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Abstract Three different fluid model formulations have been recently developed
for Gt/GI/N +GI queues, including a two-parameter fluid model in Whitt (2006)
by tracking elapsed service and patience times of each customer, a measure-valued
fluid model in Kang and Ramanan (2010) and its extension in Zuñiga (2014) by
tracking elapsed service and patience times of each customer, and a measure-valued
fluid model in Zhang (2013) by tracking residual service and patience times of each
customer. We show that, under general initial conditions, the first two fluid model
formulations tracking elapsed times (Whitt’s and Kang and Ramanan’s fluid models)
are equivalent and can be used to describe the same Gt/GI/N +GI queue when
the service and patience time distributions have densities, whereas, Zuñiga’s fluid
model and Zhang’s fluid model are equivalent only when the initial conditions for
the Gt/GI/N +GI queue satisfy certain assumptions. We identify these conditions
under which Zuñiga’s fluid model and Zhang’s fluid model can be derived from each
other for the same system. The equivalence properties discovered provide important
implications for the understanding of the recent development for non-Markovian
many-server queues.

1 Introduction

Many-server queueing models with abandonment have attracted substantial atten-
tion because of their appealing applications to customer contact centers and health-
care; see, e.g., [2], [3], [4], [6], and references therein. In the Gt/GI/N +GI model,
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there are N parallel servers, and customers arrive with a time-varying arrival rate,
require i.i.d. service times, and have i.i.d. patience times; the arrival process, service
and patience times are assumed to be mutually independent. The service discipline
is first-come-first-served (FCFS) and non-idling, that is, no server will idle whenever
there is a customer in queue.

Because of the difficulty in the exact analysis of such stochastic systems, fluid
models have been recently developed to approximate the system dynamics and per-
formance measures in a many-server heavy-traffic regime, where the arrival rate
and the number of servers get large and service and patience time distributions are
fixed. The conventional approach of using total number of customers in the system
to describe system dynamics is insufficient to give a complete description and study
some performance measures. Thus, measure-valued and two-parameter processes
that track elapsed or residual service and patience times of each customer have been
recently used to study these stochastic models.

Whitt [21] pioneered the use of two-parameter processes to describe the system
dynamics (Definition 1). In particular, Q(t,y) represents the number of customers in
queue at time t that have waited for less than or equal to y, and B(t,y) represents the
number of customers in service at time t that have received service for less than or
equal to y. His idea is to represent these two-parameter processes as integrals of their
densities q(t,y) and b(t,y) with respect to y (if they exist), respectively, which satisfy
two fundamental evolution equations ((2.14) and (2.15) in [21]), respectively. A
queue boundary process plays an important role in determining the real fluid queue
size: the two-parameter density function q(t,y) becomes zero for y beyond the queue
boundary at each time t. This approach is generalized to study the Gt/GI/Nt +GI
model with both time-varying arrival rates and numbers of servers [12] and [13].

Kang and Ramanan [10], following Kaspi and Ramanan [11], used two measure-
valued processes to describe the service and queueing dynamics, one tracking the
amount of time each customer has been in service, and the other tracking the amount
of time each customer has spent in a potential queue, where all customers enter the
potential queue upon arrival, and stay there until their patience times run out. The
potential queue includes customers waiting in the real queue as well as those that
have entered service or even departed but whose patience times have not run out.
They also use a frontier waiting-time process to track the waiting time of the cus-
tomer in front of the queue at each time. This frontier waiting-time process is used
to determine the real fluid queue dynamics from the measure-valued process for the
potential queue. The description of system dynamics is then completed by the bal-
ance equations for the fluid content processes associated with the queue, the service
station and the entire system, as well as the non-idling condition; see Definition 2.

We summarize these two approaches of tracking elapsed service and patience
times by stating that the two-parameter process approach in Whitt [21] describes
the system dynamics by the densities and rates, while the measure-valued process
approach in Kang and Ramanan [10] describes the system dynamics by the distri-
butions and counting processes directly. The existence and uniqueness of Whitt’s
two-parameter fluid model are shown in discrete time under the assumption that
the service and patience times have densities in [21]. They also follow, as a special
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case, from the existence and uniqueness results established in [12, 13] of the two-
parameter fluid model for Gt/GI/Nt +GI queueing model with both time-varying
arrival rates and numbers of servers under the assumptions that the system only
alternates between overloaded and underloaded regimes (with a finite number of
alternations in each finite time interval) and that the service and patience time dis-
tributions have piecewise continuous densities. The existence and uniqueness of
Kang-Ramanan’s fluid model are established in [10] via the fluid limits and more
recently in [7] via the characterization of fluid model solution directly under the as-
sumptions that the service time distribution Gs has density and the hazard rate func-
tion hr of patience times is a.e. locally bounded. Zuñiga [23] has recently extended
Kang-Ramanan’s fluid model for general service time distributions and continuous
patience time distributions.

One would expect that the two approaches are equivalent since they are different
formulations for the same Gt/GI/N+GI queue. Our first main result is to establish
this equivalence in Theorem 1: first, a set of two-parameter fluid equations derived
from the measure-valued fluid model satisfies the fluid model equations in [21] (see
Proposition 4.1), and second, a set of measure-valued fluid equations derived from
the two-parameter fluid model satisfies the fluid model equations in [10] (see Propo-
sition 4.2). The equivalence property we establish provides a proof for the conjec-
ture on the existence and uniqueness of Whitt’s two-parameter fluid model under
the assumption that the service and patience time distributions have densities (Con-
jecture 2.2 in [21]). The two-parameter process formulation depends critically on
the existence of the densities of the service and patience time distributions, since
the densities of the two-parameter processes may not exist for general service and
patience time distributions (see Remark 4).

Aa a different approach, the system dynamics of Gt/GI/N +GI queues can also
be described by tracking residual service and patience times. It was conjectured in
Section 3.3.2 of Kaspi and Ramanan [11] (in the case of no abandonment) that a
measure-valued fluid model that tracks customers’ residual service times and pa-
tience times can also be formulated in parallel to the fluid model tracking elapsed
times. One advantage of considering a fluid model tracking residual times is that it
enables us to easily analyze some performance measures, such as the system work-
load at any given time, which rely directly on the customers’ residual service times;
see, e.g., [5, 19] for infinite-server models and [11] for Gt/GI/N queues. Such a
fluid model tracking residual times, if suitably formulated, should be also equiva-
lent to the above three fluid models tracking elapsed times.

Zhang [22] provided a fluid model tracking residual times for the G/GI/N +GI
model with a constant arrival rate (Definition 4). Instead of using the potential queue
as described in the fluid models tracking elapsed times, Zhang’s model uses a vir-
tual queue to describe the queueing dynamics, where all customers enter the vir-
tual queue upon arrival and stay there until their time to enter service, which may
include customers whose patience times have run out already. The existence and
uniqueness of this fluid model are shown assuming continuous service time dis-
tribution and Lipschitz continuous patience time distributions [22]. We study the
relationship of Zhang’s fluid model with the above three fluid models, in particular,
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focusing on Zuñiga’s fluid model, and find that they are not entirely equivalent for-
mulations for the G/GI/N+GI queue under general initial conditions; see Remarks
6-8 in Section 3.3. The disparity lies in the initial conditions assumed for those fluid
models, in particular, the assumptions imposed on the initial contents in the virtual
queue and in service in Zhang’s fluid model. For example, in Kang-Ramanan and
Zuñiga’s fluid models, it is required that the residual service time of initial content
in ν0(dx) should have distribution with density gs(x+ ·)/Ḡs(x), whereas, in Zhang’s
fluid model, there is no requirement on the distribution of the residual service time
of initial content in service. We identify the set of necessary and sufficient condi-
tions on the initial contents for the equivalence of Zhang’s fluid model and the above
three fluid models (Theorems 2 and 3 and Corollary 3.1). It is important to note that
in comparison of these different fluid models, they should start with the same input
data including the initial conditions.

On the other hand, from Kang-Ramanan and Zuñiga’s fluid models, we obtain
measure-valued fluid processes tracking residual service and patience times, which,
together with the same input data as in those two fluid models, describe the service
and real queueing dynamics of the same Gt/GI/N +GI systems. These processes
tracking residual times play an important bridging role in the discussion of the non-
equivalence of Zhang’s fluid model and the fluid models tracking elapsed times.

These equivalence properties established in the paper are significant to under-
stand the fluid dynamics of the Gt/GI/N +GI model from different perspectives.
They help to unify the different approaches in the literature, and also highlight their
differences and limitations. They provide the flexibility of choosing the most conve-
nient approach among the different formulations, tracking elapsed or residual times,
and the possibility of applying results from one formulation to another. Some prop-
erties established with one approach can then be directly applied to other models by
the equivalence relationship. We illustrate this by two examples. First, an asymp-
totic periodic property is proved in [15] for the two-parameter fluid model tracking
elapsed times for the Gt/Mt/Nt +GIt queueing model, and thus, should also hold
for the associated measure-valued fluid models tracking elapsed and residual times
(in the special case of Gt/M/N +GI queues). Second, it is important to show that
for a fluid model, the fluid solutions converge uniformly to the steady state over
all possible initial states. That has been a difficult task for general non-Markovian
many-server models. Thus, the equivalence property in this paper paves the way
to show this with possibly any of the fluid models, whichever most convenient (see
[16] for some recent attempts in this direction). In addition, the equivalence property
results in an algorithm to compute two-parameter processes and relevant quantities
under the most general conditions that cannot be computed by previous methods
(see [9] and its extension in [17] to fluid models of Gt/GI/N+GI queues under the
least-patient first service discipline).

Although these equivalence properties are established for the fluid limits of the
associated fluid-scaled stochastic processes in the queueing model, it is conceiv-
able that the proofs for the convergence to these fluid limits may also be unified.
The two-parameter approach proves the convergence in the functional space DD =
D([0,∞),D([0,∞),R)) endowed with the Skorokhod J1 topology. The measure-
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valued approach proves the convergence in the measure-valued functional space
D([0,∞),M ([0,∞))) where M ([0,∞)) is the space of Radon measures on R+ en-
dowed with the Borel σ -algebra. Tracking elapsed times enables us to use martin-
gale arguments [10], but tracking residual times uses a different approach to prove
the convergence [22]. So it is interesting to ask how these different approaches to es-
tablish the convergence are related and what would be the most general assumptions
on the system primitives. We believe that these equivalence and coupling properties
are useful in the study of other non-Markovian many-server queueing systems and
networks.

Organization of the paper. The rest of the paper is organized as follows. We finish
this section with some notation. In Section 2, we first review the definitions of the
three fluid models tracking elapsed times, and then show their equivalence (Theorem
1), whose proof is given in Section 4. In Section 3, we first state and discuss the fluid
measure-valued processes tracking residual times derived from Kang-Ramanan and
Zuñiga’s fluid models in Section 3.1. We then review Zhang’s fluid model in Section
3.2 and discuss its connection with the three fluid models tracking elapsed times in
Section 3.3.

