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Abstract. Many applications require the minimization of a smooth function f̂ : Rnu → R whose evaluation
requires the solution of a system of nonlinear equations. This system represents a numerical simulation that must be
run to evaluate f̂ . This system of nonlinear equations is referred to as an implicit constraint.

In principle f̂ can be minimized using the steepest descent method or Newton-type methods for unconstrained
minimization. However, for the practical application of derivative based methods for the minimization of f̂ one has
to deal with many interesting issues that arise out of the presence of the implicit constraints that must be solved to
evaluate f̂ . This article studies some of these issues, ranging from sensitivity and adjoint techniques for derivative
computation to implementation issues in Newton-type methods. A discretized optimal control problem governed by
the unsteady Burgers equation is used to illustrate the ideas.

The material in this article is accessible to anyone with knowledge of Newton-type methods for finite dimen-
sional unconstrained optimization. Many of the concepts discussed in this article extend to and are used in areas
such as optimal control and PDE constrained optimization.
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1. Introducton. We are interested in the solution of

min
u∈U

f̂ (u), (1.1)

where U is a closed convex subset of Rnu , such as U = Rnu or U = [−1,1]nu , and f̂ : U → R
is a smooth function. The numerical solution of (2.1) using gradient-based and Newton-type
methods is discussed in most courses on Numerical Analysis (at least for the case U = Rnu )
and in courses on Optimization. Many textbooks such as [12, 22, 26] provide an excellent
introduction into these methods. We investigate their application in the case where the eval-
uation of objective function f̂ requires the solution of a system of nonlinear equations. This
situation arises in many science and engineering applications in which the evaluation of the
objective function involves a simulation. We refer to the system of nonlinear equations (the
simulation) as an implicit constraint. In theory standard optimization algorithms, such as
those discussed in the textbooks [12, 22, 26] can be applied to the solution of (1.1). However,
the practical application of these methods quickly leads to interesting questions related to

• gradient and Hessian computations for objective functions f̂ whose evaluation in-
volves the solution of an implicit constraint,

• software design issues arising in the implementation of gradient based methods for
the solution of (1.1),

• development of optimization algorithms for problems with inexact function and
derivative information.
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TX 77005-1892 (heinken@rice.edu).

1



2 M. HEINKENSCHLOSS

In this paper we will formulate these questions more carefully and explore answers.
As an example for an optimization problem (1.1) in which the evaluation of the objective

function requires the solution of a system of nonlinear equations, consider the design of
an airplane wing. Assume that we want to determine the shape of the wing to optimize
the performance of the aircraft. We measure the performance of the aircraft by the ratio
of lift over drag. If we assume that the wing can be represented using a combination of
surfaces parameterized by u = (u1, . . . ,unu), then we arrive at an optimization problem in u.
We want to find the shape of the wing represented by u such that the ratio of lift over drag
is maximized. Of course, we can convert the maximization problems into a minimization
problem by minimizing the negative ratio of lift over drag. However, to compute the ratio of
lift over drag for a given wing shape specified by u, we need to solve a complex system of
differential equations, the Navier-Stokes equations, to obtain the velocity and pressure of the
air flowing around the aircraft. From the velocity and pressure we are then able to compute
lift and drag. Thus the optimization problem which is of the form (1.1) and which on the
surface looks relatively simple is actually quite complicated because of the simulation, here
the solution of the Navier-Stokes equations, required to evaluate the objective function.

How does the presence of the simulation required for the evaluation of the objective func-
tion (1.1) impact the application of gradient based optimization algorithms for the solution
of (1.1)? We will explore answers to this question in a less complicated situation than that
of the wing design problem described before. We assume that the simulation by a system
of nonlinear algebraic equations. This setting allows us to explore the solution of (1.1) us-
ing basic results from real analysis, such the implicit function theorem and basic numerical
optimization methods, such as the steepest descent method or Newton’s method. In many
applications, the simulation is described by a systems of (partial) differential equations. Af-
ter discretization of the differential equations, one obtains a system of (nonlinear) algebraic
equations and the setting of this paper can be applied. Additionally this setting exposes us to
many concepts that one also counters in, e.g., optimal control problems and optimal design
problems governed by (partial) differential equations.

The Matlab codes used to solve the examples in this paper can be downloaded from

http://www.caam.rice.edu/∼heinken/software

2. Problem Formulation. We are interested in optimization problems (2.1) in which
the evaluation of f̂ requires the solution of a system of nonlinear equations. More precisely,
we assume that

f̂ (u) = f (y(u),u), (2.1)

where y(u) ∈ Rny is the solution of an equation

c(y,u) = 0. (2.2)

Here

f : Rny×nu → R, c : Rny×nu → Rny

are given functions.
To distinguish between the implicit function which is defined as the solution of (2.2) and

a vector in Rny , we use the notation y(·) to denote the implicit function and y to denote a vector
in Rny . Furthermore, we use subscripts y and u to denote partial derivatives. For example
cy(y,u)∈Rny×ny is the partial Jacobian of the function c with respect to y and ∇u f (y,u)∈Rnu

is the partial gradient of the function f with respect to u
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To make the formulation (1.1), (2.1), (2.2) rigorous, we make the following assumptions.
ASSUMPTION 2.1.
• For all u ∈U there exists a unique y ∈ Rny such that c(y,u) = 0.
• There exists an open set D ⊂ Rny×nu with {(y,u) : u ∈U, c(y,u) = 0} ⊂ D such

that f and c are twice continuously differentiable on D.
• The inverse cy(y,u)−1 exists for all (y,u) ∈ {(y,u) : u ∈U, c(y,u) = 0}.

Under these assumptions there exists a twice continuously differentiable function

y : Rnu → Rny

defined by

c(y(u),u) = 0.

Note that our Assumptions 2.1 are stronger than those required in the implicit function the-
orem. The standard assumptions of the implicit function theorem, only guarantee the local
existence of the implicit function y(·) and the differentiability of this function.

We call (1.1), (2.1), (2.2) an implicitly constrained optimization problem because the
solution of (2.2) is invisible to the optimization algorithm. Of course, in principle one can
formulate (1.1), (2.1), (2.2) as an equality constrained optimization problem. In fact, since y
is tied to u via the implicit equation (2.2), we could just include this equation into the problem
formulation and reformulate (1.1), (2.1), (2.2) as

min f (y,u),
s.t. c(y,u) = 0,

u ∈U.
(2.3)

In (2.3), the optimization variables are y ∈ Rny and u ∈ Rnu . The formulation (2.3) can have
significant advantages over (1.1), (2.1), (2.2), but in many applications the formulation of the
optimization problem as a constrained problem may not be possible, for example, because of
the huge size of y, which in applications can easily be many millions. We will return to the
issue of solving the implicitly constrained problem (1.1), (2.1), (2.2) versus the solving the
constrained problem (2.3) later. First, we focus on the solution of (1.1), (2.1), (2.2).

There are many algorithms for the solution of (1.1). See, e.g., the textbooks [7, 12, 22,
26]. We state a simple version of the Newton-Conjugate Gradient method for solving (1.1)
with U = Rnu . The Newton equation ∇2 f̂ (uk)sk = −∇ f̂ (uk) is solved approximately using
the conjugate gradient (CG) method. The CG method is truncated if the Newton system
residual is sufficiently small, more precisely

‖∇2 f̂ (uk)sk +∇ f̂ (uk)‖2 ≤ ηk‖∇ f̂ (uk)‖2,

ηk ∈ (0,1), or if a direction of negative curvature is detected. Once the direction sk is com-
puted, a simple Armijo line-search procedure is used to compute the step-size αk. See, e.g.,
[22, 26] for more details.

ALGORITHM 2.2 (Newton-CG Method with Armijo Line-Search).
1. Given u0 and gtol > 0. Set k = 0.
2. Compute ∇ f̂ (uk).
3. If ‖∇ f̂ (uk)‖< gtol stop.
4. Compute ∇2 f̂ (uk).
5. Apply the CG method to compute an approximate solution of the Newton equation

∇2 f̂ (uk)sk =−∇ f̂ (uk) (we use i as the iteration index in the CG method):
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5.1. Set ηk ∈ (0,1), sk = 0 and pk,0 = rk,0 =−∇ f̂ (uk).
5.2. For i = 0,1,2, . . . do

i. If ‖rk,i‖2 < ηk‖rk0‖2 goto 5.3.
ii. Compute qk,i = ∇2 f̂ (uk)pi.

iii. If pT
k,iqk,i < 0 goto 5.3.

iv. γk,i = ‖rk,i‖2/pT
k,iqk,i.

v. sk = sk + γk,i pk,i .
vi. rk,i+1 = rk,i− γk,iqk,i.

vii. βk,i = ‖rk,i+1‖2/‖rk,i‖2 .
viii. pk,i+1 = rk,i+1 +βk,i pk,i .

