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Abstract. We introduce an epidemic model with varying infectivity and general exposed and

infectious periods, where the infectivity of each individual is a random function of the elapsed

time since infection, those function being i.i.d. for the various individuals in the population. This

approach models infection-age dependent infectivity, and extends the classical SIR and SEIR models.

We focus on the infectivity process (total force of infection at each time), and prove a functional

law of large number (FLLN). In the deterministic limit of this FLLN, the evolution of the mean

infectivity and of the proportion of susceptible individuals is determined by a two-dimensional

deterministic integral equation. From its solutions, we then obtain expressions for the evolution of

the proportions of exposed, infectious and recovered individuals. For the early phase, we study the

stochastic model directly by using an approximate (non–Markovian) branching process, and show

that the epidemic grows at an exponential rate on the event of non-extinction, which matches the

rate of growth derived from the deterministic linearized equations. We also use these equations to

derive the expression for the basic reproduction number R0 during the early stage of an epidemic,

in terms of the average individual infectivity function and the exponential rate of growth of the

epidemic, and apply our results to the Covid–19 epidemic.

1. Introduction

Most of the literature on epidemic models is based upon ODE models which assume that the
length of time during which a given individual is infectious follows an exponential distribution. More
precisely, those deterministic models are law of large numbers limits, as the size of the population
tends to infinity, of stochastic models where all transitions from one compartment to the next
have exponential distributions, see [6] for a recent account. However, it is largely recognized that
for most diseases, the durations of the exposed and infectious periods are far from following an
exponential distribution. In the case of influenza, a deterministic duration would probably be a
better approximation. Recently in [21], the last two authors of the present paper have obtained the
functional law of large numbers (FLLN) limits for SIS, SIR, SEIR and SIRS models where in the
stochastic model the duration of the stay in the I compartment (resp. both in the E and the I, resp.
both in the I and the R compartments) follow a very arbitrary distribution. Of course, in this case
the stochastic model is not a Markov model, which makes some of the proofs more delicate. Indeed,
the fluctuating part of a Markov process is a martingale, and many tools exist to study tightness
and limits of martingales, which are missing in the non–Markovian setting. Nevertheless, we were
able in [21] to use ad hoc techniques in order to circumvent that difficulty, and we proved not
only FLLNs, but also functional central limit theorems (FCLTs). While the classical “Markovian”
deterministic models are ODEs, our more general and more realistic “non–Markovian” deterministic
models are Volterra type integral equations of the same dimension as the classical ODE models,
i.e., equations with memory. Recently in [11], the authors used the approach in [21] to describe the
Covid-19 epidemic in France. The flexibility of the choice for the law of the infectious period was
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very helpful in order to write a realistic model with very few compartments, and our model follows
better the data than Markov models.

The aim of the present paper is to go a step further in the direction of realistic models of
epidemics, and to consider the case where the infectivity of infectious individuals depends upon
their time since infection. It has been established in [14] that in the case of the Covid-19 disease,
the infectivity of infectious individuals decreases after symptom onset. In fact it is believed that
in most infectious diseases, the infectivity of infectious individuals depends upon the time since
infection. This was already argued almost a century ago by Kermack and McKendrick, two of the
founders of epidemic modeling in [17]. In that paper, the authors assume both an infection age
infectivity, and an infection age recovery rate. The latter can be thought of as the hazard function
of the duration of the infectious period, which then is a general absolutely continuous distribution.
Like in the present paper, their model is a Volterra integral equation. The same deterministic model
has also been described as an “age of infection epidemic model” in [4] and in the recent book [5,
Chapter 4.5]. See also two recent papers in the study on the Covid-19 pandemic [13, 12], which use
a transport PDE model (it is worth noting that PDEs have been commonly used to capture the
effect of age of infection in the epidemic literature, see, e.g., [15, 25, 16, 20]). The novelty of the
present paper is that we prove that our integral equation deterministic model it is the law of large
numbers limit of a well specified individual based stochastic model.

The most realistic assumption is probably that this infectivity first increases continuously from 0,
and then decreases back to 0. We shall however allow jumps in the random infectivity function, in
order in particular to include the classical case of a constant infectivity during the infectious period.
We also want to allow a very arbitrary law for the infectious (or exposed/infectious) period(s), as
was done in [21]. In this work again, the FLLN limiting deterministic model is a Volterra type
integral equation, which is of the same dimension as the corresponding classical ODE model, see
Theorem 2.1. We treat only the case of SIR and SEIR models (see also Remark 2.5 on the SIS and
SIRS models), but we intend to extend in later publications our approach to other types of models,
including models with age classes and spatial distribution, see [22] for multi–patch models with
general exposed and infectious durations. We have also established in a separate publication the
FCLT associated to the FLLN established in the present paper, see [23].

Our approach in this paper is to assume that in the original stochastic finite population model,
the infectivity of each individual is a random function of the time elapsed since his/her infection,
those functions associated to various individuals being independent and identically distributed
(i.i.d.). The total force of infection at each time is the aggregate infectivity of all the individuals that
are currently infectious. We assume that the infectivity random functions are piecewise continuous
with a finite number of discontinuities, which includes all the commonly seen examples, in particular,
constant infectivity over a given time interval as a special case. They are also allowed to start
with a value zero for a period of time to generalize the SEIR model. These random functions then
determine the durations of the exposed and infectious periods, and therefore, their corresponding
probability distributions, which can be very general.

Under the i.i.d. assumptions of these infectivity random functions of the various individuals, we
prove a FLLN for the infectivity process, together with the counting processes for the susceptible,
exposed, infectious and recovered individuals. The mean infectivity and the proportion of susceptible
individuals in the limit are uniquely determined by a two-dimensional Volterra integral equation.
Given these two functions, the proportions of exposed, infectious and recovered individuals in the
limit are expressed in terms of the two above quantities. They generalize the integral equations
in the standard SIR/SEIR models with general exposed and infectious periods in [21]. Our proofs
are based upon Poisson random measures associated with the infectivity process, which help us to
establish tightness and convergence. This paper further develops the techniques in [21], since for
establishing the mean infectivity equation, we cannot integrate by parts as was done in [21]. See
Lemmas 4.4 and 4.5, which give a key argument for the proof of Lemma 4.6.
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Our limiting integral equations can be easily solved numerically. For the standard SIR/SEIR
model with general exposed and infectious periods, the integral equations are implemented to
estimate the state of the Covid-19 pandemic in France in [11]. In another recent work, Fodor et
al. [10] argue that integral equations (in the case of deterministic infectious periods) should be
used instead of ODEs since the latter may significantly underestimate the initial basic reproduction
number R0. We claim that our model may be used to better predict the trajectory of the epidemic,
especially at the beginning of the epidemic and when certain control measures like lockdown and
reopening are implemented.

We also study the early phase of the epidemic, during which the proportion of susceptible
individuals remains close to 1, which allows to linearize the system of equations. However, typically
the epidemic starts with a very small number of infected individuals, so that we need to go back
to the stochastic model if we want to describe that early phase. Thanks to a comparison with
(non–Markov) branching processes, we are able to show that, conditioned upon non-extinction, the
epidemic grows at an exponential rate ρ, reaching a given proportion of infected individuals in the
population after a length of time of the order of ρ−1 log(N), if N is the total population size. After
that time, we can follow the linearized deterministic model, whose rate of growth is the same ρ.

The rate ρ is easily estimated from the data (if d denotes the “doubling time”, i.e., the number of
days necessary for the number of cases to double, ρ = d−1 log(2)). It is then interesting to express
the basic reproduction number R0 in terms of ρ and of the average infectivity function, a formula
which we deduce from the linearized Volterra equation, as was already done by [26], see their formula
(2.7). We compute explicitly the value of R0 for different values of two unknown parameters for the
case of the early phase of the Covid–19 epidemic in France, assuming a decrease of the infectivity
compatible with the results in [14]. We see that the decrease of the infectivity with infection–age
induces a decrease of R0.

The paper is organized as follows. In Section 2.1, we formulate our stochastic model, and make
precise all the assumptions. In Section 2.2, we state the FLLN, Theorem 2.1. Section 2.3 is devoted
to the early phase of the epidemic: we state Theorem 2.2 which describes the behavior of the
stochastic model, and Theorem 2.3, which describes the behavior of the deterministic linearized
model. In Section 2.4, we express R0 in terms of the exponential growth rate and the mean infectivity
function, and in Section 2.5 we apply our techniques to the French Covid–19 epidemic during 2020.
Section 3 is devoted to the proof of Theorems 2.2 and 2.3, and Section 4 to the proof of Theorem
2.1.

2. Model and Results

2.1. Model description. All random variables and processes are defined in a common complete
probability space (Ω,F ,P). We consider a generalized SEIR epidemic model where each infectious
individual has an infectivity that is randomly varying with the time elapsed since infection. As usual,
the population consists of four groups of individuals, susceptible, exposed, infectious and recovered.
Let N be the population size, and let SN (t), EN (t), IN (t), RN (t) denote the sizes of the four groups,
respectively. We have the balance equation N = SN (t) +EN (t) + IN (t) +RN (t) for t ≥ 0. Assume
that RN (0) = 0, SN (0) > 0 and EN (0) + IN (0) > 0 such that SN (0) + EN (0) + IN (0) = N . Let
AN (t) be the cumulative number of individuals that become infected in (0, t] for t ≥ 0 and denote
the associated event times by τNi , i = 1, . . . , AN (t).

Note that an infected individual is either exposed or infectious. More precisely, he/she is first
exposed, then infectious. Let us first consider those individuals who are infected after time 0 (i.e.
they are in the S compartment at time 0). The i–th infected individual is infected at time τNi .
He/she is first exposed during the time interval [τNi , τ

N
i + ζi). Then he/she is infectious during the

time interval (τNi + ζi, τ
N
i + ζi + ηi), and finally removed on the time interval [τNi + ζi + ηi,+∞). To

this individual is attached an infectivity process {λi(t) : t ≥ 0}, which is a random right–continuous
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function such that

λi(t)


= 0, if 0 ≤ t < ζi,

> 0, if ζi < t < ζi + ηi,

= 0, if t ≥ ζi + ηi.

(2.1)

We shall formulate some assumptions on the functions λi below. Let us just say for now that the
collection of the functions {λi(·)}i≥1 is i.i.d. Since

ζi = inf{t > 0, λi(t) > 0}, and ζi + ηi = inf{t > 0, λi(r) = 0, ∀r ≥ t}, (2.2)

the collection of random vectors (ζi, ηi)i≥1 is also i.i.d.
Each initially exposed individual is associated with an infectivity process λ0

j (t), j = 1, . . . , EN (0),

with a càdlàg path; the λ0
j ’s are assumed to be i.i.d. and such that

ζ0
j = inf{t > 0, λ0

j (t) > 0} > 0 a.s. and ζ0
j + η0

j = inf{t > 0, λ0
j (r) = 0, ∀r ≥ t}. (2.3)

Each initially infectious individual is associated with an infectivity process λ0,I
k (t), k = 1, . . . , IN (0),

with a càdlàg path; the λ0,I
k ’s are also assumed to be i.i.d. and such that

inf{t > 0, λ0,I
k (t) > 0} = 0 a.s. and η0,I

k = inf{t > 0, λ0,I
k (r) = 0, ∀r ≥ t}. (2.4)

We will write (ζ, η) (resp. (ζ0, η0), resp. η0,I) for a vector which has the same law as (ζi, ηi) (resp.