Notation. We use R and R+ to denote the spaces of real numbers and nonneg-
ative real numbers, respectively. Given any metric space S, Cb(S) is the space of
bounded, continuous real-valued functions on S. Let Cc(R+) be the space of con-
tinuous real-valued functions on R+ with compact support. Given a Radon measure
ξ on [0,H) and an interval [a,b] ⊂ [0,H), we will use ξ [a,b] to denote ξ ([a,b]).
Let Dabs

[0,∞)(M [0,H)) denote the set of measure-valued processes µ with values in
M [0,H), the space of Radon measures on [0,H), such that for any t ≥ 0, the mea-
sure

∫ t
0 µs(·)ds is absolutely continuous with respect to the Lebesgue measure on

[0,H). Let D[0,∞)(R) be the space of real-valued cádlág functions on [0,∞). For
each real-valued function f defined on [0,∞), let f+ and f− be the positive and the
negative parts of f , respectively, that is, f+(t) = f (t)∨ 0 and f−(t) = −( f (t)∧ 0)
for each t ≥ 0.

2 Fluid models tracking elapsed times

In the Gt/GI/N +GI fluid models, we let E(t) represent the cumulative amount of
fluid content (representing customers) entering the system in the time interval (0, t]
for each t > 0. Assume that E is a non-decreasing function defined on [0,∞) with
the density function λ (·)≥ 0, that is,

E(t) =
∫ t

0
λ (s)ds, t ≥ 0. (1)

Let Gs and Gr denote the service and patience time distribution functions, respec-
tively. We assume that Gs(0+) = Gr(0+) = 0. Let
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Hr .
= inf{x ∈ R+ : Gr(x) = 1}, Hs .

= inf{x ∈ R+ : Gs(x) = 1}.

Then Hr and Hs are right supports of Gr and Gs, respectively.

2.1 Whitt’s two-parameter fluid model

In this section we state a modified version of the two-parameter fluid model in Whitt
[21]. We assume that the functions Gs and Gr have density functions gs and gr

on [0,∞), respectively. Let the hazard rate functions of Gs and Gr be defined as
hr .

= gr/Ḡr on [0,Hr) and hs .
= gs/Ḡs on [0,Hs), respectively, where Ḡr = 1−Gr

and Ḡs = 1−Gs.
Let the two-parameter processes B(t,y) be the amount of fluid content in service

at time t that has been in service for less than or equal to y units of time, Q̃(t,y) be
the amount of fluid content in the potential queue at time t that has been in potential
queue for less than or equal to y units of time, which may include the fluid content
that has entered service or even departed by time t, and Q(t,y) be the portion of
Q̃(t,y) that excludes the fluid content which has entered service by time t. Then it is
obvious that B(t,∞) is the total fluid content in service and Q(t,∞) is the total fluid
content in queue waiting for service.

It is assumed that these three processes are Lebesgue integrable on [0,∞) with
densities b(t,y), q̃(t,y) and q(t,y) with respect to the second component y, that is,

B(t,y) =
∫ y

0
b(t,x)dx≤ 1, Q̃(t,y) =

∫ y

0
q̃(t,x)dx≥ 0, (2)

Q(t,y) =
∫ y

0
q(t,x)dx≥ 0.

Let q̃(0,x) = q(0,x) as a function in x have support in [0,Hr) and b(0,x) as a func-
tion in x have support in [0,Hs). Note that in [21], it is not explicitly stated that the
service and patience time distributions Gs and Gr can be of finite support.

Definition 1. A pair of functions (B(t,y),Q(t,y)) is a two-parameter fluid model
tracking elapsed times with the input data (λ (·), q̃(0,x),b(0,x)) if it satisfies the
following conditions.

(i) The service density function b(t,x) satisfies

b(t +u,x+u) = b(t,x)
Ḡs(x+u)

Ḡs(x)
, x ∈ [0,Hs), t ≥ 0, u > 0. (3)

(ii) The potential queue density function q̃(t,x) satisfies

q̃(t +u,x+u) = q̃(t,x)
Ḡr(x+u)

Ḡr(x)
, x ∈ [0,Hr), t ≥ 0, u > 0. (4)
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(iii) There exists a queue boundary function w(t) such that Q̃(t,w(t)) = Q(t,∞)
and then the queue density function q(t,x) satisfies

q(t,x) =

{
q̃(t,x), x≤ w(t),
0, x > w(t).

(5)

(iv) The density functions b(t,x), q̃(t,x) and q(t,x) satisfy the following bound-
ary properties:

b(t,0) =


λ (t), if B(t,∞)< 1,
σ(t)∧λ (t), if B(t,∞) = 1, and Q(t,∞) = 0,
σ(t), if B(t,∞) = 1, and Q(t,∞)> 0,

(6)

q̃(t,0) = λ (t), (7)

and

q(t,0) =


λ (t), if Q(t,∞)> 0 (w(t)> 0),
λ (t)− (σ(t)∧λ (t)), if B(t,∞) = 1, and Q(t,∞) = 0,
0, if B(t,∞)< 1,

(8)

where
σ(t) =

∫
[0,Hs)

b(t,x)hs(x)dx, t ≥ 0. (9)

(v) The densities λ (t), q(t,x), b(t,x) and α(t) satisfy the balance equation:∫ t

0
λ (s)ds+

∫
∞

0
q(0,x)dx =

∫
∞

0
q(t,x)dx+

∫ t

0
b(s,0)ds+

∫ t

0
α(s)ds, (10)

where
α(t) =

∫
[0,Hr)

q(t,x)hr(x)dx, t ≥ 0. (11)

(vi) The densities b(t,x), q(t,x) satisfy the non-idling condition:(∫ ∞

0
(b(t,x)+q(t,x))dx−1

)+
=
∫

∞

0
q(t,x)dx, (12)(∫ ∞

0
(b(t,x)+q(t,x))dx

)
∧1 =

∫
∞

0
b(t,x)dx, (13)(∫ ∞

0
b(t,x)dx−1

)∫ ∞

0
q(t,x)dx = 0. (14)

In [21], equations (3) and (4) are called the first and second fundamental evo-
lution equations, respectively. Note that the first fundamental evolution equation
(3) essentially says that the fluid content in service that has not completed service
remains in service. Similarly, the second fundamental evolution equation (4) es-
sentially says that the fluid content in the potential queue that has not reached its
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patience time remains in the potential queue. For each time t, the queue boundary
quantity w(t) divides the fluid content in the potential queue into two portions. The
fluid content on the left side of w(t) is still in queue waiting for service and the fluid
content on the right side of w(t) has entered service or even departed. The quantities
b(t,0), q̃(t,0), q(t,0) in condition (iv) above are exactly the rates at time t at which
the fluid content enters service, the potential queue and the queue, respectively. The
quantities σ(t) in (9) and α(t) in (11) are precisely the total service rate and the
total abandonment rate at each time t, respectively. At last, the balance equation
(10) is implicit in the definition of the fluid model in [21] and stated in equation
(6) in [12]. We remark that the non-idling condition (vi) is implicit in [21], but is
explicitly stated in a subsequent paper by Liu and Whitt [12]. We also remark that if
λ (t)> 0, then the no-idling conditions in (12)–(14) are redundant, since they can be
derived by the conditions in (6)–(8). Indeed, notice from (8) that q(t,0) = 0 when
B(t)< 1 and q(t,0) = λ (t)> 0 when Q(t)> 0. Thus, B(t)< 1 and Q(t)> 0 cannot
happen at the same time since λ (t) > 0. This will also imply that B(t) = X(t)∧ 1
and Q(t) = (X(t)−1)+ for all t ≥ 0.

Remark 1. (Existence and uniqueness of Whitt’s fluid model.) Whitt [21] has shown
the existence and uniqueness of the two-parameter fluid model for Gt/GI/N +
GI queues in discrete time by proving a functional weak law of large numbers
(FWLLN), and conjectured them in continuous time (cf. Conjecture 2.2 of [21]).
The existence and uniqueness of the two-parameter fluid model for Gt/GI/Nt +GI
queues with time-dependent staffing are shown in Liu and Whitt [12, 13], by an
explicit characterization of the solution to the fluid model in [12] and by proving
an FWLLN in [13], under the additional assumptions that the system only alter-
nates between overloaded and underloaded regimes (with a finite number of alter-
nations in each finite time interval) and that the service and patience time distribu-
tions have piecewise continuous densities. Thus, by specializing their argument to
Gt/GI/N +GI queues, the conjecture is proved but with the previously mentioned
additional assumptions.

In this paper, we prove the conjecture under the assumption that the service and
patience time distributions have densities, without assuming, a priori, that the sys-
tem only alternates between overloaded and underloaded regimes, by applying the
equivalence between the two fluid models in Definitions 1 and 2 established in The-
orem 1 below and the existence and uniqueness of Kang-Ramanan’s fluid model es-
tablished in [7, 10]. We remark that the existence of the densities of the service and
patience time distributions is critical for the formulation of Whitt’s two-parameter
fluid model, because the densities of B(t,y) and Q(t,y) with respect to y may not
exist when the service and/or patience time distributions are general (see Remark
4).
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2.2 Kang-Ramanan’s measure-valued fluid model

In this section, we state the measure-valued fluid model in Kang and Ramanan [10].
They use two measure-valued processes to describe the service and queueing dy-
namics. Let νt be a nonnegative finite measure on [0,∞) with support in [0,Hs)
such that νt(dx), x ∈ [0,Hs), represents the amount of fluid content of customers
in service whose time spent in service by time t lies in the range [x,x+ dx). Let
ηt be another nonnegative finite measure on [0,∞) with support in [0,Hr) such that
ηt(dx), x ∈ [0,Hr), represents the amount of fluid content in the potential queue
whose time spent there by time t lies in the range [x,x+ dx), where the potential
queue is an artificial queue that includes the fluid content of customers in queue
waiting for service and also the fluid content of customers that has entered service
or even departed, but whose patience time has not been reached.

We assume that the functions Gs and Gr have density functions gs and gr on
[0,∞), respectively. Let S0 denote the set of triples (η ,ν ,x) such that 1−ν [0,Hs) =
[1− x]+ and ν [0,Hs)+η [0,Hr) = x, where η is a non-negative finite measure on
[0,∞) with support in [0,Hr), ν is a non-negative finite measure on [0,∞) with sup-
port in [0,Hs), and x ∈ R+. The set S0 represents all possible measures of (η ,ν)
and values of x that the initial state of the measure-valued fluid model (η ,ν ,X) can
take, satisfying the non-idling condition.