5.3. If i = 0 set sk =−∇ f̂ (uk).
6. Perform Armijo line-search.

6.1. Set αk = 1 and evaluate f (uk +αksk).
6.2. While f (uk +αksk)> f (uk)+10−4αksT

k ∇ f̂ (uk) do
i. Set αk = αk/2 and evaluate f (uk +αksk).

7. Set uk+1 = uk +αksk, k← k+1. Goto 2.
Newton-CG Algorithm 2.2 requires the computation of gradients ∇ f̂ (uk) and the appli-

cation of Hessians ∇2 f̂ (uk) to vectors pi. We will discuss how to accomplish these tasks in
the following two sections.

3. Gradient Computations. Under Assumption 2.1, the implicit function theorem guar-
antees the differentiability of y(·). The Jacobian of y(·) is the solution of

cy(y,u)|y=y(u)yu(u) =−cu(y,u)|y=y(u). (3.1)

To simplify the notation we write cy(y(u),u) and cu(y(u),u) instead of cy(y,u)|y=y(u) and
cu(y,u)|y=y(u), respectively. With this notation, we have

yu(u) =−cy(y(u),u)−1cu(y(u),u). (3.2)

The derivative yu(u) is also called the sensitivity (of y with respect to u).
Since y(·) is differentiable, the function f̂ is differentiable and its gradient is given by

∇ f̂ (u) = yu(u)T
∇y f (y(u),u)+∇u f (y(u),u) (3.3)

=−cu(y(u),u)T cy(y(u),u)−T
∇y f (y(u),u)+∇u f (y(u),u).

Note that if we define the matrix

W (y,u) =
(
−cy(y,u)−1cu(y,u)

I

)
, (3.4)

then

W (y(u),u) =
(

yu(u)
I

)
(3.5)

and the gradient of f̂ can be written as

∇ f̂ (u) =W (y(u),u)T
∇x f (y(u),u). (3.6)

The matrix W (y,u) will play a role later.
Equation (3.3) suggests the following method for computing the gradient.
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ALGORITHM 3.1 (Gradient Computation Using Sensitivities).
1. Given u, solve c(y,u) = 0 for y (if not done already). Denote the solution by y(u).
2. Compute the sensitivities S = yu(u) by solving

cy(y(u),u)S =−cu(y(u),u).
3. Compute ∇ f̂ (u) = ST ∇y f (y(u),u)+∇u f (y(u),u).

The computation of the sensitivity matrix S requires the solution of nu systems of lin-
ear equations cy(y(u),u)S = −cu(y(u),u), all of which have the same system matrix but
different right hand sides. If nu is large this can be expensive. The gradient computation
can be executed more efficiently since for the computation of ∇ f̂ (u) we do not need S,
but only the application of ST to ∇y f (y(u),u). If we revisit (3.3), we can define λ(u) =
−cy(y(u),u)−T ∇y f (y(u),u), or, equivalently, we can define λ(u) ∈ Rny as the solution of

cy(y(u),u)T
λ =−∇y f (y(u),u). (3.7)

In optimization problems (2.1), (2.2) arising from discretized optimal control problems, the
system (3.7) are called the (discrete) adjoint equations and λ(u) is the (discrete) adjoint. With
this quantity, the gradient can now be written as

∇ f̂ (u) = ∇u f (y(u),u)+ cu(y(u),u)T
λ(u), (3.8)

which suggests the so-called adjoint equation method for computing the gradient.
ALGORITHM 3.2 (Gradient Computation Using Adjoints).

1. Given u, solve c(y,u) = 0 for y (if not done already).
2. Solve the adjoint equation cy(y(u),u)T λ =−∇y f (y(u),u) for λ. Denote the solution

by λ(u).
3. Compute ∇ f̂ (u) = ∇u f (y(u),u)+ cu(y(u),u)T λ(u).

The gradient computation using the adjoint equation method can also be expressed using
the Lagrangian

L(y,u,λ) = f (y,u)+λ
T c(y,u) (3.9)

corresponding to the constraint problem (2.3). Using the Lagrangian, the equation (3.7) can
be written as

∇yL(y,u,λ)|y=y(u),λ=λ(u) = 0. (3.10)

Moreover, (3.8) can be written as

∇ f̂ (u) = ∇uL(y,u,λ)|y=y(u),λ=λ(u). (3.11)

The adjoint equations (3.7) or (3.10) are easy to write down in this abstract setting, but
(hand) generating a code to set up and solve the adjoint equations can be quite a different
matter. This will become somewhat apparent when we discuss a simple optimal control
example in Section 6. The following observation can be used to generate some checks that
indicate the correctness of the adjoint code. Assume that we have a code that for given u
computes the solution y of c(y,u) = 0. Often it is not too difficult to derive from this a code
that for given r computes the solution s of cy(y,u)s = r. If λ solves the adjoint equation
cy(y,u)T λ =−∇y f (y,u), then

−sT
∇y f (y,u) = sT cy(y,u)T

λ = rT
λ (3.12)

must hold.
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4. Hessian Computations. Since we assume f and c to be twice continuously differen-
tiable, the function f̂ is twice continuous differentiable. The Hessian of f̂ can be computed
from (3.11). In fact, we have already computed the derivative of y(·) in (3.2) using the im-
plicit function theorem. Analogously we can apply the implicit function theorem to (3.7) or
equivalently (3.10) to compute the derivative of λ(·). Differentiating (3.10) gives

∇yyL(y,u,λ)|y=y(u),λ=λ(u) yu(u)+∇yuL(y,u,λ)|y=y(u),λ=λ(u)

+∇yλL(y,u,λ)|y=y(u),λ=λ(u) λu(u) = 0.

If we use ∇yλL(y,u,λ) = cy(y,u)T and (3.2) in the previous equation we find that

λu(u) = cy(y(u),u)−T [
∇yyL(y(u),u,λ(u))cy(y(u),u)−1cu(y(u),u)

−∇yuL(y(u),u,λ(u))
]
. (4.1)

To simplify the expression, we have used the notation ∇yyL(y(u),u,λ(u)) instead of
∇yyL(y,u,λ)|y=y(u),λ=λ(u) yu(u) and analogous notation for the other derivatives of L. We
will continue to use this notation in the following.

Now we can compute the Hessian of f̂ by differentiating (3.11),

∇
2 f̂ (u) = ∇uyL(y(u),u,λ(u))yu(u)+∇uuL(y(u),u,λ(u))

+∇uλL(y(u),u,λ(u))λu(u). (4.2)

If we insert (4.1) and (3.2) into (4.2) and observe that ∇uλL(y(u),u,λ(u)) = cu(y(u),u) the
Hessian can be written as

∇
2 f̂ (u) = cu(y(u),u)T cy(y(u),u)−T

∇yyL(y(u),u,λ(u))cy(y(u),u)−1cu(y(u),u)

−cu(y(u),u)T cy(y(u),u)−T
∇yuL(y(u),u,λ(u))

−∇uyL(y(u),u,λ(u))cy(y(u),u)−1cu(y(u),u)+∇uuL(y(u),u,λ(u))

=W (y(u),u)T
(

∇yyL(y(u),u,λ(u)) ∇yuL(y(u),u,λ(u))
∇uyL(y(u),u,λ(u)) ∇uuL(y(u),u,λ(u))

)
W (y(u),u). (4.3)

Obviously the identities (4.3) can be used to compute the Hessian. However, in many
cases, the computation of the Hessian is too expensive. In that case optimization algorithms,
such as the Newton-CG Algorithm 2.2 , that only require the computation of Hessian–times–
vector products ∇2 f̂ (u)v can be used. Using the equality (4.3) Hessian–times–vector products
can be computed as follows.

ALGORITHM 4.1 (Hessian–Times–Vector Computation).
1. Given u, solve c(y,u) = 0 for y (if not done already). Denote the solution by y(u).
2. Solve the adjoint equation cy(y(u),u)T λ=−∇y f (y(u),u) for λ (if not done already).

Denote the solution by λ(u).
3. Solve the equation cy(y(u),u)w = cu(y(u),u)v.
4. Solve the equation

cy(y(u),u)T p = ∇yyL(y(u),u,λ(u))w−∇yuL(y(u),u,λ(u))v.
5. Compute

∇2 f̂ (u)v = cu(y(u),u)T p−∇uyL(y(u),u,λ(u))w+∇uuL(y(u),u,λ(u))v.
Hence, if y(u) and λ(u) are already known, then the computation of ∇2 f̂ (u)v requires

the solution of two linear equations. One similar to the linearized state equation, Step 3, and
one similar to the adjoint equation, Step 4.