(ζ0
j , η

0
j ), resp. η0,I

k ). Let H(du, dv) denote the law of (ζ, η), H0(du, dv) that of (ζ0, η0) and F0,I the

c.d.f. of η0,I . Moreover, we define

Φ(t) :=

∫ t

0

∫ t−u

0
H(du, dv) = P(ζ + η ≤ t), Ψ(t) :=

∫ t

0

∫ ∞
t−u

H(du, dv) = P(ζ ≤ t < ζ + η),

Φ0(t) :=

∫ t

0

∫ t−u

0
H0(du, dv) = P(ζ0 + η0 ≤ t), Ψ0(t) :=

∫ t

0

∫ ∞
t−u

H0(du, dv) = P(ζ0 ≤ t < ζ0 + η0),

F0,I(t) := P(η0,I ≤ t) .
We shall also write

H(du, dv) = G(du)F (dv|u), H0(du, dv) = G0(du)F0(dv|u),

i.e., G is the c.d.f. of ζ and F (·|u) is the conditional law of η, given that ζ = u, G0 is the c.d.f. of ζ0

and F0(·|u) is the conditional law of η0, given that ζ0 = u. In the case of independent exposed and
infectious periods, it is reasonable that the infectious periods of the initially exposed individuals
have the same distribution as the newly exposed ones, that is, F0 = F . Note that Ψ(t) = G(t)−Φ(t)
and Ψ0(t) = G0(t)− Φ0(t). Also, let Gc0 = 1−G0, Gc = 1−G, F c0,I = 1− F0,I , and F c = 1− F .

We remark that our framework allows very general random infectivity functions λ(t), which can
be piecewise continuous (see Assumption 2.1) and can also generate dependent and independent ζ
and η variables for each individual. We give an example of independent ζ and η variables. Let ζ, η
and h be random objects so that ζ is independent of the pair (η, h), where ζ and η are R+ valued
and h is a random element of C([0, 1];R+) satisfying h(0) = h(1) = 0 and h(t) > 0 for 0 < t < 1, a.s.
(η and h can be dependent). We extend h as an element of C(R;R+) by specifying that h(t) = 0
if t /∈ [0, 1]. Define λ(t) = h(ζη−1(ζ−1t− 1)) for any t ≥ 0. Then λ(t) = 0 on [0, ζ], and again on
[ζ + η,+∞), where λ(t) > 0 if ζ < t < ζ + η. By construction, ζ and η are independent.

The total force of infection which is exerted on the susceptibles at time t can be written as

IN (t) =

EN (0)∑
j=1

λ0
j (t) +

IN (0)∑
k=1

λ0,I
k (t) +

AN (t)∑
i=1

λi(t− τNi ) , t ≥ 0. (2.5)
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Thus, the instantaneous infectivity rate function at time t is

ΥN (t) =
SN (t)

N
IN (t), t ≥ 0. (2.6)

The infection process AN (t) can be expressed by

AN (t) =

∫ t

0

∫ ∞
0

1u≤ΥN (s−)Q(ds, du), t ≥ 0, (2.7)

where Q is a standard Poisson random measure (PRM) on R2
+, and we use 1{·} for the indicator

function. One may observe that besides the PRM Q, the randomness in the epidemic dynamics

comes only from the infectivity processes {λ0
j (t)}, {λ

0,I
k (t)} and {λi(t)} (the infectious periods {η0

j },
(η0,I
k ) and {ηi} are induced from them).
The epidemic dynamics of the model can be described by

SN (t) = SN (0)−AN (t) , (2.8)

EN (t) =

EN (0)∑
j=1

1ζ0j>t
+

AN (t)∑
i=1

1τNi +ζi>t
, (2.9)

IN (t) =

EN (0)∑
j=1

1ζ0j≤t<ζ0j+η0j
+

IN (0)∑
k=1

1
η0,Ik >t

+

AN (t)∑
i=1

1τNi +ζi≤t<τNi +ζi+ηi
, (2.10)

RN (t) =

EN (0)∑
j=1

1ζ0j+η0j≤t
+

IN (0)∑
k=1

1
η0,Ik ≤t

+

AN (t)∑
i=1

1τNi +ζi+ηi≤t . (2.11)

In the case where ζ0
j = 0 and ζi = 0, the model is a generalized SIR model, and EN (t) ≡ 0.

We now make the following assumptions on the infectivity functions and the initial quantities.
We first state our assumptions on λ0, λ0,I and λ.

Assumption 2.1. The random functions λ(t) (resp. λ0(t) and resp. λ0,I(t) ), of which λ1(t), λ2(t), . . .

(resp. λ0
1(t), λ0

2(t), . . . and resp. λ0,I
1 (t), λ0,I

2 (t), . . .) are i.i.d. copies, satisfy the following assumptions.
There exists a constant λ∗ <∞ such that supt∈[0,T ] max{λ0(t), λ0,I(t), λ(t)} ≤ λ∗ almost surely, and

in addition there exist a given number k ≥ 1, a random sequence 0 = ξ0 ≤ ξ1 ≤ · · · ≤ ξk = η and
random functions λj ∈ C(R+;R+), 1 ≤ j ≤ k such that

λ(t) =
k∑
j=1

λj(t)1[ξj−1,ξj)(t) . (2.12)

Moreover, for any T > 0, there exists a nondecreasing function ϕT ∈ C(R+;R+) with ϕT (0) = 0,
such that |λj(t)− λj(s)| ≤ ϕT (|t− s|) almost surely, for all 0 ≤ t, s ≤ T , 1 ≤ j ≤ k.

Let λ̄0(t) = E[λ0(t)], λ̄0,I(t) = E[λ0,I(t)] and λ̄(t) = E[λ(t)] for t ≥ 0.
It is clear that λ̄0(t), λ̄0,I(t) and λ̄(t) are all càdlàg, and they are also uniformly bounded by λ∗.

Remark 2.1. We think that λ(t) being continuous is a good model of reality. However, the early
phase of the function λ(t) is not well known, since patients are tested only after symptom onset,
and usually (this is the case in particular for the Covid–19) they may have been infectious (i.e., with
λ(t) > 0) prior to that. Consequently we should not exclude the possibility that λ(t) jumps to its
maximum at time ζ, and then decreases continuously to 0.

Moreover, in order to include the “classical” models where λ(t) is first 0 during the exposed period,
and then equal to a positive constant during the infectious period, as well as possible models of
infectivity that would be piecewise constant, we allow λ(t) to have a given number of jumps.
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For one of our results, we shall need the following assumption.

Assumption 2.2. Assume that

E

[(∫ ∞
0

λ(t)dt

)2
]
<∞, E

[(∫ ∞
0

λ0(t)dt

)2
]
<∞.

Remark 2.2. The assumption on the second moment of
∫∞

0 λ(t)dt will be necessary in order to
apply Theorem 3.2 from [9] to the branching process approximation of the stochastic model for the
early phase of the epidemic. Since we assume that λ(t) ≤ λ∗, for this second moment condition to
be satisfied, it is sufficient that the duration of the infectious period η satisfies E[η2] < ∞, which
certainly is not a serious restriction in practice. In our application to Covid–19 in Section 2.5, we
choose a law with compact support for η.

Let X̄N := N−1XN for any process XN . Let D = D(R+;R) denote the space of R–valued
càdlàg functions defined on R+. Throughout the paper, convergence in D means convergence in the
Skorohod J1 topology, see Chapter 3 of [3]. Also, Dk stands for the k-fold product equipped with
the product topology.

Assumption 2.3. Assume that there exist deterministic constants Ē(0), Ī(0) ∈ [0, 1] such that
0 < Ē(0) + Ī(0) < 1, and (ĒN (0), ĪN (0))→ (Ē(0), Ī(0)) ∈ R2

+ in probability as N →∞.

Finally we make the following independence assumption.

Assumption 2.4. Assume that the triple (λi(·), i ≥ 1; λ0
j (·), j ≥ 1; λ0,I

k (·), k ≥ 1), (EN (0), IN (0))

and Q (the PRM upon which the construction of the process AN (·) is based) are independent.

2.2. FLLN. We now state the main result of this paper.

Theorem 2.1. Under Assumptions 2.1, 2.3 and 2.4,(
S̄N , ĪN , ĒN , ĪN , R̄N

)
→
(
S̄, Ī, Ē, Ī, R̄

)
in D5 as N →∞, (2.13)

in probability, locally uniformly in t. The limits S̄ and Ī(t) are the unique solution of the following
system of Volterra integral equations

S̄(t) = 1− Ē(0)− Ī(0)−
∫ t

0
S̄(s)Ī(s)ds , (2.14)

Ī(t) = Ē(0)λ̄0(t) + Ī(0)λ̄0,I(t) +

∫ t

0
λ̄(t− s)S̄(s)Ī(s)ds , (2.15)

and the limit (Ē, Ī, R̄) is given by the following integral equations:

Ē(t) = Ē(0)Gc0(t) +

∫ t

0
Gc(t− s)S̄(s)Ī(s)ds , (2.16)

Ī(t) = Ī(0)F c0,I(t) + Ē(0)Ψ0(t) +

∫ t

0
Ψ(t− s)S̄(s)Ī(s)ds , (2.17)

R̄(t) = Ī(0)F0,I(t) + Ē(0)Φ0(t) +

∫ t

0
Φ(t− s)S̄(s)Ī(s)ds . (2.18)

The limit S̄ is in C, and the limits Ī, Ē, Ī, R̄ are in D. If λ̄0 and λ̄0,I are continuous, then Ī is in
C, and if G0 and F0,I are continuous, then Ē, Ī, R̄ are in C.

Remark 2.3. If we suppose only that Assumptions 2.3 and 2.4 are valid, and supt∈[0,T ] max{λ0(t),

λ0,I(t), λ(t)} ≤ λ∗ almost surely, then Theorem 2.1 remains valid, but with the convergence in
probability in D5 being replaced by the convergence in probability in Lploc(R+;R5), for any p ≥ 1.
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Figure 1. Numerical illustration of the FLLN obtained in Theorem 2.1 for the
SEIR/SIR model (see below). Each graphic shows the mean of 1,000 independent
simulations of the stochastic SEIR/SIR model (continuous lines) and the correspond-
ing deterministic solution to (2.14)-(2.18) (black dashed lines), each started with

I
N

(0) = I(0) = 0.05. For each curve, the dark (resp. light) shaded areas around
the curves represent the intervals containing 50% (resp. 95%) of the simulations.
The two compartments E and I have been merged so as not to burden the graphic
with another pair of curves (see below). The population size N = 103 on the left,
N = 104 on the right. The model and the distribution of (ζ, η, λ) are as described in
Subsection 2.5 below, with pR = 0.8, α = 0.7.

The SEIR/SIR model. Suppose now we do not want to follow the disease progression in the
detail adopted so far. Rather, we merge the compartments E (exposed) and I (infectious) into a
single compartment I, where now I stands for infected, whether exposed or infectious. Doing this,
we do not modify at all our model. Each newly infected individual belongs to the I compartment
from the time of infection τNi until the end of the infectious period τNi + ζi + ηi, where again
ζi + ηi = inf{t > 0, λi(r) = 0, ∀r ≥ t}. Of course, between time τNi and time τNi + ζi, λi(t) = 0
(recall that ζi = inf{t, λi(t) > 0}), so that he/she is not infectious, but exposed. Likewise, each
initially infected individual belongs to the I compartment from time 0 up to time ζ0

j + η0
j , where

ζ0
j + η0

j = inf{t ≥ 0 : λ0
j (r) = 0, ∀r ≥ t}. Note that ζ0

j = 0 if λ0
j (0) > 0 (if the individual is already

infectious at time 0). As a result, (2.9) and (2.10) are replaced by

IN (t) =

IN (0)∑
k=1

1t<ζ0k+η0k
+

AN (t)∑
i=1

1t<τNi +ζi+ηi
, (2.19)
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and EN (t) = 0 in all the other equations. The force of infection is then

IN (t) =

IN (0)∑
k=1

λ0
k(t) +

AN (t)∑
i=1

λi(t− τNi ). (2.20)

We call this model the SEIR/SIR model, since it is an SIR model, but with I meaning “infected”,
and the state E is implicit, i.e. we do not exclude that individuals, when they become infected, are
first exposed, then later infectious. Define

F (t) = P(ζ + η ≤ t), where ζ + η = inf{t > 0, λ(r) = 0, ∀r ≥ t},
F0(t) = P(ζ0 + η0 ≤ t), where ζ0 + η0 = inf{t > 0, λ0(r) = 0, ∀r ≥ t} .

