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Abstract

This paper studies a non-Markovian many-server queueing network with abandonment, where
externally arrived and internally routed customers are served under the non-idling First-Come-
First-Serve (FCFS) discipline at each station of many parallel servers. Externally arrived and
internally routed customers in each queue may have different patience time distributions. The
system dynamics is described by the total number of customers in each queue (both waiting and
receiving service) and a triplet of measure-valued processes, tracking the amount of service time each
customer in service has received, the waiting times of externally arrived customers and the waiting
times of internally routed customers in queue. We show a functional strong law of large numbers
in the many-server regime for these processes, where the limit processes are the unique solution to
a system of deterministic measure-valued integral equations, and characterize the invariant states
of the fluid limit.

1 Introduction

We study a non-Markovian many-server queueing network model with customer abandonment and
Markov routing. There are a fixed number of service stations, each of which has either finitely or
infinitely many parallel servers, a single queue and its own designated customer class. Customers
enter the system at a service station, and receive service immediately if there is a free server at
the station, and join the queue at the station otherwise. Upon service completion, a customer
is immediately routed to one of the service stations or leaves the system following a Markovian
routing mechanism, independent of other customers. Our network model allows for customer
feedback. Externally arrived and internally routed customers at each service station are served in
the non-idling, First-Come-First-Serve (FCFS) discipline. Customers can be out of patience and
leave the system (without reentry) when they are waiting in the queue before receiving service. The
patience-time distributions of externally arrived and internally routed customers may be different.
The service and patience time distributions of customers depend on the service station. See §2.1
for a more detailed description of the model.

This model has many interesting applications in customer contact centers and patient flow
analysis. In particular, recent empirical analysis shows that the patience times of customers’ first
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visit and reentrants can be very different, see [18] and [38]. Thus, it is important to understand the
system dynamics of this network model with this feature of different patience-time distributions
of externally arrived and internally routed customers in each service station. However, this causes
technical difficulties in the exact analysis as well as asymptotically. In the many-server regime,
even for the Markovian model with exponential service and patience times at each station, the
conventional approach in [29] does not work. Here we adapt the measure-valued stochastic-process
framework developed by Kaspi and Ramanan [16] and Kang and Ramanan [15, 14] to obtain fluid
approximations of the system dynamics in the many-server regime.

In particular, we use a triplet of measure-valued stochastic processes together with the process
counting the total number of customers at each service station to provide a Markovian represen-
tation of the system evolution dynamics. Here, one measure-valued process keeps track of the
amount of service time each customer in service has received, and the other two measure-valued
processes keep track of the waiting times of externally arrived and internally routed customers in
the queue, respectively. It is critical for our analysis to use two measure-valued processes to de-
scribe the dynamics of externally arrived and internally routed customers in each queue separately,
because a single measure-valued process cannot simultaneously characterize the different waiting
(impatient) behaviors of externally arrived and internally routed customers. See §2.2 for a more
detailed presentation of these state descriptors and dynamical equations.

We investigate the approximate system dynamics in the many-server heavy-traffic regime where
arrival rates in all service stations and the numbers of servers in those service stations go to infinity
together in an appropriate manner while the service and patience time distributions are fixed;
specifically, we assume that the external arrival rates (possibly time-varying) at each service station
grows proportionally to the total number of servers from those service stations in the system as it
increases to infinity. The main results of this paper include a functional strong law of large numbers
(FSLLN, fluid limit) (Theorem 6.1) for the Markovian state descriptor, i.e., the triplet of measure-
valued processes and the process counting the number of customers at each queue, uniqueness of
a solution to the limit (Theorems 3.4) and the characterization of its invariant states (Theorem
3.9). We also discuss the two special cases, a single station with immediate feedback and a tandem
network of two many-server queues with abandonment.

The proof of the convergence for the FSLLN is based on the arguments in [16, 15, 14], by
constructing martingales for the departure processes at each service station. However, character-
izations of the limit processes are more involved than the single service station setting [15]. One
complication is that all the service stations are linked together due to customers’ internal routing,
and the analysis of one service station inevitably involves analyzing other service stations at the
same time. Moreover, patience-time differentiation of externally arrived and internally routed cus-
tomers adds more complication because the two measure-valued processes describing the dynamics
of customers in a single FCFS queue at each service station are only linked by the waiting-time
process of the head-of-line customer, who can be either an externally arrived or internally routed
customer. Unlike fluid limits of single-server queues and networks in the conventional regime, where
a Skorohod mapping can be identified to show the uniqueness of its solution and the convergence
(due to the server idleness), the fluid limits for many-server queues and networks in the FCFS
regimes do not have reflections and cannot be put in the framework of Skorohod problems. Thus,
new arguments are needed in the proofs of uniqueness of a solution to the fluid equations and
the characterization of its invariant state to address the complications from the interconnection of
service stations as well as from patience-time differentiation. These methods may turn out to be
useful for the study of uniqueness of fluid model solutions in service networks with other network
structures, e.g., skill-based routing in [10, 35] and customers switching queues in [30].

Literature Review. Many-server queues with abandonment and their networks have been exten-
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sively used to model large-scale service systems, for example, customer contact centers and patient
flows in hospitals; see [11], [10], [27], [12], [19], [1] and [34] and references therein. There is a vast
literature on Markovian many-server queueing (network) models with abandonment. We refer the
readers to the above cited papers for a complete review of them. Empirical study of call centers and
patient flows have shown that customers’ service and patience times are usually non-exponential;
see, e.g., [4], [28], [1] and [34]. Thus, it is significant that stochastic models for these systems
capture the realistic feature of non-exponential service and patience time distributions. There has
been substantial development in the recent years on non-Markovian many-server queueing (network)
models. Here we review those mostly relevant to our work. (i) For non-Markovian many-server
queues, we refer to [36, 16, 14, 15, 39, 20, 21, 22, 23, 13] for fluid models using measure-valued and
two-parameter processes tracking elapsed or residual times and [17, 32, 6, 7, 26, 8] for approxima-
tions in the Halfin-Whitt regime. (ii) There is very limited research on non-Markovian many-server
queuing network models with abandonment. Atar et al. [3] generalize the measure-valued process
approach in [16, 14] to study a multiclass non-Markovian many-server model with abandonment,
in which customers are served according to a non-preemptive priority policy. Reed and Shaki [33]
consider the G/GI/N queue with multiple server pools and pool-dependent general service time
distributions in the Halfin-Whitt regime, where customers are routed to the server pool with the
longest weighted cumulative idle time in order to achieve fairness in the workload among the server
pools. Liu and Whitt [24, 25] study a fluid network model for a non-Markovian open queueing
network of many-server queues, where all model elements are time-varying. They generalize their
algorithm in [20] to this time-varying fluid network model. Their model is closest to ours, but they
do not consider the differentiation of patience times of external and internal customers.

1.1 Organization of the Paper

The notation used in this paper is the same as in [16, 15, 14], so we give a brief description of
notation in §1.2. We describe the model precisely and present the measure-valued stochastic-process
descriptor for the system dynamics in §2. We present the fluid model in §3.1, and characterize its
invariant state in §3.2. Two special cases are discussed in §4.1 and §4.2. We prove the uniqueness
of solutions to the fluid equations in §5, and show the convergence of the fluid-scaled processes to
the fluid limit in §6. Some additional proofs are collected in the Appendix.

1.2 Notation

The following notation will be used throughout the paper. N, R (R+), Z (Z+) represent the set
of strictly positive integers, real numbers (non-negative), integers (non-negative), respectively. For
a, b ∈ R, a ∨ b = max{a, b}, a ∧ b = min{a, b} and a+ = a ∨ 0. For a set B, 11B denotes the
indicator function of the set B. For a square matrix P , P ′ denotes its transpose, P−1 denotes
its inverse if P is invertible, and Pn denotes its nth power. For any metric space E, Cb(E) and
Cc(E) are, respectively, the space of bounded, continuous functions and the space of continuous
real-valued functions with compact support defined on E, while C1(E) is the space of real-valued,
once continuously differentiable functions on E, and C1

c (E) is the subspace of functions in C1(E)
that have compact support. The subspace of functions in C1(E) that, together with their first
derivatives, are bounded, will be denoted by C1

b (E). For ϕ : E → R, let ‖ϕ‖∞
.
= supx∈E |ϕ(x)| and

supp(ϕ) be the support of ϕ. For H ≤ ∞, let L1[0, H) and L1
loc[0, H), respectively, represent the

spaces of integrable and locally integrable functions on [0, H), where a locally integrable function
f on [0, H) is a measurable function on [0, H) that satisfies

∫
[0,a] |f(x)|dx <∞ for all a < H. The

constant functions f ≡ 1 and f ≡ 0 will be represented by the symbols 1 and 0, respectively.
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For any càdlàg function f : [0,∞) → R, ‖f‖T
.
= sups∈[0,T ] |f(s)| for every T < ∞. Given a non-

decreasing, right continuous function f having left limits on [0,∞), f−1 denotes the left continuous
inverse function of f : f−1(y) = inf{x ≥ 0 : f(x) ≥ y} with the convention that infimum over an
empty set is ∞. For each differentiable function f defined on R, f ′ denotes the first derivative of
f . For each function f(t, x) defined on R× Rn, ft denotes the partial derivative of f with respect
to t and fx denotes the partial derivative of f with respect to x ∈ R.

The space of Radon measures on a Polish space E, endowed with the Borel σ-algebra, is denoted
by M(E), while M+(E) and MF (E) are, respectively, the subspaces of non-negative, finite non-
negative measures in M(E). M(E) (M+(E)) and MF (E), endowed with the vague and weak
topologies [31, 37], respectively, are Polish spaces. The symbol δx denotes the measure with unit
mass at the point x. We will also use 0 to denote the identically zero Radon measure on E.
When E is an interval, say [0, H), for notational conciseness, we will often write M[0, H) instead
of M([0, H)). We say a measure µ is continuous at x ∈ [0, H) if and only if µ({x}) = 0 and µ is
continuous on [0, H) if µ is continuous at each x ∈ [0, H). When E = [0, H) and E = [0, H)×R+,
for some H ∈ (0,∞]. we will usually use f to denote generic functions on [0, H) and ϕ to denote
generic functions on [0, H)×R+. For any Borel measurable function f : [0, H)→ R that is integrable
with respect to ξ ∈ M[0, H), we often use the short-hand notation 〈f, ξ〉 .=

∫
[0,H) f(x) ξ(dx). For

each measure µ on [0,∞), let Fµ(x)
.
= µ[0, x] for each x ∈ [0,∞).

Given a Polish space H, we denote by DH[0, T ] (respectively, DH[0,∞)) the space of H-valued,
càdlàg functions on [0, T ] (respectively, [0,∞)), and we endow this space with the usual Skorokhod
J1-topology [31],[37] so that they are Polish. Let IR+ [0,∞) be the subset of non-decreasing functions
f ∈ DR+ [0,∞) with f(0) = 0. A sequence {Xn} of càdlàg, H-valued processes, with Xn defined on
(Ωn,Fn,Pn), is said to converge in distribution to a càdlàg H-valued process X defined on (Ω,F ,P)
if, for every bounded, continuous functional F : DH[0,∞) → R, we have limn→∞ En [F (Xn)] =
E [F (X)] , where En and E are the expectation operators with respect to the probability measures
Pn and P, respectively. Convergence in distribution of Xn to X will be denoted by Xn ⇒ X.

2 Descriptions of Model and System Dynamics

2.1 Model Description and Primitive Data

Consider a system with K (1 ≤ K < ∞) service stations and each service station has its own
designated customer class. Thus, there are K customer classes for the entire system. Let K .

=
{1, · · · ,K}. For each k ∈ K, customers of class k are served by the kth service station with
Nk ∈ [1,∞] identical servers, in which arriving customers are served in a non-idling, FCFS manner,
that is, a newly arriving customer immediately enters service if there are any idle servers or, if all
servers are busy, then the customer joins the end of the queue, and the customer at the head of
the queue (if one is present) enters service as soon as a server becomes free. Note that here we
do allow the possibility that a service station may have infinitely many identical servers. Let N
be a positive integer. We assume that, for each k ∈ K, Nk = bskNc, where sk is a fixed constant
in (0,∞] independent of N . Note that for each k ∈ K, Nk = ∞ if sk = ∞ and Nk/N → sk as
N →∞.

External Arrivals. We assume that there exists a K-dimensional cumulative external arrival
process E(N) such that for each k ∈ K and t > 0, E

(N)
k (t) represents the total number of customers

of class k that have arrived into the system from outside during the time interval (0, t]. We

assume that E
(N)
k is a non-decreasing, pure jump process with E

(N)
k (0) = 0 and a.s., for each

t ∈ [0,∞), E
(N)
k (t) <∞ and E

(N)
k (t)−E(N)

k (t−) ∈ {0, 1}. Also, for each k ∈ K, let E(N)
k be an a.s.
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Z+-valued random variable that represents the number of customers of class k that have entered

the system by time zero. The set of random variables {E(N)
k , k ∈ K} are only used for bookkeeping

purposes to keep track of the indices of customers.
Service Times. For each k ∈ K, the customers of class k are either coming externally from the

outside of the system, or coming internally from one of the service stations upon service completion
due to internal routing. We shall call the first type of customers as external customers and the
second type of customers as internal customers. We assume that for each k ∈ K, there exists two
i.i.d. sequences of i.i.d. random variables {v1,k

i , i ∈ Z} and {v2,k
i , i ∈ Z}, with common cumulative

distribution function Gsk on [0,∞). For each k ∈ K and i ∈ N, v1,k
i (resp. v2,k

i ) represents the service
requirement of the ith external (resp. internal) customer of class k to enter the system after time

zero, while {v1,k
i , i ∈ −N ∪ {0}} (resp. {v2,k

i , i ∈ −N ∪ {0}}) represents the service requirements
of external (resp. internal) customers of class k that arrived by time zero (if such customers exist),
ordered according to their arrival times (by time zero). We assume that Gsk has density gsk. Let

Csk
.
= sup{x ∈ [0,∞) : Gsk(x) = 0} and Hs

k
.
= sup{x ∈ [0,∞) : Gsk(x) < 1}.

Then Csk and Hs
k denote, respectively, the left end and the right end of the support of gsk. We

assume that the service time distribution Gsk has positive finite mean, that is,

ms
k
.
=

∫
[0,Hs

k)
(1−Gsk(x))dx ∈ (0,∞). (2.1)

Routing. We assume Markovian routing, described as follows. Let e1, · · · , eK be the K unit
coordinate vectors in RK and e0 be the K-dimensional vector of all zeros. For each k ∈ K,
{φ1,k(i), i ∈ Z} and {φ2,k(i), i ∈ Z} are two i.i.d. sequences of i.i.d. routing vectors where for
j = 1, 2 and i ∈ Z, φj,k(i) takes values in the set {e0, e1, · · · , eK}. For each k ∈ K and i ∈ Z, the ith
external (resp. internal) customer of class k to depart from the kth service station is next routed
to class l if φ1,k(i) = el (resp. φ2,k(i) = el) for some l ∈ K, or it leaves the system if φ1,k(i) = e0

(resp. φ2,k(i) = e0). Let P be a K ×K matrix such that for each k, l ∈ K and i ∈ Z,

Pkl = P(φ1,k(i) = el) = P(φ2,k(i) = el).

The matrix P is called the routing matrix. Let Pk0
.
= 1 −

∑
l∈K Pkl for each k ∈ K. We assume

that P satisfies the conditions that I − P ′ is invertible and

H
.
= (I − P ′)−1 = I + P ′ + (P ′)2 + (P ′)3 + · · · .

Note that the matrix H has non-negative entries.
Reneging. It is assumed that customers are impatient, and that a customer reneges from the

queue as soon as the amount of time it has spent in queue reaches its patience limit. Customers
do not renege once they have entered service. We assume that external customers and internal
customers in queue may have different patience time distributions. For each k ∈ K, the patience
times of external customers of class k are given by an i.i.d. sequence, {r1,k

i , i ∈ Z}, with a common

cumulative distribution function Gr1,k on [0,∞], where for each i ∈ N, r1,k
i represents the patience

time of the ith external customer of class k to enter the system after time zero, while {r1,k
i , i ∈

−N ∪ {0}} represents the patience times of external customers of class k that entered the system
by time zero, ordered according to their arrival times (by time zero). For each k ∈ K, the patience

times of internal customers of class k are given by another i.i.d. sequence, {r2,k
i , i ∈ Z}, with a

common cumulative distribution function Gr2,k on [0,∞], where for each i ∈ N, r2,k
i represents the
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patience time of the ith internal customer of class k to reenter the system after time zero, while
{r2,k
i , i ∈ −N ∪ {0}} represents the patience times of internal customers of class k arrived by time

zero, ordered according to their reentering times (by time zero). We assume that for j = 1, 2, Grj,k,
restricted on [0,∞), has density grj,k. For j = 1, 2, let Crj,k

.
= sup{x ∈ [0,∞) : Grj,k(x) = 0} and

Hr
j,k

.
= sup{x ∈ [0,∞) : Grj,k(x) < 1} denote, respectively, the left end and the right end of the

support of grj,k. For each j = 1, 2, the mean of the patience time distribution Grj,k is denoted by

mr
j,k

.
=

∫
[0,Hr

j,k)
(1−Grj,k(x))dx ∈ [0,∞]. (2.2)

Independence We assume that the cumulative external arrival processes E
(N)
k , k ∈ K, the

sequences of service requirements {vj,ki , i ∈ Z}, j = 1, 2, k ∈ K, the sequences of patience times

{rj,ki , i ∈ Z}, j = 1, 2, k ∈ K, and the sequences of feedback vectors {φj,k(i), i ∈ N}, j = 1, 2, k ∈ K
are mutually independent.