Definition 2. A triple of functions (η ,ν ,X) is a measure-valued fluid model track-
ing elapsed times with the input data (λ (·),η0,ν0,X(0)) such that (η0,ν0,X(0)) ∈
S0 if it satisfies the following equations. For every ψ ∈ Cb(R+) and t ≥ 0,∫

∞

0
ψ(x)ηt(dx) =

∫
[0,Hr)

ψ(x+ t)
Ḡr(x+ t)

Ḡr(x)
η0(dx)+

∫ t

0
ψ(t− s)Ḡr(t− s)λ (s)ds,

(15)∫
∞

0
ψ(x)νt(dx) =

∫
[0,Hs)

ψ(x+ t)
Ḡs(x+ t)

Ḡs(x)
ν0(dx)+

∫
[0,t]

ψ(t− s)Ḡs(t− s)dK(s),

(16)
where

K(t) = B(t)+D(t)−B(0) = νt [0,Hs)+D(t)−ν0[0,Hs), (17)

D(t) =
∫ t

0

(∫
[0,Hs)

hs(x)νs(dx)
)

ds, (18)

E(t)+Q(0) = Q(t)+K(t)+R(t), (19)

R(t) =
∫ t

0

(∫
[0,χ(s)]

hr(x)ηs(dx)
)

ds, (20)

χ(s) = inf{x ∈ [0,Hr) : ηs[0,x]≥ Q(s)}, (21)

Q(t) = (X(t)−1)+, (22)
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B(t) = νt [0,∞) = X(t)∧1 = 1− (1−X(t))+, (23)

and
Q(t)(1−B(t)) = 0. (24)

In this fluid model, B(t) represents the total fluid content of customers in service,
Q(t) represents the total fluid content of customers in queue waiting for service,
and X(t) represents the total fluid content of customers in the system at each time t.
Then, by (22) and (23),

X(t) = B(t)+Q(t). (25)

The additional quantities K(t), R(t), D(t), χ(t) can naturally be interpreted, respec-
tively, as the cumulative amount of fluid content that has entered service by time t,
the cumulative amount of fluid content that has abandoned from the queue by time
t, the amount of fluid content that has departed the system after service completion
by time t, and the waiting time of the fluid content at the head of the queue at time
t, that is, the fluid content in queue with the longest waiting time.

For completeness, we now provide an intuitive explanation for these fluid equa-
tions. The equation (15) governs the evolution of the measure-valued process ηt .
Note that when x≤ t, the amount of fluid content ηt(dx) is the fraction of the amount
of fluid content λ (t− x) arriving to the system at time t− x and whose time in the
system since its arrival is more than x by time t. It is easy to see that this fraction
equals to Ḡr(x). When x > t, the amount of fluid content ηt(dx) is the fraction of
the amount of fluid content η0(d(x− t)) initially in queue and whose waiting time is
more than x by time t given that it is more than x−t at time 0. This fraction equals to
Ḡr(x)/Ḡr(x− t). This shows that (15) holds. A similar observation yields (16). The
equations (17)–(19) are simply mass conservation equations for the queue and the
server station, respectively. Since νs(dx), x ∈ [0,s], represents the amount of fluid
content in service whose time in service lies in the range [x,x+ dx) at time s, and
hs(x) represents the fraction of the amount of fluid content with time in service x
(that is, with service time no less than x) that would depart from the system while
having time in service in [x,x+dx). Hence, it is natural to expect

∫
[0,Hs) hs(x)νs(dx)

to represent the departure rate of fluid content from the fluid system at time s and
thus, expect (18) holds. A similar explanation can be applied to (20) except that,
to consider the real reneging rate, we can only consider x < χ(s) since all the fluid
content with the time in the system more than χ(s) has entered service by time s.
The equation (24) represents the usual non-idling condition.

By adding (19) and (17) together and using (25), we see that

E(t)+X(0) = X(t)+R(t)+D(t). (26)

By the representations of E, R and D in (1), (20) and (18), we have from (26) that X
is absolutely continuous. In turn, using the fact that |[n−a]+− [n−b]+| ≤ |a−b|,
it is easy to see from (23) and (17) that B and then K are absolutely continuous. So
there exists a Lebesgue integrable function κ such that

K(t) =
∫ t

0
κ(s)ds, t ≥ 0. (27)
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By (17) and (18), the process K has the following representation:

K(t) = B(t)−B(0)+
∫ t

0

(∫
[0,Hs)

hs(x)νs(dx)
)

ds. (28)

Then it follows from the same argument as in deriving (3.12) of [11] that the process
κ satisfies for a.e. t ∈ R+,

κ(t) =


λ (t) if X(t)< 1,
λ (t)∧

∫
[0,Hs) hs(x)νt(dx) if X(t) = 1,∫

[0,Hs) hs(x)νt(dx) if X(t)> 1.
(29)

Remark 2. (Existence and uniqueness of Kang-Ramanan’s fluid model.) Under the
assumptions that the hazard rate functions hr and hs are either bounded or lower
semi-continuous, Kang and Ramanan [10] established the existence of the measure-
valued fluid model in Definition 2 by proving an FWLLN and also showed its
uniqueness via the fluid model characterization. The existence and uniqueness of
Kang-Ramanan’s fluid model directly from the characterization of its solution is
established in Kang [7], under the weaker assumptions that the service time distri-
bution Gs has density and the hazard rate function hr is a.e. locally bounded.

Now we state our first result on the equivalence between the two fluid models
described in Definitions 1 and 2. Its proof is deferred to Section 4. As a consequence,
it also gives a proof for Conjecture 2.2 of [21] under the assumption that the service
and patience time distributions have densities and hr is a.e. locally bounded.

Theorem 1. Existence and uniqueness of Whitt’s fluid model in Definition 1 is
equivalent to existence and uniqueness of Kang-Ramanan’s fluid model in Defi-
nition 2 for the Gt/GI/N + GI queue with the time-dependent arrival rate λ (·)
and the initial data (η0,ν0,X(0)) ∈S0, where η0(dx) = q̃(0,x)dx = q(0,x)dx and
ν0(dx) = b(0,x)dx.

2.3 Zuñiga’s fluid model

Recently, Zuñiga [23] extended Kang-Ramanan’s fluid model without assuming that
the patience time distribution Gr and service time distribution Gs have densities.
In this section, we state this extended Kang-Ramanan’s fluid model and establish
some useful properties on certain quantities in the model, which are needed in the
subsequent analysis.

Define a measure Mr on [0,Hr] by

dMr(x) .
= 1{x<Hr}Ḡ

r(x−)−1dGr(x)+1{Gr(Hr−)<1}δHr(dx),

and a measure Ms on [0,Hs] by
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dMs(x) .
= 1{x<Hs}Ḡ

s(x−)−1dGs(x)+1{Gs(Hs−)<1}δHs(dx).

Note that in Zuñiga [23], it is assumed that Gr is continuous on [0,∞) in As-
sumption 2.1 therein. Thus, in Zuñiga’s fluid model stated in Definition 3.4 of [23],
the measure Mr (in Definition 3.4 of [23], the author uses Hr instead), the extra
term 1{Gr(Hr−)<1}δHr(dx) is not needed. Since here we do not make the continuity
assumption on Gr in the following definition, we need to add this term just like the
similar term in Ms.

Definition 3. A triple of processes (η ,ν ,X)∈Dabs
[0,∞)(M [0,Hr))×Dabs

[0,∞)(M [0,Hs))×
D[0,∞)(R) is a solution to an extended Kang-Ramanan’s measure-valued fluid model
with the input data (λ (·),η0,ν0,X(0)) such that (η0,ν0,X(0))∈S0 if qt and pt , the
densities of

∫ t
0 νs(·)ds and

∫ t
0 ηs(·)ds, respectively, satisfy the following conditions.

There exist K(·), a process of bounded variation started at 0, χ(·), B(·), Q(·), D(·),
R(·) such that for every ψ ∈ Cb(R+) and t ≥ 0, (15)–(17), (19), (21)–(24) hold and

D(t) =
∫
[0,Hs]

qt(x)dMs(x), (30)

R(t) =
∫
[0,Hr ]

∫
[0,t]

1{x≤χ(s)}ds ps(x)dMr(x), (31)

where the integral with respect to ps(x) is defined as a Lebesgue-Stieltjes integral in
s.

Remark 3. Zuñiga’s fluid model stated in Definition 3 is equivalent to Defini-
tion 3.4 of [23] due to Lemma 4.1 and Remark 4.2 of [23] and the given input
data (λ (·),η0,ν0,X(0)). The main difference of Zuñiga’s fluid model from Kang-
Ramanan’s fluid model in Definition 2 is that the processes D and R satisfy (30) and
(31) instead of (18) and (20) due to the lack of existence of densities of Gs and Gr,
respectively. By Lemma 4.1 of [23], the densities qt and pt can be written as

qt(x) = Ḡs(x−)K((t− x)+)+
∫
[(x−t)+,x)

Ḡs(x−)
Ḡs(y)

ν0(dy), (32)

and

pt(x) = Ḡr(x−)E((t− x)+)+
∫
[(x−t)+,x)

Ḡr(x−)
Ḡr(y)

η0(dy). (33)

When Gs and Gr are assumed to have densities, gr and gs, respectively, Zuñiga’s
fluid model is reduced to Kang-Ramanan’s fluid model. Zuñiga’s fluid model admits
a unique solution (established in Theorem 3.5 via an FWLLN and Theorem 4.4 via
the characterization of the fluid model in [23]) under the assumptions that Gr is
continuous, η0 is diffuse, and ν0 is diffuse if Gs is not continuous (Assumption 3.1
of [23]).

We end this section by showing the following critical lemma for Zuñiga’s fluid
model in Definition 3, which will be used in Section 3 in discussing the relationship
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of the fluid models tracking elapsed times stated in this section and a fluid model
tracking residual times stated in Section 3.2.

Lemma 1. In Definition 3, the processes D and R have the following representa-
tions: for each t ≥ 0,

D(t) =
∫
[0,Hs)

Gs(y+ t)−Gs(y)
Ḡs(y)

ν0(dy)+
∫ t

0
Gs(t− s)dK(s), (34)

R(t) =
∫
[0,Hr)

(∫
(y,y+t]

1{y≤χ(x−y)−(x−y)}dGr(x)
)

Ḡr(y)−1
η0(dy)

+
∫ t

0

∫
[0,Hr ]

1{x≤s∧χ(s)}λ (s− x)dGr(x)ds. (35)

Moreover, the process K(t) is non-decreasing and the process χ(t) satisfies the fol-
lowing property:

χ(t)−χ(s)≤ t− s whenever 0≤ s < t < ∞. (36)

Remark 4. It is evident that the representation of the process D in (34) implies that
D(t) is not absolute continuous when the service time distribution does not have
density. Thus, we cannot write the total service rate (departure rate) as in (9). Al-
though the two-parameter processes B(t,y), Q̃(t,y) and Q(t,y) can be obtained as
in (2) from the Zuñiga’s fluid model (νt ,ηt ,X) in Definition 3, their densities with
respect to y may not exist and the associated two-parameter fluid model using den-
sities b(t,x) and q(t,x) cannot be formulated with the densities as in Definition 1.