With those notations, the deterministic LLN SEIR/SIR model reads as follows.

S̄(t) = 1− Ī(0)−
∫ t

0
S̄(s)Ī(s)ds , (2.21)

Ī(t) = Ī(0)λ̄0,I(t) +

∫ t

0
λ̄(t− s)S̄(s)Ī(s)ds , (2.22)

Ī(t) = Ī(0)F c0 (t) +

∫ t

0
F c(t− s)S̄(s)Ī(s)ds , (2.23)

R̄(t) = Ī(0)F0(t) +

∫ t

0
F (t− s)S̄(s)Ī(s)ds . (2.24)

Now in the particular case where λ0(·) and λ(·) are such that ζ = ζ0 = 0 a.s. (i.e., an infected
individual is immediately infectious), there is no exposed period, then the above model is the
generalized SIR model with varying infectivity.

Figure 1 illustrates the FLLN of Theorem 2.1 for the SEIR/SIR model, for two values of the
population size (103 and 104). Each figure displays the mean of 1,000 independent simulations,
the trajectory of the deterministic equations (2.14)-(2.18), and the intervals containing 50% and
95% of the trajectories. The details of the model and the distribution of (ζ, η, λ) used in the
simulations are described in Subsection 2.5 below. In each case, the mean of the simulations is
almost superposed with the solution to the deterministic equations, and for N = 104, the envelopes
are very concentrated around the means. This is not surprising in view of the FCLT proved in
[23]. Indeed, this theorem implies that the trajectory of the (renormalised) stochastic process

(S
N

(t), I
N

(t), I
N

(t), R
N

(t), t ≥ 0) is (with high probability) at a distance of the order of N−1/2

from that of the deterministic limit. The simulations obtained in Figure 1 confirm this, and the
widths of the 50% and 95% intervals are exactly proportional to N−1/2.

Remark 2.4. The above result generalizes both our SIR and our SEIR FLLN results in [21].
The SIR model in [21] is the particular case of the present result, where λ(t) = λ1t<η, η being the

random duration of the infectious period. In this case, λ̄(t) = λF c(t), if F is the c.d.f. of η, and
F c = 1−F . Note that in this case Ī(t) = λĪ(t). Therefore, if we divide the Ī equation by λ, we find
equation (2.17), which is also equation (2.4) in [21]. If we assume that the law of η is exponential,
then we are in the case of the classical SIR model.

The SEIR model in [21] corresponds to the situation where λ(t) = λ1ζ≤t<ζ+η, where ζ is the
duration of the exposed period (the time when the individual is infected, but not yet infectious), and
η is as above, while λ0(t) = λ1ζ0≤t<ζ0+η0. Then λ̄(t) = λ[P(ζ ≤ t)− P(ζ + η ≤ t)] = λΨ(t). If we

divide the Ī equation by λ, we find equation (2.17), which is also (3.15) in [21]. If moreover ζ and
η are independent exponential random variables, then we are reduced to the classical SEIR model.

Remark 2.5. For the generalized SIS model, since S̄(t) = 1 − Ī(t), it is clear that the epidemic
dynamics in the FLLN is determined by the two–dimensional functions

(
Ī, Ī
)

via the following
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integral equations:

Ī(t) = Ī(0)λ̄0,I(t) +

∫ t

0
λ̄(t− s)(1− Ī(s))Ī(s)ds ,

Ī(t) = Ī(0)F c0,I(t) +

∫ t

0
F c(t− s)(1− Ī(s))Ī(s)ds .

Recall that as shown in Theorem 2.3 of [21], in the SIS with general infectious periods, Ī(s) = λĪ(s),
and the epidemic dynamics is determined by the one–dimensional integral equation for Ī.

For the generalized SIRS model, the variables (ζi, ηi) in our setup represent the infectious and
recovered/immune periods of newly infected individuals, and similarly the variables (ζ0

j , η
0
j ) represent

the infectious and immune periods of initially infectious individuals. We assume that there are no
initially immune individuals. Let IN , RN be the processes counting infectious and recovered/immune
individuals (corresponding to the notation EN and IN in the SEIR model). Of course, instead of
(2.1), the infectivity function λ(t) should be positive only in the infectious periods [0, ζi). Similarly,
λ0
j (t) should be positive only over [0, ζ0

j ). The definitions of the variables (ζi, ηi), (ζ0
j , η

0
j ) in (2.2)

and (2.3) also need to be modified accordingly in the natural way. The distribution functions G0, F0,R

are for initially infectious and immune periods, and G,F are for newly infectious and immune
periods, and similarly for the notation Ψ,Ψ0,Φ,Φ0. Then the epidemic dynamics of the generalized
SIRS model in the FLLN is determined by the three–dimensional functions

(
Ī, Ī, R̄

)
via the following

integral equations:

Ī(t) = Ī(0)λ̄0(t) +

∫ t

0
λ̄(t− s)

(
1− Ī(s)− R̄(s)

)
Ī(s)ds ,

Ī(t) = Ī(0)Gc0(t) +

∫ t

0
Gc(t− s)

(
1− Ī(s)− R̄(s)

)
Ī(s)ds ,

R̄(t) = Ī(0)Ψ0(t) +

∫ t

0
Ψ(t− s)

(
1− Ī(s)− R̄(s)

)
Ī(s)ds .

Also recall that as shown in Theorem 3.3 of [21], in the SIRS model with general infectious and
recovered periods, Ī(s) = λĪ(s), and the epidemic dynamics is determined by the two–dimensional
integral equation for

(
Ī , R̄

)
.

2.3. The early phase of the epidemic. Theorem 2.1 shows that the deterministic system of
equations (2.14)-(2.15) accurately describes the evolution of the stochastic process defined in
Subsection 2.1 when the initial number of infectious individuals is of the order of N . But epidemics
typically start with only a handful of infectious individuals, and it takes some time before the
epidemic enters the regime of Theorem 2.1. Exactly how long this takes depends on the population
size N and on the growth rate of the epidemic. To determine this growth rate, we study the behavior
of the stochastic process when the initial number of infectious individuals is kept fixed as N →∞.

In order to simplify the notations, we shall use the reduced model introduced in (2.19) and (2.20),
where exposed and infectious individuals are merged in a single infected compartment I. We now
suppose that IN (0) = I(0) is a fixed random variable taking values in {1, . . . , N0} for some N0 ≥ 1,
and we take N ≥ N0 throughout this section.

Let

R0 =

∫ ∞
0

λ(t)dt, (2.25)

and let ρ ∈ R be the unique solution of∫ ∞
0

λ(t)e−ρtdt = 1. (2.26)
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The quantity R0 is the well–known basic reproduction number, i.e., the average number of individuals
infected by a typical infected individual in a large, fully susceptible population. It is also well known
that, if R0 ≤ 1, the total number of infections remains small as N → ∞, i.e., lim supt→∞A

N (t)
converges in probability as N →∞ to a random variable Z taking values in N, almost surely, see
Corollary 1.2.6 in [6]. If R0 > 1, however, with positive probability, a major outbreak takes place,
i.e., a positive fraction of the N individuals is infected at some point during the course of the
epidemic. The time needed in order to observe this major outbreak has been studied for Markovian
epidemic models in [1]. More precisely, it has been shown that, starting from a fixed number of
individuals, on the event that there is a major outbreak, the first time at which the proportion of
infected individuals is at least ε > 0 is

1

ρ
log(N) +O(1),

as N →∞, for any ε > 0 small enough, where ρ > 0 is given by (2.26) (it can easily be seen that
ρ > 0 if and only if R0 > 1). The aim of this section is to extend this result to our non–Markovian
setting.

We thus let, for ε ∈ (0, 1),

TNε := inf{t ≥ 0 : AN (t) ≥ εN}
and, for any α ∈ (0, 1),

T Nα := inf{t ≥ 0 : AN (t) ≥ Nα}.

Here and in what follows, we shall use XN ⇒ X to denote the convergence in distribution of a
sequence of random variables (XN , N ≥ 1) to a random variable X as N →∞, i.e., XN ⇒ X if
and only if, for any continuous and bounded real-valued function Φ, E

[
Φ(XN )

]
→ E [Φ(X)] as

N →∞. We then have the following result, which we prove in Section 3.

Theorem 2.2. Under Assumptions 2.1 and 2.2, for any ε > 0 such that ε < 1− 1
R0

, as N →∞,

TNε
log(N)

⇒ 1

ρ
X,

where X = +∞ with probability q and X = 1 otherwise, for some q ∈ (0, 1). Moreover, for any
α ∈ (0, 1),

T Nα
log(N)

⇒ α

ρ
X.

Theorem 2.2 essentially says that, on an event of probability close to 1 − q, t 7→ AN (t) grows
approximately like (a constant times) t 7→ eρt until it becomes of the order of N . This exponential

growth comes from the fact that, as long as S
N

(t) ≈ 1, the infected individuals behave almost like a
branching process (which in our case is non–Markovian, and is of the type studied in [8, 9]). Since
AN (t) ≈ eρt, this approximation is good as long as t� 1

ρ log(N), at which time the proportion of

susceptible individuals is no longer close to one, and the branching process approximation breaks
down. We shall also see in the proof of Theorem 2.2 that q is equal to the extinction probability of
this approximating branching process.

Remark 2.6. The condition ε < 1 − 1
R0

comes from the fact that, as long as S(t) < 1
R0

, each
infected individual infects on average more than one susceptible individual. Hence the proportion of
susceptible individuals needs to become lower than this threshold for the epidemic to die out (on the
event that there is a major outbreak). As a result, AN (t) has to exceed εN for some time t <∞ for
any ε < 1− 1

R0
.
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The fact that the number of infected individuals grows exponentially at rate ρ as long as the
proportion of susceptible individuals stays close to one can also be seen from the deterministic
equations by taking S(t) = 1 in (2.22) (as well as (2.23) and (2.24)). This substitution leads to the
following (linear) system (recall that in this section F is the distribution function of the r.v. ζ + η):

I(t) = I(0)λ̄0(t) +

∫ t

0
λ̄(t− s)I(s)ds ,

I(t) = I(0)F c0 (t) +

∫ t

0
F c(t− s)I(s)ds ,

R(t) = R(0) + I(0)F0(t) +

∫ t

0
F (t− s)I(s)ds .

(2.27)

We prove the following in Section 3.

Theorem 2.3. Assume that Assumption 2.1 holds true. For ρ ∈ R, suppose that E
[
e−ρ(ζ+η)

]
<∞

and define

i :=

∫ ∞
0

F c(s)ρe−ρsds, r := 1− i, (2.28)

and

λρ(t) :=

∫∞
0 λ(t+ s)e−ρsds∫∞

0 F c(s)e−ρsds
, F cρ (t) :=

∫∞
0 F c(t+ s)e−ρsds∫∞

0 F c(s)e−ρsds
.

Suppose first that R0 > 1 and that ρ > 0 is the solution to (2.26). Then, if λ
0

= λρ and F0 = Fρ,
the linear system (2.27) admits the following solution

I(t) = ρ eρt, I(t) = i eρt, R(t) = r eρt t ≥ 0. (2.29)

If, however, R0 < 1 and ρ < 0 (still satisfying (2.26)), then the linear system (2.27) (with λ
0

= λρ
and F0 = Fρ) admits the following solution

I(t) = −ρeρt, I(t) = −ieρt, R(t) = R(0) + r(1− eρt), t ≥ 0.

