
Proof of the Local Discretization Error Estimate for the
Optimal Control Problem in the Presence of Interior Layers2

D. Leykekhman and M. Heinkenschloss

This “appendix” contains the proof of Theorem 5.1 in the paper D. Leykekhman
and M. Heinkenschloss: Local Error Analysis of Discontinuous Galerkin Methods for
Advection-Dominated Elliptic Linear-Quadratic Optimal Control Problems [1].

To facilitate readability, the beginning of Section 5 and Subsection 5.1 of [1] is
repeated here. Theorem 5.1 of [1] is restated here as Corollary A.2. All references
to equations and other results that do not start with ”A”, refer to the corresponding
equations and results in [1].

We will analyze the error between the solution of the infinite dimensional optimal
control problem (2.5) and the solution of the discretized problem (3.6) in the presence
of interior layers.

The results in, e.g., [28, p. 473] or [29, L. 23.1] describe what parts of the forcing
term f influence the exact solution of a single advection dominated PDE at any fixed
point x0 ∈ Ω: The force term in the entire upstream direction of x0 influences the
exact solution at x0, but only the force term from within an ε| log ε|-neighborhood
in the streamline (downwind) direction and within a

√
ε| log(ε)|-neighborhood in the

crosswind direction influence exact solution at x0. The same behavior can be observed
from the properties of the corresponding Green’s function. In the presence of interior
layers only, the exact solution may vary strongly in the crosswind direction, but not in
the streamline direction. Since the adjoint equation has similar properties, the same
behavior of the solution can be expected from the coupled system. Our main goal of
this section is to show that similarly to the case of a single equation (cf. [16]), the
interior layers do not pollute the numerical solution to the coupled optimality system
(3.7). We will accomplish this by weighted error estimates, where the purpose of the
weighting function is essentially to isolate the domains of smoothness from the layers.
The analysis is rather technical and in order to avoid unnecessary technicalities we
will make several simplifications:

• ε ≤ h, i.e. we consider only the advection-dominating case.
• The reaction term r ≡ 1. This simplification is not essential, the same analysis

can be applied to r(x) ≥ 0 (cf. Lemma 4.2 ).
• Yh = Uh = Vh.

Consider the optimality systems (2.7) and (3.7). From equation (2.7b) we can
conclude that λ = αu which leads to the reduced optimality system

αa(ϕ, u) + (y, ϕ) = 〈ŷ, ϕ〉 ∀ϕ ∈ V,(A.1a)

a(y, φ)− (u, φ) = 〈f, v〉 ∀φ ∈ V.(A.1b)

Similarly, from (3.7b) we obtain λh = αuh, which leads to reduced discrete optimality
system,

αah(ϕh, uh) = −〈yh − ŷ, ϕh〉 ∀ϕh ∈ Vh,(A.2a)

ah(yh, φh)− (uh, φh) = lh(φh) ∀φh ∈ Vh.(A.2b)

2Available at
http://www.caam.rice.edu/∼heinken/papers/DLeykekhman MHeinkenschloss 2010a.html.
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The system (A.2) motivates the definition of the reduced bilinear form ADG(·, ·) on
(Vh × Vh)× (Vh × Vh) given by

(A.3) ADG((yh, uh), (φh, ϕh)) = ah(yh, φh)− (uh, φh) + αah(ϕh, uh) + (yh, ϕh).

The reduced discrete optimality system (A.2) can be written as

(A.4) ADG((yh, uh), (φh, ϕh)) = lh(φh) + 〈ŷ, ϕh〉 ∀(φh, ϕh) ∈ Vh × Vh.

Notice that the discontinuous Galerkin method is consistent, i.e., provided that the
exact solution is regular enough (e.g., y and u, λ in H2), then

(A.5) ADG((y, u), (φh, ϕh)) = lh(φh) + 〈ŷ, ϕh〉 ∀(φh, ϕh) ∈ Vh × Vh.

In particular, (A.4) and (A.5) imply the Galerkin orthogonality condition

(A.6) ADG
(
(y − yh, u− uh), (φh, ϕh)

)
= 0 ∀(φh, ϕh) ∈ Vh × Vh.