We conclude this section with an observation concerning the connection between the
Newton equation ∇2 f̂ (u)su =−∇ f̂ (u) or the Newton–like equation Ĥ su =−∇ f̂ (u) and the
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solution of a quadratic program. These observations also emphasize the connection between
the implicitly constrained problem (2.1) and the nonlinear programming problem (2.3).

THEOREM 4.2. Let cy(y(u),u) be invertible and let ∇2 f̂ (u) be symmetric positive
semidefinite. The vector su solves the Newton equation

∇
2 f̂ (u)su =−∇ f̂ (u) (4.4)

if and only if (sy,su) with sy = cy(y(u),u)−1cu(y(u),u)su solves the quadratic program

min
(

∇y f (y,u)
∇u f (y,u)

)T ( sy
su

)
+ 1

2

(
sy
su

)T (
∇yyL(y,u,λ) ∇yuL(y,u,λ)
∇uyL(y,u,λ) ∇uuL(y,u,λ)

)(
sy
su

)
,

s.t. cy(y,u)sy + cu(y,u)su = 0,
(4.5)

where y = y(u) and λ = λ(u).
Proof. Every feasible point for (4.5) obeys(

sy
su

)
=

(
cy(y(u),u)−1cu(y(u),u)su

su

)
=W (y(u),u)su.

Thus, using (3.6) and (4.3), we see that (4.5) is equivalent to

min
su

sT
u ∇ f̂ (u)+ 1

2 sT
u ∇

2 f̂ (u)su. (4.6)

The desired result now follows from the equivalence of (4.5) and (4.6).
Similarly, one can show the following result.
THEOREM 4.3. Let cy(y(u),u) be invertible and let Ĥ ∈ Rnu×nu be a symmetric positive

semidefinite matrix. The vector su solves the Newton–like equation

Ĥ su =−∇ f̂ (u), (4.7)

if and only if (sy,su) with sy = cy(y(u),u)−1cu(y(u),u)su solves the quadratic program

min
(

∇y f (y,u)
∇u f (y,u)

)T ( sy
su

)
+ 1

2

(
sy
su

)T ( 0 0
0 Ĥ

)(
sy
su

)
,

s.t. cy(y,u)sy + cu(y,u)su = 0,

(4.8)

where y = y(u) and λ = λ(u).

5. Gauss-Newton. In this section we assume that f is the form

f (y,u) = 1
2‖Qy−d‖2

2 +R(u) (5.1)

where Q ∈ Rm×ny is a given matrix, d ∈ Rm is a given vector, and R : Rnu → R is a twice
continuously differentiable function. This type of objective function arises in data fitting
problems, were Qy are observations of the system state, d are data, and R(u) is a regularization
term.

The reduced objective function corresponding to (5.1) is

f̂ (u) = 1
2‖Qy(u)−d‖2

2 +R(u), (5.2)

where y(u) is the unique solution of c(y,u) = 0. The Gauss-Newton method minimizes f̂ by
solving a sequence of quadratic problems

min
su

1
2‖Qyu(u)su +Qy(u)−d‖2

2 +∇R(u)T su +
1
2 sT

u ∇
2R(u)su. (5.3)
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We have

1
2‖Qyu(u)su +Qy(u)−d‖2

2 +∇R(u)T su +
1
2 sT

u ∇R(u)su

= 1
2‖Qy(u)−d‖2

2 +(Qy(u)−d)T Qyu(u)su +
1
2 sT

u yu(u)QT Qyu(u)su

+∇R(u)T su +
1
2 sT

u ∇
2R(u)su.

The Gauss-Newton approximation of the Hessian ∇2 f̂ (u) is

Ĝ(u) = yu(u)QT Qyu(u)+∇
2R(u). (5.4)

Note that Ĝ(u) is obtained from ∇2 f̂ (u) in (4.3) by replacing L(y,u,λ) = 1
2‖Qy− d‖2

2 +

R(u) + λT c(y,u) with L(y(u),u,0) = 1
2‖Qy− d‖2

2 + R(u). Note that if Qy = d, then the
Lagrange multiplier λ = −cy(y,u)−1∇y f (y,u) = −cy(y,u)−1QT (Qy− d) = 0, i.e., for zero
residual problems, the Gauss-Newton Hessian approximation is equal to the Hessian.

If we insert (3.2) into (5.4) the Gauss-Newton approximation of the Hessian can be writ-
ten as

∇
2 f̂ (u) = cu(y(u),u)T cy(y(u),u)−T QT Qcy(y(u),u)−1cu(y(u),u)+∇

2R(u)

=W (y(u),u)T
(

QT Q 0
0 ∇2R(u)

)
W (y(u),u). (5.5)

The Gauss–Newton–Hessian–times–vector products can be computed as follows. (Step
2 is left empty to facilitate comparison with Algorithm 4.1, see below.)

ALGORITHM 5.1 (Gauss–Newton–Hessian–Times–Vector Computation).
1. Given u, solve c(y,u) = 0 for y (if not done already). Denote the solution by y(u).
2. (Nothing needs to be done in this step.)
3. Solve the equation cy(y(u),u)w = cu(y(u),u)v.
4. Solve the equation cy(y(u),u)T p = QT Qw.
5. Compute Ĝ(u)v = cu(y(u),u)T p+∇2R(u)v.

Note that ∇yyL(y(u),u,0) = QT Q, ∇yuL(y(u),u,0) = 0, ∇uuL(y(u),u,0) = 0, and
∇uuL(y(u),u,0) = ∇2R(u). If we compare Algorithms 4.1 and 5.1, then we see that Gauss–
Newton–Hessian–times–vector product is computed by using Algorithm 4.1 with λ(u) = 0.

Analogously to Theorem 4.2 we can show the following result.
THEOREM 5.2. Let cy(y(u),u) be invertible. The vector su solves the Gauss-Newton

subproblem

min
su

1
2‖Qyu(u)su +Qy(u)−d‖2

2 +∇R(u)T su +
1
2 sT

u ∇
2R(u)su (5.6)

if and only if (sy,su) with sy = cy(y(u),u)−1cu(y(u),u)su solves the quadratic program

min
(

QT (Qy−d)
∇R(u)

)T ( sy
su

)
+ 1

2

(
sy
su

)T ( QT Q 0
0 ∇2R(u)

)(
sy
su

)
,

s.t. cy(y,u)sy + cu(y,u)su = 0,

(5.7)

where y = y(u).
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6. Optimal Control of Burgers’ Equation.

6.1. The Infinite Dimensional Problem. We demonstrate the gradient and Hessian
computation using an optimal control problems governed by the so-called Burgers’ equation.
The Burgers equation can be viewed as the Navier-Stokes equations in one space dimension
and it was introduced by Burgers [9, 10]. We first state the optimal control problem in the
differential equation setting and then introduce a simple discretization to arrive at a finite
dimensional problem of the type (2.1).

We want to minimize

min
u

1
2

∫ T

0

∫ 1

0
(y(x, t)− z(x, t))2 +ωu2(x, t)dxdt, (6.1a)

where y is the solution of

∂

∂t y(x, t)−ν
∂2

∂x2 y(x, t)+ ∂

∂x y(x, t)y(x, t) = r(x, t)+u(x, t) (x, t) ∈ (0,1)× (0,T ),

y(0, t) = y(1, t) = 0 t ∈ (0,T ),

y(x,0) = y0(x) x ∈ (0,1),
(6.1b)

where z : (0,1)× (0,T )→ R, r : (0,1)× (0,T )→ R, and y0 : (0,1)→ R are given functions
and ω,ν > 0 are given parameters. The parameter ν > 0 is also called the viscosity and the
differential equation (6.1b) is known as the (viscous) Burgers’ equation. The problem (6.1)
is studied, e.g., in [25, 31]. As we have mentioned earlier, (6.1) can be viewed as a first step
towards solving optimal control problems governed by the Navier-Stokes equations [2, 17].

In this context of (6.1) the function u is called the control, y is called the state, and
(6.1b) is called the state equation. We do not study the infinite dimensional problem (6.1),
but instead consider a discretization of (6.1).