The deterministic system (2.27) can be thought of as an approximation of the expectation of the

stochastic process (IN (t), IN (t), RN (t)) when S
N

(t) ≈ 1. Note that if we take the exponentially
growing solution (2.29) and if we set

A(t) := I(t) +R(t)− (I(0) +R(0))

(which corresponds to the number of newly infected individuals up to time t), then, since i + r = 1,
A(t) = eρt − 1 and

A

(
α

ρ
log(N)

)
= Nα − 1 ∼ Nα. (2.30)

Hence Theorems 2.2 and 2.3 show that the stochastic model and the linear deterministic system
(2.27) have the same asymptotical behavior, on the event that there is a major outbreak, for times
of the form α

ρ log(N), α ∈ (0, 1). This is further illustrated in Figure 2, which displays the mean of

a subset of 1,000 independent copies of t 7→ I(0) +AN (t) for which the epidemic didn’t go extinct
at the beginning. We see from the figure that, after an initial stochastic phase, whose duration
may vary between different realizations, the cumulative number of infected individuals indeed grows
at the expected rate ρ. We also see that the slope of t 7→ I(0) + AN (t) starts to decline when
AN (t) exceeds N/10 (hence when S̄N (t) becomes less than 0.9), which is to be expected from the
deterministic model.
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Figure 2. Exponential growth of the cumulative number of infected individuals
t 7→ I(0) + AN (t) in the stochastic model. The figure shows the mean (blue line),
50% envelope (dark blue region) and 95% envelope (light blue region) of the subset
of 1,000 independent simulations for which the epidemic did not go extinct at the
beginning. Each simulation was started with I(0) = 5 infectious individuals and a
population size of N = 104. The dashed black line shows the expected exponential
growth during this early phase t 7→ I(0)eρt (the factor I(0) arises from the branching
property). The mean of the sample is slightly above the dashed line, owing to the
bias resulting from the fact that only trajectories leading to a major outbreak were
kept.

In the case of Markovian (SIR) epidemic models, Theorem 2 of [1] states that the full duration
of the epidemic (i.e., the time to extinction of the I population) TN , when starting from a single
infected individual, satisfies

P (TN − a log(N)− c ≥ x)→ (1− q)P (W ≥ x) , N →∞,
for some constants a > 0 and c ∈ R, where W is a linear combination of two independent Gumbel
random variables. Moreover, a = 1

ρ + 1
ρ′ , where ρ is the same as in Theorem 2.2 and ρ′ is the rate

of decay of the number of infected individuals during the final stage of the epidemic. In addition,
Theorem 1.1 in [2] shows that the stochastic process can be coupled with a branching process so
that the two follow the same trajectory up to the time min(TN0 , T Nα ), for α = 7/12, except on
an event of asymptotical negligible probability. Moreover, Theorem 1.1 in [2] also says that, for
times of the form T Nα + t, for 0 ≤ t ≤ 1−α

ρ log(N) + T , the trajectory of the stochastic process is,

with high probability, at most at distance kN−γ of the trajectory of a solution of the deterministic
(non-linear) equations (2.21)–(2.24), whose initial condition is of the form

S(0) = 1− I(0)

N
, I(0) =

I(0)

N
,

up to a time shift which stays of the order of 1 as N →∞, and which accounts for the stochastic
fluctuations when the number of infected individuals is small. We expect that a similar result
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holds in our non-Markovian setting, but proving this would require a careful comparison of the
stochastic model with the deterministic model started from an O(1/N) initial proportion of infected
individuals over timescales of the order of log(N), and this would go beyond the scope of this paper.

The second part of the statement (when R0 < 1) describes what takes place when the daily
number of new infections is decreasing, either because a large fraction of the population has been
infected (or vaccinated) or because effective containment measures have been put into place (e.g., a
strict lockdown). In the former case, S(t) is not close to one, and λ should be replaced by S(t)λ in
order to determine ρ and λρ (assuming that S(t) varies slowly at this point).

Note that if we replace I(0), R(0), λ
0

and F0 by their values in Theorem 2.3, and if we set, for
t < 0,

I(t) = ρeρt, I(t) = ieρt, R(t) = reρt,

then we have

I(t) =

∫ t

−∞
λ(t− s)I(s)ds, I(t) =

∫ t

−∞
F c(t− s)I(s)ds, R(t) =

∫ t

−∞
F (t− s)I(s)ds.

Hence (2.27) can also be interpreted as the (expected) behavior of an epidemic which has started from
an infinitesimal number of infected individuals very far back in the past. Incidentally, substituting
I(t) = ρeρt in the first equation yields exactly (2.26).

2.4. Estimating the basic reproduction number for an ongoing epidemic. The function
λ (as well as F ) depends on many factors. Some of these factors are related to the evolution of
the pathogen inside an infected individual’s organism, and how easily it can be transmitted to
neighboring individuals, and some of these factors depend on the intensity of social contacts in
the population, in particular on physical contacts between individuals when they meet (handshake,
kiss, hug, or none of those). This function is affected by changes in social contacts and collective
behaviors, including public policies aimed at mitigating the effects of the epidemic, and the use
of face masks. For example, during the Covid-19 pandemic, many countries implemented strict
lockdowns in order to curb the spread of the disease, which drastically reduced the rate of infectious
contacts and significantly affected the growth rate of the number of newly infected individuals. In
order to estimate the impact of such policies in terms of the dynamics of the epidemic, we thus
need to be able to gather some information on the contact rate λ from the available data at some
given time.

Let us suppose that λ is only known up to a constant factor µ > 0, i.e.,

λ(t) = µ g(t), t ≥ 0,

where µ is unknown but g is known (for example from medical data on viral shedding). We can
then estimate µ (and R0) from the growth rate ρ, which can be measured easily at the beginning
of the epidemic (ρ = log(2)/d, where d is the doubling time of the daily number of newly infected
individuals), using the relation (2.26). The following is thus a corollary of Theorem 2.2.

Corollary 2.1. Let ρ be the growth rate of the number of infected individuals. Then

µ =

(∫ ∞
0

g(t)e−ρtds

)−1

,

and the basic reproduction number R0 is given by

R0 =

∫∞
0 g(t)dt∫∞

0 g(t)e−ρtdt
. (2.31)

In the literature, (
∫∞

0 g(t)dt)−1g(t) is called the generation interval distribution (it is the distri-
bution of the interval between the time at which an individual is infected and the time at which
its “children” are infected). The relation (2.31) is thus (2.7) in [26]. Note that R0 is the mean
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multiplicative factor of the epidemic from one generation to the next, while ρ is a growth factor in
continuous time.

Note that, by the second part of Theorem 2.3, (2.31) remains valid on any interval during which
S(t) ≈ S(t0) remains approximately constant (but not necessarily close to 1), even when ρ ≤ 0. In
that case, one should add a factor S(t0) in front of I(s) on the right hand sides of (2.27), and we
obtain

µS(t0)

∫ ∞
0

ḡ(s)e−ρesds = 1.

Hence if we define the effective reproduction number Re by Re := S(t0)
∫∞

0 λ(t)dt (i.e., the average

number of secondary infections when S(t) = S(t0)), we have

Re = S(t0)R0 =

∫∞
0 g(s)ds∫∞

0 g(s)e−ρesds
.

Remark 2.7. Note that the exponent ρ is a quantity which is deduced from the observation of the
epidemic (it is closely related to the “doubling time” of the number of cases). The above results give
us µ and R0 in terms of ρ and the function ḡ(t). If λ(t) is deterministic, so are g(t) and η and thus

R0 =

∫ ζ+η
ζ g(s)ds∫ ζ+η

ζ g(s)e−ρsds
.

If, in addition, ḡ(t) ≡ g > 0 for ζ ≤ t < ζ + η, then this simplifies to the well–known result

R0 =
ρη

e−ρζ(1− e−ρη)
.

Remark 2.8. Theorem 2.3 and its Corollary generalize Proposition 2 and Corollary 3 in [11], in
the case λ(t) = λ1ζ≤t<ζ+η for some constant λ > 0, and the pair (ζ, η) is an arbitrary R2

+–valued
random vector. In that case, our formula for R0 reduces to

R0 =
ρE[η]

E[e−ρζ(1− e−ρη)]
.

In the particular case where ζ and η are independent exponential random variables, with parameters
ν and γ, the above formula becomes

R0 =
(

1 +
ρ

ν

)(
1 +

ρ

γ

)
.

From this we deduce the formula in the classical SIR case by choosing ν = +∞, i.e.,

R0 = 1 +
ρ

γ
.

2.5. Application to the Covid–19 epidemic. We now want to explain how the type of model
described in this paper can be used to model the Covid–19 epidemic. As we have seen, the increase in
realism with respect to the classical “Markovian” models (where the infectivity is constant and fixed
across the population, and the Exposed and Infectious periods follow an exponential distribution) is
paid by replacing a system of ODEs by a system of Volterra integral equations. However, we have a
small benefit in that the flexibility induced by the fact that the law of λ is arbitrary allows us to
reduce the number of compartments in the model, so that we can replace a system of ODEs by a
system of Volterra type equations of smaller dimension.

To be more specific, let us describe the SEIRU model of [19]. An individual who is infected is first
“Exposed” E, then “Infectious” I. Soon after, the infectious individual either develops significant
symptoms, and then will be soon “Reported” R, and isolated so that he/she does not infect any
more; while the alternative is that this infectious individual is asymptomatic: he/she develops no or
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Figure 3. Flow chart of the SEIRU model of [19] and of our SIR model. We are able
to replace the six compartments of the SEIRU model with only three compartments
by using the equations described in Theorem 2.1.

very mild symptoms, so remains “Unreported” U, and continues to infect susceptible individuals
for a longer period. Both unreported and reported cases eventually enter the “Removed” (Rem.)
compartment. In this model, there are 6 compartments: S like susceptible, E like exposed, I like
infectious, R like reported, U like unreported, and Rem like removed.

Our approach allows us to have a more realistic version of this model with only 3 compartments
(see Figure 3): S like susceptible, I like infected (first exposed, then infectious), R like removed
(which includes the Reported individuals, since they do not infect any more, and will recover soon or
later). As already explained, we do not need to distinguish between the exposed and the infectious,
since the function λ is allowed to remain equal to zero during a certain time interval starting
from the time of infection. More importantly, since the law of λ is allowed to be bimodal, we can
accommodate in the same compartment I individuals who remain infectious for a short duration of
time, and others who will remain infectious much longer (but probably with a lower infectivity).
Moreover, since we know, see [14], that the infectivity decreases after a maximum which in the
case of symptomatic individuals, seems to take place shortly before symptom onset, our varying
infectivity model allows us to use a model corresponding to what the medical science tells us about
this illness. Note that our version of the SEIRU model from [19] is the same as the one which we
have already used in [11] (except that there we had to distinguish the E and the I compartments).
However, the main novelty here is that the infectivity decreases after a maximum near the beginning
of the infectious period.

More precisely, we consider that t 7→ g(t) increases linearly on the interval [ζ, ζ + η/5], from 0 to
1 for reported individuals, and from 0 to α for unreported individuals, and that it then decreases
linearly to 0 on the interval [ζ + η/5, ζ + η], as shown in Figure 4. We then take (X1, X2) a pair of
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ζ ζ+ η
time since infection

g(t)

Figure 4. Profile of the function g(t) used in our computation of R0 as a function
of ζ and η. The function increases linearly (up to a value 1 or α depending on
whether the individual is reported or unreported) on the interval [ζ, ζ + η/5] and
then decreases linearly on [ζ + η/5, ζ + η].

independent Beta random variables with parameters (2, 2) and we assume that

ζ = 2 + 2X1, η =

{
3 +X2 for reported individuals,

8 + 4X2 for unreported individuals.