Proof of Lemma 1. By (30) and (32), applying interchange of the order of integration
and integration by parts, we easily obtain (34). To show R(t) in (35), from (31) and
(33), we obtain that for each t ≥ 0,

R(t) =
∫
[0,Hr ]

∫ t

0
1{x≤χ(s)∧s}Ḡ

r(x−)λ (s− x)dsdMr(x) (37)

+
∫
[0,Hr ]

∫
[0,t]

1{x≤χ(s)}ds

(∫
[(x−s)+,x)

Ḡr(x−)
Ḡr(y)

η0(dy)
)

dMr(x)

=
∫ t

0

∫
[0,Hr ]

1{x≤χ(s)∧s}λ (s− x)Ḡr(x−)dMr(x)ds

+
∫
[0,Hr ]

∫
[0,x∧t]

1{x≤χ(s)}ds

(∫
[x−s,Hr)

1{y<x}
Ḡr(x−)
Ḡr(y)

η0(dy)
)

dMr(x)

=
∫ t

0

∫
[0,Hr ]

1{x≤χ(s)∧s}λ (s− x)Ḡr(x−)dMr(x)ds

+
∫
[0,Hr ]

∫
[[x−t]+,x]

1{x≤χ(x−s)}1{s<x}
Ḡr(x−)
Ḡr(s)

η0(ds)dMr(x),
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=
∫ t

0

∫
[0,Hr ]

1{x≤s∧χ(s)}λ (s− x)Ḡr(x−)dMr(x)ds

+
∫
[0,Hr)

(∫
(y,y+t]

1{y≤χ(x−y)−(x−y)}Ḡ
r(x−)dMr(x)

)
Ḡr(y)−1

η0(dy)

=
∫ t

0

∫
[0,Hr ]

1{x≤s∧χ(s)}λ (s− x)dGr(x)ds

+
∫
[0,Hr)

(∫
(y,y+t]

1{y≤χ(x−y)−(x−y)}dGr(x)
)

Ḡr(y)−1
η0(dy),

where the second term in the second equality follows from Theorem 3.6.1 of
[1] with X = [[x− t]+,x] Y = [0,x ∧ t], f (s) = x− s and µ such that µ[a,b] =∫
[a,b)

1{y<x}
Ḡr(y) η0(dy) and the last equality follows from the interchange of the order

of integrations.
We next prove the non-decreasing property of K(t). It follows from this represen-

tation of R(t) in (35) that Lemma 4.4 of [10] holds, that is, for any 0 ≤ a ≤ b < ∞,
if Q(t) = 0 (equivalently, χ(t) = 0) for all t ∈ [a,b], then R(b)−R(a) = 0. Then
the proof for the non-decreasing property of K(t) will follow the same argument in
Lemma 4.5 in [10] using (37).

We now prove the property of χ(t) in (36). By a similar argument as in Lemma
3.4 of [10] on time shifts, to prove the lemma, without loss of generality, we may
assume that s = 0 in (36). Suppose that the property of χ(t) in (36) does not hold,
that is, there is a time t2 > 0 such that χ(t2)> χ(0)+ t2. Let

t1
.
= sup{u≤ t2 : χ(u)≤ χ(0)+u}.

Then χ(t1−)≤ χ(0)+ t1 and for each u ∈ [t1, t2],

χ(u)≥ χ(0)+u≥ χ(t1−)+(u− t1) and χ(t2)> χ(t1−)+(t2− t1). (38)

By (37), it is clear that R(t)−R(t−) ≥ 0 for each t > 0. By applying the above
display and time shift at t1, we have

R(t2)−R(t1)

=
∫
[0,Hr)

(∫
(y,y+t2−t1]

1{y≤χ(t1+x−y)−(x−y)}dGr(x)
)

Ḡr(y)−1
ηt1(dy)

+
∫ t2−t1

0

(∫
[0,Hr ]

1{u≤s∧χ(t1+s)}λ (t1 + s−u)dGr(u)
)

ds.

It follows from (38) that s∧ χ(t1 + s) = s and χ(t1 + s)− s ≥ χ(t1−) for each s ∈
(0, t2− t1]. Hence the above display implies that

R(t2)−R(t1−)

≥
∫
[0,Hr)

(∫
(y,y+t2−t1]

1{y≤χ(t1−)}dGr(x)
)

Ḡr(y)−1
ηt1(dy)
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+
∫ t2−t1

0

(∫
[0,Hr ]

1{u≤s}λ (t1 + s−u)dGr(u)
)

ds

=
∫
[0,Hr)

1{y≤χ(t1−)}
Gr(y+ t2− t1)−Gr(y)

Ḡr(y)
ηt1(dy)

+
∫ t2−t1

0
Gr(t2− t1−u)λ (t1 +u)du,

where and the second term on the right hand side of the last display follows from
Proposition 0.4.5 of [20]. Since (19) holds for Zuñiga’s fluid model (η ,ν ,X) and K
is non-decreasing, then the above three displays imply that

Q(t2) = Q(t1−)+(E(t2)−E(t1−))− (R(t2)−R(t1−))− (K(t2)−K(t1−))

≤ ηt1 [0,χ(t1−)]+
∫ t2

t1
λ (u)du−

∫ t2−t1

0
Gr(t2− t1−u)λ (t1 +u)du

−
∫
[0,Hr)

1[0,χ(t1−)](x)
Gr(x+(t2− t1))−Gr(x)

Ḡr(x)
ηt1(dx)

=
∫ t2−t1

0
Ḡr(t2− t1−u)λ (t1 +u)du

+
∫
[0,Hr)

1[0,χ(t1−)+(t2−t1)](x+(t2− t1))
Ḡr(x+(t2− t1))

Ḡr(x)
ηt1(dx)

= ηt2 [0,χ(t1−)+(t2− t1)],

where the last inequality follows from (15). From this and the definition of χ , we
have χ(t2)≤ χ(t1−)+(t2− t1), which contradicts (38). Thus, the lemma is proved.

3 Measure-valued fluid models tracking residual times

We first state the two measure-valued processes tracking residual times that arise
from Zuñiga’s fluid model for the same Gt/GI/N +GI queueing system in Section
3.1. Here we do not define a new fluid model tracking residual times, but only in-
troduce the two processes themselves. We then state Zhang’s fluid model in Section
3.2, and discuss its connection with the three fluid models tracking elapsed times in
Section 3.3. The two measure-valued processes tracking residual times introduced
in Section 3.1 play an important bridging role in making the connection.
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3.1 Measure-valued processes tracking residual times from
Zuñiga’s fluid model

Zuñiga’s fluid model naturally gives rise to the following two measure-valued pro-
cesses ν`

t and η`
t . For each t ≥ 0, clearly the mapping

ψ 7→
∫
[0,Hs)

(∫
(y+t,∞)

ψ(x− y− t)
Ḡs(y)

dGs(x)
)

ν0(dy)

+
∫
[0,t]

(∫
(t−s,∞)

ψ(x− t + s)dGs(x)
)

dK(s)

is a positive linear functional on Cc(R+) since K is non-decreasing by Lemma 1.
Then by Riesz-Markov-Kakutani representation theorem, there is a unique regular
Borel measure ν`

t with support [0,Hs) such that for every ψ ∈ Cb(R+),∫
∞

0
ψ(x)ν`

t (dx) =
∫
[0,Hs)

(∫
(y+t,∞)

ψ(x− y− t)
Ḡs(y)

dGs(x)
)

ν0(dy)

+
∫ t

0

(∫
(t−s,∞)

ψ(x− t + s)dGs(x)
)

dK(s). (1)

Similarly, for each t ≥ 0, there is a unique regular Borel measure η`
t with support

[0,Hr) such that for every ψ ∈ Cb(R+),∫
∞

0
ψ(x)η`

t (dx) = 1{ς(t)≤0}

∫
[0,−ς(t)]

(∫
(y+t,∞)

ψ(x− y− t)
Ḡr(y)

dGr(x)
)

η0(dy)

+
∫ t

ς+(t)

(∫
(t−s,∞)

ψ(x− t + s)dGr(x)
)

λ (s)ds, (2)

where
ς(t) = t−χ(t). (3)

Since χ(t) represents the elapsed patience time of the fluid content of customers that
has been in queue the longest at time t, then the quantity ς(t) can be interpreted as
the arrival time of the fluid content of customers that has been in queue the longest
at time t. It is clear that ς(t)≤ t for each t ≥ 0. At time 0, ς(0) =−χ(0) represents
the arrival time of the oldest fluid content in queue initially, and thus, it follow from
(21) that

ς(0) =− inf{x ∈ [0,Hr) : η0[0,x)≥ X(0)−ν0[0,Hs)}. (4)

We first argue that ν` and η` are two measure-valued processes tracking residual
times of fluid content of customers in service and in queue, respectively.

For each z≥ 0, by plugging ψ(x) = 1(z,∞)(x) into (1) and (2), we have

ν
`
t (z,∞) =

∫
[0,Hs)

Ḡs(y+ t + z)
Ḡs(y)

ν0(dy) (5)
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+
∫
[0,t]

Ḡs(t− s+ z)dK(s),

η
`
t (z,∞) = 1{ς(t)≤0}

∫
[0,−ς(t)]

Ḡr(y+ t + z)
Ḡr(y)

η0(dy) (6)

+
∫ t

ς+(t)
Ḡr(t− s+ z)λ (s)ds.

By (15) and (16), we obtain

ηt+z[z,χ(t)+ z] =
∫
[0,Hr)

1[z,χ(t)+z](y+ t + z)
Ḡr(y+ t + z)

Ḡr(y)
ν0(dy)

+
∫ t

0
1[z,χ(t)+z](t + z− s)Ḡr(t + z− s)λ (s)ds

= 1{ς(t)≤0}

∫
[0,−ς(t)]

Ḡr(y+ t + z)
Ḡr(y)

η0(dy)

+
∫ t

ς+(t)
Ḡr(t− s+ z)λ (s)ds,

and

νt+z[z,∞) =
∫
[0,Hs)

Ḡs(y+ t + z)
Ḡs(y)

ν0(dy)+
∫
[0,t]

Ḡs(t + z− s)dK(s).

Hence, we obtained the following coupling property between (ν ,η) and (ν`,η`):

ν
`
t (z,∞) = νt+z[z,∞) and η

`
t (z,∞) = ηt+z[z,χ(t)+ z], quadz≥ 0. (7)

Intuitively, νt+z[z,∞) represents the amount of fluid content in service at time t + z
with elapsed service time at least z, which is precisely the amount of fluid content
in service at time t that will still be in service at time t + z and then is equal to the
amount of fluid content in service at time t that has residual service time greater
than z. (Note that the fluid content in service at time t that has residual service
time exactly equal to z will depart from service and hence will not be in service
at time t + z.) Thus, by the first equality in (7), ν`

t (z,∞) represents the amount of
fluid content in service at time t that has residual service time greater than z, that
is, ν`

t keeps track of the residual time of fluid content in service at time t. Similarly,
ηt+z[z,χ(t) + z] represents the amount of fluid content in the potential queue at
time t + z with elapsed patience time between z and χ(t) + z, which is precisely
the amount of fluid content in queue at time t that will not abandon by time t + z.
This amount of fluid content is equal to the amount of fluid content that has residual
patience time more than z units of time at time t and then is represented by η`

t (z,∞)
by the second equality in (7). Then η`

t keeps track of the residual patience times of
customers in queue at time t.