To establish our local error estimates, we define a weight function as in [17]. As
before, we use the convention that for two dimensional vectors a and b the cross
product is defined by a× b := a1b2 − a2b1, which is just a z-component of the cross-
product if we think of vectors a and b as three dimensional vectors with z component
to be zero. We define

(A.7) Ω0 = {x ∈ Ω : A1 ≤ (x× β) ≤ A2},

which is a strip along β of width |A2 − A1|. The weight function ω is O(1) on Ω0

and decays exponentially outside of a slightly larger subdomain. More precisely, the
weight ω ∈ C∞(Ω) is a positive function with the following properties:

C1 ≤ ω(x) ≤ C2, for x ∈ Ω0,(A.8a)

|ω(x)| ≤ Ce−((x×β)−A2)/K
√
h, for (x× β) ≥ A2,(A.8b)

|ω(x)| ≤ Ce−(A1−(x×β))/K
√
h, for (x× β) ≤ A1.(A.8c)

Here C1 and C2 are two fixed positive constants, K is a sufficiently large number.
Our weighted error estimate is the following.
Theorem A.1. Let (y, u) and (yh, uh) satisfy (A.6). If h ≤ C2α for some

constant C2 and ε ≤ h, then there exists a constant C independent of h and ε such
that

Q2
ω(y − yh) + αQ2

ω(u− uh) ≤ C( min
χ1∈Vh

L2
ω(y − χ1) + min

χ2∈Vh

αL2
ω(u− χ2)),(A.9)

where

Q2
ω(v) :=

∑
τ∈Th

ε‖ω∇v‖2τ + ‖ωv‖2τ + ε
∑
e∈Eh

he
−1‖ω[[v]]‖2e

+
1

2

∑
e∈E0h

‖ω(v+ − v−)|β · n|1/2‖2e +
1

2

∑
e∈E∂h

‖ωv|β · n|1/2‖2e

and

L2
ω(v) :=

∑
τ∈Th

h−1‖ωv‖2τ + h‖ω∇v‖2τ + h3‖ω∇2v‖2τ .
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Theorem A.1 will be proven in the following subsection. To give an application
of the above result, let Ω0 be as in (A.7) and define

Ω+
s = { A1 − sK

√
h| log h| ≤ (x× β) ≤ A2 + sK

√
h| log h| } ∩ Ω.

Corollary A.2. Let Ω be a bounded open convex subset of Rn. If the assump-
tions of Theorem A.1 are valid, then there exists a constant C independent of y, u
and h such that for any s > 0 and and mesh sizes ε ≤ h,

‖y − yh‖Ω0
+ α‖u− uh‖Ω0

≤ C
(
h3/2‖y‖2,Ω+

s
+ hs+3/2‖y‖2,Ω

)
+Cα

(
h3/2‖u‖2,Ω+

s
+ hs+3/2‖u‖2,Ω

)
.

Note that by Theorem 2.2, (y, u) ∈ H2(Ω) ×H2(Ω). The proof of this corollary
is the same as that of Corollary 3.3 in [17]. The interpretation of Corollary A.2 is
essentially the same that given in [17, p. 4615] and we adapt it here for completeness.
The right hand side in the error estimate of Corollary A.2 depends on local and
global norms of the state and the adjoint. The local norms associated with h3/2 are
independent of ε if Ω+

s does not contain interior layers. The global norms depend on
‖y‖2,Ω and ‖u‖2,Ω and because of the regularity result in Theorem 2.2 may depend
on negative powers of ε. However, they are associated with the higher order terms
hs+3/2. Thus negative powers of ε can be compensated by hs for sufficiently large s,
provided that for these values of s the subdomain Ω+

s does not contain interior layers.

A.1. Preliminary Results. Before we start to prove of Theorem A.1, we collect
some preliminary results.

A.1.1. The weight function. Let

Dβ = β · ∇, Dβ⊥ = β⊥ · ∇,

and RO(S, v) = maxx∈S |v(x)|/minx∈S |v(x)|. In addition to the properties (A.8) of
the weight function ω, we assume that ω satisfies,

Dβω(x) = 0, for all x ∈ Ω, i.e. ω is constant in the direction β,(A.10a)

|Dγ
β⊥
ω| ≤ CK−γh−γ/2ω, for γ ≤ k + 1,(A.10b)

RO(S, ω) ≤ Cω, for any ball S of radius Kh.(A.10c)

The explicit construction of a such function is given in [21].

A.1.2. L2-projection. For v ∈ Hk+1(Ω), we let ṽ denote the local L2-projection
of v onto Vh defined by

(v − ṽ, χ)τ = 0, ∀χ ∈ Pk(τ) τ ∈ Th.

We will use the standard estimates

‖v − ṽ‖s,τ ≤ Chk+1−s
τ |v|k+1,τ , s = 0, 1,(A.11a)

‖v − ṽ‖∂τ ≤ Chk+1/2
τ |v|k+1,τ .(A.11b)
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A.1.3. Superapproximation. Next we will need a superapproximation result.
The proof of this result is essentially contained in [16], Lemma 2.1 or [21], Lemma
2.2.