This joint law of (ζ, η) is the one that was used in [11] to study the Covid–19 epidemic in France
(where the infectivity was assumed to be constant and uniform among individuals in this work),
and these values are compatible with the results described in [14].

Numerical results are presented in Figure 5 for three growth rates (0.277, -0.06, 0.032) which
are derived from the doubling/halving times of the number of hospital deaths during the first wave
(doubling time of 2.5 days), the first lockdown (halving time of 11.6 days) and the second wave
(doubling time of 21.4 days) of the Covid–19 epidemic in France [11]. We note that, when ρ > 0
(resp. when ρ < 0), R0 is increasing (resp. decreasing) with the proportion of unreported individuals
and with α. We also note that with the same durations of the exposed and infectious periods, but
with λ(t) constant, R0 would be larger, which is not surprising, since in the present model the
decrease of λ̄(t) reduces the effect of the factor e−ρt in the integrals in the denominator, which
makes R0 > 1 for ρ > 0.

3. The early phase of the epidemic

The aim of this section is to prove Theorem 2.2 and Theorem 2.3. In particular, we assume in

this section that E
[(∫∞

0 λ(t)dt
)2]

<∞ and that Assumption 2.1 is satisfied. The first step is to

couple the stochastic process (AN (t), IN (t), t ≥ 0) with two branching processes such that, at least
up to some stopping time, the stochastic process AN stays between the two branching processes.
To do this, we redefine the model of Subsection 2.1 in the following way. Let (λ0

k(·), k ≥ 1) be as
before and let Q be a PRM on R2

+ ×D with intensity ds⊗ du⊗ P (dλ), where P is the probability
distribution of λ(·). We then set

IN (t) :=

I(0)∑
k=1

λ0
k(t) +

∫ t

0

∫ ∞
0

∫
D
λ(t− s)1u≤ΥN (s−)Q(ds, du, dλ),

AN (t) :=

∫ t

0

∫ ∞
0

∫
D
1u≤ΥN (s−)Q(ds, du, dλ),
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Figure 5. Heatmap of the value of R0 for three growth rates: 0.277 (doubling
time of 2.5 days), -0.06 (halving time of 11.6 days) and 0.032 (doubling time of 21.4
days), corresponding to three phases of the Covid–19 epidemic in France. In each
graphic, the horizontal coordinate is the factor α (which is the relative infectivity of
unreported individuals compared to reported individuals), and the vertical coordinate
is the proportion of reported individuals pR. Note that the range of values varies
significantly with the growth rate ρ (from 3 up to 6 in the leftmost graphic, from 0.6
to 0.76 in the middle one and from 1.15 up to 1.28 in the rightmost graphic).

with ΥN (t) = SN (t)
N IN (t) and SN (t) = N − I(0)−AN (t) as before. Then, for ε ∈ [0, 1), we define

Iε(t) :=

I(0)∑
k=1

λ0
k(t) +

∫ t

0

∫ ∞
0

∫
D
λ(t− s)1u≤(1−ε)Iε(s−)Q(ds, du, dλ),

Aε(t) :=

∫ t

0

∫ ∞
0

∫
D
1u≤(1−ε)Iε(s−)Q(ds, du, dλ).

Recall that, for any ε ∈ [0, 1),

TNε = inf{t ≥ 0 : AN (t) ≥ εN}.
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Lemma 3.1. For each N ≥ N0, the process (IN (t), SN (t), AN (t), t ≥ 0) has the same distribution
as the one defined in Subsection 2.1. Moreover,

∀t ≥ 0, IN (t) ≤ I0(t), AN (t) ≤ A0(t), (3.1)

and, for all 0 < ε < ε′, for N ≥ N0+1
ε′−ε , almost surely,

∀t ≤ TNε , IN (t) ≥ Iε′(t), AN (t) ≥ Aε′(t). (3.2)

We note that, even though the distribution of (IN , AN , SN ) is the same as in Subsection 2.1, this
construction yields a different coupling between (IN1 , AN1 , SN1) and (IN2 , AN2 , SN2) for N1 6= N2.

Proof. The fact that this new construction does not change the law of the process (IN , SN , AN ) is
straightforward. For the second part of the statement, let

τ0 := inf{t ≥ 0 : IN (t) > I0(t)}.
By construction, if τ0 <∞, there exist s ≤ τ0 and u > 0 such that

Q ({s} × {u} ×D) = 1

and

I0(s−) < u ≤ ΥN (s−).

Since ΥN (t) ≤ IN (t), this implies I0(s−) < IN (s−) for some s ≤ τ0. This contradicts the definition
of τ0, hence τ0 = +∞ and IN (t) ≤ I0(t) for all t ≥ 0. By the definition of AN and A0, this also
implies AN (t) ≤ A0(t) for all t ≥ 0.

For the lower bound (3.2), we note that, for t ≤ TNε ,

ΥN (t) =

(
1− I(0) +AN (t)

N

)
IN (t)

≥
(

1− N0 + 1

N
− ε
)
IN (t)

≥ (1− ε′)IN (t),

for N ≥ (N0 + 1)/(ε′ − ε). The lower bound then follows by a similar argument as above. �

We note that the process Aε(·) does not depend on N , and that it is a branching process which
belongs to the class of processes studied in [8, 9]. The following result is then Theorem 3.2 in [9].

Lemma 3.2. Under Assumptions 2.1 and 2.2, for each ε ∈ [0, 1), there exists a random variable
Wε ≥ 0 such that

Aε(t)e
−ρεt →Wε, almost surely as t→∞,

where ρε ∈ R is the (unique) solution to

(1− ε)
∫ ∞

0
λ(t)e−ρεtdt = 1. (3.3)

Proof. We need to check the conditions of Theorem 3.2 in [9]. First, since λ(t) ≤ λ∗, for any p > 1,∫ ∞
0

(λ(t))pdt ≤ (λ∗)p−1

∫ ∞
0

λ(t)dt = (λ∗)p−1R0,

which we have assumed to be finite. On the other hand, if N is the number of offsprings of a given
individual, then, using the properties of the Poisson distribution,

E
[
N2
]

= E
[∫ ∞

0
λ(t)dt

]
+ E

[(∫ ∞
0

λ(t)dt

)2
]
<∞,
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by assumption (this is also true if the individual was initially infected, replacing λ by λ0 above).
This concludes the proof. �

Remark 3.1. The condition ε ≤ 1− 1
R0

in Theorem 2.2 ensures that there exists a positive solution

ρε > 0 to the equation (3.3), i.e., that the branching process Aε(·) is supercritical. This will be used
in the proof of Theorem 2.2. See also Remark 2.6.

Lemma 3.3. If ρ satisfies (2.26) and ρε is given by (3.3), then, for all ε ∈ (0, 1),

0 ≤ ρ− ρε ≤
ε

1− ε

(∫ ∞
0

λ(t)te−ρtdt

)−1

.

Proof. From the definitions of ρ and ρε,∫ ∞
0

λ(t)
(
e−ρεt − e−ρt

)
dt =

ε

1− ε
.

Hence it is clear that ρ ≥ ρε. In addition, e−ρεt − e−ρt ≥ te−ρt(ρ − ρε), from which the stated
inequality follows. �

Lemma 3.4. Let (Wε, ε ∈ [0, 1)) be the family of random variables defined in Lemma 3.2. Then

lim
ε↓0

P(Wε = 0) = P(W0 = 0).

Proof. In [9], it is shown that P(Wε = 0) is the probability of extinction of a branching process in
which each individual born after time 0 leaves a conditionally Poisson number of offsprings with
parameter (1− ε)

∫∞
0 λ(t)dt. Thus if X0 denote the random variable corresponding to the number

of offsprings of the I(0) individuals alive at time 0, then

P(Wε = 0) = E
[
qX0
ε

]
, (3.4)

where qε is the unique fixed point in (0, 1) of the function s 7→ hε(s) defined by

hε(s) := E
[
sXε
]
,

where Xε is conditionally Poisson with parameter (1− ε)
∫∞

0 λ(t)dt. It is then straightforward to see
that hε converges to h0 locally uniformly when ε ↓ 0, and, as a result, qε → q0. We then conclude
from (3.4) and the dominated convergence theorem. �

We can now prove Theorem 2.2.

Proof of Theorem 2.2. We begin by a lower bound on TNε . By (3.1), for any δ ∈ (0, 1),

AN
(

1− δ
ρ

log(N)

)
≤ A0

(
1− δ
ρ

log(N)

)
.

Noting that ρ0 = ρ, by Lemma 3.2, almost surely, for all N large enough,

A0

(
1− δ
ρ

log(N)

)
≤ N1−δ(W0 + δ).

But N1−δ(W0 + δ) < εN for N large enough. It follows that, for any δ ∈ (0, 1),

lim inf
N→∞

TNε
log(N)

≥ 1− δ
ρ

, almost surely. (3.5)

By the same argument, for any δ ∈ (0, α) and α ∈ (0, 1),

lim inf
N→∞

T Nα
log(N)

≥ α− δ
ρ

. (3.6)
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on the event {W0 = 0}, the branching process (A0, I0) goes extinct (i.e., I0(t) = 0 for all t large
enough), and

lim
t→∞

A0(t) < +∞.

As a result, for any t > 0,

AN (t log(N)) ≤ A0(t log(N))

≤ lim
s→∞

A0(s).

Hence T Nα > t log(N) for all t > 0 for all N such that Nα > limt→∞A0(t). Hence

lim inf
N→∞

T Nα
log(N)

= +∞, (3.7)

almost surely on the event {W0 = 0} for any α ∈ (0, 1). Since TNε ≥ T Nα for α ∈ (0, 1) and N large
enough, we also obtain

lim inf
N→∞

TNε
log(N)

= +∞, (3.8)

almost surely on the same event.
We now prove the upper bound on T Nα on the event {W0 > 0}. By Lemma 3.1, for any δ ∈ (0, 1−α)

and ε ∈ (0, 1/2), for N large enough,

AN
(
α+ δ

ρ
log(N) ∧ TNε

)
≥ A2ε

(
α+ δ

ρ
log(N) ∧ TNε

)
.

By (3.5), TNε ≥ α+δ
ρ log(N) for all N large enough (choosing a different δ in (3.5) if needed) and,

by Lemma 3.2,

A2ε

(
α+ δ

ρ
log(N)

)
≥ W2ε

2
N

ρ2ε
ρ

(α+δ)
,

almost surely for N large enough. By Lemma 3.3, we can choose ε small enough that
ρ2ε

ρ
(α+ δ) > α.

As a result,

P
({

lim sup
N→∞

T Nα
log(N)

>
α+ δ

ρ

}
∩ {W0 > 0}

)
≤ P ({W2ε = 0} ∩ {W0 > 0}) . (3.9)

Since, by construction, A2ε(t) ≤ A0(t),

P ({W2ε = 0} ∩ {W0 > 0}) = P(W0 > 0)− P(W2ε > 0).

The right hand side can then be made arbitrarily small by choosing ε small enough by Lemma 3.4.
Since the left hand side in (3.9) does not depend on ε, we conclude that

lim sup
N→∞

T Nα
log(N)

≤ α+ δ

ρ
, (3.10)

almost surely on {W0 > 0}. Combining (3.6), (3.7) and (3.10), we obtain that, for any α ∈ (0, 1),
almost surely,

T Nα
log(N)

→

{
α
ρ if W0 > 0

+∞ otherwise.

This convergence thus holds in distribution for the original model defined in Subsection 2.1.