When t = 0, (5), (6) and (7) become: for each z≥ 0,
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ν
`
0(z,∞) =

∫
[0,Hs)

Ḡs(y+ z)
Ḡs(y)

ν0(dy) = νz[z,∞), (8)

η
`
0(z,∞) = 1{ς(0)≤0}

∫
[0,−ς(0)]

Ḡr(y+ z)
Ḡr(y)

η0(dy) = ηz[z,χ(0)+ z]. (9)

Remark 5. When Gr and Gs have densities gr and gs, respectively, (1) and (2) are
equivalent to the following representations:∫

∞

0
ψ(x)ν`

t (dx) =
∫
[0,Hs)

(∫
∞

0

gs(y+ t + x)
Ḡs(y)

ψ(x)dx
)

ν0(dy)

+
∫
[0,t]

(∫
∞

0
gs(t− s+ x)ψ(x)dx

)
dK(s), (10)

∫
∞

0
ψ(x)η`

t (dx) = 1{ς(t)≤0}

∫
[0,−ς(t)]

(∫
∞

0

gr(y+ t + x)
Ḡr(y)

ψ(x)dx
)

η0(dy)

+
∫ t

ς+(t)

(∫
∞

0
gr(t− s+ x)ψ(x)dx

)
λ (s)ds. (11)

In this case, for each t ≥ 0, the two measures η`
t and ν`

t have densities b`(t,x) and
qt(t,x), respectively, which can be expressed as

b`(t,y) =
∫
[0,Hs)

gs(x+ t + y)
Ḡs(x)

ν0(dx)+
∫
[0,t]

gs(y+ t−u)dK(u), (12)

and

q`(t,y) = 1{ς(t)≤0}

∫
[0,−ς(t)]

gr(x+ t + y)
Ḡr(x)

η0(dx)+
∫ t

ς+(t)
gr(y+ t−u)λ (u)du. (13)

3.2 Zhang’s fluid model

Zhang [22] uses a so-called virtual queue to describe the queueing dynamics, in-
stead of the potential queue used in the three fluid models in Section 2. In the def-
initions of both potential and virtual queues, all customers enter them upon arrival.
The difference between them lies in how customers depart. Customers can leave the
potential queue only when their patience expires, that is, at the instant when their
remaining patience times are zeros. Whereas, customers can only leave the virtual
queue in their turns of service. Customers in the virtual queue may have already run
out of patience (i.e., the remaining patience time is negative) at their turns of ser-
vice. Whenever a server becomes free, the server will check the oldest customer in
the virtual queue. If the customer being checked has not abandoned yet (its remain-
ing patience time is still positive), then the server will start serving this customer
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and this customer is removed from the virtual queue, and otherwise, this customer
is simply removed from the virtual queue and the server will turn to check the next
oldest customer. We now state Zhang’s fluid model.

Definition 4. (Zhang’s fluid model in [22].) Assume that the fluid arrival rate λ (t)=
λ for each t ≥ 0, where λ > 0 is a constant. A pair of measure-valued processes
(R,Z ) is a solution to the fluid model if the following conditions are satisfied:

(i) (R,Z ) satisfies the following two equations:

Rt(Cx) = λ

∫ t

t−Qv(t)/λ

Ḡr(t + x− s)ds, x ∈ R, (14)

and

Zt(Cx) = Z0(Cx + t)+
∫ t

0
Ḡr(Qv(s)/λ )Ḡs(t + x− s)dLv(s), x ∈ R+, (15)

where Cx
.
= (x,∞) for x ∈ R, Qv(t) = Rt(R) is of bounded variation and Lv(t) =

λ t−Qv(t);
(ii) the non-idling conditions in (23) and (24) hold for B(t) = Zt(R+), Q(t) =

Rt(R+) and X(t) = B(t)+Q(t);
(iii) the initial condition (R0,Z0) satisfies

R0(Cx) = λ

∫ Qv(0)/λ

0
Ḡr(x+ s)ds, x ∈ R, and Z0({0}) = 0, (16)

and the non-idling condition at time 0 in (23) and (24).

In Zhang’s fluid model, Rt(Cx) can be interpreted as the fluid content of cus-
tomers in the virtual queue with residual patience times strictly bigger than x and
Zt(Cx) can be interpreted as the fluid content of customers in service with residual
service times strictly bigger than x at each time t. Then Q(t), B(t), Qv(t) and Lv(t)
represent, respectively, the total fluid content of the real queue at time t, the total
fluid content of customers in service at time t, the total fluid content in the virtual
queue at time t, and the cumulative customers removed from the virtual queue by
time t. The existence and uniqueness of Zhang’s fluid model are proved in Theorem
3.1 of [22] by an explicit characterization of its solution, under the assumptions that
the service time distribution Gs is continuous and the patience time distribution Gr

is Lipschitz continuous.

3.3 Connection between Zhang’s fluid model and the three fluid
models in Section 2

Among the three fluid models in Section 2, we have showed in Theorem 1 that
Whitt’s fluid model is equivalent to Kang-Ramanan fluid model and in Remark 3
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that Zuñiga’s fluid model extends Kang-Ramanan’s fluid model by relaxing the as-
sumption on the existence of densities of Gr and Gs. Since Zhang’s fluid model
keeps track of customers’ residual times and does not need Gr and Gs to have den-
sities ([22] does assume that Gs is continuous and Gr is Lipschitz continuous to
establish existence and uniqueness), while Zuñiga’s fluid model keeps track of cus-
tomers’ elapsed times and also does not need Gr and Gs to have densities, it is natural
to question if Zhang’s fluid model and Zuñiga’s fluid model are in fact equivalent
in describing system dynamics of the same Gt/GI/N +GI queues. If so, this will
enable researchers to borrow results from either one of the two to study the system
performance of Gt/GI/N +GI queues.

In this section we provide a detailed discussion on Zhang’s fluid model in con-
nection with Zuñiga’s fluid model (and hence Kang-Ramanan’s fluid model and
Whitt’s fluid model). The three fluid models in Section 2 allow time-varying arrival
rate λ (·), whereas, Zhang’s fluid model requires a constant arrival rate λ . Thus the
discussion in this section will focus on the three formulations with a constant ar-
rival rate. It is important that these formulations must have the same system input
data including the initial conditions when making the comparisons. We first show
by a series of remarks that Zhang’s fluid model is not entirely equivalent to the
three fluid models tracking elapsed times for the same G/GI/N +GI queueing sys-
tem under general initial conditions, that is, Zhang’s fluid model and the three fluid
models tracking elapsed times may not be formulated simultaneously for the same
G/GI/N +GI queueing system under certain general initial conditions.

Remark 6. (On the arrival rate.) The imposed condition on R0 in Zhang’s fluid
model requires that the initial fluid content of customers in the virtual queue de-
pends on the arrival rate λ after time 0, whereas in real life applications, the cus-
tomers’ arrival patterns before time 0 and after time 0 are likely different. Thus,
Zhang’s fluid model may not be appropriate for those applications. In contrast, the
three fluid models tracking elapsed times do not have this restriction.

Remark 7. (The initial condition on R0.) Zhang’s fluid model requires that the sys-
tem initial condition R0 satisfies (16), that is,

R0(Cx) = λ

∫ Qv(0)/λ

0
Ḡr(x+ s)ds, x ∈ R. (17)

Let R+
0 be the restriction of R0 on [0,∞). Then R+

0 keeps track of the residual
patience times of the fluid content of customers initially in queue. So if Zhang’s
fluid model were equivalent to Zuñiga’s fluid model for the same G/GI/N +GI
queueing system assuming a constant arrival rate, we must have R+

0 = η`
0 in (9),

that is,

R+
0 (Cx) = 1{ς(0)≤0}

∫
[0,−ς(0)]

Ḡr(y+ x)
Ḡr(y)

η0(dy), ∀x≥ 0,

where η0 is the initial condition for the η in Definition 3, and then
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λ

∫ Qv(0)/λ

0
Ḡr(x+ s)ds = 1{ς(0)≤0}

∫
[0,−ς(0)]

Ḡr(y+ x)
Ḡr(y)

η0(dy), ∀x≥ 0. (18)

We first note that there may not be a unique η0 satisfying (18) for the given R0. For
example, when Gr has density gr(x) = e−x, x ∈ R+,

1{ς(0)≤0}

∫
[0,−ς(0)]

Ḡr(y+ x)
Ḡr(y)

η0(dy) = 1{ς(0)≤0}e
−x

η0[0,−ς(0)],

and

λ

∫ Qv(0)/λ

0
Ḡr(x+ s)ds = λe−x

(
1− e−Qv(0)/λ

)
.

Thus, any η0 satisfying 1{ς(0)≤0}η0[0,−ς(0)] = λ (1− e−Qv(0)/λ ) will satisfy (18).
Moreover, it is clear that the above display (18) does not hold for an arbitrary

initial condition η0. For example, if η0(dx) = λ †Ḡr(x)dx for some positive λ † 6= λ ,
then

1{ς(0)≤0}

∫
[0,−ς(0)]

Ḡr(y+ x)
Ḡr(y)

η0(dy)

= λ
†1{ς(0)≤0}

∫
[0,−ς(0)]

Ḡr(y+ x)dy,

which is not equal to R+
0 (Cx) in (17) even if −ς(0) = Qv(0)/λ . Thus, for a fluid

G/GI/N+GI queueing system with a constant arrival rate λ after time 0, the initial
conditions η0(dx)= λ †Ḡr(x)dx for λ † 6= λ and (ν0,X(0)) such that (η0,ν0,X(0))∈
S0, Zuñiga’s fluid model can be well formulated, but there is no corresponding
Zhang’s fluid model (R,Z ) that describes the same system.

Remark 8. (The initial condition on Z0.) Zhang’s fluid model only requires that
Z0({0}) = 0. This condition is rather general. We show by an example that for a
G/GI/N +GI queueing system, although Zhang’s fluid model can be formulated
with that initial condition Z0, there may not exist an (unique) initial measure ν0 to
formulate a corresponding Zuñiga’s fluid model for the same system.

Consider the service time distribution Gs being exponential with unit rate, that is,
gs(x) = e−x, x ∈ R+. Let Z0 be the measure that tracks the residual service times
of fluid content of customers initially in service and satisfies Z0({0}) = 0, and
assume that Zhang’s fluid model can be formulated with Z0. Suppose that Zuñiga’s
fluid model can also be formulated for some measure ν0, which tracks the elapsed
service times of fluid content of customers initially in service. By (8), if Zhang’s
fluid model and Zuñiga’s fluid model were equivalent, Z0 and ν0 must satisfy the
following equation:

Z0(Cx) =
∫
[0,Hs)

Ḡs(y+ x)
Ḡs(y)

ν0(dy) = ν0[0,Hs)e−x, x≥ 0.
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If the given Z0 satisfies Z0(Cx) = ce−x for some constant c > 0, then any such
measure ν0 in Zuñiga’s fluid model satisfying c = ν0[0,Hs) will satisfy the above
display. However, on the other hand, if the given Z0, satisfying Z0({0}) = 0, does
not have an exponential density, then this contradicts the above equation resulting
from the equivalence, and implies that no corresponding measure ν0 can be found
for Zuñiga’s fluid model to be well formulated for the given queueing system.