2.2 System Dynamics

For each k ∈ K, we shall use two measure-valued processes to describe the queue dynamics for
external and internal customers of class k, respectively.

We first describe the potential queue dynamics for external customers of class k. For each j ∈ Z,

let ζ
(N),1,k
j denote the arrival time of external customer j of class k into the system. For t ∈ [0,∞),

let η
(N),1,k
t be a non-negative Borel measure on [0, Hr

1,k) with the representation:

η
(N),1,k
t =

E
(N)
k (t)∑

j=−E(N)
k +1

δ
w

(N),1,k
j (t)

11{w(N),1,k
j (t)<r1,kj }

, (2.3)

where w
(N),1,k
j (t) =

[
t − ζ(N),1,k

j

]
∨ 0 ∧ r1,k

j represents the amount of time external customer j of
class k has been in the potential queue by time t.

In a similar fashion, we can define another measure-valued process η
(N),2,k
t to describe the

potential queue dynamics for internal customers of class k. Specifically, let C(N)
k be an a.s. Z+-

valued random variable that represents the number of internal customers of class k that reentered

the system due to internal routing by time zero and ζ
(N),2,k
j denote the time at which internal

customer j of class k reenters the system upon service completion. Moreover, let I
(N)
k (t) denote

the cumulative number of internal customers of class k routed to the service station k in the time
interval (0, t]. Since the service time distributions Gsk, k ∈ K, have densities on their supports, then
with probability one, there is at most one customer finishes service from those K service stations

at any given time t ∈ [0,∞), that is, I
(N)
k (t) − I(N)

k (t−) ∈ {0, 1} for each t ≥ 0 with probability

one. Then η
(N),2,k
t on [0, Hr

2,k) can be defined as

η
(N),2,k
t =

I
(N)
k (t)∑

j=−C(N)
k +1

δ
w

(N),2,k
j (t)

11{w(N),2,k
j (t)<r2,kj }

, (2.4)

where w
(N),2,k
j (t) =

[
t − ζ(N),2,k

j

]
∨ 0 ∧ r2,k

j represents the amount of time internal customer j of
class k has been in the potential queue by time t.
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For each t ≥ 0, let

η
(N),k
t = η

(N),1,k
t + η

(N),2,k
t . (2.5)

The measure η
(N),k
t keeps track of the waiting times of all customers in the potential queue at time

t. Note that 〈1, η(N),1,k
t 〉 = η

(N),1,k
t [0,∞) represents the total number of external customers waiting

in the potential queue at time t, and 〈1, η(N),2,k
t 〉 = η

(N),2,k
t [0,∞) represents the total number

of internal customers waiting in the potential queue at time t. Thus, 〈1, η(N),k
t 〉 = η

(N),k
t [0,∞)

represents the total number of customers waiting in the potential queue at time t.

For t ∈ [0,∞), let X
(N)
k (t) be the total number of customers of class k (including external

customers and internal customers) in the system and Q
(N)
k (t) be the number of customers of class

k waiting in queue at time t. Due to the non-idling condition, the queue length process Q
(N)
k of

customers of class k is then given by

Q
(N)
k (t) = [X

(N)
k (t)−Nk]

+. (2.6)

Moreover, since the head-of-the-line customer (external or internal) of class k in queue is the
customer of class k in queue with the longest waiting time, the quantity

χ
(N)
k (t)

.
= inf

{
x > 0 : η

(N),k
t [0, x] ≥ Q(N)

k (t)
}

(2.7)

represents the waiting time of the head-of-the-line customer of class k in the queue at time t. Since

this is an FCFS system, any mass in η
(N),k
t that lies to the right of χ

(N)
k (t) represents a customer

that is either in service or has departed by time t. Therefore, the queue length process Q
(N)
k admits

the following alternative representation in terms of χ
(N)
k and η(N),k:

Q
(N)
k (t) = η

(N),k
t [0, χ

(N)
k (t)]. (2.8)

For t ∈ [0,∞), in a fashion analogous to (2.3) and (2.4), we can also define ν
(N),k
t to be a

discrete non-negative Borel measure on [0, Hs
k) that has a unit mass at the amount of time each

of the customers (either external or internal) has spent in service by time t. For each j ∈ Z, let

ς
(N),1,k
j denote the time external customer j of class k enters service and ς

(N),2,k
j denote the time

internal customer j of class k enters service. Note that if external (resp. internal) customer j of

class k reneged, then ς
(N),1,k
j = ∞ (resp. ς

(N),2,k
j = ∞). Let a

(N),1,k
j (t) =

[
t − ς(N),1,k

j

]
∨ 0 ∧ v1,k

j

(resp. a
(N),2,k
j (t) =

[
t− ς(N),2,k

j

]
∨ 0 ∧ v2,k

j ) represents the amount of time external (resp. internal)

customer j of class k has been in service by time t. Then, the measure ν
(N),k
t is defined as

ν
(N),k
t = ν

(N),1,k
t + ν

(N),2,k
t , (2.9)

where

ν
(N),1,k
t =

E
(N)
k (t)∑

j=−E(N)
k +1

δ
a
(N),1,k
j (t)

11{
a
(N),1,k
j <v1,kj

} (2.10)

and

ν
(N),2,k
t =

I
(N)
k (t)∑

j=−C(N)
k +1

δ
a
(N),2,k
j (t)

11{
a
(N),2,k
j <v2,kj

}. (2.11)
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Note that 〈1, ν(N),k
t 〉 = ν

(N),k
t [0,∞) represents the total number of customers of class k in service

at time t.
We now introduce some auxiliary processes. Fix k ∈ K. Let D

(N)
kl , l ∈ K ∪ {0}, denote the

cumulative routing processes, where for each l ∈ K, D
(N)
kl (t) is the cumulative number of customers

of class k that have completed the service and joined class l in the time interval [0, t], and D
(N)
k0 (t) is

the cumulative number of customers of class k that have completed the service and left the system

in the interval [0, t]. Then D
(N)
kl (t) has the representation

D
(N)
kl (t) =

E
(N)
k (t)∑

j=−E(N)
k +1

∑
s∈[0,t]

11{φ1,k(j)=el}11
{

da
(N),1,k
j
dt

(s−)>0,
da

(N),1,k
j
dt

(s+)=0

}

+

I
(N)
k (t)∑

j=−C(N)
k +1

∑
s∈[0,t]

11{φ2,k(j)=el}11
{

da
(N),2,k
j
dt

(s−)>0,
da

(N),2,k
j
dt

(s+)=0

}. (2.12)

It is obvious that
I

(N)
k (t) =

∑
l∈K

D
(N)
lk (t). (2.13)

In addition, the departure process D
(N)
k , where D

(N)
k (t) represents the cumulative number of cus-

tomers of class k that have completed service from the service station k in the time interval [0, t],

can be represented in term of D
(N)
kl , l ∈ K ∪ {0}, as

D
(N)
k (t) =

∑
l∈K∪{0}

D
(N)
kl (t). (2.14)

Let S
(N)
k denote the cumulative potential reneging process, where S

(N)
k (t) represents the cumulative

number of customers of class k whose waiting times in the potential queue have reached their

patience times in the interval [0, t]. Thus, S
(N)
k admits the representation

S
(N)
k (t) =

E
(N)
k (t)∑

j=−E(N)
k +1

∑
s∈[0,t]

11{
dw

(N),1,k
j
dt

(s−)>0,
dw

(N),1,k
j
dt

(s+)=0

} (2.15)

+

I
(N)
k (t)∑

j=−C(N)
k +1

∑
s∈[0,t]

11{
dw

(N),2,k
j
dt

(s−)>0,
dw

(N),2,k
j
dt

(s+)=0

}.

Let R
(N)
k denote the cumulative reneging process, where R

(N)
k (t) is the cumulative number of

customers of class k that have reneged in the time interval [0, t]. Then R
(N)
k admit the representation

R
(N)
k (t) =

E
(N)
k (t)∑

j=−E(N)
k +1

∑
s∈[0,t]

11{
w

(N),1,k
j (s)≤χ(N)

k (s−),
dw

(N),1,k
j
dt

(s−)>0,
dw

(N),1,k
j
dt

(s+)=0

} (2.16)

+

I
(N)
k (t)∑

j=−C(N)
k +1

∑
s∈[0,t]

11{
w

(N),2,k
j (s)≤χ(N)

k (s−),
dw

(N),2,k
j
dt

(s−)>0,
dw

(N),2,k
j
dt

(s+)=0

},
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where the additional restrictions w
(N),1,k
j (s) ≤ χ

(N)
k (s−) and w

(N),2,k
j (s) ≤ χ

(N)
k (s−) are imposed

so as to only count the reneging of customers of class k (including external and internal customers)

actually in queue. Here, one considers the left limit χ
(N)
k (s−) of χ

(N)
k at time s to capture the

situation in which χ
(N)
k jumps down at time s due to the head-of-the-line customer of class k

reneging from the queue or entering service.
Therefore, for each k ∈ K, mass balances on the total number of customers of class k in the

system, the number of customers of class k waiting in the “potential queue”, and the number of
customers of class k in service, show that

X
(N)
k (0) + E

(N)
k + I

(N)
k = X

(N)
k +R

(N)
k +D

(N)
k , (2.17)

〈1, η(N),k
0 〉+ E

(N)
k + I

(N)
k = 〈1, η(N),k〉+ S

(N)
k , (2.18)

and
〈1, ν(N),k

0 〉+ L
(N)
k = 〈1, ν(N),k〉+D

(N)
k , (2.19)

where L
(N)
k (t) represents the cumulative number of customers of class k that have entered service

in the interval [0, t]. In addition, it is also clear that

X
(N)
k = 〈1, ν(N),k〉+Q

(N)
k . (2.20)

Combining (2.17), (2.19) and (2.20), we obtain the following mass balance equation for the number
of customers in queue:

Q
(N)
k (0) + E

(N)
k + I

(N)
k = Q

(N)
k +R

(N)
k + L

(N)
k . (2.21)

Furthermore, the non-idling condition takes the form Nk − 〈1, ν(N),k〉 = [Nk −X
(N)
k ]+. Note that

if Nk =∞, then the above non-idling condition holds automatically.

3 The Fluid Model

In this section, we present the fluid model that asymptotically describes the system dynamics in
§3.1, and characterize the invariant states for the fluid model in §3.2.

3.1 Fluid Model Equations

Recall that IR+ [0,∞) denote the subset of non-decreasing functions f ∈ DR+ [0,∞) with f(0) = 0.
Define

S0
.
=


(e, x, ν, η1, η2) ∈ IR+ [0,∞)K × RK+ ×Πk∈KMF [0, Hs

k)×
Πk∈KM+[0, Hr

1,k)×Πk∈KM+[0, Hr
2,k) :

sk − 〈1, νk〉 = [sk − xk]+, [xk − sk]+ ≤ 〈1, η1,k
0 〉+ 〈1, η2,k

0 〉

 , (3.1)

whereM+[0, Hr
1,k) andM+[0, Hr

2,k) represent the set of positive, locally finite measures on [0, Hr
1,k)

and [0, Hr
2,k), respectively. Recall that Nk/N → sk as N → ∞. The set S0 serves as the space of

possible input data for the fluid model equations. In order to state the definition of fluid model
equations, for each j = 1, 2 and k ∈ K, define the hazard rate functions of Grj,k and Gsk in the usual
manner:

hrj,k(x)
.
=

grj,k(x)

1−Grj,k(x)
, x ∈ [0, Hr

j,k), (3.2)
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hsk(x)
.
=

gsk(x)

1−Gsk(x)
, x ∈ [0, Hs

k). (3.3)

It is easy to verify that hrj,k ∈ L1
loc[0, H

r
j,k) and hsk ∈ L1

loc[0, H
s
k).

Definition 3.1 The càdlàg function (X, ν, η1, η2) defined on R+ such that X = (Xk, k ∈ K) ∈
RK+ , ν = (νk, k ∈ K) ∈ Πk∈KMF [0, Hs

k), η1 = (η1,k, k ∈ K) ∈ Πk∈KM+[0, Hr
1,k), and η2 =

(η2,k, k ∈ K) ∈ Πk∈KM+[0, Hr
2,k) is said to solve the fluid model equations associated with the data

(E,X(0), ν0, η
1
0, η

2
0) ∈ S0 and the hazard rate functions hrj,k and hsk, j = 1, 2 and k ∈ K, if and only

if for every t ∈ [0,∞), j = 1, 2 and k ∈ K,∫ t

0
〈hrj,k, ηj,ks 〉 ds <∞,

∫ t

0
〈hsk, νku〉 du <∞, (3.4)

and the following relations are satisfied: for every f ∈ Cb(R+),∫
[0,Hs

k)
f(x) νkt (dx) =

∫
[0,Hs

k)
f(x+ t)

1−Gsk(x+ t)

1−Gsk(x)
νk0(dx)

+

∫
[0,t]

f(t− s)(1−Gsk(t− s)) dLk(s), (3.5)

where

Lk(t) = 〈1, νkt 〉 − 〈1, νk0〉+

∫ t

0
〈hsk, νku〉 du; (3.6)

∫
[0,Hr

1,k)
f(x) η1,k

t (dx) =

∫
[0,Hr

1,k)
f(x+ t)

1−Gr1,k(x+ t)

1−Gr1,k(x)
η1,k

0 (dx)

+

∫
[0,t]

f(t− s)(1−Gr1,k(t− s)) dEk(s); (3.7)

∫
[0,Hr

2,k)
f(x) η2,k

t (dx) =

∫
[0,Hr

2,k)
f(x+ t)

1−Gr2,k(x+ t)

1−Gr2,k(x)
η2,k

0 (dx)

+

∫ t

0
f(t− s)(1−Gr2,k(t− s)) dIk(s), (3.8)

where

Ik(t) =
∑
l∈K

Plk

∫ t

0
〈hsl , νlu〉 du; (3.9)

Qk(t) = Xk(t)− 〈1, νkt 〉; (3.10)

Qk(t) ≤ 〈1, η1,k
t 〉+ 〈1, η2,k

t 〉; (3.11)

Rk(t) =
2∑
j=1

∫ t

0

(∫
[0,Hr

j,k)
11[0,χk(s)](u)hrj,k(u)ηj,ks (du)

)
ds, (3.12)

where χk(s) = (F η
k
s )−1(Qk(s)) and ηks

.
= η1,k

s + η2,k
s ;

Xk(t) = Xk(0) + Ek(t) + Ik(t)−
∫ t

0
〈hsk, νku〉 du−Rk(t); (3.13)

and
sk − 〈1, νkt 〉 = [sk −Xk(t)]

+. (3.14)
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It immediately follows from (3.10) and (3.14) that for each t ∈ [0,∞),

Qk(t) = [Xk(t)− sk]+. (3.15)

For future use, we also observe that (3.6), (3.10) and (3.13), when combined, show that for every
t ∈ [0,∞) and k ∈ K,

Qk(0) + Ek(t) + Ik(t) = Qk(t) + Lk(t) +Rk(t). (3.16)

Remark 3.2 It follows from (3.9) and (3.12) that for each k ∈ K, processes Ik and Rk are con-
tinuous. If the process Ek is also continuous for each k ∈ K, the relation in (3.13) implies that the
process Xk and then Qk by (3.10) are continuous. Moreover, for each k ∈ K, the continuity of Ek
also implies that Lk is continuous by (3.16).

Remark 3.3 For each k ∈ K, if sk =∞, the non-idling condition (3.14) holds automatically and
in this case, Qk(t) = χk(t) = Rk(t) = 0 for all t ≥ 0 by (3.15).

We now state the uniqueness result for the solutions to the fluid model equations. Its proof is
deferred to §5.

Theorem 3.4 Suppose that for each k ∈ K, gr2,k is continuously differentiable on its support

[Cr2,k, H
r
2,k) and hr1,k is locally bounded. Given any (E,X(0), ν0, η

1
0, η

2
0) ∈ S0 such that E is con-

tinuous and η1
0, η

2
0 are continuous measures, there exists at most one solution (X, ν, η1, η2) to the

associated fluid equations (3.4)− (3.14).

3.2 Invariant States

Given a positive constant vector λ = (λk : k ∈ K), a state (x0, ν0, η
1
0, η

2
0) such that (eλ, x0, ν0, η

1
0, η

2
0) ∈

S0 and η1
0, η

2
0 are continuous on R+ is said to be an invariant state for the fluid model equations

in Definition 3.1 if there is a solution (X, ν, η1, η2) to the fluid model equations associated with
the initial data (eλ, x0, ν0, η

1
0, η

2
0) satisfies (X(t), νt, η

1
t , η

2
t ) = (x0, ν0, η

1
0, η

2
0) for all t ≥ 0, where

eλ(t) = λt for each t ≥ 0.