6.2. Problem Discretization. To discretize (6.1) in space, we use piecewise linear finite
elements. For this purpose, we multiply the differential equation in (6.1b) by a sufficiently
smooth function ϕ which satisfies ϕ(0) = ϕ(1) = 0. Then we integrate both sides over (0,1),
and apply integration by parts. This leads to

d
dt

∫ 1

0
y(x, t)ϕ(x)dx+ν

∫ 1

0

∂

∂x
y(x, t)

d
dx

ϕ(x)dx+
∫ 1

0

∂

∂x
y(x, t)y(x, t)ϕ(x)dx

=
∫ 1

0
(r(x, t)+u(x, t))ϕ(x)dx. (6.2)

Now we subdivide the spatial interval [0,1] into n subintervals [xi−1,xi], i = 1, . . . ,n, with
xi = ih and h = 1/n. We define piecewise linear (‘hat’) functions

ϕi(x) =

 h−1(x− (i−1)h) x ∈ [(i−1)h, ih]∩ [0,1],
h−1(−x+(i+1)h) x ∈ [ih,(i+1)h]∩ [0,1],
0 else

i = 0, . . . ,n, (6.3)

which satisfy ϕ j(x j) = 1 and ϕ j(xi) = 0, i 6= j.
We approximate y and u by functions of the form

yh(x, t) =
n−1

∑
j=1

y j(t)ϕ j(x) (6.4)
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and

uh(x, t) =
n

∑
j=0

u j(t)ϕ j(x). (6.5)

We set

~y(t) = (y1(t), . . . ,yn−1(t))T and ~u(t) = (u0(t), . . . ,un(t))T ,

If we insert the approximations (6.4), (6.5) into (6.2) and require (6.2) to hold for for ϕ = ϕi,
i = 1, . . . ,n−1, then we obtain the system of ordinary differential equations

Mh
d
dt
~y(t)+Ah~y(t)+Nh(~y(t))+Bh~u(t) = rh(t), t ∈ (0,T ), (6.6)

where Mh,Ah ∈ R(n−1)×(n−1), Bh ∈ R(n−1)×(n+1), rh(t) ∈ Rn−1, and Nh(~y(t)) ∈ Rn−1 are ma-
trices or vectors with entries

(Mh)i j =
∫ 1

0
ϕ j(x)ϕi(x)dx,

(Ah)i j = ν

∫ 1

0

d
dx

ϕ j(x)
d
dx

ϕi(x)dx,

(Bh)i j =−
∫ 1

0
ϕ j(x)ϕi(x)dx,

(Nh(~y(t)))i =
n−1

∑
j=1

n−1

∑
k=1

∫ 1

0

d
dx

ϕ j(x)ϕk(x)ϕi(x)dx yk(t)y j(t),

(rh(t))i =
∫ 1

0
r(x, t)ϕi(x)dx.

If we insert (6.4), (6.5) into (6.1), we obtain∫ T

0

1
2
~y(t)T Mh~y(t)+(gh(t))T~y(t)+

ω

2
~u(t)T Qh~u(t)dt +

∫ T

0

∫ 1

0

1
2

ŷ2(x, t)dxdt,

where Mh ∈ R(n−1)×(n−1) is defined as before and Qh ∈ R(n+1)×(n+1), gh(t) ∈ R(n−1) are a
matrix and vector with entries

(Qh)i j =
∫ 1

0
ϕ j(x)ϕi(x)dx,

(gh(t))i =−
∫ 1

0
z(x, t)ϕi(x)dx.

Thus a semi–discretization of the optimal control problem (6.1) is given by

min
~u

∫ T

0

1
2
~y(t)T Mh~y(t)+(gh(t))T~y(t)+

ω

2
~u(t)T Qh~u(t)dt, (6.7a)

where~y(t) is the solution of

Mh
d
dt~y(t)+Ah~y(t)+Nh(~y(t))+Bh~u(t) = rh(t), t ∈ (0,T ),

~y(0) = ~y0,
(6.7b)

where~y0 = (y0(h), . . . ,y0(1−h))T .
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Using the definition (6.3) of ϕi, i = 0, . . . ,n, it is easy to compute that

Mh =
h
6


4 1
1 4 1

. . . . . . . . .
1 4 1

1 4

∈R(n−1)×(n−1), Ah =
ν

h


2 −1
−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2

∈R(n−1)×(n−1),

Nh(~y(t)) =
1
6



y1(t)y2(t)+ y2
2(t)

−y2
1(t)− y1(t)y2(t)+ y2(t)y3(t)+ y2

3(t)
...

−y2
i−1(t)− yi−1(t)yi(t)+ yi(t)yi+1(t)+ y2

i+1(t)
...

−y2
n−3(t)− yn−3(t)yn−2(t)+ yn−2(t)yn−1(t)+ y2

n−1(t)
−y2

n−2(t)− yn−2(t)yn−1(t)


∈ Rn−1

and

Bh =−
h
6


1 4 1

1 4 1
. . . . . . . . .

1 4 1
1 4 1

 ∈ R(n−1)×(n+1), Qh =
h
6


2 1
1 4 1
. . . . . . . . .

1 4 1
1 2

 ∈ R(n+1)×(n+1).

To approximate the integrals arising in the definition of rh(t) and gh(t) we apply the composite
trapezoidal rule. This yields

(rh(t))i = h r(ih, t), (gh(t))i = h ŷ(ih, t).

Later we also need the Jacobian N′h(~y(t)) ∈ R(n−1)×(n−1), which is shown in Figure 6.1 .
To discretize the problem in time, we use the Crank-Nicolson method. We let

0 = t0 < t1 < .. . < tN+1 = T

and we define

∆ti = ti+1− ti, i = 0, . . . ,N.

We also introduce

∆t−1 = ∆tN+1 = 0.

The fully discretized problem is given by

min
~u0,...,~uN+1

N+1

∑
i=0

∆ti−1 +∆ti
2

(
1
2
~yT

i Mh~yi +(gh)
T
i ~yi +

ω

2
~uT

i Qh~ui

)
, (6.8a)

where~y1, . . . ,~yN+1 is the solution of(
Mh +

∆ti
2

Ah

)
~yi+1 +

∆ti
2

Nh(~yi+1)+
∆ti
2

Bh~ui+1

+
(
−Mh +

∆ti
2

Ah

)
~yi +

∆ti
2

Nh(~yi)+
∆ti
2

Bh~ui

−∆ti
2

(
rh(ti)+ rh(ti+1)

)
= 0, i = 0, . . . ,N, (6.8b)
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F
IG

.6.1.The
Jacobian

N
′h (~y(t))

N
′h (~y(t))

=
16 

y2 (t)
y1 (t)

+
2y2 (t)

−
2y1 (t)−

y2 (t)
y3 (t)−

y1 (t)
y2 (t)

+
2y3 (t)

...
...

...
−

2y
i−

1 (t)−
y

i (t)
y

i+
1 (t)−

y
i−

1 (t)
y

i (t)
+

2y
i+

1 (t)
...

...
...

−
2y

n−
3 (t)−

y
n−

2 (t)
y

n−
1 (t)−

y
n−

3 (t)
y

n−
2 (t)

+
2y

n−
1 (t)

−
2y

n−
2 (t)−

y
n−

1 (t)
−

y
n−

2 (t) 
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and~y0 is given. We denote the objective function in (6.8a) by f̂ and we set

u = (~uT
0 , . . . ,~u

T
N+1)

T .

We call u the control, y = (~yT
1 , . . . ,~y

T
N+1)

T the state, and (6.8b) is called the (discretized)
state equation.

Like with many applications, the verification that (6.8) satisfies the Assumptions 2.1, es-
pecially the first and third one, is difficult. If the set U of admissible controls u is constrained
in a suitable manner and if the parameters ν, h, ∆ti are chosen properly, then it is possible to
verify Assumptions 2.1. We ignore this issue and continue as if Assumptions 2.1 are valid for
(6.8). In our numerical experiments indicate that this is fine for our problem setting. We also
note that our simple Galerkin finite element method in space produces only meaningful re-
sults if the mesh size h is sufficiently small (relative to the viscosity ν and size of the solution
y). Otherwise the computed solution exhibits spurious oscillations. Again, for our parameter
settings, our discretization is sufficient.

Since the Burgers’ equation (6.8b) is quadratic in ~yi+1, the computation of ~yi+1, i =
0, . . . ,N, requires the solution of system of nonlinear equations. We apply Newton’s method
to compute the solution~yi+1 of (6.8b). We use the computed state~yi at the previous time step
as the initial iterate in Newton’s method.