From the discussion in Remarks 6, 7 and 8, it is clear that the class of fluid
many-server queueing systems where Zhang’s fluid model can be formulated is not
the same as the class of fluid many-server queueing systems where Zuñiga’s fluid
model (and hence Kang-Ramanan’s fluid model and Whitt’s fluid model) can be
formulated.

We next look more closely into the conditions on fluid G/GI/N +GI queueing
systems where Zhang’s fluid model and the three fluid models tracking elapsed times
can all be used to describe the system dynamics for the same system. To simplify the
exposition, we focus on Zhang’s fluid model and Zuñiga’s fluid model. Our findings
are stated in the following two theorems.

Theorem 2. Given a Zhang’s fluid model (R,Z ) for a G/GI/N + GI queueing
system with arrival rate λ , there exists a Zuñiga’s fluid model (η ,ν ,X) for the same
queueing system with the input data (λ ,η0,ν0,X(0)) such that (η0,ν0,X(0)) ∈S0
with

η0(dx) .
= λ1[0,Qv(0)/λ ](x)Ḡ

r(x)dx, (19)

if and only if, for the given Z0, ν0 satisfying

Z0(Cx) =
∫
[0,Hs)

Ḡs(y+ x)
Ḡs(y)

ν0(dy), x≥ 0. (20)

Proof. The “only if” part follows directly from the discussion in Remark 8. We now
focus on “if” part.

Let η0 be as given in (19). For each t ≥ 0, the following mapping

ψ 7→
∫
[0,Hr)

ψ(x+ t)
Ḡr(x+ t)

Ḡr(x)
η0(dx)+λ

∫ t

0
ψ(t− s)Ḡr(t− s)ds

is a positive linear functional on Cc(R+). Then by Riesz-Markov-Kakutani repre-
sentation theorem, there is a unique regular Borel measure ηt on R+ such that (15)
holds. It is clear that ηt has support [0,Hr).

For each t ≥ 0, define

K(t) .
=
∫ t

0
Ḡr(Qv(s)/λ )dLv(s) and R(t) .

= λ

∫ t

0
Gr(Qv(s)/λ )ds.

Then, for each t ≥ 0, with the above K and the given ν0 satisfying (20), the mapping

ψ 7→
∫
[0,Hs)

ψ(x+ t)
Ḡs(x+ t)

Ḡs(x)
ν0(dx)+

∫
[0,t]

ψ(t− s)Ḡs(t− s)dK(s)



Equivalence of Fluid Models for Gt/GI/N +GI Queues 23

is a positive linear functional on Cc(R+). By Riesz-Markov-Kakutani representation
theorem, there is a unique regular Borel measure νt that satisfies (16). Let B, Q, X
be the associated processes in Zhang’s fluid model and for each t ≥ 0, define

D(t) .
=
∫
[0,Hs)

Gs(y+ t)−Gs(y)
Ḡs(y)

ν0(dy)+
∫ t

0
Gs(t− s)dK(s).

We show that (η ,ν ,X) satisfies Definition 3.
From (14), it is clear that

Q(t) = Rt(R+) = λ

∫ t

t−Qv(t)/λ

Ḡr(t− s)ds = λGr
d(Qv(t)/λ ), (21)

where Gr
d(x) =

∫ x
0 Ḡr(s)ds. It is established in the proof of Theorem 3.1 of [22]

that Q(t)/λ < Gr
d(∞) = Gr

d(H
r). Then it follows that Qv(t)/λ < Hr. Since Qv is of

bounded variation by (14), it follows that Q is also of bounded variation and by the
chain rule formula (Proposition 4.6 in Chapter 0 of [20])

Q(t) = Q(0)+
∫ t

0
Ḡr(Qv(s)/λ )dQv(s).

Thus, by the definition of K and the above display for Q(t),

K(t) = Q(0)−
(

Q(t)−λ

∫ t

0
Ḡr(Qv(s)/λ )ds

)
= Q(0)−

(
Q(t)−λ

∫ t

0
Ḡr((Gr

d)
−1(Q(s)/λ ))ds

)
.

Then it follows from Lemma A.3 of [22] that K is non-decreasing. Simple calcula-
tion also shows that

Q(t)+K(t)+R(t)

= Q(0)+
∫ t

0
Ḡr(Qv(s)/λ )dQv(s)+

∫ t

0
Ḡr(Qv(s)/λ )d(λ s−Qv(s))

+λ

∫ t

0
Gr(Qv(s)/λ )ds

= Q(0)+λ t,

which establishes (19). For each t ≥ 0, define χ(t) by the right hand side of (21). It
follows from the construction of ηt and the given η0 in (19) that

Q(t) = ηt [0,χ(t)] = λ

∫ [χ(t)−t]+∧Qv(0)/λ

0
Ḡr(x+ t)dx

+λ

∫ t

[t−χ(t)]+
Ḡr(t− s)ds. (22)
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When χ(t)> t, the above display is reduced to

Q(t)/λ =
∫

χ(t)∧(t+Qv(0)/λ )

0
Ḡr(s)ds.

Comparing this with (21), we have Qv(t)/λ = χ(t)∧(t+Qv(0)/λ ). When χ(t)≤ t,
the display in (22) is reduced to Q(t)/λ =

∫ χ(t)
0 Ḡr(s)ds and hence Qv(t)/λ = χ(t).

Combining the two cases, we have for each t ≥ 0,

Qv(t)/λ = χ(t)∧ (t +Qv(0)/λ ). (23)

For each t ≥ 0, it follows from (19) and the definition of Mr that∫
[0,Hr ]

∫
[0,t]

1{x≤χ(s)}ds

(∫
[(x−s)+,x)

Ḡr(x−)
Ḡr(y)

η0(dy)
)

dMr(x)

+λ

∫
[0,Hr ]

∫
[0,t]

1{x≤χ(s)∧s}Ḡ
r(x−)dsdMr(x)

= λ

∫
[0,Hr ]

∫
[0,x∧t]

1{x≤χ(s)}ds

(∫
[x−s,x)

Ḡr(x−)
Ḡr(y)

1[0,Qv(0)/λ ](y)Ḡ
r(y)dy

)
dMr(x)

+λ

∫
[0,t]

∫
[0,Hr ]

1{x≤χ(s)∧s}dGr(x)ds

= λ

∫
[0,Hr ]

∫ t∧x

0
1{x≤χ(s)}ds

(∫
[x−s,x)

1[0,Qv(0)/λ ](y)dy
)

dGr(x)

+λ

∫ t

0
Gr(χ(s)∧ s)ds

= λ

∫
[0,Hr ]

∫ t

0
1{s≤x≤χ(s)}1[0,Qv(0)/λ ](x− s)dsdGr(x)

+λ

∫ t

0
Gr(χ(s)∧ s)ds

= λ

∫ t

0
Gr(χ(s)∧ (s+Qv(0)/λ ))ds = λ

∫ t

0
Gr(Qv(s)/λ )ds,

where the second to the last equality follows from the fact that

1{s≤x≤χ(s)}1[0,Qv(0)/λ ](x−s)= 1{s≤x≤χ(s)∧(s+Qv(0)/λ )}= 1{s∧χ(s)≤x≤χ(s)∧(s+Qv(0)/λ )},

and the last equality follows from (23). This, together with the definition of R(t) and
(33), implies that (31) holds.

By using (4.5) of [23], we obtain∫
[0,Hs]

(
Ḡs(x−)K([t− x]+)+

∫ x

[x−t]+

Ḡs(x−)
Ḡs(y)

ν0(dy)
)

dMs(x)

=
∫
[0,Hs)

Gs(y+ t)−Gs(y)
Ḡs(y)

ν0(dy)+
∫ t

0
Gs(t− s)dK(s)
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which is equal to the process D(t) by definition, and implies that (30) holds.
For each t ≥ 0, (17) holds by applying interchange of the order of integration

to (16) and using the definitions of D and B. The properties (22)–(24) follow from
property (ii) of Zhang’s fluid model. Thus, this completes the proof that (η ,ν ,X) is
a Zuñiga’s fluid model satisfying Definition 3. Clearly from the construction, both
the given Zhang’s fluid model and the constructed Zuñiga’s fluid model describe the
same G/GI/N +GI queueing system.

Theorem 3. Given a Zuñiga’s fluid model (η ,ν ,X) for a G/GI/N +GI queueing
system with the input data (λ ,η0,ν0,X(0)) such that (η0,ν0,X(0)) ∈ S0, there
exists a Zhang’s fluid model (R,Z ) for the same queueing system with arrival rate
λ if and only if η0 satisfies the following condition: for each t ≥ 0, there exists a
solution zt , independent of x≥ 0, to the equation in z:

λ

∫ z

t∧χ(t)
Ḡr(x+ s)ds = 1{χ(t)≥t}

∫
[0,χ(t)−t]

Ḡr(y+ t + x)
Ḡr(y)

η0(dy), (24)

such that

λ

∫ t

0
Gr(zs)ds = λ

∫ t

0
Gr(χ(s)∧ s)ds

+
∫
[0,Hr)

(∫
(y,y+t]

1{x≤χ(x−y)}dGr(x)
)

Ḡr(y)−1
η0(dy). (25)

In this case, Z0 can be chosen as defined by (20) for the given ν0, and R0 can be
chosen as defined by (16) for Qv(0) = z0λ , where z0 is the solution, independent of
x≥ 0, that satisfies (24) for t = 0.

Remark 9. When Gr has a density gr, the conditions (24) and (25) can be replaced
as follows: for each t ≥ 0, there exists a solution zt , independent of x ≥ 0, to the
equation in z:

λGr(x+ z) = λGr(x+ t ∧χ(t))+1{χ(t)≥t}

∫
[0,χ(t)−t]

gr(y+ t + x)
Ḡr(y)

η0(dy). (26)

In fact, (24) follows from (26) directly by integrating both sides of (24) in x. It
follows from (26) with x = 0 that

λ

∫ t

0
Gr(χ(s)∧ s)ds

+
∫
[0,Hr)

(∫
(y,y+t]

1{x≤χ(x−y)}dGr(x)
)

Ḡr(y)−1
η0(dy)

= λ

∫ t

0
Gr(χ(s)∧ s)ds

+
∫
[0,Hr)

(∫ t

0
1{y≤χ(x)−x}g

r(x+ y)dx
)

Ḡr(y)−1
η0(dy)
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= λ

∫ t

0
Gr(χ(s)∧ s)ds+

∫ t

0
λ (Ḡr(s∧χ(s))− Ḡr(zs))ds

= λ

∫ t

0
Gr(zs)ds.

Thus, (25) holds.