Let νk∗ and ηj,k∗ , k ∈ K, j = 1, 2, be the non-negative measures defined as follows:

νk∗ [0, x) =

∫ x

0
(1−Gsk(y))dy, x ∈ [0, Hs

k), (3.17)

ηj,k∗ [0, x) =

∫ x

0
(1−Grj,k(y))dy, x ∈ [0, Hr

j,k). (3.18)

Note that (2.1) implies that νk∗ is actually a finite measure. Define the effective/overall arrival rate
of customers of class k, λ̄k, as the kth entry of the vector λ̄ defined by

λ̄ = (I − P ′)−1λ = Hλ. (3.19)

Define K1 := {k ∈ K : λ̄km
s
k ≥ sk}, the set of potentially critically loaded or overloaded service

stations in the absence of impatience. Note that k /∈ K1 if sk = ∞, which says that any service
station with infinite servers can not be potentially critically loaded or overloaded. Let z and χ be
K-dimensional vectors satisfying the equation

z = (λ− g(χ)) + (I −G(χ))P ′z, (3.20)
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where g(χ) is the K-dimensional vector with its kth entry λkG
r
1,k(χk) and G is the K×K diagonal

matrix with its k diagonal entry Gr2,k(χk).
Let Iλ be the set of states defined by

Iλ = {(x∗, z∗ν∗, λη1
∗, w

∗η2
∗), z

∗ ∈ Z, w∗ = P ′z∗, x∗ ∈ Xz∗}, (3.21)

where

Z =

z ∈ RK+ :
∃ J ⊆ K1 such that zkm

s
k = sk for k ∈ J ,

zkm
s
k < sk for k ∈ K \ J and there exists χ ∈ RK+ such that
χk = 0 for each k ∈ K \ J and (z, χ) satisfies (3.20)

 , (3.22)

and for each z ∈ Z,

Xz =

x ∈ RK+ :

zk = λk(1−Gr1,k((F η
k
)−1((xk − sk)+)))

+wk(1−Gr2,k((F η
k
)−1((xk − sk)+))) for k ∈ J ;

xk = zkm
s
k for k ∈ K \ J , w = P ′z, η = λη1

∗ + wη2
∗

 . (3.23)

It is clear that, if K1 = ∅, then Z contains only one element z = λ̄. On the other hand, if K1 6= ∅,
the set J in (3.22) should be non-empty. Note that for each k ∈ K1, the presence of customers’
impatience may reduce the actual arrival rate to service station k from internal routing. Then the
actual arrival rate to service station k may be less than the effective arrival rate λ̄k. As a result, the
set J in (3.22) could be a strict subset of K1. In general, the set Z may contain several elements
depending on the choices of J .

Let J be a non-empty subset of K1. Define zJ and χJ as follows. Let zJj = sj/m
s
j for each

j ∈ J and χJj = 0 for each j /∈ J . For each j /∈ J , we have from (3.20) that

zJj = λj +
∑
l∈J

Pljsl/m
s
l +

∑
l /∈J

Pljz
J
l .

Let PJ c be the principal submatrix of P by removing rows and columns of P with indexes in J . It
is clear from the properties of P and Lemma 7.5 of [5] that I−P ′J c is also invertible and its inverse
HJ c

.
= (I − P ′J c)−1 has the representation

HJ c = I + P ′J c + (P ′J c)2 + (P ′J c)3 + · · · .

Let zJJ c and λJ c be the vectors obtained from zJ and λ by removing entries with indexes in J ,
respectively. Let PJJ c be the submatrix of P by removing rows of P with indexes not in J and
columns of P with indexes in J and let sJ /m

s
J be a vector whose entries are {sl/ms

l , l ∈ J }. Then

zJJ c = HJ c(λJ c + (PJJ c)′sJ /m
s
J ).

Given the zJ defined above, for each j ∈ J , by (3.20), we have

zJj = λj(1−Gr1,j(χj)) + (1−Gr2,j(χj))(P ′zJ )j ,

and let χJj be any solution to the above equation. This completes the definition of χJ . So it is

clear that the zJ defined above is in Z if zJJ c < sJ /m
s
J .

For example, consider Z when K = 2, ms
1 = ms

2 = 1,[
λ1

λ2

]
=

[
1/4
1/4

]
,

[
s1

s2

]
=

[
1/6
5/6

]
, and P =

[
1/2 1/4
1/4 1/2

]
.
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It is easy to check that [
λ1m

s
1

λ2m
s
2

]
=

[
1
1

]
>

[
s1

s2

]
.

Thus, K1 = {1, 2}. Choose J = K1. Let z1 = 1/6 and z2 = 5/6. Obviously, z1m
s
1 ≥ s1, z2m

s
2 ≥ s2

and (3.20) has a solution for χ1 and χ2. Then z = (1/6, 5/6)′ ∈ Z. Next, choose J = {1}.
Let z1 = 1/6 and χ2 = 0. Then we can solve (3.20) for z2 and χ1 to get z2 = 7/12 and χ1 is
a solution to the equation 11

48G
r
2,1(χ1) + 1

4G
r
1,1(χ1) = 5

16 . Note that z2m
s
2 = 7/12 < 5/6. Thus,

z = (1/6, 7/12)′ ∈ Z. At last, choose J = {2}. Let z2 = 5/6 and χ1 = 0. Then we can solve (3.20)
for z1 and χ2 to get z1 = 11/12 and χ2 is a solution to the equation 12Gr1,2(χ2) + 31Gr2,2(χ2) = 3.
Note that z1m

s
1 = 11/12 > 1/6. Thus, z = (11/12, 5/6)′ /∈ Z. Therefore, in this example, Z has

two elements.

Remark 3.5 There are two possible sources for non-uniqueness of the invariant states in (3.21)-
(3.23) associated with the fluid equations. One source comes from the fact that Z may have several
elements, as shown in the above example. The other comes from (3.23), that is, for a given z ∈ Z,
Xz may have more than one element due to the fact that the patience time distributions Gr1,k and
Gr2,k, k ∈ K, may not be strictly increasing. This second source is the same for the single-station
model in [15] where non-uniqueness is solely due to that the single patience distribution is not
strictly increasing.

Remark 3.6 When customers in the system have infinite patience, that is, Grj,k(x) = 0 for all

x ∈ [0,∞), k ∈ K and j = 1, 2, and K1 = K = {k ∈ K : λ̄km
s
k > sk}, that is, all service stations

are overloaded, the invariant state Iλ is actually an empty set. This is consistent with the fact
that the overloaded system in the absence of impatience is not stable. In fact, suppose that Z 6= ∅.
Then, for each z ∈ Z, there exists χ ∈ RK+ such that (z, χ) satisfies (3.20). Note that, in this case,
(3.20) is reduced to the equation z = λ + P ′z and this implies that z = λ̄. Since λ̄km

s
k > sk for

each k ∈ K, J in (3.22) does not exist. This is a contradiction to the fact that z ∈ Z. Thus, when
all stations are overloaded, the set Z in (3.22) is an empty set, and so is Iλ.

Remark 3.7 If the system has only one critically loaded or overloaded service station, that is, K1

has only one element, or every service station in the system is underloaded, that is, K1 = ∅, then
the set Z can only have a single element. If, in addition, the patience time distributions Gr1,k and
Gr2,k, k ∈ K, are strictly increasing, then the system has only one invariant state.

Remark 3.8 If the system has feed-forward routing, that is, the routing matrix P has the property
that Pij = 0 for each i ≥ j, then the set Z also has a unique element and hence the system
has unique invariant state if the patience time distributions are all strictly increasing. In fact,
if K1 6= ∅, let K1 be the increasingly ordered set {k1, k2, · · · , kn} and J be a non-empty subset
of K1, which is associated with an invariant state. Note that all service stations with indices
less than k1 are underloaded, then zi = λ̄i for each i < k1. Since service station k1 is the first
critically loaded or overloaded station, then zk1 = sk1/m

s
k1

and k1 ∈ J . For any service station
k1 < i < k2, it will remain underloaded since the input rate from service station k1 to service
station i is less than the effective input rate due to abandonment at service station k1 and then zi =
λi+

∑
j<i,j 6=k1 Hijλj+Hik1sk1/m

s
k1

. For service station k2, we know that the effective arrival rate is
λk2+

∑
j<k2

Hik2jλj ≥ sk2/ms
k2

and the actual arrival rate is λk2+
∑

j<k2,j 6=k1 Hijλj+Hk2k1sk1/m
s
k1

.
So if λk2 +

∑
j<k2,j 6=k1 Hijλj + Hk2k1sk1/m

s
k1
≥ sk2/m

s
k2

, then k2 ∈ J ; otherwise, k2 /∈ J . Note
that whether k2 is in J or not depends only on λj , sj ,m

s
j for j ∈ K and P . By a similar argument

for the rest of the stations in K1, we can see that the choice of J is unique based on λj , sj ,m
s
j for
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j ∈ K and P . Thus, there is a unique element in Z. If Xz also has a unique element, for example,
when all patience time distributions are strictly increasing, then the system has a unique invariant
state.

Theorem 3.9 (Characterization of the Invariant States) Given the arrival rate vector λ = (λk :
k ∈ K), the set Iλ gives all invariant states associated with the fluid equations (3.4)− (3.14).

Proof. Fix the arrival rate vector λ = (λk : k ∈ K) and let eλ(t) = λt for each t ≥ 0. We break the
argument into the following two claims.
Claim 1. The invariant state is a subset of Iλ. Let (x0, ν0, η

1
0, η

2
0) be an invariant state and

(X, ν, η1, η2) be the solution to the fluid equations associated with the initial data (eλ, x0, ν0, η
1
0, η

2
0)

that satisfies (Xt, νt, η
1
t , η

2
t ) = (x0, ν0, η

1
0, η

2
0) for all t ≥ 0. We will show that

(i) η1
0 = λη1

∗,
(ii) ν0 = z∗ν∗, η

2
∗ = w∗η2

∗, and x0 = x∗ for z∗ ∈ Z, w∗ = P ′z∗ and x∗ ∈ Xz∗ .
To establish (i), fix k ∈ K. Since η1,k

t = η1,k
0 for each t ≥ 0, by (3.7), we see that for every

f ∈ Cc(R+), ∫
[0,Hr

1,k)
f(x) η1,k

0 (dx) =

∫
[0,Hr

1,k)
f(x+ t)

1−Gr1,k(x+ t)

1−Gr1,k(x)
η1,k

0 (dx)

+λk

∫ t

0
f(t− s)(1−Gr1,k(t− s)) ds.

Letting t→∞ and using the fact that f has compact support, we obtain∫
[0,Hr

1,k)
f(x) η1,k

0 (dx) = λk

∫
[0,Hr

1,k)
f(s)(1−Gr1,k(s)) ds,

which implies that
η1,k

0 (dx) = λk(1−Gr1,k(x)) dx = λkη
1,k
∗ (dx). (3.24)

This establishes (i).
Next, we focus on establishing (ii). Fix k ∈ K. Since X̄k(t) = xk0 for each t ≥ 0, by (3.15), we

have Qk(t) = (xk0 − sk)+ for each t ≥ 0. Since η̄j,kt = ηj,k0 for each t ≥ 0 and j = 1, 2, we also have

η̄kt = η̄1,k
t + η̄2,k

t = η1,k
0 + η2,k

0 = ηk0 for each t ≥ 0. This implies, in particular, that for each t ≥ 0,

χ̄k(t) = (F η
k
t )−1(Qk(t)) = (F η

k
0 )−1((xk0 − sk)+) = χ0

k. (3.25)

Note that χ̄k is a constant function, and thus by (3.12), we can express Rk(t) = (c1,k + c2,k)t, for
t ≥ 0, where by (3.24),

c1,k =

∫
[0,Hr

1,k)
11[0,χ0

k](u)hr1,k(u)η1,k
0 (du) = λkG

r
1,k(χ

0
k),

and

c2,k =

∫
[0,Hr

2,k)
11[0,χ0

k](u)hr2,k(u)η2,k
0 (du). (3.26)

Let
wk =

∑
l∈K

Plk〈hsl , νl0〉. (3.27)
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Then it follows from (3.9) that
Ik(t) = wkt, t ≥ 0. (3.28)

Thus, by (3.16), we obtain that L̄k(t) = (λk+wk−c1,k−c2,k)t, t ≥ 0. Let zk = λk+wk−c1,k−c2,k.
Now by letting ν̄kt = νk0 for each t ≥ 0 in (3.5), we see that for every f ∈ Cc(R+),∫

[0,Hs
k)
f(x)νk0 (dx) =

∫
[0,Hs

k)
f(x+ t)

1−Gsk(x+ t)

1−Gsk(x)
νk0 (dx) + zk

∫ t

0
f(u)(1−Gsk(u)) du. (3.29)

Again, letting t → ∞ on both sides of (3.29) and using the fact that f has compact support, we
obtain ∫

[0,Hs
k)
f(x)νk0 (dx) = zk

∫
[0,Hs

k)
f(u)(1−Gsk(u)) du. (3.30)

This implies that
νk0 (dx) = zk(1−Gsk(x))dx = zkν

k
∗ (dx). (3.31)

Since 〈1, νk0 〉 ≤ sk, we then have
zkm

s
k ≤ sk. (3.32)

It follows from (3.31) that for each l ∈ K, 〈hsl , νl0〉 = zl. Thus, plugging into (3.27), we have

wk =
∑
l∈K

Plkzl. (3.33)

Next, by letting η2,k
t = η2,k

0 for each t ≥ 0 in (3.8) and using (3.28), we see that for every
f ∈ Cc(R+),∫

[0,Hr
2,k)

f(x)η2,k
0 (dx) =

∫
[0,Hr

2,k)
f(x+t)

1−Gr2,k(x+ t)

1−Gr2,k(x)
η2,k

0 (dx)+wk

∫ t

0
f(s)(1−Gr2,k(s)) ds, (3.34)

and letting t→∞ and using the fact that f has compact support, we obtain∫
[0,Hr

2,k)
f(x)η2,k

0 (dx) = wk

∫
[0,Hr

2,k)
f(s)(1−Gr2,k(s)) ds.

This implies that
η2,k

0 (dx) = wk(1−Gr2,k(x))dx = wkη
2,k
∗ (dx). (3.35)

Combining the above with (3.26), we have c2,k = wkG
r
2,k(χ

0
k). It follows that

zk = λk(1−Gr1,k(χ0
k)) + wk(1−Gr2,k(χ0

k)). (3.36)

Thus, from (3.36) and (3.33), we see that z and χ0 satisfy (3.20), that is, z = (λ − g(χ0)) + (I −
G(χ0))P ′z. As a consequence, we have

(I − (I −G(χ0))P ′)z = λ− g(χ0) (3.37)

and
z = (λ− g(χ0)) + (I −G(χ0))P ′z ≤ λ+ P ′z. (3.38)

From (3.38), it is easy to see that
z ≤ (I − P ′)−1λ = λ̄. (3.39)
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For each k /∈ K1, the above implies that zkm
s
k ≤ λ̄kms

k < sk. Now, let J = {k ∈ K1 : zkm
s
k = sk}.

Thus for each k ∈ K \ J , by (3.32), zkm
s
k < sk, then 〈1, νk0 〉 < sk and hence χ0

k = 0. Therefore,
z ∈ Z, which is defined in (3.22). Note that for each z ∈ Z, we obtain w = P ′z by (3.33), and
x0 ∈ Xz by (3.36) and (3.25).
Claim 2. The set Iλ is a subset of the invariant state. Fix z∗ ∈ Z, w∗ = P ′z∗ and x∗ ∈ Xz∗ .
Choose a process (X, ν, η1, η2) to be such that (X(t), νt, η

1
t , η

2
t ) = (x∗, z∗ν∗, λη

1
∗, w

∗η2
∗) for each

t ≥ 0. We now show that (X, ν, η1, η2) is a solution to the fluid equations associated with the
initial data (eλ, x

∗, z∗ν∗, λη
1
∗, w

∗η2
∗). It is evident to see that (3.4) holds for z∗ν∗, λη

1
∗ and w∗η2

∗. For
each k ∈ K and t ≥ 0, let

Īk(t)
.
=
∑
l∈K

Plk

∫ t

0
〈hsl , νlu〉 du =

∑
l∈K

Plk〈hsl , z∗l νl∗〉t = (P ′z∗)kt = w∗kt. (3.40)

and

L̄k(t)
.
=

∫ t

0
〈hsk, νku〉 du = 〈hsk, z∗kνk∗ 〉t = z∗kt. (3.41)

Thus, (3.6) and (3.9) are satisfied by (X, ν, η1, η2). Since z∗ ∈ Z, there exists J ∗ ⊆ K1 and χ∗ ∈ RK+
such that z∗km

s
k = sk for each k ∈ J ∗, z∗kms

k < sk and χ∗k = 0 for each k ∈ K \ J ∗ and (z∗, χ∗)
satisfies (3.20). Since x∗ ∈ Xz∗ , we have that for each k ∈ K \J ∗, x∗k = z∗km

s
k and for each k ∈ J ∗,

z∗k = λk(1−Gr1,k((F η
k
)−1((x∗k − sk)+))) + w∗k(1−Gr2,k((F η

k
)−1((x∗k − sk)+))), (3.42)

where η = λη1
∗ + w∗η2

∗. For each k ∈ K \ J ∗ and t ≥ 0, let Qk(t) = Rk(t)
.
= 0. Since 〈1, νkt 〉 =

〈1, z∗kνk∗ 〉 = z∗km
s
k for each t ≥ 0, we have that (3.10)–(3.12) and (3.14) hold. Notice that for each

t ≥ 0,

(eλ)k(t) + Īk(t)−
∫ t

0
〈hsk, νku〉 du = (λk + w∗k − z∗k)t = 0,

where the last equality holds due to the fact that (z∗, χ∗) satisfies (3.20). This shows that (3.13)
holds. Next for each k ∈ J ∗ and t ≥ 0, let Qk(t) = x∗k − sk ≥ 0. Since (z∗, χ∗) satisfies (3.20), we
have that

z∗k = λk(1−Gr1,k(χ∗k)) + (1−Gr2,k(χ∗k))w∗k.