6.3. Gradient and Hessian Computation. The fully discretized problem (6.8) is of the
form (1.1), (2.1), (2.2). To compute gradient and Hessian information we first set up the
Lagrangian corresponding to (6.8), which is given by

L(~y1, . . . ,~yN+1,~u0, . . . ,~uN+1,~λ1, . . . ,~λN+1)

=
N+1

∑
i=0

∆ti−1 +∆ti
2

(
1
2
~yT

i Mh~yi +(gh)
T
i ~yi +

ω

2
~uT

i Qh~ui

)
+

N

∑
i=0

~λT
i+1

[(
Mh +

∆ti
2

Ah

)
~yi+1 +

∆ti
2

Nh(~yi+1)+
∆ti
2

Bh~ui+1

+
(
−Mh +

∆ti
2

Ah

)
~yi +

∆ti
2

Nh(~yi)+
∆ti
2

Bh~ui

−∆ti
2

(
rh(ti)+ rh(ti+1)

)]
. (6.9)

The adjoint equations corresponding to (3.7) are obtained by setting the partial deriva-
tives with respect to yi of the Lagrangian (6.9) to zero and are given by

(
Mh +

∆tN
2 Ah +

∆tN
2 N′h(~yN+1)

)T
~λN+1 = −∆tN

2 (Mh~yN+1 +(gh)N+1),(
Mh +

∆ti−1
2 Ah +

∆ti−1
2 N′h(~yi)

)T
~λi = −

(
−Mh +

∆ti
2 Ah +

∆ti
2 N′h(~yi)

)T
~λi+1

−∆ti−1+∆ti
2 (Mh~yi +(gh)i), i = N, . . . ,1,

(6.10)
where N′h(~yi) denotes the Jacobian of Nh(~yi). (Recall that ∆tN+1 = 0.) Given the solution
of (6.10), the gradient of the objective function f̂ can be obtained by computing the partial
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derivatives with respect to ui of the Lagrangian (6.9). The gradient is given by

∇u f̂ (u) =


ω

∆t0
2 Qh~u0 +

∆t0
2 BT

h
~λ1

ω
∆t0+∆t1

2 Qh~u1 +BT
h (

∆t0
2
~λ1 +

∆t1
2
~λ2)

...
ω

∆tN−1+∆tN
2 Qh~uN +BT

h (
∆tN−1

2
~λN + ∆tN

2
~λN+1)

ω
∆tN

2 Qh~uN+1 +
∆tN

2 BT
h
~λN+1

 . (6.11)

(Recall that ∆t−1 = ∆tN+1 = 0.)
We summarize the gradient computation using adjoints in the following algorithm.
ALGORITHM 6.1 (Gradient Computation Using Adjoints).

1. Given~u0, . . . ,~uN+1, and~y0 compute~y1, . . . ,~yN+1 by solving(
Mh +

∆ti
2

Ah

)
~yi+1 +

∆ti
2

Nh(~yi+1)

=−
(
−Mh +

∆ti
2

Ah

)
~yi−

∆ti
2

Nh(~yi)−
∆ti
2

Bh(~ui+1 +~ui)+
∆ti
2

(
rh(ti)+ rh(ti+1)

)
,

for i = 0, . . . ,N.
2. Compute~λN+1, . . . ,~λ1 by solving(

Mh +
∆tN
2

Ah +
∆tN
2

N′h(~yN+1)
)T
~λN+1 =−

∆tN
2

(Mh~yN+1 +(gh)N+1),(
Mh +

∆ti−1

2
Ah +

∆ti−1

2
N′h(~yi)

)T
~λi =−

(
−Mh +

∆ti
2

Ah +
∆ti
2

N′h(~yi)
)T
~λi+1

−∆ti−1 +∆ti
2

(Mh~yi +(gh)i),

for i = N, . . . ,1.
3. Compute ∇u f̂ (u) from (6.11).

Of course, if we have computed the solution~y1, . . . ,~uN+1 of the discretized Burgers equa-
tion (6.8b) for the given ~u0, . . . ,~uN+1 already, then we can skip step 1 in Algorithm 6.1.
Furthermore, we can assemble the components of the gradient ∇u f̂ (u) that depend on~λi+1

immediately after it has been computed. This way we do not have to store all~λ1, . . . ,~λN+1.
We conclude by adapting Algorithm 4.1 to our problem. Since the the objective function

(6.8a) is quadratic and the implicit constraints (6.8b) are quadratic in y and linear in u, most of
the second derivative terms are zero. The multiplication of the Hessian ∇2

u f̂ (u) times vector
v computation can be performed using the following algorithm. In step 4 of the following
algorithm we use that Nh(y) is quadratic. Hence d

dy (N
′
h(~y)

T~λ)~w = N′h(~w)
T~λ.

ALGORITHM 6.2 (Hessian–Times–Vector Computation).
1. Given~u1, . . . ,~uN+1, and~y0 compute~y1, . . . ,~yN+1 by solving(

Mh +
∆ti
2

Ah

)
~yi+1 +

∆ti
2

Nh(~yi+1)

=−
(
−Mh +

∆ti
2

Ah

)
~yi−

∆ti
2

Nh(~yi)−
∆ti
2

Bh(~ui+1 +~ui)+
∆ti
2

(
rh(ti)+ rh(ti+1)

)
,

for i = 0, . . . ,N (if not done already).
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2. Compute~λN+1, . . . ,~λ1 by solving(
Mh +

∆tN
2

Ah +
∆tN
2

N′h(~yN+1)
)T
~λN+1 =−

∆tN
2

(Mh~yN+1 +(gh)N+1),(
Mh +

∆ti−1

2
Ah +

∆ti−1

2
N′h(~yi)

)T
~λi =−

(
−Mh +

∆ti
2

Ah +
∆ti
2

N′h(~yi)
)T
~λi+1

−∆ti−1 +∆ti
2

(Mh~yi +(gh)i),

for i = N, . . . ,1 (if not done already).
3. Compute ~w1, . . . ,~wN+1 from(

Mh+
∆ti
2

Ah+
∆ti
2

N′h(~yi+1)
)
~wi+1 =−

(
−Mh+

∆ti
2

Ah+
∆ti
2

N′h(~yi)
)
~wi+

∆ti
2

Bh(~vi+~vi+1),

i = 0, . . . ,N, where ~w0 = 0.
4. Compute ~pN+1, . . . ,~p1 by solving(

Mh +
∆tN
2

Ah +
∆tN
2

N′h(~yN+1)
)T

~pN+1 =
∆tN
2

Mh~wN+1 +
∆tN
2

N′h(~wN+1)
T~λN+1,(

Mh +
∆ti−1

2
Ah +

∆ti−1

2
N′h(~yi)

)T
~pi =−

(
−Mh +

∆ti
2

Ah +
∆ti
2

N′h(~yi)
)T

~pi+1

+
∆ti−1 +∆ti

2
Mh~wi +N′h(~wi)

T (∆ti−1

2
~λi +

∆ti
2
~λi+1

)
,

for i = N, . . . ,1.
5. Compute

∇
2 f̂ (u)v =


ω

∆t0
2 Qh~v0 +

∆t0
2 BT

h~p1

ω
∆t0+∆t1

2 Qh~v1 +BT
h (

∆t0
2 ~p1 +

∆t1
2 ~p2)

...
ω

∆tN−1+∆tN
2 Qh~vN +BT

h (
∆tN−1

2 ~pN + ∆tN
2 ~pN+1)

ω
∆tN

2 Qh~vN+1 +
∆tN

2 BT
h~pN+1

 .

The objective function in (6.8a) is of the form (5.1) with

QT Q =


∆t−1+∆t0

2 Mh
. . .

∆tN+∆tN+1
2 Mh

 , QT d =

 −(gh)0
· · ·

−(gh)N+1


and

R(~u0, . . . ,~uN+1) =
ω

2

N+1

∑
i=0

~uT
i Qh~ui.

Hence we can apply the Gauss-Newton method. The Gauss-Newton-times-vector products
are computed by the following algorithm. The difference between Algorithm 6.2 and Algo-
rithm 6.3 below is in step 4. Algorithm 6.3 is obtained from Algorithm 6.2 by replacing the
~λi’s in step 4 by zero.



16 M. HEINKENSCHLOSS

ALGORITHM 6.3 (Gauss-Newton-Hessian–Times–Vector Computation).
1. Given~u1, . . . ,~uN+1, and~y0 compute~y1, . . . ,~yN+1 by solving(

Mh +
∆ti
2

Ah

)
~yi+1 +

∆ti
2

Nh(~yi+1)

=−
(
−Mh +

∆ti
2

Ah

)
~yi−

∆ti
2

Nh(~yi)−
∆ti
2

Bh(~ui+1 +~ui)+
∆ti
2

(
rh(ti)+ rh(ti+1)

)
,

for i = 0, . . . ,N (if not done already).
2. Compute~λN+1, . . . ,~λ1 by solving(

