh (-\gamma)$

Accuracy of SLIC

Residues

Accuracy of SLIC

Protonation

Accuracy of SLIC

Synthetic Molecules

Accuracy of SLIC

Synthetic Molecules

Accuracy of SLIC

Synthetic Molecules

Thermodynamics

The parameters show linear temperature dependence

Model Validation

Courtesy A. Molvai Tabrizi

Model Validation

Courtesy A. Molvai Tabrizi

Solvent	$r_{s}(\AA)$	$\epsilon_{\text {out }}(T)$	$\epsilon_{\text {out }}\left(25^{\circ} \mathrm{C}\right)$
W	1.370	$\epsilon_{\text {out }}=87.740-4.0008 \mathrm{e}-1 T+9.398 \mathrm{e}-4 T^{2}-1.410 \mathrm{e}-6 T^{3}$	78.3
MeOH	1.855	$\log _{10} \epsilon_{\text {out }}=\log _{10}(32.63)-2.64 \mathrm{e}-3(T-25)$	32.6
EtOH	2.180	$\log _{10} \epsilon_{\text {out }}=\log _{10}(24.30)-02.70 \mathrm{e}-3(T-25)$	24.3
F	1.725	$\epsilon_{\text {out }}=109-7.2 \mathrm{e}-1(T-20)$	105.4
AN	2.135	$\epsilon_{\text {out }}=37.50-1.6 \mathrm{e}-1(T-20)$	36.7
DMF	2.585	$\epsilon_{\text {out }}=42.04569-2.204448 \mathrm{e}-1 T+7.718531 \mathrm{e}-4 T^{2}-1.000389 \mathrm{e}-6 T^{3}$	37.0
DMSO	2.455	$\epsilon_{\text {out }}=-60.5+(5.7 \mathrm{e} 4 /(T+273.15))-\left(7.5 \mathrm{e} 6 /(T+273.15)^{2}\right)$	46.3
NM	2.155	$\log _{10} \epsilon_{\text {out }}=\log _{10}(35.8)-1.89 \mathrm{e}-3(T-30)$	36.6
PC	2.680	$\epsilon_{\text {out }}=56.670738+2.58431 \mathrm{e}-1 T-7.7143 \mathrm{e}-4 T^{2}$	62.6

Model Validation

Courtesy A. Molvai Tabrizi

Model Validation

Courtesy A. Molvai Tabrizi

Model Validation
 Courtesy A. Molvai Tabrizi

A. Molavi Tabrizi, M.G. Knepley, and J.P. Bardhan, Generalising the mean spherical approximation as a multiscale, nonlinear boundary condition at the solute-solvent interface, Molecular Physics (2016).

Thermodynamic Predictions

Courtesy A. Molvai Tabrizi

Solvent	Ion	$\Delta \mathrm{G}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	$\Delta \mathrm{S}\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$	$\mathrm{C}_{\mathrm{p}}\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$
W	F^{-}	$-430(-429)$	$-67(-115)$	$-86(-45)$
MeOH	Rb^{+}	$-326(-319)$	$-178(-175)$	55
	$\mathrm{~F}^{-}$	-415	-116	$-79(-131)$
EtOH	Rb^{+}	$-319(-313)$	$-197(-187)$	128
	$\mathrm{~F}^{-}$	-405	-145	$-153(-194)$
F	Rb^{+}	$-340(-334)$	$-135(-130)$	27
	$\mathrm{~F}^{-}$	-418	-128	$36(28)$
AN	F^{-}	-390	-192	147
DMF	F^{-}	-389	-230	105
DMSO	Rb^{+}	$-348(-339)$	$-151(-180)$	32
	$\mathrm{~F}^{-}$	-400	-160	$186(60)$
NM	Rb^{+}	$-324(-318)$	$-186(-183)$	19
	$\mathrm{~F}^{-}$	-391	-182	$95(71)$
PC	F^{-}	-394	-149	67

Experimental Data in Parentheses

Thermodynamic Predictions

 Courtesy A. Molvai TabriziA. Molavi Tabrizi, S. Goossens, M.G. Knepley, and J.P. Bardhan,

Predicting solvation thermodynamics with dielectric continuum theory and a solvation-layer interface condition (SLIC).
Submitted to Journal of Physical Chemistry Letters (2016).

Where does SLIC fail?

- Large packing fraction
- No charge oscillation or overcharging
- Could use CDFT
- No dielectric saturation
- Could be possible with different function
- No long range correlations
- Use nonlocal dielectric

Future Work

- More complex solutes
- Mixtures
- Integration into community code
- Psi4, QChem, APBS
- Integrate into conformational search
- Kavrakis Lab at Rice

Thank You!

http://www.caam.rice.edu/~mk51