This and (3.42) imply that χ∗k = (F η
k
)−1(x∗k − sk). For each t ≥ 0, let

Rk(t)
.
= (λkG

r
1,k(χ

∗
k) + w∗kG

r
2,k(χ

∗
k))t.

Hence, we have checked that (3.10)–(3.14) hold.
It remains to show that (3.5), (3.7) and (3.8) hold. But this can be readily verified using

the expressions of (ν, η1, η2), Ī in (3.40) and K in (3.41). Hence (X, ν, η1, η2) is a solution to
the fluid equations associated with the initial data (eλ, x

∗, z∗ν∗, λη
1
∗, w

∗η2
∗). Then we have that

(x∗, z∗ν∗, λη
1
∗, w

∗η2
∗) is an invariant state. This established Claim 2 and completes the proof of

Theorem 3.9. �

4 Two Special Cases

4.1 A Single Station with Immediate Feedback

In this section, we consider the special case of our model where there is a single station of finitely
many servers with immediate feedback. The subscript or superscript k is omitted to simplify the
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notation. The Markovian routing probabilities P10 = p and P11 = 1− p, that is, after each service
completion, with probability p the customer will leave the system and with probability 1 − p the
customer will reenter the system. The effective arrival rate λ̄ = (1− P11)−1λ = λ/p. Without loss
of generality, let s1 = 1. The underloaded, critically loaded and overloaded regimes are determined
by λ̄ms < 1, λ̄ms = 1, and λ̄ms > 1, respectively. As a special case of Theorem 3.9, we obtain the
following theorem for the invariant states associated with the fluid equations for this model of a
single station with immediate feedback.

Theorem 4.1 (Invariant States for A Single Station with Immediate Feedback)
(i) If the system is underloaded, λms < p, or critically loaded, λms = p, then the invariant

state has a unique element (x∗, z∗ν∗, λη
1
∗, w

∗η2
∗) given by

x∗ = λms/p, z∗ = λ/p, w∗ = (1− p)z∗ = (1− p)λ/p, (4.1)

and the head-of-line waiting time χ̄∗ = 0.
(ii) If the system is overloaded, λms > p, then any invariant state (x∗, z∗ν∗, λη

1
∗, w

∗η2
∗) has the

representation:
z∗ = 1/ms, w∗ = (1− p)z∗ = (1− p)/ms, (4.2)

and

x∗ = 1 + λ

∫ χ̄∗

0
(1−Gr1(u))du+

1− p
ms

∫ χ̄∗

0
(1−Gr2(u))du, (4.3)

where the head-of-line waiting time χ̄∗ is a solution to the equation

λms(1−Gr1(χ̄∗)) = 1− (1− p)(1−Gr2(χ̄∗)). (4.4)

(iii) In (ii), if, in addition, Gr1 = Gr2 = Gr and mr
1 = mr

2 = mr, then any invariant state has
z∗ and w∗ in (4.2), and

x∗ = 1 + (λ+ (1− p)/ms)

∫ χ̄∗

0
(1−Gr(u))du, (4.5)

where the head-of-line waiting time χ̄∗ is a solution to the equation

Gr(χ̄∗) = 1− (λms + (1− p))−1. (4.6)

Note that the equation (4.6) may not have unique solution for χ̄∗. When the service and patience
time distributions are all exponential, we obtain the following corollary and as can be easily seen,
the invariant states are unique.

Corollary 4.2 Assume that Gs(x) = 1−e−µx, and Grj(x) = 1−e−θjx, j = 1, 2, with µ, θj ∈ (0,∞).
(i) If the system is underloaded λ/(pµ) < 1 or critically loaded λ/(pµ) = 1, then the invariant

state has a unique element (x∗, z∗ν∗, λη
1
∗, w

∗η2
∗) given by

x∗ = λ/(pµ), z∗ = λ/p, w∗ = (1− p)z∗ = (1− p)λ/p, (4.7)

and the head-of-line waiting time χ̄∗ = 0.
(ii) If the system is overloaded λ/(pµ) > 1, then the invariant state has a unique element:

z∗ = µ, w∗ = (1− p)µ, x∗ = 1 +
λ

θ1
(1− e−θ1χ̄∗) +

(1− p)µ
θ2

(1− e−θ2χ̄∗), (4.8)
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where the head-of-line waiting time χ̄∗ is the unique solution to the equation

(1− (1− p)e−θ2χ̄∗)µ = λe−θ1χ̄
∗
. (4.9)

(iii) In (ii), if, in addition, θ1 = θ2 = θ, then the invariant state has a unique element: z∗ and
w∗ are in (4.8), and

x∗ = 1 +
λ− pµ
θ

. (4.10)

The head-of-line waiting time
χ̄∗ = θ−1 log(λ/µ+ (1− p)). (4.11)

We give a numerical example in Table 1 to illustrate our results in the model with one service
station. In the first two models, the interarrival, service and patience times are all exponential
with parameter values λ = 100, µ = 1, p = 0.4, n = 200, and with identical abandonment rate
θ1 = θ2 = 0.5 in the first model and different abandonment rates θ1 = 0.5 and θ2 = 1 in the
second model. In the third model, the arrival process is Poisson with rate λ = 100, the service time
distribution is H2 with density f(x) = e−2x+3−1e−2x/3 and mean 1, the patience time distribution
of new customers is H2 with density g1(x) = 0.5e−x + 6−1e−x/3 and mean 2, and the patience
time distribution of feedback customers is E2 with mean 2. In all these models, the systems are in
the overloaded regime. We conducted simulations to validate the heavy-traffic approximations in
Theorem 4.1 and Corollary 4.2, in particular, we compare the heavy-traffic approximations and the
simulated steady-state values of the average queue sizes Q1 and Q2 of new customers and feedback
customers, respectively, and the average waiting-time χ of the customer at the head-of-the-line. We
see that the approximations match very well with the simulation results, and, more importantly,
the impact of differentiated patience time distributions of new and feedback customers is evident
by the results in the first two models. The values below the simulation values are the halfwidth for
the 95% confidence interval. The simulation results are the estimates from one sample path in the
time interval [20, 50], and the halfwidths of the 95% confidence interval are obtained by running
four more independent simulations and using Student t-distribution with three degrees of freedom
for each model.

Table 1: Comparison of the fluid approximations and simulations in many-server models of a single
station with immediate feedback and differentiated patience-time distributions.

Model Q1 Q2 χ
Sim. Approx. Sim. Approx. Sim. Approx.

M/M/n+M/M 18.2226 18.1818 21.5017 21.8182 0.1922 0.1906
θ1 = θ2 ± 0.0624 ± 0.0603 ± 0.0054

M/M/n+M/M 12.1571 12.0197 13.7560 13.9902 0.1259 0.1240
θ1 6= θ2 ± 0.0790 ± 0.0691 ± 0.0064

M/H2/n+H2/E2 24.9345 24.9607 32.1587 32.3598 0.2748 0.2726
± 0.0581 ± 0.0766 ± 0.0065

4.2 A Tandem Network of Two Many-Server Queues with Abandonment

In this section, we consider a second special case: a tandem network of two service stations of
finitely many servers with abandonment, where customers at each service station have patience
time distribution of positive finite mean. Here K = 2 and the Markovian routing probabilities
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P11 = 0, P12 = p, P10 = 1 − p, P20 = 1, P21 = 0 and P22 = 0, that is, after service completion
at the first station, customers move to the second queue with probability p and leave the system
with probability 1 − p, and after service completion at the second station, customers must leave
the system. We assume that p ∈ (0, 1]. When p = 1, all customers completing service from the
first station will join the second station. Let mr

j,k and Grj,k,e be the mean and stationary excess
distribution function associated with the distribution Grj,2 for j = 1, 2 and k = 1, 2. Recall that
j = 1 for external arrivals and j = 2 for internal customers. As a special case of Theorem 3.9, we
give the invariant states associated with the fluid equations for this tandem network model below.
As in Corollary 4.2, it is also easy to verify that the invariant state is unique when the service and
patience times are exponential.

Theorem 4.3 (Invariant States for a tandem network of two many-server queues with abandonment)
(i) If λ1m

s
1 ≤ s1 and (λ1p + λ2)ms

2 ≤ s2, then the invariant state has a unique element
(x∗, z∗ν∗, λη

1
∗, w

∗η2
∗) given by

x∗ = (x∗1, x
∗
2)′ = (λ1m

s
1, (λ1p+ λ2)ms

2)′, z∗ = (z∗1 , z
∗
2)′ = (λ1, λ1p+ λ2)′, (4.12)

w∗ = (w∗1, w
∗
2)′ = (0, λ1p)

′, χ̄∗ = (χ̄∗1, χ̄
∗
2)′ = (0, 0)′. (4.13)

(ii) If λ1m
s
1 ≤ s1 and (λ1p+ λ2)ms

2 > s2, then any invariant state (x∗, z∗ν∗, λη
1
∗, w

∗η2
∗) has the

representation:

z∗ = (z∗1 , z
∗
2)′ = (λ1, s2/m

s
2)′, w∗ = (w∗1, w

∗
2)′ = (0, λ1p)

′, x∗1 = λ1m
s
1, χ̄∗1 = 0, (4.14)

x∗2 = s2 + λ1pm
r
2,2G

r
2,2,e(χ̄

∗
2) + λ2m

r
1,2G

r
1,2,e(χ̄

∗
2), (4.15)

where χ̄∗2 is a solution to the equation

λ1p(1−Gr2,2(χ̄∗2)) + λ2(1−Gr1,2(χ̄∗2)) = s2/m
s
2. (4.16)

(iii) If λ1m
s
1 > s1 and (s1p/m

s
1 +λ2)ms

2 ≤ s2, then any invariant state (x∗, z∗ν∗, λη
1
∗, w

∗η2
∗) has

the representation:

z∗ = (z∗1 , z
∗
2)′ = (s1/m

s
1, s1p/m

s
1 + λ2)′, w∗ = (w∗1, w

∗
2)′ = (0, s1p/m

s
1)′, (4.17)

x∗1 = s1 + λ1m
r
1,1G

r
1,1,e(χ̄

∗
1), x∗2 = (s1p/m

s
1 + λ2)ms

2, χ̄∗2 = 0, (4.18)

where χ̄∗1 is a solution to the equation

λ1(1−Gr1,1(χ̄∗1)) = s1/m
s
1. (4.19)

(iv) If λ1m
s
1 > s1 and (s1p/m

s
1 +λ2)ms

2 > s2, then any invariant state (x∗, z∗ν∗, λη
1
∗, w

∗η2
∗) has

the representation:

z∗ = (z∗1 , z
∗
2)′ = (s1/m

s
1, s2/m

s
2)′, w∗ = (w∗1, w

∗
2)′ = (0, s1p/m

s
1)′, (4.20)

x∗1 has the same expression in (4.18) with χ̄∗1 being a solution to the equation (4.19), and x∗2 is

x∗2 = s2 + s1pm
r
2,2G

r
2,2,e(χ̄

∗
2)/ms

1 + λ2m
r
1,2G

r
1,2,e(χ̄

∗
2), (4.21)

where χ̄∗2 is a solution to the following equation

s1p(1−Gr2,2(χ̄∗2))/ms
1 + λ2(1−Gr1,2(χ̄∗2)) = s2/m

s
2. (4.22)
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5 Uniqueness of Solutions to the Fluid Model Equations

In this section, we prove the uniqueness of solutions to the fluid model equations, Theorem 3.4. The
complexity of the fluid equations in the general network setting with internal routing that allows
for feedback makes the argument more involved than the single station case without feedback in
[14]. The main challenge here to establish the uniqueness of solutions to the fluid equations is to
verify the uniqueness of L, which uniquely determines (X, ν, η1, η2).

Let (X, ν, η1, η2) be a solution to the fluid model equations associated with (E,X(0), ν0,
η1

0, η
2
0) ∈ S0, where E is continuous and η1

0, η
2
0 are continuous measures. Recall the definitions

of Qk and Rk that are given in (3.10) and (3.12). It follows from (3.7), (3.8), the continuity of E,
η1

0 and η2
0, and the continuity of I by Remark 3.2 that η1

t and η2
t are continuous measures on R+

for each t ≥ 0. By Remark 3.2, we also have that the processes I,X,Q and L are all continuous.
As an immediate consequence of (3.12), we have the following elementary property.

Lemma 5.1 For each k ∈ K and any 0 ≤ a ≤ b < ∞, if Qk(t) = 0 for all t ∈ [a, b], then
Rk(b)−Rk(a) = 0.

Next, we establish the intuitive result that the process L that represents the cumulative entry
of “fluid” into service is non-decreasing.

Lemma 5.2 The function Lk is non-decreasing for each k ∈ K.

Proof. The proof of this lemma is essentially identical to Lemma 4.5 of [14] with sk instead of 1
and the following estimate on Lk.

Lk(t)− Lk(u) = Lk(t)− Lk(u) +Rk(t)−Rk(u) +Qk(t)−Qk(u)

= Ek(t)− Ek(u) + Ik(t)− Ik(u) ≥ 0.

Lemma 5.3 Let (X, ν, η1, η2) and (X
∗
, ν∗, η1,∗, η2,∗) be two solutions to the fluid model equations

associated with (E,X(0), ν0, η
1
0, η

2
0) ∈ S0. For L and L

∗
given by (3.6) with ν and ν∗, respectively,

and k ∈ K, define
τk = inf{t ≥ 0 : Lk(t) 6= L

∗
k(t)}.

Let τ = mink∈K τk. Then, (X, ν, η1, η2) and (X
∗
, ν∗, η1,∗, η2,∗) agree on [0, τ).

The proof of this lemma is similar to that of Theorem 4.6 in [14] with slight changes in handling
customer feedback, and is included in the Appendix for completeness.

Lemma 5.4 Under the suppositions of Lemma 5.3 and assumptions in Theorem 3.4, τk = τ for
each k ∈ K.

Proof. If τ =∞, the result is trivial. Henceforth, we assume that τ <∞. Let Q,L, I,R, η and
Q
∗
, L
∗
, I
∗
, R
∗
, η∗ be the processes described in Definition 3.1 that are associated with the solutions

(X, ν, η1, η2) and (X
∗
, ν∗, η1,∗, η2,∗) to the fluid equations for (E,X(0), ν0, η

1
0, η

2
0) ∈ S0, respectively.

Let 4A denote A∗−A for A = Q,L, I,R. For each k ∈ K, t ≥ 0 and j = 1, 2, let 4νkt and 4ηj,kt be

the measures that satisfy4νkt (Ξ) = ν∗,kt (Ξ)−νkt (Ξ) and4ηj,kt (Ξ) = ηj,∗,kt (Ξ)−ηj,kt (Ξ), respectively,
for every measurable set Ξ ⊂ [0,∞).

We prove by contradiction that τk = τ for each k ∈ K. Suppose that there exists some k ∈ K
such that τ < τk. Let k1 ∈ K be an index such that τ < τk1 and for all k ∈ K such that τ < τk,
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we have τk1 ≤ τk. Let K0 = {k ∈ K : τk = τ}. By Lemma 5.3 and an action of time-shifts on
solutions to the fluid equations that is similar to Lemma 3.4 of [14], we may assume, without loss
of generality, that τ = 0. Note that for each t ∈ [0, τk1 ], Lk(t) = L

∗
k(t) for each k /∈ K0. It follows

directly from (3.5) that for each k /∈ K0 and t ∈ [0, τk1 ], νkt = ν∗,kt . Now, we choose δ > 0 (whose
value will be determined later) and define

σk(δ)
.
= inf{t ≥ 0 : |4Lk(t)| ≥ δ} for each k ∈ K0, and σ = σ(δ)

.
= min

k∈K0

σk(δ).