Mh +
∆tN
2

Ah +
∆tN
2

N′h(~yN+1)
)T
~λN+1 =−

∆tN
2

(Mh~yN+1 +(gh)N+1),(
Mh +

∆ti−1

2
Ah +

∆ti−1

2
N′h(~yi)

)T
~λi =−

(
−Mh +

∆ti
2

Ah +
∆ti
2

N′h(~yi)
)T
~λi+1

−∆ti−1 +∆ti
2

(Mh~yi +(gh)i),

for i = N, . . . ,1 (if not done already).
3. Compute ~w1, . . . ,~wN+1 from(

Mh+
∆ti
2

Ah+
∆ti
2

N′h(~yi+1)
)
~wi+1 =−

(
−Mh+

∆ti
2

Ah+
∆ti
2

N′h(~yi)
)
~wi+

∆ti
2

Bh(~vi+~vi+1),

i = 0, . . . ,N, where ~w0 = 0.
4. Compute ~pN+1, . . . ,~p1 by solving(

Mh +
∆tN
2

Ah +
∆tN
2

N′h(~yN+1)
)T

~pN+1 =
∆tN
2

Mh~wN+1,(
Mh +

∆ti−1

2
Ah +

∆ti−1

2
N′h(~yi)

)T
~pi =−

(
−Mh +

∆ti
2

Ah +
∆ti
2

N′h(~yi)
)T

~pi+1

+
∆ti−1 +∆ti

2
Mh~wi,

for i = N, . . . ,1.
5. Compute

∇
2 f̂ (u)v =


ω

∆t0
2 Qh~v0 +

∆t0
2 BT

h~p1

ω
∆t0+∆t1

2 Qh~v1 +BT
h (

∆t0
2 ~p1 +

∆t1
2 ~p2)

...
ω

∆tN−1+∆tN
2 Qh~vN +BT

h (
∆tN−1

2 ~pN + ∆tN
2 ~pN+1)

ω
∆tN

2 Qh~vN+1 +
∆tN

2 BT
h~pN+1

 .
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6.4. A Numerical Example. We consider the optimal control problem (6.8) with data
T = 1, ω = 0.05, ν = 0.01, r = 0,

y0(x) =
{

1 x ∈ (0, 1
2 ],

0 else,

and z(x, t) = y0(x), t ∈ (0,T ) (cf. [23]). For the discretization we use nx = 80 spatial subin-
tervals and 80 time steps, i.e., ∆t = 1/80.

The solution y of the discretized Burgers’ equation (6.8b) with u(x, t) = 0 as well as the
desired state z are shown in Figure 6.2 .

FIG. 6.2. Solution of Burgers’ equation with u = 0 (no control) (left) and desired state z (right)
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The solution u of the optimal control problem (6.1), (6.1b), the corresponding solution
y(u∗) of the discretized Burgers’ equation (6.1b) and the solution λ(u∗) of (6.10) are plotted
in Figure 6.3 .

The convergence history of the Newton–CG method with Armijo-line search applied to
(6.8a) is shown in Table 6.1 . We use the Newton–CG Algorithm 2.2 with gtol = 10−8 and
ηk = min{0.01,‖∇ f̂ (uk)‖2}.

TABLE 6.1
Performance of a Newton-CG method applied to the solution of (6.1)

k f̂ (uk) ‖∇ f̂ (uk)‖2 ‖sk‖2 αk #CG iters
0 −8.320591e−02 3.056462e−03 1.350236e+02 0.5 8
1 −1.752788e−01 7.293242e−04 3.511393e+01 1.0 10
2 −1.861746e−01 9.073135e−05 4.239564e+00 1.0 16
3 −1.863410e−01 1.697294e−06 9.011109e−02 1.0 23
4 −1.863411e−01 1.061131e−09
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FIG. 6.3. Optimal control u∗ (upper left), corresponding solution y(u∗) of Burgers’ equation (upper right) and
corresponding Lagrange multipliers λ(u∗) (bottom)
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6.5. Checkpointing. In Algorithm 6.1 we note that the state equation is solved forward
for the ~yi’s while the adjoint equation is solved backward for the~λi’s. Moreover the states
~yN+1, . . . ,~y1 are needed for the computation of the adjoints~λN+1, . . . ,~λ1. If the size of the
state vectors ~yi is small enough so that all states ~y1, . . . ,~yN+1 can be held in the computer
memory, this dependence does not pose a difficulty. However, for many problems, such as
flow control problems governed by the unsteady Navier-Stokes equations, the states are too
large to hold the entire state history in computer memory. In this case one needs to apply
so-called checkpointing techniques.

With checkpointing one trades memory for state re-compuations. In a simple scheme
one keeps not every state~y0,~y1, . . . ,~yN+1, but only every Mth state~y0,~yM, . . . ,~yN+1 (here we
assume that N +1 is an integer multiple of M). In the computation of the adjoint variables~λi
for i ∈ {kM+1, . . . ,(k+1)M−1} and some k ∈ {0, . . . ,(N+1)/M} one needs~yi, which has
not been stored. Therefore, one uses the stored~ykM to re-compute~ykM+1, . . . ,~y(k+1)M−1.

ALGORITHM 6.4 (Gradient Computation Using Adjoints and Simple Checkpointing).
Let N and M be such that N +1 is an integer multiple of M.

1. Given~u0, . . . ,~uN+1, and~y0. Store~y0.
1.1. For k = 0, . . . ,(N +1)/M−1 solve(

Mh +
∆ti
2

Ah

)
~yi+1 +

∆ti
2

Nh(~yi+1)

=−
(
−Mh +

∆ti
2

Ah

)
~yi−

∆ti
2

Nh(~yi)−
∆ti
2

Bh(~ui+1 +~ui)+
∆ti
2

(
rh(ti)+ rh(ti+1)

)
,

for i = kM, . . . ,(k+1)M−1.
1.2. Store~y(k+1)M .

2. Adjoint computation.
2.1. Compute~λN+1 by solving(

Mh +
∆tN
2

Ah +
∆tN
2

N′h(~yN+1)
)T
~λN+1 =−

∆tN
2

(Mh~yN+1 +(gh)N+1).

Add the~λN+1 contribution to the appropriate entries of ∇u f̂ (u).
2.2. For k = (N +1)/M−1, . . . ,0

2.2.1 Re-compute~ykM+1, . . . ,~y(k+1)M−1 from the stored~ykM by solving(
Mh +

∆ti
2

Ah

)
~yi+1 +

∆ti
2

Nh(~yi+1)

=−
(
−Mh +

∆ti
2

Ah

)
~yi−

∆ti
2

Nh(~yi)−
∆ti
2

Bh(~ui+1 +~ui)+
∆ti
2

(
rh(ti)+ rh(ti+1)

)
,

for i = kM, . . . ,(k+1)M−1.
2.2.2 Compute~λ(k+1)M−1, . . .

~λkM by solving(
Mh +

∆ti−1

2
Ah +

∆ti−1

2
N′h(~yi)

)T
~λi =−

(
−Mh +

∆ti
2

Ah +
∆ti
2

N′h(~yi)
)T
~λi+1

−∆ti−1 +∆ti
2

(Mh~yi +(gh)i),

for i = (k+1)M−1, . . . ,kM.
After ~λi has been computed add the ~λi contribution to the appropriate
entries of ∇u f̂ (u).
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Note that for k = (N + 1)/M − 1 one really does not need to recompute the states
~yN+2−M, . . . ,~yN in step 2.2.1, since they are the last states computed in step 1.1. and should be
stored there. Algorithm 6.4 requires storage for (N + 1)/M + 1 vectors ~y0,~yM, . . . ,~yN+1, for
M−1 vectors~ykM+1, . . . ,~y(k+1)M−1 computed in step 2.2.1, and for one vector~λi. This sim-
ple checkpointing scheme has been used in [6] for the solution of an optimal control problem
governed by the unsteady Navier-Stokes equation.

The simple checkpointing scheme used in Algorithm 6.4 is not optimal in the sense that
given a certain memory size to store state information it uses too many state re-computations.
The issue of optimal checkpointing is studied in the context of Automatic Differentiation (see
also Section 8). The so-called reverse mode automatic differentiation is closely related to
gradient computations via the adjoint method. We refer to [15, Sec. 4] for more details. The
papers [16, 13] discuss implementations of checkpointing schemes and the paper [20] dis-
cusses the use of checkpointing schemes for adjoint based gradient computations in optimal
control problem governed by the unsteady Navier-Stokes equation.

7. Optimization. In the previous sections we have discussed the computation of gradi-
ent and Hessian information for the implicitly constrained optimization problem (1.1), (2.1),
(2.2). Thus it seems we should be able to apply a gradient based optimization algorithm, like
the Newton–CG Algorithm 2.2 to solve the problem. In fact, in the previous section we have
used the Newton–CG Algorithm 2.2 to solve the discretized optimal control problem (6.8).
However, there are important issues left to be dealt with. These are perhaps not so obvious
when one deals with the algorithms in the previous sections ‘on paper’, but they become
apparent when one actually as to implement the algorithms.