21

We now prove the upper bound on TNε on the event {W0 > 0} for ε < 1− 1
R0

. To do this, we

define, for δ ∈ (0, 1), ε′ ∈ (ε, 1− 1
R0

) and η ∈ (0, 1),

IN− (t) :=

I(0)∑
k=1

λ0
k(t) +

∫ t

0

∫ ∞
0

∫
D
λ(t− s)1u≤qN (s)IN− (s−)Q(ds, du, dλ),

AN− (t) :=

∫ t

0

∫ ∞
0

∫
D
1u≤qN (s)IN− (s−)Q(ds, du, dλ),

where

qN (t) =

{
1− η if 0 ≤ t ≤ 1−δ

ρ log(N)

1− ε′ otherwise.

We note that, for t ≤ 1−δ
ρ log(N), (IN− (t), AN− (t)) = (Iη(t), Aη(t)) and, by a similar argument as in

Lemma 3.1, for all N large enough, using (3.5),

∀t ≤ TNε , IN (t) ≥ IN− (t), AN (t) ≥ AN− (t). (3.11)

In addition, for any δ′ > 0,

AN−

(
1 + δ′

ρ
log(N)

)
= Aη

(
1− δ
ρ

log(N)

) AN−

(
1−δ
ρ log(N) + δ+δ′

ρ log(N)
)

Aη

(
1−δ
ρ log(N)

) .

By Lemma 3.2, for all N large enough

Aη

(
1− δ
ρ

log(N)

)
≥ Wη

2
N

ρη
ρ

(1−δ)
. (3.12)

Next we note that we can write, for t ≥ 0,

AN−

(
1− δ
ρ

log(N) + t

)
=

Aη
(

1−δ
ρ

log(N)
)∑

i=1

Ãi(t),

where (Ãi(t), t ≥ 0)i≥1 is a family of i.i.d. branching processes of the form

Ãi(t) =

∫ t

0

∫ ∞
0

∫
D
1u≤(1−ε′)Ĩi(s−)Q̃i(ds, du, dλ),

Ĩi(t) = λ̃0
i (t) +

∫ t

0

∫ ∞
0

∫
D
λ(t− s)1u≤(1−ε′)Ĩ(s−)Q̃i(ds, du, dλ),

where {Q, Q̃1, Q̃2, . . .} are i.i.d., and Q is the PRM which was used in the definition of the branching

process Aη up to time 1−δ
ρ log(N). Since ε′ < 1 − 1

R0
, Ãi is supercritical and has growth rate

ρε′ > 0. Moreover, by Lemma 3.2, e−ρε′ tÃi(t) → W̃i as t → ∞, where the W̃i are i.i.d. and such

that P(W̃i > 0) > 0. As a result, on {Wη > 0}, from (3.12),

Aη

(
1− δ
ρ

log(N)

)
→∞

and, by the law of large numbers, as N →∞,

AN−

(
1−δ
ρ log(N) + δ+δ′

ρ log(N)
)

Aη

(
1−δ
ρ log(N)

) N
−
ρε′
ρ

(δ+δ′) → E[W̃1] > 0.
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Hence on the event {Wη > 0}, for some constant C > 0 and for N large enough,

AN−

(
1 + δ′

ρ
log(N)

)
≥ CWη

4
N

ρη
ρ

(1−δ)+
ρε′
ρ

(δ+δ′)
.

But by Lemma 3.3, for any δ′ > 0 and ε′ < 1− 1
R0

(which ensures that ρε′ > 0), we can choose η
and δ small enough that

ρη
ρ

(1− δ) +
ρε′

ρ
(δ + δ′) > 1.

For such a choice of η and δ,

AN−

(
1 + δ′

ρ
log(N)

)
> N

for all N large enough, almost surely on the event {Wη > 0}. By (3.11), this implies

P
({

lim sup
N→∞

TNε
log(N)

>
1 + δ′

ρ

}
∩ {W0 > 0}

)
≤ P(W0 > 0)− P(Wη > 0),

for all η > 0 small enough. Letting η → 0 and using Lemma 3.4, we thus obtain

lim sup
N→∞

TNε
log(N)

≤ 1 + δ′

ρ
,

almost surely on {W0 > 0}, for any δ′ > 0. Combining this with (3.5) and (3.8) yields the result. �

Let us now prove Theorem 2.3.

Proof of Theorem 2.3. Plugging (2.29) into (2.27), and replacing λ
0

and F0 by λρ and Fρ, we obtain

I(0)λ
0
(t) +

∫ t

0
λ(t− s)I(s)ds =

∫ ∞
0

λ(t+ s)ρe−ρsds+

∫ t

0
λ(t− s)ρeρsds ,

I(0)F c0 (t) +

∫ t

0
F c(t− s)I(s)ds =

∫ ∞
0

F c(t+ s)ρe−ρsds+

∫ t

0
F c(t− s)ρeρsds .

Changing variables in each integral and then summing them together, we obtain∫ ∞
0

λ(t+ s)ρe−ρsds+

∫ t

0
λ(t− s)ρeρsds =

∫ ∞
t

λ(s)ρeρ(t−s)ds+

∫ t

0
λ(s)ρeρ(t−s)ds

= ρeρt,

where we have used (2.26) in the last line. The same calculation with F c instead of λ yields∫ ∞
0

F c(t+ s)ρe−ρsds+

∫ t

0
F c(t− s)ρeρsds =

∫ ∞
0

F c(s)ρeρ(t−s)ds = ieρt,

using the definition of i in (2.28). In the case ρ < 0, these calculations are unchanged, and we
simply multiply each line by −1. Finally, the equation for R(t) follows from the fact that

I(t) +R(t) = I(0) +R(0) +

∫ t

0
I(s)ds

= R(0) + I(0) +

∫ t

0
|ρ|eρsds.

Subtracting I(t) = |i|eρt, we obtain

R(t) = R(0) + sign(ρ)(1− i)(eρt − 1).

Since r = 1− i, this concludes the proof (we choose R(0) = r in the case ρ > 0). �
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4. Proof of the FLLN

In this section, for a sequence {XN , N ≥ 1} of random elements of D, and X a random element
of D, XN ⇒ X in D means that XN converges weakly (i.e., in law) to X in D, that is, for any
Φ ∈ Cb(D;R), E[Φ(XN )]→ E[Φ(X)] as N →∞.

4.1. Convergence of (S̄N , ĪN ). For the process AN (t), we have the decomposition

AN (t) = MN
A (t) +

∫ t

0
ΥN (s)ds, (4.1)

where

MN
A (t) =

∫ t

0

∫ ∞
0

1u≤ΥN (s−)Q(ds, du),

with Q(ds, du) = Q(ds, du) − dsdu being the compensated PRM. It is clear that the process
{MN

A (t) : t ≥ 0} is a square-integrable martingale (see, e.g., [7, Chapter VI]) with respect to the
filtration {FNt : t ≥ 0} defined by

FNt := σ

{
EN (0), IN (0), {λ0

j (·)}j≥1, {λ0,I
k (·)}k≥1, {λi(·)}i≥1,

∫ t′

0

∫ ∞
0

1u≤ΥN (s−)Q(ds, du) : t′ ≤ t
}
.

It has a finite quadratic variation

〈MN
A 〉(t) =

∫ t

0
ΥN (s)ds, t ≥ 0.

Under Assumption 2.1, we have

0 ≤ N−1

∫ t

s
ΥN (u)du ≤ λ∗(t− s), w.p. 1 for 0 ≤ s ≤ t. (4.2)

Thus, this implies that, in probability as N →∞,

〈MN
A 〉(t) = N−2

∫ t

0
ΥN (s)ds→ 0 in D,

and by Doob’s inequality,

M
N
A (t)→ 0 (4.3)

in mean square, locally uniformly in t, hence in probability in D. As a consequence, we obtain the
following lemma.

Lemma 4.1. Under Assumptions 2.1, 2.3 and 2.4, the sequence {(ĀN , S̄N )}N≥1 is tight in D2.
The limit of any converging subsequence of {ĀN}, denoted by Ā, satisfies

Ā = lim
N→∞

ĀN = lim
N→∞

∫ ·
0

ῩN (u)du, (4.4)

and
0 ≤ Ā(t)− Ā(s) ≤ λ∗(t− s), w.p. 1 for 0 ≤ s ≤ t. (4.5)

Given the limit Ā of a converging subsequence of {ĀN}, along the same subsequence, S̄N ⇒ S̄ :=
S̄(0)− Ā = 1− Ī(0)− Ā in D as N →∞.

Let

ĪN0,1(t) := N−1

IN (0)∑
k=1

λ0,I
k (t), ĪN0,2(t) := N−1

EN (0)∑
j=1

λ0
j (t), t ≥ 0.
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Lemma 4.2. Under Assumptions 2.1 and 2.3, as N →∞,(
ĪN0,1, Ī

N
0,2

)
→
(
Ī0,1, Ī0,2

)
in D2 in probability, (4.6)

where

Ī0,1(t) := Ī(0)λ̄0,I(t), Ī0,2(t) := Ē(0)λ̄0(t), t ≥ 0.

Proof. Define the processes

ĨN0,1(t) := N−1

NĪ(0)∑
k=1

λ0,I
k (t), ĨN0,2(t) := N−1

NĒ(0)∑
j=1

λ0
j (t), t ≥ 0. (4.7)

By the i.i.d. assumptions for the sequences {λ0
j (t)} and {λ0,I

k (t)}, and their independence, and by

the LLN for random elements in D (see Theorem 1 in [24] or Corollary 7.10 in [18]), we directly
obtain that, as N →∞,(

ĨN0,1, Ĩ
N
0,2

)
→
(
Ī0,1, Ī0,2

)
in D2 in probability.

It then suffices to show that, as N →∞,(
ĨN0,1 − ĪN0,1, Ĩ

N
0,2 − ĪN0,2

)
→ 0 in D2 in probability. (4.8)

We have

ĨN0,1(t)− ĪN0,1(t) = sign(Ī(0)− ĪN (0))N−1

N(ĪN (0)∨Ī(0))∑
k=N(ĪN (0)∧Ī(0))

λ0,I
k (t), (4.9)

and thus

sup
0≤t≤T

∣∣ĨN0,1(t)− ĪN0,1(t)
∣∣ ≤ λ∗∣∣ĪN (0)− Ī(0)

∣∣.
By the convergence ĪN (0) − Ī(0) → 0 in probability under Assumption 2.3, we obtain that

ĨN0,1 − ĪN0,1 → 0 in D in probability. A similar argument yields the convergence ĨN0,2 − ĪN0,2 → 0 in D
in probability. This completes the proof. �

Let

ĪN1 (t) := N−1

AN (t)∑
i=1

λi(t− τNi ), t ≥ 0.

Before we prove the convergence of ĪN1 in D, let us first establish three technical results which
will be useful in the next proof. The first of those results was implicitly used in [21].

Lemma 4.3. Let {XN}N≥1 be a sequence of random elements in D. If the two conditions

(i) for all ε > 0, 0 ≤ t ≤ T , P
(
|XN (t)| > ε

)
→ 0, as N →∞, and

(ii) for all ε > 0, lim supN sup0≤t≤T
1
δP
(

sup0≤u≤δ |XN (t+ u)−XN (t)| > ε
)
→ 0, as δ → 0

are satisfied for all T > 0, then XN (t)→ 0 in probability locally uniformly in t.

Proof. We partition the interval [0, T ] into subintervals of length δ, that is, we define ti = iδ ∧ T ,
i = 0, 1, . . . , bT/δc, and obtain

sup
t∈[0,T ]

|XN (t)| ≤ sup
i=0,...,bT/δc

|XN (ti)|+ sup
i=0,...,bT/δc

sup
u∈[0,δ]

|XN (ti + u)−XN (ti)| .

We immediately obtain the following inequality

P

(
sup

0≤t≤T
|XN (t)| > ε

)
≤
bT/∆c∑
i=0

P(|XN (ti)| > ε/2)
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+

(
T

δ
+ 1

)
sup

0≤t≤T
P

(
sup

0≤u≤δ
|XN (t+ u)−XN (t)| > ε/2

)
.