Note that σ(δ) → 0 as δ → 0 by the continuity of 4Lk and 4Lk(0) = 0 for each k ∈ K0 and the
definition of τ . We argue by contradiction to show that σ ≥ τk1 . Suppose that σ < τk1 . Choose
a k0 ∈ K0 such that σk0(δ) = σ. Note that such k0 may not be unique. The continuity of 4Lk0
implies that |4Lk0(σ)| ≥ δ. Thus, we have either 4Lk0(σ) ≥ δ or 4Lk0(σ) ≤ −δ. We shall just
consider the case when 4Lk0(σ) ≥ δ, since the other case can be treated in the same way by
considering −4Lk0 in stead of 4Lk0 . We show that σ < τk1 will lead us to a contradiction with
4Lk0(σ) ≥ δ.

In order to show that, we define

r
.
= sup

{
t < σ : Q

∗
k0(t) < Qk0(t)

}
∨ 0.

We show the contradiction by the following three steps.
Step 1. Show that Xk0(0) ≤ sk0 and Qk0(0) = 0, and Xk0(σ) = 〈1, νk0σ 〉 < sk0 and Qk0(σ) = 0.
We can write

4Lk0(σ) = 4Lk0(r) +
(
4Lk0(σ)−4Lk0(r)

)
. (5.1)

Step 2. Show that
4Lk0(r) ≤ δGsk0(r) ≤ δGsk0(σ). (5.2)

Step 3. Show that

4Lk0(σ)−4Lk0(r) ≤ δ
(

(2 + 2Cσ +Dσ)
∑
l∈K0

Plk0G
s
l (σ) + CσG

r
2,k0(σ)

∑
l∈K0

Plk0

)
, (5.3)

where Cσ = sup0≤s≤σ h
r
1,k0

(s) and Dσ = 2 sup0≤s≤σ g
r
2,k0

(s) +
∫ σ∧Cr

2,k0
Cr

2,k0

|(gr2,k0)′(v)|dv. Thus, with

(5.1)–(5.3), we have

4Lk0(σ) ≤ δGsk0(σ) + δ
(

(2 + 2Cσ +Dσ)
∑
l∈K0

Plk0G
s
l (σ) + CσG

r
2,k0(σ)

∑
l∈K0

Plk0

)
≤ δ

(
Gsk0(σ) + (2 + 2Cσ +Dσ)

∑
l∈K0

Plk0G
s
l (σ) + CσG

r
2,k0(σ)

∑
l∈K0

Plk0

)
.

By choosing δ small enough, we may assume, without loss of generality, that σ is small enough
such that σ < 1 and

Gsk0(σ) + (2 + 2Cσ +Dσ)
∑
l∈K0

Plk0G
s
l (σ) + CσG

r
2,k0(σ)

∑
l∈K0

Plk0 ≤ 1/2, (5.4)

and therefore, 4Lk0(σ) ≤ δ/2, which contradicts 4Lk0(σ) ≥ δ. Thus, with these three steps, we
can prove that σ ≥ τk1 . By letting δ → 0, we have Lk0(t) = L

∗
k0(t) for all t ∈ [0, τk1 ]. But this

contradicts the definition of τk0 . Thus τk = τ for all k ∈ K.
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The remaining of the proof focuses on establishing these three steps.
Establishment of Step 1. We first show by contradiction that Xk0(0) ≤ sk0 and hence Qk0(0) =

0. Suppose that Xk0(0) > sk0 . Since Xk0(0) = Xk∗0
(0), by the continuity of Xk0 and X

∗
k0 , we have

〈1, νk0t 〉 = 〈1, ν∗,k0t 〉 = sk0 for all t in a neighborhood of 0. It follows from (3.6) with k0 in place of
k and (3.5) with hsk0 in place of f , we have that

Lk0(t) =

∫ t

0
〈hsk, νku〉 du (5.5)

=

∫ t

0

∫
[0,Hs

k0
)

gsk0(x+ s)

1−Gsk0(x)
νk00 (dx)ds+

∫ t

0

∫ s

0
gsk0(s− u) dLk0(u)ds

=

∫
[0,Hs

k0
)

Gsk0(x+ t)−Gsk0(x)

1−Gsk0(x)
νk00 (dx) +

∫ t

0
gsk0(t− u)Lk0(u) du.

The last equality in (5.5) follows from an exchange of order of integration and an application of
integration by parts. The same argument shows that (5.5) holds for L

∗
k0 , then we have that

4Lk0(t) =

∫ t

0
gsk0(t− u)4Lk0(u) du for all t in a neighborhood of 0.

Then by using the key renewal theorem (cf. Theorem 4.7 of [2]), we have that 4Lk0(t) = 0 for all
t in a neighborhood of 0. Thus, τk0 > 0, which is a contradiction. Since Xk0(0) ≤ sk0 , it follows

that χk(0) = 0. Notice that only the mass before χk(0) in η1,k0
0 and η2,k0

0 affects the evolution of
the fluid equations. Thus, without loss of generality, we may assume that

η1,k0
0 = η2,k0

0 = 0. (5.6)

By the definition of σ, we have that for each t ∈ [0, σ], |4Lk0(t)| ≤ δ. We then claim that for
each t ∈ [0, σ],

4Lk0(t) ≤ δGsk(σ) if 〈1, νk0t 〉 = sk0 . (5.7)

To see why this is true, suppose that 〈1, νk0t 〉 = sk0 for some t ∈ [0, σ]. Since 〈1, ν∗,k0t 〉 ≤ sk0 , we
have 〈1,4νk0t 〉 ≤ 0. When combined with (5.5) and the identity 4νk00 = 0, this shows that

4Lk0(t) = 〈1,4νk0t 〉+

∫ t

0
gsk0(t− s)4Lk0(s) ds (5.8)

≤
∫ t

0
gsk0(t− s)|4Lk0(s)| ds ≤ δGsk0(t) ≤ δGsk0(σ).

Thus (5.7) follows. Then, suppose that 〈1, νk0σ 〉 = sk0 , (5.7) implies that 4Lk0(σ) ≤ δGsk(σ) < δ.
This is a contradiction. Combining this with (3.10) and (3.14), we have

Xk0(σ) = 〈1, νk0σ 〉 < sk0 and Qk0(σ) = 0. (5.9)

Establishment of Step 2. By the definition of r, for every t ∈ [r, σ], Q
∗
k0(t) ≥ Qk0(t). If r = 0,

then 4Lk0(r) = 4Lk0(0) = 0 < δ. On the other hand, if r > 0, there exists a sequence of {tn}∞n=1

such that tn < r and tn → r as n→∞ and 0 ≤ Q
∗
k0(tn) < Qk0(tn) for each n ∈ N. Since Q

∗
k0 and

Qk0 are continuous, this implies that

Q
∗
k0(r) ≤ Qk0(r). (5.10)
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Further, since Qk0(tn) > 0 for all n ∈ N, due to (3.10) and (3.14), it also follows that Xk0(tn) >

〈1, νk0tn 〉 = sk0 for every n ∈ N. Since tn < r ≤ σ and 〈1, νk0tn 〉 = sk0 for every n ∈ N, (5.8) and the

continuity of Lk0 and L
∗
k0 imply (5.2).

Establishment of Step 3. Since (3.16) is satisfied with (Lk, Rk, Qk, Ik) replaced by (Lk0 , Rk0 , Qk0 , Ik0)

and (L
∗
k0 , R

∗
k0 , Q

∗
k0 , I

∗
k0), respectively, it follows that

0 = 4Lk0(σ) +4Rk0(σ) +4Qk0(σ)−4Ik0(σ)

= 4Lk0(r) +4Rk0(r) +4Qk0(r)−4Ik0(r).

Hence,

4Lk0(σ)−4Lk0(r) = −(4Rk0(σ)−4Rk0(r)) + (4Ik0(σ)−4Ik0(r))−4Qk0(σ) +4Qk0(r).

Since −4Qk0(σ) = Qk0(σ) − Q∗k0(σ) = −Q∗k0(σ) ≤ 0 due to (5.9) and 4Qk0(r) ≤ 0 by (5.10), we
obtain that

4Lk0(σ)−4Lk0(r) ≤ −(4Rk0(σ)−4Rk0(r)) + (4Ik0(σ)−4Ik0(r)). (5.11)

We will next obtain upper bounds for the two terms in the right-hand side of (5.11). For the second
term, first, it follows from (3.9) that for each s ∈ [0, σ],

4Ik0(s) =
∑
l∈K

Plk0

∫ s

0
〈hsl ,4νlu〉 du =

∑
l∈K0

Plk0

∫ s

0
〈hsl ,4νlu〉 du. (5.12)

The last equality in the above display is due to the fact that for each k /∈ K0 and u ∈ [0, τk1 ],

νku = ν∗,ku . It follows from (3.5), an application of change of order of integrations and an application
of integration by parts that for each s ∈ [0, σ] and l ∈ K0,∣∣∣∣∫ s

0
〈hsl ,4νlu〉 du

∣∣∣∣ =

∣∣∣∣∫ s

0

∫ u

0
gsl (u− v) d4Ll(v) du

∣∣∣∣ (5.13)

=

∣∣∣∣∫ s

0
gsl (s− u)4Ll(u) du

∣∣∣∣ ≤ ∫ s

0
gsl (s− u)

∣∣4Ll(u)
∣∣ du ≤ δGsl (s).

Then we have that

4Ik0(σ)−4Ik0(r) =
∑
l∈K0

Plk0

∫ σ

r
〈hsl ,4νls〉 ds ≤ δ

∑
l∈K0

Plk0(Gsl (σ) +Gsl (r)) ≤ 2δ
∑
l∈K0

Plk0G
s
l (σ).

(5.14)
We next focus on the first term in the right-hand side of (5.11). It follows from (3.12) that

4Rk0(σ)−4Rk0(r) =

2∑
j=1

∫ σ

r

(∫
[0,Hr

j,k0
)
11[0,χ∗k0

(s)](u)hrj,k0(u)ηj,∗,k0s (du)

)
ds

−
2∑
j=1

∫ σ

r

(∫
[0,Hr

j,k0
)
11[0,χk0

(s)](u)hrj,k0(u)ηj,k0s (du)

)
ds.

(5.15)

By (5.6), the support of ηj,k0s and ηj,∗,k0s is contained in [0, s] for all s ≥ 0 and j = 1, 2. Then, for each
s ∈ [r, σ], we have that χ∗k0(s) ≤ s and χk0(s) ≤ s, and we will consider two cases: χ∗k0(s) ≥ χk0(s)
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and χ∗k0(s) < χk0(s). We first give expressions for the integrands in (5.15), following from (3.7),
(3.8) and (5.6):∫

[0,Hr
1,k0

)
11[0,χ∗k0

(s)](u)hr1,k0(u)η1,∗,k0
s (du) =

∫ s

0
11[0,χ∗k0

(s)](s− u)gr1,k0(s− u) dEk0(u), (5.16)

∫
[0,Hr

1,k0
)
11[0,χk0

(s)](u)hr1,k0(u)η1,k0
s (du) =

∫ s

0
11[0,χk0

(s)](s− u)gr1,k0(s− u) dEk0(u), (5.17)∫
[0,Hr

2,k0
)
11[0,χ∗k0

(s)](u)hr2,k0(u)η2,∗,k0
s (du) =

∫ s

0
11[0,χ∗k0

(s)](s− u)gr2,k0(s− u) dI
∗
k0(u), (5.18)

and ∫
[0,Hr

2,k0
)
11[0,χk0

(s)](u)hr2,k0(u)η2,k0
s (du) =

∫ s

0
11[0,χk0

(s)](s− u)gr2,k0(s− u) dIk0(u). (5.19)

Recalling that η1 = η1,∗ and for each l /∈ K0 and t ∈ [0, τk1 ], νlt = ν∗,lt .
Case 1: χ∗k0(s) ≥ χk0(s). By (5.18) and (3.9), we have that

2∑
j=1

∫
[0,Hr

j,k0
)
11[0,χ∗k0

(s)](u)hrj,k0(u)ηj,∗,k0s (du)

≥
∫

[0,Hr
1,k0

)
11[0,χk0

(s)](u)hr1,k0(u)η1,k0
s (du) +

∫
[0,Hr

2,k0
)
11[0,χ∗k0

(s)](u)hr2,k0(u)η2,∗,k0
s (du)

≥
∫

[0,Hr
1,k0

)
11[0,χk0

(s)](u)hr1,k0(u)η1,k0
s (du) +

∑
l /∈K0

Plk0

∫ s

0
11[0,χk0

(s)](s− u)gr2,k0(s− u)〈hsl , νlu〉 du

+
∑
l∈K0

Plk0

∫ s

0
11[0,χ∗k0

(s)](s− u)gr2,k0(s− u)〈hsl , ν∗,lu 〉 du

≥
2∑
j=1

∫
[0,Hr

j,k0
)
11[0,χk0

(s)](u)hrj,k0(u)ηj,k0s (du) +
∑
l∈K0

Plk0

∫ s

s−χ∗k0 (s)
gr2,k0(s− u)〈hsl ,4νlu〉 du.

Case 2: χ∗k0(s) < χk0(s). By (5.16)–(5.19) and (3.9), we have that

2∑
j=1

∫
[0,Hr

j,k0
)
11[0,χ∗k0

(s)](u)hrj,k0(u)ηj,∗,k0s (du)−
2∑
j=1

∫
[0,Hr

j,k0
)
11[0,χk0

(s)](u)hrj,k0(u)ηj,k0s (du)

=

∫ s

0
11[0,χ∗k0

(s)](s− u)gr1,k0(s− u) dEk0(u)−
∫ s

0
11[0,χk0

(s)](s− u)gr1,k0(s− u) dEk0(u)

+
∑
l /∈K0

Plk0

(∫ s

s−χ∗k0 (s)
gr2,k0(s− u)〈hsl , νlu〉 du−

∫ s

s−χk0
(s)
gr2,k0(s− u)〈hsl , νlu〉 du

)

+
∑
l∈K0

Plk0

(∫ s

s−χ∗k0 (s)
gr2,k0(s− u)〈hsl , ν∗,lu 〉 du−

∫ s

s−χk0
(s)
gr2,k0(s− u)〈hsl , νlu〉 du

)

= −
∫ s

0
11(χ∗k0

(s),χk0
(s)](s− u)gr1,k0(s− u) dEk0(u)−

∑
l∈K

Plk0

∫ s−χ∗k0 (s)

s−χk0
(s)

gr2,k0(s− u)〈hsl , νlu〉 du
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+
∑
l∈K0

Plk0

∫ s

s−χ∗k0 (s)
gr2,k0(s− u)〈hsl ,4νlu〉 du.

Since s ∈ [r, σ], Q
∗
k0(s) ≥ Qk0(s), where Q

∗
k0(s) = η1,∗,k0

s [0, χ∗k0(s)] + η2,∗,k0
s [0, χ∗k0(s)] and Qk0(s) =

η1,k0
s [0, χk0(s)] + η2,k0

s [0, χk0(s)]. Note that for each s ∈ [r, σ], it follows from (3.7), (3.8) and (5.6)
that

η1,∗,k0
s [0, χ∗k0(s)] + η2,∗,k0

s [0, χ∗k0(s)] =

∫ s

0
11[0,χ∗k0

(s)](s− u)(1−Gr1,k0(s− u)) dEk0(u)

+

∫ s

0
11[0,χ∗k0

(s)](s− u)(1−Gr2,k0(s− u)) dI
∗
k0(u)

and

η1,k0
s [0, χk0(s)] + η2,k0

s [0, χk0(s)] =

∫ s

0
11[0,χk0

(s)](s− u)(1−Gr1,k0(s− u)) dEk0(u)

+

∫ s

0
11[0,χk0

(s)](s− u)(1−Gr2,k0(s− u)) dIk0(u)

This, (3.9) and the fact that Q
∗
k0(s) ≥ Qk0(s) for each s ∈ [r, σ] imply that∫ s

0
11(χ∗k0

(s),χk0
(s)](s− u)(1−Gr1,k0(s− u)) dEk0(u)

+
∑
l∈K

Plk0

∫ s−χ∗k0 (s)

s−χk0
(s)

(1−Gr2,k0(s− u))〈hsl , νlu〉 du

≤
∑
l∈K0

Plk0

∫ s

s−χ∗k0 (s)
(1−Gr2,k0(s− u))〈hsl ,4νlu〉 du.

Combining (5.13) with an application of integration by parts, we have that for each s ∈ [r, σ] and
l ∈ K0, ∫ s

s−χ∗k0 (s)
(1−Gr2,k0(s− u))〈hsl ,4νlu〉 du

=

(∫ s

0
〈hsl ,4νlu〉 du− (1−Gr2,k0(χ∗k0(s)))

∫ s−χ∗k0 (s)

0
〈hsl ,4νlu〉 du

−
∫ s

s−χ∗k0 (s)
gr2,k0(s− u)

(∫ u

0
〈hsl ,4νlv〉 dv

)
du

)
≤ δ

(
2Gsl (s) +Gr2,k0(s)

)
.