Proof of Theorem 3. We first show the “only if” part. Recall that in Zhang’s fluid
model, R+

t , the restriction of Rt on [0,∞), tracks the residual patience times of the
fluid content of customers in queue at time t. If there exists a Zhang’s fluid model
(R,Z ) to describe the same G/GI/N+GI queueing system together with Zuñiga’s
fluid model (η ,ν ,X), the measure Rt must satisfies (see (6))

Rt(Cx) = 1{χ(t)≥t}

∫
[0,χ(t)−t]

Ḡr(y+ t + x)
Ḡr(y)

η0(dy)+λ

∫ t∧χ(t)

0
Ḡr(s+ x)ds,

for each t ≥ 0 and x≥ 0, and hence η0 must satisfy that for each t ≥ 0 and x≥ 0,

λ

∫ Qv(t)/λ

t∧χ(t)
Ḡr(x+ s)ds = 1{χ(t)≥t}

∫
[0,χ(t)−t]

Ḡr(y+ t + x)
Ḡr(y)

η0(dy). (27)

When t = 0, (27) is reduced to

R0(Cx) = 1{χ(0)≥0}

∫
[0,χ(0)]

Ḡr(y+ x)
Ḡr(y)

η0(dy), x≥ 0, (28)

which is discussed in Remark 7. Moreover, in Zhang’s fluid model, since customers
in queue will renege when their residual patience times reach zero, then by differ-
entiating (14) in x and letting x = 0, we have the abandonment rate at time t is given
by

λ
(
Ḡr(x)− Ḡr(x+Qv(t)/λ )

)
|x=0= Gr(Qv(t)/λ ).

Then R(t), the cumulative abandonment by time t, is given by
∫ t

0 Gr(Qv(s)/λ )ds.
On the other hand, by Zuñiga’s fluid model, R(t) is given by (35). Then η0 must
also satisfy that for each t > 0,

λ

∫ t

0
Gr(Qv(s)/λ )ds = λ

∫ t

0
Gr(χ(s)∧ s)ds (29)

+
∫
[0,Hr)

(∫
(y,y+t]

1{x≤χ(x−y)}dGr(x)
)

Ḡr(y)−1
η0(dy).

Note that for each t ≥ 0, Qv(t) satisfies (24) and (25), independent of x≥ 0. Hence
the “only if” part is established.

For the “if” part, let Z0 and R0 be defined as in the statement of the theorem.
It is clear that the defined R0 and η0 satisfy (28) and (R0,Z0) satisfies property
(iii) of Zhang’s fluid model. Let χ(t), B(t), Q(t), K(t), D(t), R(t) be the associated
auxiliary processes from Zuñiga’s fluid model (η ,ν ,X). For each t > 0, define
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Qv(t)
.
= λ zt and Lv(t)

.
= λ t−Qv(t),

where zt is the solution, independent of x ≥ 0, that satisfies (24) and (25). Define
Rt and Zt by the right hand sides of (14) and (15), respectively. We show that the
pair of processes (R,Z ) satisfies Zhang’s fluid model. In fact, it suffices to verify
conditions (i) and (ii) of Zhang’s fluid model.

From the definition of Qv(t), we have for each x≥ 0,

λ

∫ Qv(t)/λ

t∧χ(t)
Ḡr(x+ s)ds = 1{χ(t)≥t}

∫
[0,χ(t)−t]

Ḡr(y+ t + x)
Ḡr(y)

η0(dy).

Combining this, the construction of R and (15), we have

Rt(R+) = 1{χ(t)≥t}

∫
[0,χ(t)−t]

Ḡr(y+ t)
Ḡr(y)

η0(dy)+λ

∫ t∧χ(t)

0
Ḡr(s)ds

= ηt [0,χ(t)] = Q(t). (30)

Since Q(t) is of bounded variation by (19), the previous display implies that Qv and
hence Lv are also of bounded variation. Thus, condition (i) of Zhang’s fluid model
holds.

Next we show that condition (ii) of Zhang’s fluid model holds for B∗(t) =
Zt(R+), Q∗(t) = Rt(R+) and X∗(t) = B∗(t)+Q∗(t). Note that for each t ≥ 0, we
have showed that Q∗(t) = Q(t). By using the definition of B∗, the construction of
Z and the property of Z0, we have

B∗(t) = Zt(R+)

= Z0(Ct)+
∫ t

0
Ḡr(Qv(s)/λ )Ḡs(t− s)dLv(s)

=
∫
[0,Hs)

Ḡs(y+ t)
Ḡs(y)

ν0(dy)+
∫ t

0
Ḡr(Qv(s)/λ )Ḡs(t− s)dLv(s). (31)

By (35), (25) and λ (t) = λ for each t ≥ 0, we have

R(t) =
∫
[0,Hr)

(∫
(y,y+t]

1{y≤χ(x−y)−(x−y)}dGr(x)
)

Ḡr(y)−1
η0(dy)

+λ

∫ t

0

∫
[0,Hr ]

1{x≤s∧χ(s)}dGr(x)ds

=
∫
[0,Hr)

(∫
(y,y+t]

1{x≤χ(x−y)}dGr(x)
)

Ḡr(y)−1
η0(dy)

+λ

∫ t

0
Gr(χ(s)∧ s)ds

= λ

∫ t

0
Gr(Qv(s)/λ )ds.

In addition, since Gr
d(Qv(t)/λ ) = Q(t)/λ by (30), by the chain rule formula,
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Q(t) = Q(0)+
∫ t

0
Ḡr(Qv(s)/λ )dQv(s).

These, together with (19), imply that

K(t) = λ t +Q(0)−Q(t)−R(t) =
∫ t

0
Ḡr(Qv(s)/λ )dLv(s).

Hence, by (31), B∗(t) = B(t) and then X∗(t) = X(t). Since B,Q,X satisfy (22)–
(24), then B∗,Q∗,X∗ satisfy condition (ii) of Zhang’s fluid model. This completes
the proof that (R,Z ) is a Zhang’s fluid model. Clearly from the construction, both
the given Zuñiga’s fluid model and the constructed Zhang’s fluid model describe the
same G/GI/N +GI queueing system.

Corollary 3.1 Given a Zuñiga’s fluid model (η ,ν ,X) for a G/GI/N +GI queue-
ing system with the input data (λ ,η0,ν0,X(0)) such that (η0,ν0,X(0)) ∈S0 and
η0(dx) = λ1[0,a](x)Ḡr(x)dx for some a≥ 0, then one can construct a Zhang’s fluid
model (R,Z ) for the same queueing system with arrival rate λ , Z0 defined by (20)
for the given ν0, and R0 defined by (16) for Qv(0) = aλ .

Proof. It suffices to check that the given η0 satisfies (24) and (25). Note that for the
given η0, the equation in (24) becomes∫ z

t∧χ(t)
Ḡr(x+ s)ds = 1{χ(t)≥t}

∫ t+(χ(t)−t)∧a

t
Ḡr(s+ x)ds.

For t ≥ 0 such that χ(t)≥ t, we can choose zt = t +(χ(t)− t)∧a and for t ≥ 0 such
that χ(t)< t, we can choose zt = χ(t). Clearly, in either case, zt does not depend on
x≥ 0. Now we show that zt satisfies (25). Note that for the given η0, by (37),∫

[0,Hr)

(∫
(y,y+t]

1{x≤χ(x−y)}dGr(x)
)

Ḡr(y)−1
η0(dy)

=
∫
[0,Hr ]

∫
[0,t]

1{x≤χ(s)}ds

(∫
[(x−s)+,x)

Ḡr(x−)
Ḡr(y)

η0(dy)
)

dMr(x)

= λ

∫
[0,Hr ]

∫
[0,t]

1{x≤χ(s)}ds

(∫ x

(x−s)+
1[0,a](y)dy

)
dGr(x)

= λ

∫
[0,Hr ]

∫
[0,t]

1{x≤χ(s)}1{s<x≤s+a}dsdGr(x)

= λ

∫ t

0
(Gr(χ(s)∧ (s+a))−Gr(s∧χ(s)))ds.

It follows that

λ

∫ t

0
Gr(χ(s)∧ s)ds

+
∫
[0,Hr)

(∫
(y,y+t]

1{x≤χ(x−y)}dGr(x)
)

Ḡr(y)−1
η0(dy)
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= λ

∫ t

0
Gr(χ(s)∧ s)ds+λ

∫ t

0
(Gr(χ(s)∧ (s+a))−Gr(s∧χ(s)))ds

= λ

∫ t

0
1{χ(s)≥s} (G

r(s)+Gr(χ(s)∧ (s+a))−Gr(s))ds

+λ

∫ t

0
1{χ(s)<s}G

r(χ(s))ds

= λ

∫ t

0
Gr(zs)ds.

Thus, (25) holds for the choice of zt and hence the corollary follows directly from
Lemma 3.

4 Proof of Theorem 2.1

In this section, we prove Theorem 1, the equivalence between the two fluid models
tracking elapsed times described in Sections 2.2 and 2.1. We first derive a set of two-
parameter fluid equations from a measure-valued fluid model (η ,ν ,X) in Definition
2 and show that it is a two-parameter fluid model; see Proposition 4.1. We then
derive a set of measure-valued fluid equations from a two-parameter fluid model
(B(t,y),Q(t,y)) in Definition 1 and show that it is a measure-valued fluid model;
see Proposition 4.2. Thus we conclude that the existence and uniqueness of the two
fluid models are equivalent.

Recall that χ(t) in (21) represents the waiting time of the fluid content at the
head of the queue. Namely, the fluid content in the potential queue must be in queue
waiting for service if the waiting time is less than χ(t), but must have abandoned
otherwise. By the FCFS service discipline, the definition of the potential queue and
the role of w(t), we see that

χ(t) = w(t). (1)

We also observe that evidently, for each y≥ 0,

B(t,y) = νt [0,y], Q̃(t,y) = ηt [0,y], and Q(t,y) = ηt [0,y∧χ(t)]. (2)

We first start with the measure-valued fluid model (η ,ν ,X) in Definition 2, and
show that the two-parameter processes (B(t,y),Q(t,y)) in (2) satisfy Definition 1.
For this we need to assume that η0 and ν0 have densities q̃(0,x) and b(0,x), respec-
tively, since they are required in the definition of the two-parameter fluid model.