From condition (i), lim supN of the first term on the right is zero for any δ > 0, while by condition
(ii), lim supN of the second term tends to zero as δ → 0. The result follows. �

In the next statement, D↑(R+) (resp. C↑(R+)) denotes the set of real-valued nondecreasing
function on R+, which belong to D(R+) (resp. C(R+)).

Lemma 4.4. Let f ∈ D(R+) and {gN}N≥1 be a sequence of elements of D↑(R+) which is such that
gN → g locally uniformly as N →∞, where g ∈ C↑(R+). Then, for any t > 0, as N →∞,∫

[0,t]
f(s)gN (ds)→

∫
[0,t]

f(s)g(ds) .

Proof. The assumption implies that the sequence of measures gN (ds) converges weakly, as N →∞,
towards the measure g(ds). Since, moreover, f is bounded and the set of discontinuities of f is of
g(ds) measure 0, the convergence is essentially a minor improvement of the Portmanteau theorem,
see Theorem 2.1 in [3]. �

Lemma 4.5. Let {XN , N ≥ 1} be a sequence of random elements in D, which is such that for
all k ≥ 1, 0 ≤ t1 < t2 < · · · < tk, as N → ∞, (XN (t1), . . . , XN (tk)) ⇒ (X(t1), . . . , X(tk)), and
moreover the sequence {XN} satisfies condition (ii) of Lemma 4.3. Then XN ⇒ X in D, and
moreover X ∈ C a.s. If, in addition, for all t ≥ 0, XN (t)→ X(t) in probability, then XN (t)→ X(t)
in probability locally uniformly in t.

Proof. Define the modulus of continuity on [0, T ] of a function x as

ωx(T, δ) = sup
0≤s<t≤T, t−s≤δ

|x(t)− x(s)| .

It is clear (see the proof of Theorem 7.4 in [3]) that

P(ωXN (T, δ) > 3ε) ≤ sup
0≤t≤T

(
T

δ
+ 1

)
P
(

sup
0≤u≤δ

|XN (t+ u)−XN (t)| > ε

)
Since the “D–modulus of continuity” ω′x(T, δ) satisfies ω′x(T, δ) ≤ ωx(T, 2δ) (see (12.7) in [3]), we
conclude from Theorem 13.2 and its Corollary in [3] that {XN} is tight in D. Since all finite
dimensional distributions of XN converge to those of X, all converging subsequences of the sequence
{XN} converge to X, and the whole sequence converges to X. Moreover, it follows from our
assumptions that for any T > 0, ωX(T, δ) → 0, as δ → 0, hence X ∈ C a.s. Concerning the
convergence in probability, we note that under the additional assumption, Y N (t) := XN (t)−X(t)
satisfies the conditions of Lemma 4.3, hence the result. �

Lemma 4.6. Under Assumptions 2.1 and 2.4, if Ā is the limit of a converging subsequence of
{ĀN}, then along the same subsequence,

ĪN1 ⇒ Ī1 in D as N →∞, (4.10)

where

Ī1(t) :=

∫ t

0
λ̄(t− s)dĀ(s), t ≥ 0.

Proof. Let

ĬN1 (t) := N−1

AN (t)∑
i=1

λ̄(t− τNi ) =

∫ t

0
λ̄(t− s)dĀN (s), t ≥ 0. (4.11)

The proof will be split into two steps.
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Step 1. Convergence of ĬN1
Under Assumption 2.1, applying Lemmas 4.1 and 4.4 and the continuous mapping theorem, we

obtain that, as N →∞, all finite dimensional distributions of ĬN1 converge to those of Ī1. It remains
to establish condition (ii) from Lemma 4.3 in order to deduce from Lemma 4.5 that

ĬN1 ⇒ Ī1 in D as N →∞. (4.12)

That is, we need to show that

lim
δ→0

lim sup
N→∞

1

δ
sup
t∈[0,T ]

P

(
sup
u∈[0,δ]

∣∣ĬN1 (t+ u)− ĬN1 (t)
∣∣ > ε

)
= 0. (4.13)

We have for t, u ≥ 0,

∣∣ĬN1 (t+ u)− ĬN1 (t)
∣∣ ≤

∣∣∣∣∣∣N−1

AN (t)∑
i=1

(
λ̄(t+ u− τNi )− λ̄(t− τNi )

)∣∣∣∣∣∣
+N−1

AN (t+u)∑
i=AN (t)+1

λ̄(t+ u− τNi )

=: ∆N,1
t,u + ∆N,2

t,u .

We first note that by (4.2),

sup
0≤u≤δ

∆N,2
t,u ≤ λ∗

(
ĀN (t+ δ)− ĀN (t)

)
≤ (λ∗)2δ + λ∗

(
M̄N
A (t+ δ)− M̄N

A (t)
)
,

so that by (4.3), for any T > 0, ε > 0, provided δ < ε/(4(λ∗)2),

P
(

sup
0≤u≤δ

∆N,2
t,u > ε/2

)
≤ P

(∣∣M̄N
A (t+ δ)− M̄N

A (t)
∣∣ > ε/4λ∗

)
→ 0, as N →∞,

and consequently,

lim sup
N→∞

1

δ
sup
t∈[0,T ]

P
(

sup
u∈[0,δ]

∣∣∆N,2
t,u

∣∣ > ε/2

)
= 0. (4.14)

We now consider the first term ∆N,1
t,u . Let

Λδ(t) := sup
u≤δ
|λ̄(t+ u)− λ̄(t)| .

We have

sup
u≤δ

∆N,1
t,u ≤

∫ t

0
Λδ(t− s)dĀN (s) ,

and

P
(

sup
u≤δ
|∆N,1

t,u | >
ε

2

)
≤ P

(∫ t

0
Λδ(t− s)dĀN (s) >

ε

2

)
≤ P

(∣∣∣∣∫ t

0
Λδ(t− s)dM̄N

A (s)

∣∣∣∣ > ε

4

)
+ P

(∫ t

0
Λδ(t− s)ῩN (s)ds >

ε

4

)
.

It is not hard to show that for any δ > 0,

lim sup
N→+∞

1

δ
sup
t∈[0,T ]

P
(∣∣∣∣∫ t

0
Λδ(t− s)dM̄N

A (s)

∣∣∣∣ > ε

4

)
= 0 .
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Next we note that for any t ∈ [0, T ],∫ t

0
Λδ(t− s)ῩN (s)ds ≤ λ∗

∫ t

0
Λδ(t− s)ds

≤ λ∗
∫ T

0
Λδ(s)ds .

Since λ̄ is right continuous and bounded by λ∗, this last expression tends to 0 as δ → 0. Consequently,
for δ > 0 small enough,

sup
N

sup
t∈[0,T ]

P
(∫ t

0
Λδ(t− s)ῩN (s)ds >

ε

4

)
= 0 .

It follows that (4.14) holds true with ∆N,2
t,u replaced by ∆N,1

t,u . We have completed the proof of (4.13),
hence of (4.12).

Step 2. IN1 − ĬN1 → 0
Now it remains to show that, as N →∞,

V N := ĪN1 − ĬN1 → 0 in D in probability. (4.15)

We have

V N (t) = N−1

AN (t)∑
i=1

χNi (t), χNi (t) := λi(t− τNi )− λ̄(t− τNi ).

χNi (t) clearly satisfies E
[
χNi (t)

]
= 0 and E

[
χNi (t)χNj (t)|τNi , τNj ] = 0. Thus,

E
[
V N (t)2

]
= N−2E

[
AN (t)∑
i=1

ν(t− τNi )

]
= N−1E

[ ∫ t

0
ν(t− s)dĀN (s)

]
,

where ν(t) := E[(λi(t)− λ̄(t))2] and ν(t) < (λ∗)2 under Assumption 2.1. We easily obtain that for
each t ≥ 0,

V N (t)→ 0 in probability, as N →∞ .

It remains to establish condition (ii) of Lemma 4.3, i.e., that for any T > 0, ε > 0,

lim
δ→0

lim sup
N→∞

1

δ
sup
t∈[0,T ]

P

(
sup
u∈[0,δ]

∣∣V N (t+ u)− V N (t)
∣∣ > ε

)
= 0. (4.16)

We have for t, u ≥ 0,

∣∣V N (t+ u)− V N (t)
∣∣ ≤

∣∣∣∣∣∣N−1

AN (t)∑
i=1

(
λi(t+ u− τNi )− λi(t− τNi )

)∣∣∣∣∣∣
+

∣∣∣∣∣∣N−1

AN (t)∑
i=1

(
λ̄(t+ u− τNi )− λ̄(t− τNi )

)∣∣∣∣∣∣
+

∣∣∣∣∣∣N−1

AN (t+u)∑
i=AN (t)+1

(
λi(t+ u− τNi )− λ̄(t+ u− τNi )

)∣∣∣∣∣∣ .
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The second term has already been treated in Step 1, and the treatment of the third term is the
same as that of the second term in the analogous inequality in Step 1 in (4.14). It remains to treat

the first term, which we denote by ΦN,1
t,u . By Assumption 2.1,

ΦN,1
t,u ≤ N−1

AN (t)∑
i=1

k∑
j=1

|λji (t+ u− τNi )− λji (t− τ
N
i )|1

ξj−1
i ≤t−τNi <t+u−τNi <ξ

j
i

+ λ∗N−1

AN (t)∑
i=1

k∑
j=1

1
t−τNi ≤ξ

j
i<t+u−τNi

≤ ϕT+δ(u)ĀN (t) + λ∗
k∑
j=1

N−1

AN (t)∑
i=1

1
t−τNi ≤ξ

j
i<t+u−τNi

.

The right hand side being nondecreasing in u, we deduce that

sup
0≤u≤δ

ΦN,1
t,u ≤ ϕT+δ(δ)Ā

N (t) + λ∗
k∑
j=1

N−1

AN (t)∑
i=1

1
t−τNi ≤ξ

j
i<t+δ−τNi

.

The first term on the right is smaller that ε almost surely for all N ≥ 1 for all δ such that
ϕT+δ(δ) ≤ ε since ĀN (t) ≤ 1. We need only consider the second term. We have

P

(
λ∗

k∑
j=1

N−1

AN (t)∑
i=1

1
t−τNi ≤ξ

j
i<t+δ−τNi

> ε

)

≤ 1

ε2
E

[(
λ∗

k∑
j=1

N−1

AN (t)∑
i=1

1
t−τNi ≤ξ

j
i<t+δ−τNi

)2]

≤ 2

ε2
E

[(
λ∗

k∑
j=1

N−1

∫ t

0

∫ ∞
0

∫ t+δ−s

t−s
1u≤ΥN (s−)Qj(ds, du, dξ)

)2]

+
2

ε2
E

[(
λ∗

k∑
j=1

N−1

∫ t

0

(
Fj(t+ δ − s)− Fj(t− s)

)
ΥN (s)ds

)2]
, (4.17)

where Qj(ds, du, dξ) is a PRM on R+×R+×R+ with mean measure dsduFj(dξ), and Qj(ds, du, dξ)
is the corresponding compensated PRM. Observe that

E

[(
N−1

∫ t

0

∫ ∞
0

∫ t+δ−s

t−s
1u≤ΥN (s−)Qj(ds, du, dξ)

)2
]

= N−2E
[∫ t

0

(
Fj(t+ δ − s)− Fj(t− s)

)
ΥN (s)ds

]
≤ N−1λ∗

∫ t

0

(
Fj(t+ δ − s)− Fj(t− s)

)
ds,

which tends to 0 as N →∞, for any δ > 0. Moreover,

E

[(
N−1

∫ t

0

(
Fj(t+ δ − s)− Fj(t− s)

)
ΥN (s)ds

)2
]
≤
(
λ∗
∫ t

0

(
Fj(t+ δ − s)− Fj(t− s)

)
ds

)2

≤
(
λ∗
(∫ t+δ

t
Fj(u)du−

∫ δ

0
Fj(u)du

))2

≤ (λ∗δ)2 .