Recall that Cσ = sup0≤u≤σ(hr1,k0(u) + hr2,k0(u)) < ∞ by Assumption 6.2, then we have from the
above estimation that∫ s

0
11(χ∗k0

(s),χk0
(s)](s− u)gr1,k0(s− u) dEk0(u) +

∑
l∈K

Plk0

∫ s−χ∗k0 (s)

s−χk0
(s)

gr2,k0(s− u)〈hsl , νlu〉 du

≤ Cσ

∫ s

0
11(χ∗k0

(s),χk0
(s)](s− u)(1−Gr1,k0(s− u)) dEk0(u)
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+
∑
l∈K

CσPlk0

∫ s−χ∗k0 (s)

s−χk0
(s)

(1−Gr2,k0(s− u))〈hsl , νlu〉 du

≤ Cσδ
∑
l∈K0

Plk0
(
2Gsl (s) +Gr2,k0(s)

)
Thus, it follows that

2∑
j=1

∫
[0,Hr

j,k0
)
11[0,χ∗k0

(s)](u)hrj,k0(u)ηj,∗,k0s (du)−
2∑
j=1

∫
[0,Hr

j,k0
)
11[0,χk0

(s)](u)hrj,k0(u)ηj,k0s (du)

≥ −Cσδ
∑
l∈K0

Plk0
(
2Gsl (s) +Gr2,k0(s)

)
+
∑
l∈K0

Plk0

∫ s

s−χ∗k0 (s)
gr2,k0(s− u)〈hsl ,4νlu〉 du.

By combining the two cases, we have from (5.15) that

4Rk0(σ)−4Rk0(r) ≥ −Cσδ
∑
l∈K0

Plk0
(
2Gsl (σ) +Gr2,k0(σ)

)
(σ − r)

+
∑
l∈K0

Plk0

∫ σ

r

∫ s

s−χ∗k0 (s)
gr2,k0(s− u)〈hsl ,4νlu〉 du ds.

Since gr2,k0 is continuously differentiable on [Cr2,k0 , H
r
2,k0

) and vanishes outside of [Cr2,k0 , H
r
2,k0

), we
have, by an application of integration by parts, that for each l ∈ K0,∫ σ

r

∫ s

s−χ∗k0 (s)
gr2,k0(s− u)〈hsl ,4νlu〉 du ds

=

∫ σ

r

∫ s̄

(s−χ∗k0 (s))∧s̄
gr2,k0(s− u)〈hsl ,4νlu〉 du ds

=

∫ σ

r

(
gr2,k0(s− s̄)

∫ s̄

0
〈hsl ,4νlu〉 du− gr2,k0(s− (s− χ∗k0(s)) ∧ s̄)

∫ (s−χ∗k0 (s))∧s̄

0
〈hsl ,4νlu〉 du

)
ds

+

∫ σ

r

∫ s̄

(s−χ∗k0 (s))∧s̄

(
gr2,k0

)′
(s− u)

∫ u

0
〈hsl ,4νlv〉 dv du,

where s̄ = (s− Cr2,k0) ∨ 0. Thus, by (5.13), we have that for each l ∈ K0,∣∣∣∣∣
∫ σ

r

∫ s

s−χ∗k0 (s)
gr2,k0(s− u)〈hsl ,4νlu〉 du ds

∣∣∣∣∣
≤

∫ σ

r

(
sup

0≤s≤σ
gr2,k0(s)

∣∣∣∣∫ s̄

0
〈hsl ,4νlu〉 du

∣∣∣∣+ sup
0≤s≤σ

gr2,k0(s)

∣∣∣∣∣
∫ (s−χ∗k0 (s))∧s̄

0
〈hsl ,4νlu〉 du

∣∣∣∣∣
)
ds

+

∫ σ

r

∫ s̄

(s−χ∗k0 (s))∧s̄

∣∣∣(gr2,k0)′ (s− u)
∣∣∣ ∣∣∣∣∫ u

0
〈hsl ,4νlv〉 dv

∣∣∣∣ du
≤ δGsl (σ)(σ − r)

(
2 sup

0≤s≤σ
gr2,k0(s) +

∫ σ∧Cr
2,k0

Cr
2,k0

∣∣∣(gr2,k0)′ (v)
∣∣∣ dv) .

Recall that Dσ = 2 sup0≤s≤σ g
r
2,k0

(s) +
∫ σ

0 |(g
r
2,k0

)′(v)|dv and σ < 1. It then follows from (5.15) that

−(4Rk0(σ)−4Rk0(r)) ≤ Cσδ
∑
l∈K0

Plk0
(
2Gsl (σ) +Gr2,k0(σ)

)
+ δDσ

∑
l∈K0

Plk0G
s
l (σ).
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Combining this with (5.11) and (5.14), we have (5.3). This completes the proof.

Proof of Theorem 3.4. Let (X, ν, η1, η2) and (X
∗
, ν∗, η1,∗, η2,∗) be two solutions to the fluid equa-

tions associated with (E,X(0), ν0, η
1
0, η

2
0) ∈ S0. If τ =∞, the proof is complete by Lemma 5.3. On

the other hand, suppose that τ < ∞. Note that by Lemmas 5.3 and 5.4 we have τk = τ for each
k ∈ K and (Xk, νk, η

1
k, η

2
k) agrees with (X

∗
k, ν
∗
k, η

1,∗
k , η2,∗

k ) on [0, τ ]. By an action of time-shifts on
solutions to the fluid equations that is similar to Lemma 3.4 of [14], we may assume, without loss
of generality, that τ = 0. Choose δ > 0 and define

ξk
.
= inf{t ≥ 0 : |4Lk(t)| ≥ δ} for each k ∈ K and ξ = min

k∈K
ξk.

The same contradiction argument used in the proof of Lemma 5.4 can be adapted to show that
ξ =∞. As a consequence, L = L

∗
and then the argument used in the proof of Lemma 5.3 can also

be adapted to show that (X, ν, η1, η2) agrees with (X
∗
, ν∗, η1,∗, η2,∗) on [0,∞). In the rest of the

proof, we focus on proving that ξ = ∞ with emphasis on the argument that is different with the
one used in Lemma 5.4.

Suppose that ξ <∞. Let k0 be the smallest index in K such that ξk0 = ξ. By choosing δ small
enough, we may assume that ξ is small enough such that ξ < 1 and

Gsk0(ξ) + (2 + 2Cξ +Dξ)
∑
l∈K

Plk0G
s
l (ξ) + CξG

r
2,k0(ξ)

∑
l∈K

Plk0 ≤ 1/2, (5.20)

where Cξ and Dξ is the same as Cσ and Dσ with ξ in placed of σ. Then |4Lk0(ξ)| ≥ δ and
|4Lk(t)| < δ for each t ∈ [0, ξ) and k ∈ K. Thus, we have either 4Lk0(ξ) ≥ δ or 4Lk0(ξ) ≤ −δ.
We shall just consider the case when 4Lk0(ξ) ≥ δ, since the other case can be treated in the same
way. The contradiction can be reached by following exactly the same three steps in Lemma 5.4
with K in place of K0. Thus, we have the desired result.

6 Convergence

Consider the following scaled versions of the basic processes described in §2. For each N ∈ N, the

scaled version of the state descriptor (E
(N)

, X
(N)

, ν(N), η(N),1, η(N),2) is given by

E
(N)

(t)
.
=

E(N)(t)

N
, X

(N)
(t)

.
=
X(N)(t)

N
, ν

(N)
t (B)

.
=
ν

(N)
t (B)

N
, (6.1)

η
(N),1
t (B)

.
=

η
(N),1
t (B)

N
, η

(N),2
t (B)

.
=
η

(N),2
t (B)

N

for t ∈ [0,∞) and any Borel subset B of R+. Analogously, define

A
(N) .

=
A(N)

N
for A = D,L,Q,R, S, I. (6.2)

Our goal is to identify the limit in distribution of the quantities (X
(N)

, ν(N), η(N),1, η(N),2), as
N → ∞. To this end, we impose some natural assumptions on the sequence of initial conditions

(E
(N)

, X
(N)

(0), ν
(N)
0 , η

(N),1
0 , η

(N),2
0 ).

Assumption 6.1 (Initial conditions) There exists an S0-valued random variable (E,X(0), ν0, η
1
0, η

2
0)

such that, as N →∞, the following limits hold P-a.s.:
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(i) E
(N) → E in DR+ [0,∞)K , where E is continuous, E(0) = 0, and E

[
E

(N)
(t)
]
→

E
[
E(t)

]
<∞ for every t ∈ [0,∞);

(ii) X
(N)

(0)→ X(0) in RK+ ;

(iii) ν
(N)
0

w→ ν0 in Πk∈KMF [0, Hs
k);

(iv) η
(N),j
0

w→ ηj0 in Πk∈KMF [0, Hr
j,k), where ηj0 is continuous on R+, and E

[
〈1, η(N),j

0 〉
]
→

E[〈1, ηj0〉] <∞, for j = 1, 2.

In order to establish the convergence result, we impose the following assumptions on Grj,k and
Gsk, j = 1, 2 and k ∈ K.

Assumption 6.2 For each k ∈ K, there exists Lsk < Hs
k such that hsk is either bounded or lower-

semicontinuous on (Lsk, H
s
k), gr2,k is continuously differentiable on its support [Cr2,k, H

r
2,k) and either

one of the following holds for hr1,k:
(i) hr1,k is bounded;
(ii) hr1,k is locally bounded and there exists Lr1,k < Hr

1,k such that hr1,k is lower-semicontinuous
on (Lr1,k, H

r
1,k).

Theorem 6.1 Suppose that Assumptions 6.1 and 6.2 hold. Let (E,X(0), ν0, η
1
0, η

2
0) ∈ S0 be the

limiting initial condition. Then there exists a unique solution (X, ν, η1, η2) to the associated fluid
equations (3.4)− (3.14), and

(X
(N)

, ν(N), η(N),1, η(N),2)⇒ (X, ν, η1, η2) as N →∞. (6.3)

The proof of this theorem can be carried out in two steps as the proof of Theorem 3.6 of [14].
The first step is to show the fluid-scaled processes are tight and the second step is to show that
every limit of any subsequence of the fluid-scaled processes solves the fluid equations. For tightness,
we follow closely the steps in [14] by adapting to the network setting, so we will next sketch the
main steps in the proof and give the pointers to the proofs in [14].

We first introduce some additional processes that are used in proving the convergence. For each

k ∈ K and any measurable function ϕ on [0, Hs
k)×R+, consider the process D

(N),k
ϕ that takes values

in R, and is given by

D(N),k
ϕ (t)

.
=

E
(N)
k (t)∑

j=−E(N)
k +1

∑
s∈[0,t]

11{
da

(N),1,k
j
dt

(s−)>0,
da

(N),1,k
j
dt

(s+)=0

}ϕ(a
(N),1,k
j (s), s)

+

I
(N)
k (t)∑

j=−C(N)
k +1

∑
s∈[0,t]

11{
da

(N),2,k
j
dt

(s−)>0,
da

(N),2,k
j
dt

(s+)=0

}ϕ(a
(N),2,k
j (s), s), (6.4)

for t ∈ [0,∞). It is clear that when ϕ is the constant function 1,

D
(N),k
1 = D

(N)
k . (6.5)

In an exactly analogous fashion, for each k ∈ K, any measurable function ϕ on [0, Hr
1,k) × R+,

consider the process S
(N),1,k
ϕ that takes values in R, and is given by

S(N),1,k
ϕ (t)

.
=

E
(N)
k (t)∑

j=−E(N)
k +1

∑
s∈[0,t]

11{
dw

(N),1,k
j
dt

(s−)>0,
dw

(N),1,k
j
dt

(s+)=0

}ϕ(w
(N),1,k
j (s), s), (6.6)
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for t ∈ [0,∞), and for any measurable function ϕ on [0, Hr
2,k) × R+, consider the process S

(N),2,k
ϕ

that takes values in R, and is given by

S(N),2,k
ϕ (t)

.
=

I
(N)
k (t)∑

j=−C(N)
k +1

∑
s∈[0,t]

11{
dw

(N),2,k
j
dt

(s−)>0,
dw

(N),2,k
j
dt

(s+)=0

}ϕ(w
(N),2,k
j (s), s), (6.7)

for t ∈ [0,∞). Clearly, S
(N),1,k
1 +S

(N),2,k
1 equals to the cumulative potential reneging process S

(N)
k ,

that is,

S
(N),1,k
1 + S

(N),2,k
1 = S

(N)
k . (6.8)

Next, comparing (2.16) with (6.6) and (6.7), it is clear that for each k ∈ K, the cumulative reneging

process R
(N)
k satisfies

R
(N)
k (t) = S

(N),1,k

θ
(N)
k

(t) + S
(N),2,k

θ
(N)
k

(t), t ≥ 0, (6.9)

where θ
(N)
k is given by

θ
(N)
k (x, s) = 11

[0,χ
(N)
k (s−)]

(x), x ∈ R, s ≥ 0. (6.10)

For t ∈ [0,∞), let F̃ (N)
t be the σ-algebra generated by

E(N)
k , C(N)

k , X
(N)
k (0), α

(N)
Ek

(s), w
(N),1,k
i (s), w

(N),2,k
j (s), a

(N),1,k
i (s), a

(N),2,k
j (s),

s
(N),1,k
i , s

(N),2,k
j : i ∈ {−E(N)

k + 1, . . . , 0} ∪ N, j ∈ {−C(N)
k + 1, . . . , 0} ∪ N,

φ1,k(l), −E(N)
k + 1 ≤ l ≤ max

∣∣∣{n : a
(N),1,k
n (s) > 0}

∣∣∣ ,
φ2,k(l), −C(N)

k + 1 ≤ l ≤ max
∣∣∣{n : a

(N),2,k
n (s) > 0}

∣∣∣ ,
s ∈ [0, t], k ∈ K


and let {F (N)

t } denote the associated right-continuous filtration, completed with respect to P.
By using a similar construction as in Appendix A of [14], we can see that all the processes

E(N), X(N), ν(N), η(N),1, η(N),2 and the auxiliary processes are {F (N)
t }-adapted. It follows immedi-

ately from (6.4), (6.6), (6.7) and the right continuity of the filtration {F (N)
t } that for each k ∈ K,

D
(N),k
ϕ , S

(N),1,k
ϕ and S

(N),2,k
ϕ are {F (N)

t }-adapted.
Fix k ∈ K. For any bounded measurable function ϕ on [0, Hs

k) × R+, consider the sequence

{A(N),k
ϕ,ν } of processes given by

A(N),k
ϕ,ν (t)

.
=

∫ t

0

(∫
[0,Hs

k)
ϕ(x, s)hsk(x) ν(N),k

s (dx)

)
ds, t ∈ [0,∞). (6.11)

Likewise, for each j = 1, 2 and any bounded measurable function ϕ on [0, Hr
j,k)× R+, let

A(N),j,k
ϕ,η (t)

.
=

∫ t

0

(∫
[0,Hr

j,k)
ϕ(x, s)hrj,k(x) η(N),j,k

s (dx)

)
ds, t ∈ [0,∞), (6.12)

and

A
(N),j,k

θ
(N)
k ,η

(t)
.
=

∫ t

0

(∫
[0,Hr

j,k)
11

[0,χ
(N)
k (s−)]

(x)hrj,k(x) η(N),j,k
s (dx)

)
ds, t ∈ [0,∞), (6.13)
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where θ
(N)
k is defined in (6.10). A similar argument as Proposition 5.1 and Lemma 5.4 of [14]

shows that A
(N),k
ϕ,ν (respectively, A

(N),j,k
ϕ,η , j = 1, 2, and A

(N),j,k

θ
(N)
k ,η

) is the F (N)
t -compensator of process

D
(N),k
ϕ (respectively, S

(N),j,k
ϕ , j = 1, 2, and R

(N)
k ). That is, for each k ∈ K, and for every bounded

measurable function ϕ on [0, Hs
k)×R+ such that the function s 7→ ϕ(a

(N),j,k
i (s), s) is left continuous

on [0,∞) for each j = 1, 2 and i ∈ Z, the process M
(N),k
ϕ,ν defined by

M (N),k
ϕ,ν

.
= D(N),k

ϕ −A(N),k
ϕ,ν (6.14)

is a local F (N)
t -martingale. Moreover, for every N ∈ N, t ∈ [0,∞) and m ∈ [0, Hs

k),

|A(N),k
ϕ,ν (t)| ≤ ‖ϕ‖∞

(
X

(N)
k (0) + E

(N)
k (t) + I

(N)
k (t)

)(∫ m

0
hsk(x) dx

)
<∞ (6.15)

for every ϕ ∈ Cc([0, Hs
k) × R+) with supp(ϕ) ⊂ [0,m] × R+. In addition, the quadratic variation

process 〈M (N),k
ϕ,ν 〉 of the scaled process M

(N),k
ϕ,ν

.
= M

(N),k
ϕ,ν /N satisfies

lim
N→∞

E
[
〈M (N),k

ϕ,ν 〉(t)
]

= 0; M
(N),k
ϕ,ν ⇒ 0 as N →∞. (6.16)

Furthermore, properties (6.14)–(6.16) also hold with D(N),k, A(N),k,M (N),k, a, ν,Hs
k and hsk, respec-

tively, replaced by S(N),j,k, A(N),j,k,M (N),j,k, w, η,Hr
j,k and hrj,k for j = 1, 2. For each j = 1, 2, the

process M
(N),k

θ
(N)
k ,η

defined by

M
(N),k

θ
(N)
k ,η

.
= R

(N)
k −A(N),1,k

θ
(N)
k ,η

−A(N),2,k

θ
(N)
k ,η

(6.17)

is a local F (N)
t -martingale. In addition, as N →∞,

lim
N→∞

E
[
〈M (N),k

θ
(N)
k ,η
〉(t)
]