Lemma A.3. Let v ∈ Vh and set Eω(v) = ω2v − ω̃2v. There exists a constant C
independent of h and v, such that

h−2‖ω−1Eω(v)‖2τ + ‖ω−1∇Eω(v)‖2τ + h2‖ω−1∇2Eω(v)‖2τ
≤ Ch−1K−2‖ωv‖2τ .(A.12)

A.2. Lemmas. The proof of Theorem A.1 follows from the following three lem-
mas. The proofs of these lemmas are rather standard although technical. For an
easier flow, we first state the lemmas and provide the proofs at the end of this section.

Lemma A.4. Let (yh, uh) ∈ Vh × Vh and ε ≤ h. If the penalty parameter σ is
sufficiently large, then for K large enough we have

Q2
ω(yh) + αQ2

ω(uh) ≤ 2ADG((yh, uh), (ω2yh, ω
2uh)).

Lemma A.5. If the assumptions of Lemma A.4 are valid, then for K large enough
we have

ADG((yh, uh), (ω2yh − ω̃2yh, ω
2uh − ω̃2uh)) ≤ 1

8

(
Q2
ω(yh) + αQ2

ω(uh)
)
.

Lemma A.6. If in addition to the assumptions of Lemma A.4 and Lemma A.5,
there exists a constant C2 such that h ≤ C2α and (y, u) and (yh, uh) satisfy (A.6),
then for K sufficiently large there exists a constant C independent of h such that

ADG((y, u),(ω̃2yh, ω̃2uh)) ≤ 1

4

(
Q2
ω(yh) + αQ2

ω(uh)
)

+ C
(
L2
ω(y) + αL2

ω(u)
)
.

A.3. Proof of Theorem A.1. The properties of ω and the assumption ε ≤ h
imply

Q2
ω(v − χ) ≤ CL2

ω(v − χ) for all v, χ ∈ V.

Using this inequality and the triangle inequality, we have

Q2
ω(y − yh) + αQ2

ω(u− uh)

≤ Q2
ω(yh − χ1) + αQ2

ω(uh − χ2) + C(L2
ω(y − χ1) + αL2

ω(u− χ2)),(A.13)

for all χ1, χ2 ∈ Vh. Hence, it is enough to show that for any χ1, χ2 ∈ Vh,

Q2
ω(yh − χ1) + αQ2

ω(uh − χ2) ≤ C(L2
ω(y − χ1) + αL2

ω(u− χ2)).

If (yh, uh) and (y, u) satisfy the orthogonality property (A.6), then (yh−χ1, uh−
χ2) and (y − χ1, u − χ2) satisfy the orthogonality property (A.6). Therefore, it is
sufficient to establish

Q2
ω(yh) + αQ2

ω(uh) ≤ C(L2
ω(y) + αL2

ω(u)),
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for any (yh, uh) and (y, u) that satisfy the orthogonality property (A.6). By Lemma
A.4,

Q2
ω(yh) + αQ2

ω(uh) ≤ 2ADG((yh, uh), (ω2yh, ω
2uh)).

We add and subtract ADG((yh, uh), (ω̃2yh, ω̃2uh)) and use the orthogonality property
(A.6). Thus,

ADG((yh, uh), (ω2yh, ω
2uh)) = ADG((yh, uh), (ω2yh − ω̃2yh, ω

2uh − ω̃2uh))

+ADG((y, u), (ω̃2yh, ω̃2uh)).(A.14)

Applying Lemma A.5 and Lemma A.6 to the right hand side of (A.14) completes the
proof of Theorem A.1. 2

A.4. Proofs of Lemmas A.4 to A.6.

Proof of Lemma A.4. Using the identities

(A.15a)

∫
τ

(β · ∇v)ω2v = −1

2

∫
τ

v2ω(β · ∇ω) +
1

2

∫
∂τ

(β · n)ω2v2

(A.15b)
∑
τ∈Th

∫
∂τ

(β · n)ω2v2 =
∑
e∈Eh

∫
e

|β · n|ω2(v−)2 −
∑
e∈Eh

∫
e

|β · n|ω2(v+)2

1

2

∑
τ∈Th

∫
∂τ

(β · n)ω2v2 +
∑
e∈E0

∫
e

(v+ − v−)ω2v+|β · n|+
∑
e∈E−∂

∫
e

ω2v2|β · n|(A.15c)

=
1

2

∑
e∈E0
‖ω(v+ − v−)|β · n|1/2‖2e +

1

2

∑
e∈E∂

‖ωv|β · n|1/2‖2e,

we have

Q2
ω(yh) + αQ2

ω(uh) = ADG((yh, uh), (ω2yh, ω
2uh))