7.1. Implicit Constraints.

7.1.1. Avoiding Recomputations of y and λ. If we look at the Newton–CG Algorithm
2.2 we see that in each iteration k we have to compute a gradient ∇ f̂ (uk), we have to apply
the Hessian ∇2 f̂ (uk) to a number of vectors, and we have to evaluate the function f̂ at some
trial points. In a Matlab implementation of Newton–CG Algorithm 2.2 one may require the
user to supply three functions

function [f] = fval(u, usr_par)
function [g] = grad(u, usr_par)
function [Hv] = Hessvec(v, u, usr_par)

that evaluate the objective function f̂ (u), evaluate the gradient ∇ f̂ (u), and evaluate the
Hessian-times-vector product ∇2 f̂ (u)v, respectively. The last argument usr_par is included
to allow he user to pass problem specific parameters to the functions.

Now, if we look at Algorithms 3.1, 3.2, and 4.1 we see that the computation of ∇ f̂ (u)
and ∇2 f̂ (u)v all require the computation of y(u). Furthermore, the computation of ∇2 f̂ (u)v
requires the computation of λ(u). Since the computation y(u) can be expensive, we want
to reuse an already computed y(u) rather than to recompute y(u) every time fval, grad, or
Hessvec is called. Similarly we want to reuse λ(u) which has to be computed as part of the
gradient computation in Algorithm 3.2 during subsequent calls of Hessvec. Of course, if u
changes, we must recompute y(u) and λ(u). How can we do this?

If we know precisely what is going on in our optimization algorithm, then y(u) and λ(u)
can be reused. For example, if we use the Newton–CG Algorithm 2.2, then we know that
f̂ (uk) is evaluated before ∇ f̂ (uk) is computed. Moreover, we know that Hessian-times-vector
products ∇2 f̂ (uk)v computed only after ∇ f̂ (uk) is computed. Thus, in this case, when fval
is called, we compute y(uk) and store it to make it available for reuse in subsequent calls to
grad and Hessvec. Similarly, if the gradient is implemented via Algorithm 3.2, then when
grad is called we compute λ(uk) and store it to make it available for reuse in subsequent calls
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to Hessvec. This strategy works only because we know that the functions fval, grad, or
Hessvec are called in the right order. If the optimization is changed such that, say ∇ f̂ (uk) is
computed before f̂ (uk), the optimization algorithm will fail because it is no longer interfaced
correctly with our problem.

We need to find a way that allows us to separate the optimization algorithm (which
doesn’t need and shouldn’t need to know about the fact that the evaluation of our objective
function depends on the implicit function y(u)) from the particular optimization problem, but
allows us to avoid unnecessary recomputations of y(u) and λ(u). Such software design issues
are extremely important for the efficient implementation of optimization algorithms in which
function evaluations may involve expensive simulations. We refer to [3, 4, 5, 18, 27, 29], for
more discussions on such issues. In our Matlab implementation we deal with this issue by
expanding our interface between optimization algorithm and application slightly.

In our Matlab implementation, we require the user to supply a function
function [usr_par] = unew(u, usr_par)

The function unew is called by the optimization algorithm whenever u has been changed and
before any of the three functions fval, grad, or Hessvec are called. In our context, whenever
unew is called with argument u we compute y(u) and store it to make it available for reuse
in subsequent calls to fval, grad and Hessvec. If the implementer of the optimization
algorithm changes the algorithm and, say requires the computation of ∇ f̂ (uk) before the
computation of f̂ (uk) then she/he needs to ensure that unew is called with argument uk before
grad is called. This change of the optimization algorithm does not need to be communicated
to the user of the optimization algorithm. The interface would still work. We use this interface
in our Matlab implementation of the Newton–CG Algorithm 2.2 and of a limited memory
BFGS method which are available at

http://www.caam.rice.edu/∼heinken/software

The introduction of unew enables us to separate the optimization form the application and to
avoid unnecessary recomputations of y(u) and λ(u). It is not totally satisfactory, however,
since it requires that the optimization algorithm developer implements the use of unew cor-
rectly and it requires the application person not to accidentally overwrite information between
two calls of unew. These requirements become the more difficult to fulfill the more complex
the optimization algorithm and applications become. The papers mentioned above discuss
other approaches when C++ instead of Matlab is used.

7.1.2. Inexact Function and Derivative Information. The evaluation of the objective
function (2.1) requires the solution of the system of equations (2.2). If c is nonlinear in y, then
(2.2) typically must be solved using iterative methods, for example using Newton’s method.
Consequently, in practice we are not able to compute y(u), but only an approximation ỹε(u)
that satisfies ‖c(ỹε(u),u)‖ ≤ ε, where ε > 0 can be selected by the user via the choice of the
stopping tolerance of the iterative method applied to (2.2).

Of course, since in practice we can only compute an approximation ỹ(u) of y(u) we
can never compute the objective function f̂ in (2.1) and its derivatives exactly. Instead of
f̂ (u), ∇ f̂ (u), ∇2 f̂ (u)v we can only compute approximations f̂ε(u) = f (ỹε(u),u), ∇ f̂ε(u), and
∇2 f̂ε(u)v.

In our numerical solution of the optimal control problem (6.8) we have to solve the non-
linear equations in (6.8b) for ~yi+1, i = 0, . . . ,N. We do this by applying Newton’s method.
As the initial guess for ~yi+1 we use the computed solution ~yi in the previous time step. We
stop the Newton iteration when the residual is less than 10−2 min{h2,∆t2}. In our example,
the computed solution ~yi at the previous time step is a good approximation for the solu-
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tion ~yi+1 of (6.8b) and we only need one, at most two Newton steps to reduce the resid-
ual below 10−2 min{h2,∆t2}. We use the computed function and derivative information
f̂ε(u) = f (ỹε(u),u), ∇ f̂ε(u), and ∇2 f̂ε(u)v as if it was exact. Since the computed solution
~yi+1 is a very good approximation to the exact solution of (6.8b), the inexactness in the com-
puted function and derivative information is small relative to the required stopping tolerance
‖∇ f̂ (u)‖2 < gtol when gtol = 10−8, which was used to generate the Table 6.1. However,
if we set gtol = 10−12, the Newton–CG Algorithm 2.2 produces the output shown in (7.1).
We see that the gradient norm and the step norm are hardly reduced between iterations 4
and 5. The line-search fails in iteration 5 because no sufficient decrease could be detected
after 55 reduction of the trial step size α5 (see Step 6.2 in the Newton–CG Algorithm 2.2).
If in the Newton iteration for the solution of (6.8b) we reduce the residual stopping toler-
ance to 10−5 min{h2,∆t2}, then the Newton–CG Algorithm 2.2 converges in 5 iterations, see
Table 7.2.

TABLE 7.1
Performance of a Newton-CG method with gtol = 10−12 applied to the solution of (6.1). The systems (6.8b)

are solved with a residual stopping tolerance of 10−2 min{h2,∆t2}

k f̂ (uk) ‖∇ f̂ (uk)‖2 ‖sk‖2 αk #CG iters
0 −8.320591e−02 3.056462e−03 1.350236e+02 5.00e−01 8
1 −1.752788e−01 7.293242e−04 3.511393e+01 1.00e+00 10
2 −1.861746e−01 9.073135e−05 4.239564e+00 1.00e+00 16
3 −1.863410e−01 1.697294e−06 9.011109e−02 1.00e+00 23
4 −1.863411e−01 1.061131e−09 4.866485e−05 7.63e−06 36
5 −1.863411e−01 1.061122e−09 4.866448e−05 F 36

TABLE 7.2
Performance of a Newton-CG method with gtol = 10−12 applied to the solution of (6.1). The systems (6.8b)

are solved with a residual stopping tolerance of 10−5 min{h2,∆t2}

k f̂ (uk) ‖∇ f̂ (uk)‖2 ‖sk‖2 αk #CG iters
0 −8.320590e−02 3.056462e−03 1.350237e+02 5.00e−01 8
1 −1.752752e−01 7.294590e−04 3.511488e+01 1.00e+00 10
2 −1.861738e−01 9.070177e−05 4.239663e+00 1.00e+00 15
3 −1.863401e−01 1.696622e−06 9.009389e−02 1.00e+00 23
4 −1.863401e−01 1.031566e−09 4.663490e−05 1.00e+00 37
5 −1.863401e−01 4.666573e−16

In the simple problem (6.8) we are able to solve the implicit constraints (6.8b) rather
accurately. Consequently, even for an optimization stopping tolerance gtol = 10−8 (which
arguably is small for our discretization of (6.1)) the Newton–CG Algorithm 2.2 converges.
In other applications the inexactness in the solution of the implicit equation will affect the
optimization algorithm even for coarser stopping tolerances gtol.

The ‘hand-tuning’ of stopping tolerances for the implicit equation and the optimization
algorithm is, of course, very unsatisfactory. Ideally one would like an optimization algorithm
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that selects these automatically and allows more inexact and therefore less expensive solves
of the implicit equation at the beginning of the optimization iteration. One difficulty is that
one cannot compute the error in function and derivative information, but one can usually only
provide an asymptotic estimate of the form | f̂ε(u)− f̂ (u)|= O(ε).