= 0 and M
(N),k

θ
(N)
k ,η

⇒ 0. (6.18)

Notice that by (2.12) and (2.13), we have for each k ∈ K, l ∈ K ∪ {0} and t ≥ 0,

E
[
D

(N)
lk (t)

]
≤ E

E
(N)
l (t)∑
j=1

11{φ1,l(j)=ek}

+ E

I
(N)
l (t)∑
j=1

11{φ1,l(j)=ek}


+E

 0∑
j=−E(N)

l +1

11{φ1,l(j)=ek}
∑
s∈[0,t]

11{
da

(N),1,l
j
dt

(0+)>0

}


+E

 0∑
j=−C(N)

l +1

11{φ1,l(j)=ek}
∑
s∈[0,t]

11{
da

(N),1,l
j
dt

(0+)>0

}


≤ PlkE
[
E

(N)
l (t) + I

(N)
l (t) +X

(N)
l (0)

]
,

and
E
[
I

(N)
k (t)

]
=
∑
l∈K

E
[
D

(N)
lk (t)

]
≤
∑
l∈K

PlkE
[
E

(N)
l (t) + I

(N)
l (t) +X

(N)
l (0)

]
.
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Since the above inequality holds for each k ∈ K, by treating it in the vector form and using the
fact that H = (I − P ′)−1 has non-negative entries, we have

E
[
I

(N)
k (t)

]
≤
∑
l∈K

(HP ′)klE
[
E

(N)
l (t) +X

(N)
l (0)

]
<∞, (6.19)

where the last inequality holds due to Assumption 6.1. In addition, using (6.5), (2.17), (2.20),

(6.19) and the non-negativity of Q
(N)
k , R

(N)
k and 〈1, ν(N),k〉, it follows from Assumption 6.1 that

for any t ∈ [0,∞) and bounded, measurable ϕ,

E
[∣∣∣D(N),k

ϕ (t)
∣∣∣] ≤ ‖ϕ‖∞ E

[
X

(N)
k (0) + E

(N)
k (t) + I

(N)
k (t)

]
<∞ (6.20)

and likewise, for each t ∈ [0,∞) and bounded measurable ϕ and ψ, (2.18) shows that

E
[∣∣∣S(N),1,k

ϕ (t)
∣∣∣+
∣∣∣S(N),2,k
ψ (t)

∣∣∣] ≤ (‖ψ‖∞ + ‖ϕ‖∞)E
[
〈1, η(N)

0 〉+ E
(N)
k (t) + I

(N)
k (t)

]
<∞. (6.21)

From (6.20) and (6.15) it is clear that for every t, the linear functionals D
(N),k
· (t) : ϕ 7→ D

(N),k
ϕ (t)

and A
(N),k
·,ν (t) : ϕ 7→ A

(N),k
ϕ,ν (t) are finite Radon measures on [0, Hs

k) × R+. Likewise, from (6.21)

and the fact that (6.15) holds with ν(N),k, hsk, respectively, replaced by η(N),j,k, hrj,k, j = 1, 2, it

follows that for each j = 1, 2, the linear functionals S
(N),j,k
· (t) : ϕ 7→ S

(N),j,k
ϕ (t) and A

(N),j,k
·,η (t) :

ϕ 7→ A
(N),j,k
ϕ,η (t) define finite Radon measures on [0, Hr

j,k) × R+. Thus {D(N),k
· (t) : t ∈ [0,∞)}

and {A(N),k
·,ν (t) : t ∈ [0,∞)} can be viewed as MF ([0, Hs

k) × R+)-valued càdlàg processes, and

{S(N),j,k
· (t) : t ∈ [0,∞)} and {A(N),j,k

·,η (t) : t ∈ [0,∞)} can be viewed asMF ([0, Hr
j,k)×R+)-valued

càdlàg processes for j = 1, 2. Now, for each N ∈ N and k ∈ K, let

Z
(N)
k

.
=

(
X

(N)
k (0), E

(N)
k , X

(N)
k , R

(N)
k , I

(N)
k , {D(N)

kl , l ∈ K ∪ {0}}, ν
(N),k
0 , ν(N),k, (6.22)

η
(N),1,k
0 , η(N),1,k, η

(N),2,k
0 , η(N),2,k, A

(N),k
·,ν , D

(N),k
· , A

(N),1,k
·,η , S

(N),1,k
· , A

(N),2,k
·,η , S

(N),2,k
·

)
.

Then for each k ∈ K, Z
(N)
k is a Yk-valued process, where Yk is the space

Yk
.
= R+ × (DR+ [0,∞))K+5 ×MF [0, Hs

k)×DMF [0,Hs
k)[0,∞)×MF [0, Hr

1,k)

×DMF [0,Hr
1,k)[0,∞)×MF [0, Hr

2,k)×DMF [0,Hr
2,k)[0,∞)× (DMF ([0,Hs

k)×R+)[0,∞))2

×(DMF ([0,Hr
1,k)×R+)[0,∞))2 × (DMF ([0,Hr

2,k)×R+)[0,∞))2

equipped with the product metric. Clearly, Yk is a Polish space. Let

Z
(N)

= (Z
(N)
k , k ∈ K). (6.23)

Then, by applying Kurtz’ criteria (see Theorem 3.8.6 of [9] for details) and a similar argument for
Lemma 5.8(2) in [16] together with the bounds in (6.20) and (6.21), we can show that under Assump-

tion 6.1, for each k ∈ K, the sequences {X(N)
k }, {I

(N)
k }, {L

(N)
k }, {R

(N)
k }, {〈1, ν(N),k〉}, {〈1, η(N),1,k〉},

{〈1, η(N),2,k〉}, the sequences {D(N),k
ϕ }, {A(N),k

ϕ,ν }, for every ϕ ∈ Cb([0, Hs
k)×R+), and the sequences

{S(N),j,k
ϕ }, {A(N),j,k

ϕ,η }, for every j = 1, 2 and ϕ ∈ Cb([0, Hr)×R+), are relatively compact. By a sim-

ilar argument of Lemma 6.4 of [14], together with the fact that E
[
X

(N)
k (0) + E

(N)
k (t) + I

(N)
k

]
<∞,
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we can show that under Assumption 6.1, for every f ∈ C1
c (R+) and k ∈ K, the sequences {〈f, ν(N),k〉}

and {〈f, η(N),j,k〉} , j = 1, 2, of DR[0,∞)-valued random variables are relatively compact. In ad-
dition, with the application of the Jakubowski’s criteria (cf. Proposition 6.5 of [14]), in the same
way as the proofs of Lemmas 6.6 and 6.7 of [14], we can show that under Assumption 6.1, for each
k ∈ K, the sequences {ν(N),k} and {η(N),j,k}, j = 1, 2, are relatively compact and the sequences

{D(N),k
· } and {A(N),k

·,ν } are relatively compact in DMF ([0,Hs
k)×R+)[0,∞). Similarly, the sequences

{S(N),j,k
· } and {A(N),j,k

·,η } are relatively compact in DMF ([0,Hr
j,k)×R+)[0,∞) for each j = 1, 2. The

above results together with the direct application of Prohorov’s theorem imply the tightness of the

processes {Z(N)}, which is summarized in the following theorem.

Theorem 6.2 Suppose Assumption 6.1 is satisfied. Then the sequence {Z(N)} defined in (6.23) is
relatively compact in the Polish space Πk∈KYk, and is therefore tight.

We next focus on establishing the existence of a solution to the fluid equations, and thus, the
convergence of the fluid-scaled measure-valued processes and auxiliary processes follows by the
tightness and uniqueness of such a solution, so Theorem 6.1 is proved. The rest of this section is
devoted to the proof of the following theorem. We note that Theorem 6.2 only requires Assumption
6.1 while Theorem 6.3 requires both Assumptions 6.1–6.2.

Theorem 6.3 Suppose that Assumptions 6.1–6.2 hold. Let (X, ν, η1, η2) be the limit of any sub-

sequence of {(X(N)
, ν(N), η(N),1, η(N),2)}. Then (X, ν, η1, η2) solves the fluid equations.

We first establish two supporting lemmas.

Lemma 6.4 For each k ∈ K and l ∈ K ∪ {0}, D(N)
kl − PklD

(N),k
1 ⇒ 0 as N →∞.

Proof. Fix k ∈ K and l ∈ K ∪ {0}. It follows from (2.12) and (6.4) that

D
(N)
kl (t)− PklD

(N),k
1 (t) (6.24)

=
1

N

E
(N)
k (t)∑

j=−E(N)
k +1

∑
s∈[0,t]

(11{φ1,k(j)=el} − Pkl)11{ da
(N),1,k
j
dt

(s−)>0,
da

(N),1,k
j
dt

(s+)=0

}

+
1

N

I
(N)
k (t)∑

j=−C(N)
k +1

∑
s∈[0,t]

(11{φ1,k(j)=el} − Pkl)11{ da
(N),2,k
j
dt

(s−)>0,
da

(N),2,k
j
dt

(s+)=0

}.

Since the service distribution Gsk has density, then with probability 1, any two customers will not
finish service at the same time, thus for each T > 0,

E

[
sup

0≤t≤T
(D

(N)
kl (t)− PklD

(N),k
1 (t))2

]

≤ 1

N2
E

 E
(N)
k (T )∑

j=−E(N)
k +1

(11{φ1,k(j)=el} − Pkl)
2 +

I
(N)
k (T )∑

j=−C(N)
k +1

(11{φ1,k(j)=el} − Pkl)
2


=

1

N
E
[
(11{φ1,k(1)=el} − Pkl)

2
]
E
[
E

(N)
k (T ) + I

(N)
k (T ) + 〈1, ν(N),k

0 〉+ 〈1, η(N),k
0 〉

]
.
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By Assumption 6.1 and (6.19),

lim
N→∞

E

[
sup

0≤t≤T
(D

(N)
kl (t)− PklD

(N),k
1 (t))2

]
= 0

and hence the lemma is proved.

Lemma 6.5 For each k ∈ K, j = 1, 2 and T ∈ [0,∞), as N →∞,

E

[
sup
t∈[0,T ]

∣∣∣∣∣A(N),j,k

θ
(N)
k ,η

(t)−
∫ t

0

(∫
[0,Hr

j,k)
11[0,χk(s)](u)hrj,k(u)ηj,ks (du)

)
ds

∣∣∣∣∣
]
→ 0. (6.25)

Moreover, almost surely,

Rk(t) =
2∑
j=1

∫ t

0

(∫
[0,Hr

j,k)
11[0,χk(s)](u)hrj,k(u)ηj,ks (du)

)
ds, t ∈ [0,∞). (6.26)

The proof of this lemma is in the appendix.
Let (E,X(0), ν0, η

1
0, η

2
0) be the S0-valued random variable that satisfies Assumption 6.1, and

let {Z(N)}N∈N be the sequence of processes defined in (6.23). Then, by Assumption 6.1, The-

orem 6.2, Lemma 6.4 and the limits M
(N),k
·,ν = D

(N),k
· − A

(N),k
·,ν ⇒ 0 and M

(N),j,k
·,η = S

(N),j,k
· −

A
(N),j,k
·,η ⇒ 0, there exist processes X ∈ DR+ [0,∞)K , R ∈ DR+ [0,∞)K , I ∈ DR+ [0,∞)K , ν ∈

Πk∈KDMF [0,Hs
k)[0,∞),η1 ∈ Πk∈KDMF [0,Hr

1,k)[0,∞), η2 ∈ Πk∈KDMF [0,Hr
2,k)[0,∞),

A·,ν ∈ Πk∈KDMF ([0,Hs
k)×R+)[0,∞), D· ∈ Πk∈KDMF ([0,Hs

k)×R+)[0,∞), A
1
·,η ∈ Πk∈KDMF ([0,Hr

1,k)×R+)[0,∞),

S
1
· ∈ Πk∈KDMF ([0,Hr

1,k)×R+)[0,∞), A
2
·,η ∈ Πk∈KDMF ([0,Hr

2,k)×R+)[0,∞), and

S
2
· ∈ Πk∈KDMF ([0,Hr

2,k)×R+)[0,∞) such that Z
(N)

converges weakly (along a suitable subsequence)

to Z, where for each k ∈ K,

Zk
.
=

(
Xk(0), Ek, Xk, Rk, Ik, {PklA

k
1,ν , l ∈ K ∪ {0}}, νk0, νk,

η1,k
0 , η1,k, η2,k

0 , η2,k, A
k
·,ν , A

k
·,ν , A

1,k
·,η , A

1,k
·,η , A

2,k
·,η , A

2,k
·,η

)
∈ Yk.

Denoting this subsequence again by Z
(N)

and invoking the Skorokhod Representation Theorem,

with a slight abuse of notation, we can assume that, P a.s., Z
(N) → Z as N →∞. Without loss of

generality, we may further assume that the above convergence holds everywhere.

Proof of Theorem 6.3. Let Y (N) = (E(N), X(N), ν(N), η(N),1, η(N),2). Since Z
(N) → Z as N → ∞,

then it follows that, as N →∞, (Y
(N)
k , {D(N)

kl , l ∈ K ∪ {0}})→ (Y k, {PklA
k
1,ν , l ∈ K ∪ {0}}), where

Y = (E,X, ν, η1, η2). Together with (2.17) and the fact that
∑

l∈K∪{0} Pkl = 1, this implies that

Xk = Xk(0) + Ek + Ik −Rk −A
k
1,ν . (6.27)

Moreover, by the same argument in getting (7.2) of [14], we have that

A
k
ϕ,ν =

∫ ·
0
〈ψ(·, s)hsk(·, s), νks〉ds. (6.28)
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On substituting (6.28) into (6.27), we see that the fluid equation (3.13) is satisfied. Next, Lemma
6.5 establishes the representation (3.12) of R given in the fluid equations.

Fix t ∈ [0,∞) and j = 1, 2 such that for each k ∈ K, ν
(N),k
t

w→ νkt , η
(N),j,k
t

w→ ηj,kt , E
(N)
k (t) →

Ek(t), X
(N)
k (t) → Xk(t), R

(N)
k (t) → Rk(t), I

(N)
k (t) → Ik(t), A

(N),k
·,ν (t)

w→ A
k
·,ν(t), D

(N),k
· (t)

w→
A
k
·,ν(t), A

(N),j,k
·,η (t)

w→ A
j,k
·,η (t), S

(N),j,k
· (t)

w→ A
j,k
·,η (t) as N →∞. Since Z

(N) → Z a.s., this occurs for
t outside a countable set. By (6.28), this implies that for each k ∈ K, as N →∞,

D
(N),k
ϕ (t)→ A

k
ϕ,ν(t) =

∫ t

0
〈ϕ(·, s)hsk(·, s), νks〉 ds, ϕ ∈ Cb([0, Hs)× R+). (6.29)

An analogous argument also implies that for each k ∈ K, as N →∞,

S
(N),j,k
ψ (t)→ A

j,k
ψ,η(t) =

∫ t

0
〈ψ(·, s)hrj,k(·, s), ηj,ks 〉 ds, ψ ∈ Cb([0, Hr)× R+).

In particular, when ϕ = ψ = 1, the above two displays imply that (3.4) holds. Also, we immediately

obtain that for each k ∈ K, as N → ∞, 〈1, ν(N),k
t 〉 → 〈1, νkt 〉 and 〈1, η(N),j,k

t 〉 → 〈1, ηj,kt 〉. When
combining with (2.20), (2.19), (6.5), (2.17), (2.8), (6.26), (2.13), Lemma 6.4 and the non-idling
condition, this implies that all the equations in Definition 3.1 are satisfied at time t except (3.5),
(3.7) and (3.8).

It only remains to show that (3.5), (3.7) and (3.8) are also satisfied at time t. We shall just
prove (3.5). The same argument will also show that (3.7) and (3.8) hold. By a similar argument
as the proof of Theorem 2.1 in [14], in the fluid scale, we have〈

ϕ(·, t), ν(N),k
t

〉
=

〈
ϕ(·, 0), ν

(N),k
0

〉
+

∫ t

0

〈
ϕx(·, s) + ϕs(·, s), ν(N),k

s

〉
ds

−D(N),k
ϕ (t) +

∫
[0,t]

ϕ(0, s)dL
(N)
k (s).

Since ν
(N),k
0

w→ νk0 by Assumption 6.1(3), ν
(N),k
s

w→ νks for a.e. s ∈ [0, t], ν
(N),k
t

w→ νkt by our choice
of t and ϕ(·, t) and ϕx(·, s) + ϕs(·, s), s ∈ [0, t], are bounded and continuous, as N →∞, we have〈

ϕ(·, t), ν(N),k
t

〉
→
〈
ϕ(·, t), νkt

〉
and

〈
ϕ(·, 0), ν

(N),k
0

〉
→
〈
ϕ(·, 0), νk0

〉
,

and, by the bounded convergence theorem,∫ t

0

〈
ϕx(·, s) + ϕs(·, s), ν(N),k

s

〉
ds→

∫ t

0

〈
ϕx(·, s) + ϕs(·, s), νks

〉
ds.