− 2ε
∑
τ∈Th

∫
τ

ωyh∇ω · ∇yh + 2ε
∑
e∈Eh

∫
e

{ω∇yh}[[ωyh]] + 2ε
∑
e∈Eh

∫
e

{yh∇ω}[[ωyh]]

− 2αε
∑
τ∈Th

∫
τ

ωuh∇ω · ∇uh + 2αε
∑
e∈Eh

∫
e

{ω∇uh}[[ωuh]] + 2αε
∑
e∈Eh

∫
e

{uh∇ω}[[ωuh]].

We recall that β = (β1, β2)T , β⊥ = (−β2, β1)T , and use

∇ω =
1

|β|2
(
β β⊥

) (
β β⊥

)T ∇ω = (ωx1
, ωx2

)T ,

where

ωx1
=

1

|β|2
(
β1(β · ∇ω)− β2(β⊥ · ∇ω)

)
, ωx2

=
1

|β|2
(
β2(β · ∇ω) + β1(β⊥ · ∇ω)

)
.
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By the assumptions of this section β · ∇ω = 0 and the expressions above simplify to

ωx1
= − β2

|β|2
(
β⊥ · ∇ω

)
, ωx2

=
β1

|β|2
(
β⊥ · ∇ω

)
.

By the properties of ω (A.10b), the Cauchy-Schwarz inequality and the assumption
ε ≤ h, we have

ε

∫
τ

ωv∇ω · ∇v =
ε

|β|2

∫
τ

ωv(−β2(β⊥ · ∇ω)vx1 + β1(β⊥ · ∇ω)vx2)

≤ ε

|β|2
K−1h−1/2‖ωv‖τ ((|β2|+ |β1|)‖ω∇v‖τ )

≤ CK−1
(
‖ωv‖2τ + ε‖ω∇v‖2τ

)
.

Similarly, we can show

ε
∑
τ∈Th

∫
τ

ωyh∇ω·∇yh+2ε
∑
e∈Eh

∫
e

{ω∇yh}[[ωyh]]+2ε
∑
e∈Eh

∫
e

{yh∇ω}[[ωyh]] ≤ C

K
Q2
ω(yh)

and

ε
∑
τ∈Th

∫
τ

ωuh∇ω · ∇uh + 2ε
∑
e∈Eh

∫
e

{ω∇uh}[[ωuh]] + 2ε
∑
e∈Eh

∫
e

{uh∇ω}[[ωuh]]

≤C
K
Q2
ω(uh).

Thus for K large enough we have

Q2
ω(yh) + αQ2

ω(uh) ≤ 2ÃDG((yh, uh), (ω2yh, ω
2uh)).

2

Proof of Lemma A.5. Recall the notation Eω(v) = ω2v− ω̃2v. Since Uh = Vh,
the definition of the projection implies

(uh, Eω(yh)) = (yh, Eω(uh)) = 0.

To prove Lemma A.5, we need to estimate

ÃDG
(
(yh, uh), (Eω(yh), Eω(uh))

)
= ah(yh, Eω(yh))− (uh, Eω(yh)) + αah(Eω(uh), uh) + (yh, Eω(uh))

= ah(yh, Eω(yh)) + αah(Eω(uh), uh).(A.16)

Following the proof of Theorem 3.1 in [16] we can show

ah(yh, Eω(yh)) + αah(Eω(uh), uh) ≤ CK−1(Q2
ω(yh) + αQ2

ω(uh)),

which together with (A.16) for K large enough gives the desired estimate. 2
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Proof of Lemma A.6. We have

ÃDG((y, u), (ω̃2yh, ω̃2uh)) = ah(y, ω̃2yh)− (u, ω̃2yh) + αah(ω̃2uh, u) + (y, ω̃2uh).

First we prove the following estimates for the terms ah(y, ω̃2yh) and ah(ω̃2uh, u) are
essentially estimated in the proof of Theorem 3.1 in [16] by

ah(y, ω̃2yh) ≤ C

δ
L2
ω(y) + CK−1Q2

ω(yh) + CδQ2
ω(yh),(A.17a)

ah(ω̃2uh, uh) ≤ C

δ
L2
ω(u) + CK−1Q2

ω(uh) + CδQ2
ω(uh).(A.17b)