Proposition 4.1 Let (η ,ν ,X) be a measure-valued fluid model tracking elapsed
times with the input data (λ (·),η0,ν0,X(0)) such that (η0,ν0,X(0))∈S0. Suppose
that η0 and ν0 have densities q̃(0,x) and b(0,x), respectively. Then, (B(t,y),Q(t,y))
given by (2) is a two-parameter fluid model tracking elapsed times with the input
data (λ (·), q̃(0,x),b(0,x)) and q(0,x) = q̃(0,x).
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Proof. Let (η ,ν ,X) be a measure-valued fluid model tracking elapsed times with the
input data (λ (·),η0,ν0,X(0)) such that (η0,ν0,X(0))∈S0 and η0 and ν0 have den-
sities q̃(0,x) and b(0,x), respectively. Since b(0,x) and q̃(0,x) denote the densities
of ν0 and η0, respectively, it follows that b(0,x) = 0 for each x≥Hs and q̃(0,x) = 0
for each x ≥ Hr. For each t ≥ 0 and y ≥ 0, by letting ψy(x) = 1(0 ≤ x ≤ y) in (15)
and (16), respectively (Corollary 4.2 in [10] shows that (15) and (16) hold for any
bounded Borel measurable function ψ .), B(t,y) and Q̃(t,y) satisfy the following
equations, respectively:

B(t,y) =
∫ (y−t)+∧Hs

0

Ḡs(x+ t)
Ḡs(x)

b(0,x)dx+
∫ t

(t−y)+
Ḡs(t− s)κ(s)ds

=
∫ (y−t)+∧Hs

0

Ḡs(x+ t)
Ḡs(x)

b(0,x)dx+
∫ y∧t

0
Ḡs(s)κ(t− s)ds, (3)

Q̃(t,y) =
∫ (y−t)+∧Hr

0

Ḡr(x+ t)
Ḡr(x)

q̃(0,x)dx+
∫ t

(t−y)+
Ḡr(t− s)λ (s)ds

=
∫ (y−t)+∧Hr

0

Ḡr(x+ t)
Ḡr(x)

q̃(0,x)dx+
∫ y∧t

0
Ḡr(s)λ (t− s)ds. (4)

Then from (3) and (4), B(t,y) and Q̃(t,y) have densities b(t,y) and q̃(t,y), respec-
tively, with the representation:

b(t,y) =


Ḡs(y)κ(t− y) if y < t ∧Hs,

Ḡs(y)
Ḡs(y−t)b(0,y− t) if t < y < t +Hs,

0 otherwise,
(5)

and

q̃(t,y) =


Ḡr(y)λ (t− y) if y < t ∧Hr,

Ḡr(y)
Ḡr(y−t) q̃(0,y− t) if t < y < t +Hr,

0 otherwise.
(6)

From this, it is easy to check that the two fundamental evolution equations in (3)
and (4) are satisfied. It is clear from the last equation in (2) that Q(t,y) satisfies the
following equation:

Q(t,y) =
∫ (y∧χ(t)−t)+∧Hr

0

Ḡr(x+ t)
Ḡr(x)

q̃(0,x)dx+
∫ y∧χ(t)∧t

0
Ḡr(s)λ (t− s)ds, (7)

Then, by comparing with (4), we have that

Q(t,y) =
{

Q̃(t,y) if y < χ(t),
Q(t) if y≥ χ(t). (8)
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Now, define q(t,y) by

q(t,y) =


q̃(t,y) if y < χ(t),
0 if y > χ(t),
λ (t)−λ (t)∧

∫
[0,Hs) hs(x)b(t,x)dx if y = χ(t), B(t) = 1,

0 if y = χ(t),B(t)< 1.

(9)

Note that ∫ y

0
q(t,x)dx =

∫ y

0
q̃(t,x)dx = Q̃(t,y) = Q(t,y), if y < χ(t),

and ∫ y

0
q(t,x)dx =

∫
χ(t)

0
q̃(t,x)dx = Q̃(t,χ(t)) = Q(t) = Q(t,y), if y≥ χ(t).

Thus, q(t,y) is a density function of Q(t,y). Since (η0,ν0,X(0)) ∈ S0, it is clear
that q(0,x) = q̃(t,x).

From (20) and (21), we obtain the following expression of R(t) using the process
Q̃(t,y) in (4),

R(t) =
∫ t

0

(∫
χ(s)∧Hr

0
hr(x)ηs(dx)

)
ds (10)

=
∫ t

0

(∫ (χ(s)−s)+∧Hr

0

gr(x+ s)
Ḡr(x)

q̃(0,x)dx+
∫ s∧χ(s)

0
gr(x)λ (s− x)dx

)
ds

=
∫ t

0

(∫
χ(s)∧Hr

0
hr(x)Q̃(t,dx)

)
ds,

and from (18), we obtain the following expression of D(t) using the process B(t,y)
in (3),

D(t) =
∫ t

0

(∫
[0,Hs)

hs(x)νs(dx)
)

ds (11)

=
∫ t

0

(∫
[0,Hs)

gs(x+ s)
Ḡs(x)

b(0,x)dx+
∫ s

0
gs(x)κ(s− x)dx

)
ds

=
∫ t

0

(∫
[0,Hs)

hs(x)B(t,dx)
)

ds.

From (10), (11) and (8), we can see that D(t) and R(t) have densities σ(t) and α(t),
respectively, and they satisfy (9), that is,

σ(t) =
∫
[0,Hs)

b(t,x)hs(x)dx, α(t) =
∫
[0,Hr)

q(t,x)hr(x)dx, t ≥ 0. (12)



32 Weining Kang and Guodong Pang

To complete the proof, it is enough to show that b(t,0), q̃(t,0) and q(t,0) from
(5), (6) and (9) satisfy (6), (7) and (8), respectively. Note that b(t,0) = κ(t) by (5).
Combining this with (29) and (12), b(t,0) satisfies (6). By (6), q̃(t,0) = λ (t) and
then satisfies (7). On the other hand, from (9) and (12),

q(t,0) =

 q̃(t,0) = λ (t) if 0 < χ(t),
λ (t)−λ (t)∧σ(t) if 0 = χ(t), B(t) = 1,
0 if 0 = χ(t), B(t)< 1.

(13)

This implies that q(t,0) satisfies (8). Finally, the rate balance equation (10) fol-
lows from the balance equation (19), by noting that Q(t) =

∫
∞

0 q(t,x)dx, K(t) =∫ t
0 b(s,0)ds and R(t) =

∫ t
0 α(s)ds.

We next show that a set of measure-valued equations (ν ,η ,X) derived from a
two-parameter fluid model in Definition 1 satisfies Definition 2.

Proposition 4.2 Let (B(t,y),Q(t,y)) be a two-parameter fluid model tracking elapsed
times with the input data (λ (·), q̃(0,x),b(0,x)) and q(0,x) = q̃(0,x). For each
t ≥ 0, let ηt [0,y]

.
= Q̃(t,y) and νt [0,y]

.
= B(t,y) for each y ≥ 0 and define X(t) .

=
B(t,∞)+Q(t,∞). Then, (η ,ν ,X) is a measure-valued fluid model tracking elapsed
times with the input data (λ (·),η0,ν0,X(0)) such that (η0,ν0,X(0)) ∈S0.

Proof. Fix (B(t,y),Q(t,y)) and the triple of functions (η ,ν ,X) defined from it. It is
clear from the two fundamental evolution equations (3) and (4) that for each t ≥ 0,
q̃(t,x) as a function in x has support in [0,Hr) and b(t,x) as a function in x has
support in [0,Hs). It then follows that ηt has support in [0,Hr) and νt has support in
[0,Hs) for each t ≥ 0. Also it is clear that (η0,ν0,X(0)) ∈S0.

We first show that ν satisfies (16). For every ψ ∈ Cb(R+) and t ≥ 0,∫
∞

0
ψ(x)νt(dx) =

∫
∞

0
ψ(x)b(t,x)dx =

∫ t

0
ψ(x)b(t,x)dx+

∫
∞

t
ψ(x)b(t,x)dx. (14)

For the first term on the right-hand side of (14), we can use the first fundamental
evolution equation (3) to yield that∫ t

0
ψ(x)b(t,x)dx=

∫ t

0
ψ(x)b(t−x,0)

Ḡs(x)
Ḡs(0)

dx=
∫ t

0
ψ(x)Ḡs(x)b(t−x,0)dx. (15)

For the second term on the right-hand side of (14), another application of the first
fundamental evolution equation (3) yields that∫

∞

t
ψ(x)b(t,x)dx =

∫ Hs

t∧Hs
ψ(x)b(t,x)dx (16)

=
∫ Hs

t∧Hs
ψ(x)b(0,x− t)

Ḡs(x)
Ḡs(x− t)

dx

=
∫ t∨Hs−t

0
ψ(x+ t)

Ḡs(x+ t)
Ḡs(x)

b(0,x)dx
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=
∫ Hs

0
ψ(x+ t)

Ḡs(x+ t)
Ḡs(x)

b(0,x)dx.

The last equality in (16) follows from the fact that Ḡs(x+ t) = 0 if x ∈ (t ∨Hs−
t,Hs). For each t ≥ 0, let

K(t) .
=
∫ t

0
b(s,0)ds. (17)

Combining the above four displays, we obtain that ν satisfies (16). An analogous
argument using the second fundamental evolution equation (4) shows that∫

∞

0
ψ(x)ηt(dx) =

∫
∞

0
ψ(x)q̃(t,x)dx (18)

=
∫ t

0
ψ(x)q̃(t,x)dx+

∫
∞

t
ψ(x)q̃(t,x)dx

=
∫ t

0
ψ(x)Ḡr(x)q̃(t− x,0)dx+

∫ Hr

0
ψ(x+ t)

Ḡr(x+ t)
Ḡr(x)

q̃(0,x)dx.

By (7), q̃(t− x,0) = λ (t− x). Thus, η satisfies (15).
Next, for each t ≥ 0, define B(t) .

= B(t,∞), Q(t) .
= Q(t,∞), D(t) .

=
∫ t

0 σ(x)dx,
R(t) .

=
∫ t

0 α(x)dx. From (9), D satisfies (18). From (9) again, (5) and (1), R satisfies
(20). Since ν satisfies (16), by choosing ψ = 1 in (16), we have

B(t) =
∫ Hs

0

Ḡs(x+ t)
Ḡs(x)

ν0(dx)+
∫ t

0
Ḡs(t− s)dK(s)

and by choosing ψ = hs in (16), we have

D(t) =
∫ t

0

∫ Hs

0
b(s,x)hs(x)dxds

=
∫ t

0

(∫ Hs

0

gs(x+ s)
Ḡs(x)

ν0(dx)+
∫ s

0
gs(s− x)dK(x)

)
ds

=
∫ Hs

0

Ḡs(x)− Ḡs(x+ t)
Ḡs(x)

ν0(dx)+
∫ t

0

∫ s

0
gs(s− x)dK(x)ds

= B(0)−
∫ Hs

0

Ḡs(x+ t)
Ḡs(x)

ν0(dx)+
∫ t

0
Gs(t− s)dK(s)

= B(0)−B(t)+K(t).

This shows that (17) is satisfied. The relationship (10) directly implies that (19).
Now, (21) follows directly from (1). Finally the non-idling conditions in (22)–

(24) directly follows from those in (12)–(14). This completes the proof of the propo-
sition.
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