On the other hand, using an integration-by-parts argument, the facts that L
(N)
k (0) = 0, L

(N)
k → Lk,

Lk is non-decreasing and ϕs(0, ·) is bounded and continuous on [0, t], along with the bounded con-

vergence theorem, we see that, as N → ∞,
∫

[0,t] ϕ(0, s)dL
(N)
k (s) →

∫
[0,t] ϕ(0, s)dLk(s). Combining

the last four displays with (6.29), it follows that (3.5) holds. Then it follows that all fluid equations
are satisfied for all but countably many t. By right-continuity (with respect to t) of each of the
terms in all fluid equations, we conclude that all fluid equations are a.s. satisfied for all t ∈ [0,∞).
This completes the proof of the desired result that (X, ν, η1, η2) satisfies the fluid equations.
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7 Appendix

Proof of Lemma 5.3. By the definition of τ , we have Lk agrees with L
∗
k on [0, τ) for each k ∈ K.

Then the proof follows essentially the same argument in the proof of Theorem 4.6 starting from
(4.14) in [14] with slight changes in handling feedback. Let Q,L, I,R, η and Q

∗
, L
∗
, I
∗
, R
∗
, η∗

be the processes described in Definition 3.1 that are associated with the solutions (X, ν, η1, η2)
and (X

∗
, ν∗, η1,∗, η2,∗) to the fluid equations for (E,X(0), ν0, η

1
0, η

2
0) ∈ S0, respectively. It follows

directly from (3.7) that
η1 = η1,∗ (7.1)

and from (3.5) and the continuity of L, for each k ∈ K and t ∈ [0, τ ], νkt = ν∗,kt . Hence, by (3.9)

and (3.8), we have for each k ∈ K and t ∈ [0, τ ], Ik(t) = I
∗
k(t) and η2,k

t = η2,∗,k
t . As a consequence,

by (3.16), we obtain that for each t ∈ [0, τ ] and k ∈ K,

Rk(t) +Qk(t) = R
∗
k(t) +Q

∗
k(t). (7.2)

We now show that, in fact Qk = Q
∗
k and Rk = R

∗
k on [0, τ ] for each k ∈ K. Fix k ∈ K. If there exists

t ∈ (0, τ ] such that Qk(t) > Q
∗
k(t), let s

.
= sup{v < t : Qk(v) ≤ Q

∗
k(v)} ∨ 0. Then Qk(s) ≤ Q

∗
k(s)

and Qk(v) > Q
∗
k(v) for each v ∈ (s, t]. Due to the fact that η1 = η1,∗, η2,k

l = η2,∗,k
l for each l ∈ [0, τ ],

we have that ηkl = η∗,kl for all l ∈ [0, τ ]. Then for each l ∈ (s, t],

χk(l) = (F η
k
l )−1(Qk(l)) = (F η

∗,k
l )−1(Qk(l)) ≥ (F η

∗,k
l )−1(Q

∗
k(l)) = χ∗k(l),

and then by (3.12),

Rk(t)−Rk(s) =
2∑
j=1

∫ t

s

(∫
[0,Hr

j,k)
11[0,χk(l)](u)hrj,k(u)ηj,kl (du)

)
dl

≥
2∑
j=1

∫ t

s

(∫
[0,Hr

j,k)
11[0,χ∗k(l)](u)hrj,k(u)ηj,∗,kl (du)

)
dl

= R
∗
k(t)−R

∗
k(s).

From (7.2) and the continuity of Rk and R
∗
k, we deduce that Qk(t) − Qk(s) ≤ Q

∗
k(t) − Q

∗
k(s).

Combining this with the inequality Qk(s) ≤ Q
∗
k(s) proved above, we obtain Qk(t) ≤ Q

∗
k(t), which

leads to a contradiction. Hence Qk(v) ≤ Q
∗
k(v) for all v ∈ [0, τ ]. By symmetry, we can also argue

that Qk(v) ≥ Q
∗
k(v) for all v ∈ [0, τ ]. This shows that Qk = Q

∗
k and, hence, Rk = R

∗
k on [0, τ ].

Lastly, by (3.10), we have Xk = X
∗
k on [0, τ ]. Thus, (X, ν, η1, η2) agrees with (X

∗
, ν∗, η1,∗, η2,∗) on

[0, τ ].
The following proposition, independent of Assumptions 6.1 and 6.2, holds by using the same

argument as the proof of Proposition 4.1 of [14]. It will be used in the proof of Lemma 6.5.

Proposition 7.1 If (X, ν, η1, η2) is a solution to the fluid equations associated with (E,X(0), ν0, η
1
0, η

2
0) ∈

S0, then for every k ∈ K and f ∈ Cb(R+),∫
[0,Hr

1,k)
f(x) η1,k

t (dx) =

∫
[0,Hr

1,k)
f(x+ t)

1−Gr1,k(x+ t)

1−Gr1,k(x)
η1,k

0 (dx)
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+

∫
[0,t]

f(t− s)(1−Gr1,k(t− s)) dEk(s), (7.3)∫
[0,Hr

2,k)
f(x) η2,k

t (dx) =

∫
[0,Hr

2,k)
f(x+ t)

1−Gr2,k(x+ t)

1−Gr2,k(x)
η2,k

0 (dx)

+

∫ t

0
f(t− s)(1−Gr2,k(t− s)) dIk(s), (7.4)∫

[0,Hs
k)
f(x) νkt (dx) =

∫
[0,Hs

k)
f(x+ t)

1−Gsk(x+ t)

1−Gsk(x)
νk0(dx)

+

∫
[0,t]

f(t− s)(1−Gsk(t− s)) dLk(s). (7.5)

Proof of Lemma 6.5. First, (6.26) follows directly from (6.25) and (6.18). Now, we focus on

showing (6.25). Fix k ∈ K and T > 0. It follows from the definition of A
(N),j,k

θ
(N)
k ,η

in (6.13) that for

each t ∈ [0, T ],

A
(N,j,k)

θ
(N)
k ,η

(t)−
∫ t

0

(∫
[0,Hr

j,k)
11[0,χk(s)](u)hrj,k(u)ηj,ks (du)

)
ds

=

∫ t

0

(∫
[0,Hr

j,k)
11

[0,χ
(N)
k (s−)]

(u)hrj,k(u) η(N),j,k
s (du)

)
ds−

∫ t

0

(∫
[0,Hr

j,k)
11[0,χk(s)](u)hrj,k(u)ηj,ks (du)

)
ds

=

∫ t

0

(∫
[0,Hr

j,k)

(
11

[0,χ
(N)
k (s−)]

(u)− 11[0,χk(s)](u)
)
hrj,k(u) η(N),j,k

s (du)

)
ds

+

[∫ t

0

(∫
[0,Hr

j,k)
11[0,χk(s)](u)hrj,k(u)η(N),j,k

s (du)

)
ds−

∫ t

0

(∫
[0,Hr

j,k)
11[0,χk(s)](u)hrj,k(u)ηj,ks (du)

)
ds

]
.

For each t ∈ [0, T ] and κ ∈ [0, Hr
j,k), let

C
(N),j
1 (t, κ)

.
=

∣∣∣∣∣
∫ t

0

(∫
[0,Hr

j,k)

(
11

[0,χ
(N)
k (s−)∧κ]

(u)− 11[0,χk(s)∧κ](u)
)
hrj,k(u) η(N),j,k

s (du)

)
ds

∣∣∣∣∣ , (7.6)

C
(N),j
2 (t, κ)

.
=
∣∣∣ ∫ t

0

(∫
[0,Hr

j,k)

(
11

(χ
(N)
k (s−)∧κ,χ(N)

k (s−)]
(u)− 11(χk(s)∧κ,χk(s)](u)

)
hrj,k(u) η(N),j,k

s (du)
)
ds
∣∣∣,

(7.7)

C
(N),j
3 (t, κ)

.
=

∣∣∣∣∣
∫ t

0

(∫
[0,Hr

j,k)
11[0,χk(s)∧κ](u)hrj,k(u)η(N),j,k

s (du)

)
ds

−
∫ t

0

(∫
[0,Hr

j,k)
11[0,χk(s)∧κ](u)hrj,k(u)ηj,ks (du)

)
ds

∣∣∣∣∣
(7.8)

and

C
(N),j
4 (t, κ)

.
=

∣∣∣∣∣
∫ t

0

(∫
[0,Hr

j,k)
11(χk(s)∧κ,χk(s)](u)hrj,k(u)η(N),j,k

s (du)

)
ds

−
∫ t

0

(∫
[0,Hr

j,k)
11(χk(s)∧κ,χk(s)](u)hrj,k(u)ηj,ks (du)

)
ds

∣∣∣∣∣ .
(7.9)
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Then, it is obvious that for each t ∈ [0, T ] and κ ∈ [0, Hr
j,k),∣∣∣∣∣A(N,j,k)

θ
(N)
k ,η

(t)−
∫ t

0

(∫
[0,Hr

j,k)
11[0,χk(s)](u)hrj,k(u)ηj,ks (du)

)
ds

∣∣∣∣∣ ≤
4∑
i=1

C
(N),j
i (t, κ).

From this, to prove (6.25), it suffices to show that for i = 1, 2, 3, 4,

lim
κ→Hr

j,k

lim
N→∞

E

[
sup

0≤t≤T
C

(N),j
i (t, κ)

]
= 0.

Since hrj,k is locally bounded, let Ξj,kκ
.
= sup0≤u≤κ h

r
j,k. It follows from Proposition 5.5 of [14] by

taking h = 1 therein that for s ≥ 0,

η(N),k
s [0, χ

(N)
k (s−)] = Q

(N)
k (s) + ι

(N)
k (s),

where

ι
(N)
k (s)

.
=

{
0 if (χ

(N)
k (s−)− χ(N)

k (s))(L
(N)
k (s)− L(N)

k (s−)) = 0,

1 if (χ
(N)
k (s−)− χ(N)

k (s))(L
(N)
k (s)− L(N)

k (s−)) > 0.

Firstly, note that χ
(N)
k (s−) ≥ χ(N)

k (s) for all s ≥ 0. It follows from (7.6) and (2.8) that

sup0≤t≤T C
(N),j
1 (t, κ) ≤ Ξj,kκ

∫ T
0

∣∣∣∫[0,Hr
j,k) 11

[0,χ
(N)
k (s−)∧κ]

(u)− 11[0,χk(s)∧κ](u) η
(N),j,k
s (du)

∣∣∣ ds
= Ξj,kκ

∫ T

0

∣∣∣η(N),j,k
s [0, χ

(N)
k (s−) ∧ κ]− η(N),j,k

s [0, χk(s) ∧ κ]
∣∣∣ ds

≤ Ξj,kκ

∫ T

0

∣∣∣η(N),k
s [0, χ

(N)
k (s−) ∧ κ]− η(N),k

s [0, χk(s) ∧ κ]
∣∣∣ ds

≤ Ξj,kκ

∫ T

0

∣∣∣(Q(N)
k (s) + ι

(N)
k (s)) ∧ η(N),k

s [0, κ]− η(N),k
s [0, χk(s) ∧ κ]

∣∣∣ ds,
where ι

(N)
k (s) = ι

(N)
k (s)/N . Since Ek and ηk0 = η1,k

0 + η2,k
0 are continuous, then by (7.3) and (7.4),

ηks is also continuous. Thus, by the convergence of Q
(N)
k , ι

(N)
k and η(N),k to Qk, 0, ηk, respectively,

we have for each s ≥ 0,

lim
N→∞

(
(Q

(N)
k (s) + ι

(N)
k (s)) ∧ η(N),k

s [0, κ]− η(N),k
s [0, χk(s) ∧ κ]

)
= 0.

Note that by (2.18),

E
[∫ T

0

∣∣∣(Q(N)
k (s) + ι

(N)
k (s)) ∧ η(N),k

s [0, κ]− η(N),k
s [0, χk(s) ∧ κ]

∣∣∣ ds]
≤ E

[∫ T

0

(
η(N),k
s [0, κ] + η(N),k

s [0, κ]
)
ds

]
≤ TE

[
〈1, η(N),k

0 〉+ E
(N)
k (T ) + I

(N)
k (T )

]
<∞.

This, together with an application of the dominated convergence theorem yields that

lim
κ→Hr

j,k

lim
N→∞

E

[
sup

0≤t≤T
C

(N),j
1 (t, κ)

]
= 0.

Secondly, by (7.7) and an application of triangle inequality, we have that

C
(N),j
2 (t, κ) ≤ 2

∫ t

0

∫
[κ,Hr

j,k)
hrj,k(u) η(N),j,k

s (du)ds.

39



Moreover, by (7.9), we also have

C
(N),j
4 (t, κ) ≤

∫ t

0

∫
[κ,Hr

j,k)
hrj,k(u)η(N),j,k

s (du)ds+

∫ t

0

∫
[κ,Hr

j,k)
hrj,k(u)ηj,ks (du)ds.

Thus, by a similar argument in showing (7.30) of [14], we have

lim
κ→Hr

j,k

lim
N→∞

E

[
sup

0≤t≤T
C

(N),j
2 (t, κ)

]
= 0 and lim

κ→Hr
j,k

lim
N→∞

E

[
sup

0≤t≤T
C

(N),j
4 (t, κ)

]
= 0.

Lastly, we show that

lim
κ→Hr

j,k

lim
N→∞

E

[
sup

0≤t≤T
C

(N),j
3 (t, κ)

]
= 0. (7.10)

Since 11[0,χk(s)∧κ](u)hrj,k(u) lies in L1
loc[0, H

r
j,k) and is nonnegative, there exists a sequence of non-

negative continuous functions {hn}n≥1 on [0, Hr
j,k) such that

lim
n→∞

∫ κ

0
|11[0,χk(s)∧κ](u)hrj,k(x)− hn(x)|dx = 0

and hn has common compact support in [0, κ], where κ < κ < Hr. For each n ∈ N, by the
convergence of η(N),j,k to ηj,k, we have for each s ∈ [0, T ],

lim
N→∞

∫
[0,Hr

j,k)
hn(u)η(N),j,k

s (du) =

∫
[0,Hr

j,k)
hn(u)ηj,ks (du),

and hence another application of the dominated convergence theorem yields that (7.10) holds with
hn in place of 11[0,χk(s)∧κ]h

r
j,k. Let ln = |hn−11[0,χk(s)∧κ]h

r
j,k| for each n ≥ 1. Then, in order to prove

(7.10), it clearly suffices to show that the following two limits hold: almost everywhere,

lim
n→∞

sup
N

∫ T

0

(∫
[0,κ]

ln(u)η(N),j,k
s (du)

)
ds = 0, (7.11)

and

lim
n→∞

∫ T

0

(∫
[0,κ]

ln(u)ηj,ks (du)

)
ds = 0. (7.12)

By the representations of η(N),1,k and η(N),2,k in (2.3) and (2.4), respectively, we have∫ T
0

(∫
[0,κ] ln(u)η

(N),1,k
s (du)

)
ds ≤ 1

N

0∑
j=−E(N)

k +1

∫ T
0 ln(w

(N),1,k
j (0) + s)11{w(N),1,k

j (0)+s≤κ∧r1,kj }
ds

+
1

N

E
(N)
k (T )∑
j=1

∫ T

ζ
(N),1,k
j

ln(s− ζ(N),1,k
j )11{s−ζ(N),1,k

j ≤κ} ds ≤ sup
N

(〈
1, η

(N),1,k
0

〉
+ E

(N)
k (T )

)∫ κ

0
ln(x) dx

and∫ T
0

(∫
[0,κ] ln(u)η

(N),2,k
s (du)

)
ds ≤ 1

N

0∑
j=−Ck+1

∫ T
0 ln(w

(N),2,k
j (0) + s)11{w(N),2,k

j (0)+s≤κ∧r2,kj }
ds

+
1

N

I
(N)
k (T )∑
j=1

∫ T

ζ
(N),2,k
j

ln(s− ζ(N),2,k
j )11{s−ζ(N),2,k

j ≤κ} ds ≤ sup
N

(〈
1, η

(N),2,k
0

〉
+ I

(N)
k (T )

)∫ κ

0
ln(x) dx.
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Since supN

(〈
1, η

(N),1,k
0

〉
+ E

(N)
k (T )

)
<∞ almost surely, due to Assumption 6.1,

supN

(〈
1, η

(N),2,k
0

〉
+ I

(N)
k (T )

)
< ∞ almost surely, due to (6.19) and Assumption 6.1, and hn

converges in L1
loc[0, H

r
j,k) to 11[0,χk(s)∧κ]h

r
j,k, we obtain (7.11). On the other hand, observe that, by

(7.14) of Lemma 7.4 of [14] applied to l = ln, there exists a constant κ̃(κ, T ) <∞ such that∫ T

0

(∫
[0,κ]

ln(u)ηj,ks (du)

)
ds ≤ κ̃(κ, T )

∫ κ

0
ln(x)dx.

By the convergence of hn to 11[0,χk(s)∧κ]h
r
j,k in L1

loc[0, H
r
j,k), the term on the right-hand side of the

above display converges to 0, as n→∞, and (7.12) follows.
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