The estimates (A.17) are essentially contained in the proof of Theorem 3.1 in [16].
Therefore, we only sketch the proof of (A.17a). Recall from (3.3) that

ah(y, ω̃2yh) =ε
∑
τ∈Th

(∇y,∇ω̃2yh)τ

+ ε
∑
e∈Eh

(
σ

he
([[y]], [[ω̃2yh]])e − ({∇hy}, [[ω̃2yh]])e − ([[y]], {∇hω̃2yh})e

)
+
∑
τ∈Th

(β · ∇y + ry, ω̃2yh)τ

+
∑
e∈E0h

(
y+ − y−, |n · β|ω̃2yh

+)
e

+
∑
e∈E−h

(
y+, ω̃2yh

+
|n · β|

)
e
.(A.18)

By the Cauchy-Schwarz and the triangle inequalities we have

ε

∫
τ

∇y · ∇ω̃2yh ≤ ε‖ω∇y‖τ‖ω−1∇ω̃2yh‖τ

≤ 2ε

δ
‖ω∇y‖2τ + δε

(
‖ω−1∇Eω(yh)‖2τ + ‖ω−1∇(ω2yh)‖2τ

)
.(A.19)

By the superapproximation result (A.12) and the assumption ε ≤ h

(A.20) ε‖ω−1∇Eω(yh)‖2τ ≤ CK−2‖ωyh‖2τ .

By the properties (A.10a,b) of ω

‖ω−1∇(ω2yh)‖2τ = ‖ω∇yh‖2τ + 4‖∇ωyh‖2τ
= ‖ω∇yh‖2τ + 4‖(Dβ⊥ω)yh + (Dβω)yh‖2τ
≤ ‖ω∇yh‖2τ + 4‖(Dβ⊥ω)yh‖2τ ≤ ‖ω∇yh‖2τ + Ch−1K−2‖ωyh‖2τ .(A.21)

Combining (A.19)–(A.21) and using ε ≤ h gives

ε
∑
τ∈Th

(∇y,∇ω̃2yh)τ ≤
2

δ

∑
τ∈Th

h‖ω∇y‖2τ +
∑
τ∈Th

δε‖ω∇yh‖2τ +

(
Cδ

K2
+
Cεδ

hK2

)
‖ωyh‖2τ ,

≤ 2

δ
L2
ω(y) +

(
δ +

Cδ

K2

)
Q2
ω(yh).

To estimate the third term in (A.18) we recall that Eω(yh) = ω2yh− ω̃2yh and define
Se to be the union of triangles that share the edge e. Similarly by the triangle and
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the Cauchy-Schwarz inequalities, the properties of ω, the trace inequality (3.8a), and
the superapproximation we have∑

e∈Eh

ε

∫
e

{∇hy}[[ω̃2yh]]e ≤
∑
e∈Eh

ε

∫
e

ω{∇hy}
(
[[ωyh]]‖e + ω−1[[Eω(yh)]]e

)
≤
∑
e∈Eh

ε

h

(
h1/2‖ω∇y‖Se + h3/2‖ω∇2y‖Se

) (
‖[[ωyh]]‖e + ‖ω−1[[Eω(yh)]]‖e

)
≤ C

δ

(
h‖ω∇y‖2 + h3‖∇2y‖2

)
+ CK−1Q2

ω(yh) + Cδ
∑
e∈Eh

ε

h
‖[[ωyh]]‖2e.

The other terms in (A.18) can be estimated similarly to obtain (A.17a). The estimate
(A.17b) is proven analogously.

Thus, to estimate ÃDG((y, u), (ω̃2yh, ω̃2uh)) we only need to estimate

−(u, ω̃2yh) + (y, ω̃2uh). Using the Cauchy-Schwarz inequality and the superapproxi-
mation result (A.12) we have

(u, ω̃2yh) =
∑
τ∈Th

(u, ω̃2yh)τ ≤
∑
τ∈Th

‖ωu‖τ
(
‖ωyh‖τ + ‖ω−1Eω(yh)‖τ

)
≤ 2C2α

hδ

∑
τ∈Th

‖ωu‖2τ + δ
∑
τ∈Th

‖ωyh‖2τ + δ
∑
τ∈Th

‖ω−1Eω(yh)‖2τ

≤ 2C2α

δ
L2
ω(u) +

∑
τ∈Th

(
δ +

Cδ

K2

)
‖ωyh‖2τ

≤ 2C2α

δ
L2
ω(u) +

(
δ +

Cδ

K2

)
Q2
ω(yh).

Similarly we can obtain

(y, ω̃2uh) ≤ C

δ
L2
ω(y) + α

(
C2δ +

Cδ

K2

)
Q2
ω(uh).

Now we complete the proof by choosing K sufficiently large and taking δ sufficiently
small. 2
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