There are approaches to handle inexact function and derivative information in optimiza-
tion algorithms. For example, a general approach to this problem is presented in the book
[28]. Additionally, Section 10.6 in [11] describes an approach to adjust the accuracy of func-
tion values and derivatives in a trust-region method (see also the references in that section).
Handling inexactness in optimization algorithms to increase the efficiency of the overall al-
gorithm by using rough, inexpensive function and derivative information whenever possible
while maintaining the robustness of the optimization algorithm are important research prob-
lems. Although approaches exist, more work remains to be done.

7.2. Constrainted Optimization. One may wonder why we have treated (1.1), (2.1),
(2.2) as an implicitly constrained problem rather than using (2.3). Clearly the explicitly con-
strained formulation (2.3) has several advantages:
1) Often the problem (2.3) is well-posed, even if the constraint c(y,u) = 0 has multiple or no
solutions y for some u.
2) The inexactness in function and derivative information that we have discussed in the pre-
vious section and that arises out of the solution of c(y,u) = 0 for y is no longer an issue, since
y and u are both optimization variables in (2.3) and no implicit function has to be computed.
3) Finally, optimization algorithms for (2.3), such as sequential quadratic programming (SQP)
methods do not have to maintain feasibility throughout the iteration. This can lead to large
gains in efficiency of SQP methods for (2.3) over Newton-type methods for the implicitly
constrained problem (1.1), (2.1), (2.2).
If possible, the formulation (2.3) should be chosen over (1.1), (2.1), (2.2). However, in many
applications the number of y variables is so huge that it is infeasible to keep all in memory.
This is for example the case for problems in which c(y,u)= 0 corresponds to the discretization
of time dependent partial differential equations in 3D. (Our 1D example problem in Section 6
is a baby sibling of such problems.)

Constrained optimization problems of the type (2.3) can be solved using SQP methods.
We mention a few ingredients of SQP methods for the solution of (2.3) with U =Rnu to point
out the relation between SQP methods for (2.3) and Newton-type methods for the implicitly
constrained problem (1.1), (2.1), (2.2). More details on SQP methods can be found in [26].

SQP methods compute a solution of (2.3) with U = Rnu by solving a sequence of
quadratic programming (QP) problems

min
(

∇y f (y,u)T

∇u f (y,u)

)T ( sy
su

)
+ 1

2

(
sy
su

)T (
∇yyL(y,u,λ) ∇yuL(y,u,λ)
∇uyL(y,u,λ) ∇uuL(y,u,λ)

)(
sy
su

)
,

s.t. cy(y,u)sy + cu(y,u)su =−c(y,u),
(7.1)

where H is the Hessian of the Lagrangian (3.9),

H =

(
∇yyL(y,u,λ) ∇yuL(y,u,λ)
∇uyL(y,u,λ) ∇uuL(y,u,λ)

)
or a replacement thereof. In so-called reduced SQP methods one uses

H =

(
0 0
0 Ĥ

)
.
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The QP (7.1) is almost identical to the QPs (4.5) and (4.8) arising in Newton-type methods
for the implicitly constrained problem (1.1), (2.1), (2.2). In the QPs (4.5) and (4.8), y = y(u)
and λ = λ(u) and the right hand side of the constraint is c(y(u),u) = 0. This indicates that
one step of an SQP method for (2.3) may not be computationally more expensive than one
step of a Newton type method for (1.1), (2.1), (2.2). However, SQP methods profit from the
decoupling of the variables y and u and can be significantly more efficient than Newton type
method for (1.1), (2.1), (2.2) because the latter compute iterates that are on the constraint
manifold.

8. Automatic Differentiation. In Section 6.3 we have ‘hand coded’ the gradient and
Hessian-vector multiplication for our example program (6.8). This can be very time consum-
ing. Fortunately, one can use Automatic Differentiation in this process. ‘Automatic Differ-
entiation (AD) is a set of techniques based on the mechanical application of the chain rule
to obtain derivatives of a function given as a computer program’ [1]. We have already come
across AD in our discussion of checkpointing. For more information of how AD works we
refer to [26, Sec. 8.2] and [14, 15]. The Community Portal for Automatic Differentiation [1]
contains links to other AD resources, including software tools.

9. Differential Equation Constraints. In many applications, including our simple
model problem (6.1), the governing equations are (partial) differential equations. After dis-
cretization of the differential equations, one obtains a system of (nonlinear) algebraic equa-
tions and the techniques discussed in this paper can be applied. However, it also possible to
extend the techniques discussed in this paper so that hey are applicable to problems (1.1),
(2.1), (2.2) posed in infinite dimensional function spaces. We refer to the books [8, 21] and
references cited therein for optimization (optimal control) problems governed by ordinary dif-
ferential equations and to the books [19, 30, 24] and references cited therein for optimization
(optimal control) problems governed by partial differential equations.
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R. von Mises and T. von Kármán, eds., Academic Press Inc., New York, N. Y., 1948, pp. 171–199.
[11] A. R. CONN, N. I. M. GOULD, AND P. L. TOINT, Trust–Region Methods, SIAM, Philadelphia, 2000.
[12] J. E. DENNIS, JR. AND R. B. SCHNABEL, Numerical Methods for Nonlinear Equations and Unconstrained

Optimization, SIAM, Philadelphia, 1996.
[13] M. S. GOCKENBACH, D. R. REYNOLDS, P. SHEN, AND W. W. SYMES, Efficient and automatic implemen-

tation of the adjoint state method, ACM Trans. Math. Softw., 28 (2002), pp. 22–44.
[14] A. GRIEWANK, Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation, Frontiers

in Applied Mathematics, SIAM, Philadelphia, 2000.



Numerical Solution of Implicitly Constrained Optimization Problems 25

[15] , A mathematical view of automatic differentiation, in Acta Numerica 2003, A. Iserles, ed., Cambridge
University Press, Cambridge, London, New York, 2003, pp. 321–398.

[16] A. GRIEWANK AND A. WALTHER, Algorithm 799: revolve: An implementation of checkpointing for the
reverse or adjoint mode of computational differentiation, ACM Trans. Math. Softw., 26 (2000), pp. 19–
45.

[17] M. D. GUNZBURGER, Perspectives in Flow Control and Optimization, SIAM, Philadelphia, 2003.
[18] M. HEINKENSCHLOSS AND L. N. VICENTE, An interface between optimization and application for the nu-

merical solution of optimal control problems, ACM Transactions on Mathematical Software, 25 (1999),
pp. 157–190.

[19] M. HINZE, R. PINNAU, M. ULBRICH, AND S. ULBRICH, Optimization with Partial Differential Equations,
vol. 23 of Mathematical Modelling, Theory and Applications, Springer Verlag, Heidelberg, New York,
Berlin, 2009.

[20] M. HINZE, A. WALTHER, AND J. STERNBERG, An optimal memory-reduced procedure for calculating
adjoints of the instationary Navier-Stokes equations, Optimal Control Applications and Methods, 27
(2006), pp. 19–40.

[21] J. JAHN, Introduction to the Theory of Nonlinear Optimization, Springer Verlag, Berlin, Heidelberg, New
York, third ed., 2007.

[22] C. T. KELLEY, Iterative Methods for Optimization, SIAM, Philadelphia, 1999.
[23] K. KUNISCH AND S. VOLKWEIN, Control of Burger’s equation by a reduced order approach using proper

orthogonal decomposition, Journal of Optimization Theory and Applications, 102 (1999), pp. 345–371.
[24] J.-L. LIONS, Optimal Control of Systems Governed by Partial Differential Equations, Springer Verlag, Berlin,

Heidelberg, New York, 1971.
[25] H. V. LY, K. D. MEASE, AND E. S. TITI, Distributed and boundary control of the viscous Burgers’ equation,

Numer. Funct. Anal. Optim., 18 (1997), pp. 143–188.
[26] J. NOCEDAL AND S. J. WRIGHT, Numerical Optimization, Springer Verlag, Berlin, Heidelberg, New York,

second ed., 2006.
[27] A. D. PADULA, Software Design for Simulation Driven Optimization, PhD thesis, Department of Computa-

tional and Applied Mathematics, Rice University, Houston, TX, 2005. Available as CAAM TR05–11.
[28] E. POLAK, Optimization:Algorithms and Consistent Approximations, Applied Mathematical Sciences,

Vol. 124, Springer Verlag, Berlin, Heidelberg, New-York, 1997.
[29] W. W. SYMES, A. D. PADULA, AND S. D. SCOTT, A software framework for the abstract expression of

coordinate-free linear algebra and optimization algorithms, tr05–12, Dept. of Computational and Ap-
plied Mathematics, Rice University, Houston, Texas, 2005.
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