29

We deduce that for any ε > 0,

lim sup
N→∞

1

δ
sup
t∈[0,T ]

P
(

sup
u∈[0,δ]

∣∣ΦN,1
t,u

∣∣ > ε

)
→ 0, as δ → 0. (4.18)

We have proved (4.16). This completes the proof of the lemma. �

From the proof of Lemma 4.6, clearly (ĀN , ĬN1 )⇒ (Ā, Ī1) along a subsequence. It also follows

from Lemma 4.2 and the proof of Lemma 4.6 that ĪN − ĬN1 → Ī0,1 + Ī0,2 in probability in D, as
N →∞. Hence (ĀN , IN )⇒ (Ā, Ī) along the same subsequence as above, where Ī = Ī0,1 + Ī0,2 + Ī1.
It follows that, along that subsequence,∫ ·

0
ῩN (s)ds =

∫ ·
0
S̄N (s)ĪN (s)ds⇒

∫ ·
0
S̄(s)Ī(s)ds in D, (4.19)

and also

ĀN ⇒ Ā =

∫ ·
0
S̄(s)Ī(s)ds in D. (4.20)

Therefore, the limits
(
S̄, Ī

)
satisfy the integral equations (2.14) and (2.15) in Theorem 2.1. Finally,

the existence and uniqueness of a deterministic solution to the integral equations follows from
applying Gronwall’s inequality in a straightforward way, and the whole sequence converges in
probability. This completes the proof of the convergence of

(
S̄N , ĪN

)
→
(
S̄, Ī

)
in D2 in probability.

4.2. Convergence of (ĒN , ĪN , R̄N ). The proof for the convergence of (ĒN , ĪN , R̄N ) will be similar
to the previous step.

For the initially exposed and infectious individuals, let

ĒN0 (t) := N−1

EN (0)∑
j=1

1ζ0j>t
, ĪN0,1(t) := N−1

IN (0)∑
k=1

1
η0,Ik >t

, ĪN0,2(t) := N−1

EN (0)∑
j=1

1ζ0j+η0j>t
,

R̄N0,1(t) := N−1

IN (0)∑
k=1

1
η0,Ik ≤t

, R̄N0,2(t) := N−1

EN (0)∑
j=1

1ζ0j+η0j≤t
.

By the FLLN for empirical processes, we obtain the following lemma.

Lemma 4.7. Under Assumption 2.3, as N →∞,(
ĒN0 , Ī

N
0,1, Ī

N
0,2, R̄

N
0,1, R̄

N
0,2

)
→
(
Ē0, Ī0,1, Ī0,2, R̄0,1, R̄0,2

)
in D5 in probability, (4.21)

where

Ē0(t) = Ē(0)Gc0(t), Ī0,1(t) = Ī(0)F c0,I(t), Ī0,2(t) = Ē(0)Ψ0(t),

R̄0,1(t) = I(0)F0,I(t), R̄0,2(t) = Ē(0)Φ0(t).

Proof. Recall the definition of
(
ĨN0,1, Ĩ

N
0,2) in (4.7). Similarly, define

(
ẼN0 , Ĩ

N
0,1, Ĩ

N
0,2, R̃

N
0,1, R̃

N
0,2

)
by re-

placing EN (0) and IN (0) withNĒ(0) andNĪ(0), respectively, in the definitions of
(
ĒN0 , Ī

N
0,1, Ī

N
0,2, R̄

N
0,1,

R̄N0,2
)
. By the i.i.d. assumption of {λ0,I

k }k≥1 and the definition of η0,I
k from λ0,I

k in (2.4), we obtain
that, as N →∞, (

ĨN0,1, Ĩ
N
0,1, R̃

N
0,1

)
→
(
Ī0,1, Ī0,1, R̄0,1

)
in D3 in probability.

Similarly, by the i.i.d. assumption of {λ0
j}j≥1 and the definition of (ζ0

j , η
0
j ) from λ0

j in (2.3), we
obtain that, as N →∞,(

ẼN0 , Ĩ
N
0,2, R̃

N
0,2

)
→
(
Ē0, Ī0,2, R̄0,2

)
in D3 in probability.
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Then it remains to show that, as N →∞,(
ẼN0 − ĒN0 , ĨN0,1 − ĪN0,1, ĨN0,2 − ĪN0,2, R̃N0,1 − R̄N0,1, R̃N0,2 − R̄N0,2

)
→ 0 in D5 in probability.

Similarly as in the proof of Lemma 4.2, we have

ĨN0,2(t)− ĪN0,2(t) = sign(Ē(0)− ĒN (0))N−1

N(ĒN (0)∨Ē(0))∑
j=N(ĒN (0)∧Ē(0))

1ζ0j+η0j>t
,

and

E

[
N−1

N(ĒN (0)∨Ē(0))∑
j=N(ĒN (0)∧Ē(0))

1ζ0j+η0j>t

∣∣∣∣∣FN0
]
≤ Ψ0(t)|Ē(0)− ĒN (0)| → 0 as N →∞.

The other convergences follow by a similar argument. This completes the proof. �

For the newly infected individuals, let

ĒN1 (t) := N−1

AN (t)∑
i=1

1τNi +ζi>t
, ĪN1 (t) := N−1

AN (t)∑
i=1

1τNi +ζi≤t<τNi +ζi+ηi
,

R̄N1 (t) := N−1

AN (t)∑
i=1

1τNi +ζi+ηi≤t .

Lemma 4.8. Under Assumptions 2.1 , 2.3 and 2.4, as N →∞,(
ĒN1 , Ī

N
1 , R̄

N
1

)
→
(
Ē1, Ī1, R̄1

)
in D3 in probability, (4.22)

where

Ē1(t) :=

∫ t

0
Gc(t− s)S̄(s)Ī(s)ds , Ī1(t) :=

∫ t

0
Ψ(t− s)S̄(s)Ī(s)ds ,

R̄1(t) :=

∫ t

0
Φ(t− s)S̄(s)Ī(s)ds .

Proof. We first note that we have the two identities ĀN (t) = ĒN1 (t) + ĪN1 (t) + R̄N1 (t) and Ā(t) =
Ē1(t) + Ī1(t) + R̄1(t), which reflect the two facts:

1 = 1ζi≤t−τNi <ζi+ηi
+ 1ζi>t−τNi

+ 1ζi+ηi≤t−τNi
,

1 = Ψ(t− s) +Gc(t− s) + Φ(t− s) .

Consequently, since we already know that ĀN (t)→ Ā(t) in probability locally uniformly in t, we
only need to establish the two convergences ĒN1 → Ē1 and R̄N1 → R̄1, from which the convergence
ĪN1 → Ī1 will follow as a corollary.

We shall apply the same argument as in Lemma 4.6, but now we know that ĀN → Ā in probability.
Define

ĔN1 (t) := N−1

AN (t)∑
i=1

Gc(t− τNi ) =

∫ t

0
Gc(t− s)dĀN (s) ,

R̆N1 (t) := N−1

AN (t)∑
i=1

Φ(t− τNi ) =

∫ t

0
Φ(t− s)dĀN (s) .

Let us establish that ĒN1 → Ē1. We shall then discuss why the same arguments work in the case of
R̄N1 .
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Step 1 It follows from Lemma 4.4 that for all t > 0, ĔN1 (t)→ Ē1(t) in probability. In order to
establish that the convergence is in fact locally uniform in t, according to Lemma 4.5, it remains to
prove that condition (ii) in Lemma 4.3 is satisfied, namely that

lim
δ→0

lim sup
N→∞

1

δ
sup
t∈[0,T ]

P

(
sup
u∈[0,δ]

∣∣ĔN1 (t+ u)− ĔN1 (t)
∣∣ > ε

)
= 0. (4.23)

We have

ĔN1 (t+ u)− ĔN1 (t) =

∫ t

0
[Gc(t+ u− s)−Gc(t− s)]dĀN (s) +

∫ t+u

t
Gc(t+ u− s)dĀN (s) ,

sup
0<u≤δ

|ĔN1 (t+ u)− ĔN1 (t)| ≤
∫ t

0
[Gc(t− s)−Gc(t+ δ − s)]dĀN (s) + ĀN (t+ δ)− ĀN (t) .

The second term in the right hand side satisfies

ĀN (t+ δ)− ĀN (t) ≤ λ∗δ + M̄N
A (t+ δ)− M̄N

A (t),

and since M̄N
A tends to 0 locally uniformly in t,

lim sup
N

sup
t∈[0,T ]

1

δ
P
(
ĀN (t+ δ)− ĀN (t) > ε

)
= 0,

as soon as δ < ε/λ∗. Moreover

P
(∫ t

0
[Gc(t− s)−Gc(t+ δ − s)]dĀN (s) > ε

)
≤ P

(∣∣∣∣∫ t

0
[Gc(t− s)−Gc(t+ δ − s)]dM̄N

A (s)

∣∣∣∣ > ε/2

)
+ P

(∫ t

0
[Gc(t− s)−Gc(t+ δ − s)]ῩN (s)ds > ε/2

)
.

It is not hard to show that for any δ > 0,

lim sup
N

1

δ
sup
t∈[0,T ]

P
(∣∣∣∣∫ t

0
[Gc(t− s)−Gc(t+ δ − s)]dM̄N

A (s)

∣∣∣∣ > ε/2

)
= 0 .

Next we note that for any t ∈ [0, T ],∫ t

0
[Gc(t− s)−Gc(t+ δ − s)]ῩN (s)ds ≤ λ∗

∫ t

0
[Gc(s)−Gc(s+ δ)]ds

≤ λ∗
∫ T

0
[Gc(s)−Gc(s+ δ)]ds .

Since Gc is right continuous and bounded by 1, this last expression tends to 0 as δ → 0. Consequently,
for δ > 0 small enough,

sup
N

sup
t∈[0,T ]

P
(∫ t

0
[Gc(t− s)−Gc(t+ δ − s)]ῩN (s)ds > ε/2

)
= 0 .

Thus, (4.23) has been established, hence ĔN1 (t) → Ē1(t) in probability locally uniformly in t. It

remains to consider ĒN1 − ĔN1 , which we do in the next step.
Step 2 Consider

WN (t) := ĒN1 (t)− ĔN1 (t) =
1

N

AN (t)∑
i=1

(
1ζi>t−τNi

−Gc(t− τNi )
)
.

It is not hard to see that if i 6= j,

E
[(
1ζi>t−τNi

−Gc(t− τNi )
)(
1ζj>t−τNj

−Gc(t− τNj )
)∣∣∣τNi , τNj ] = 0 .
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Consequently,

E
[ (
WN (t)

)2 ]
=

1

N2
E

[
AN (t)∑
i=1

Gc(t− τNi )(1−Gc(t− τNi ))

]

=
1

N
E
[ ∫ t

0
Gc(t− s)(1−Gc(t− s))dĀN (s)

]
→ 0, as N →∞ .

It remains to show that condition (ii) of Lemma 4.3 holds, namely that

lim
δ→0

lim sup
N→∞

1

δ
sup
t∈[0,T ]

P

(
sup
u∈[0,δ]

∣∣WN (t+ u)−WN (t)
∣∣ > ε

)
= 0. (4.24)

We have

|WN (t+ u)−WN (t)| ≤ 1

N

AN (t)∑
i=1

(
1ζi>t−τNi

− 1ζi>t+u−τNi

)
+

1

N

AN (t)∑
i=1

(
Gc(t− τNi )−Gc(t+ u− τNi )

)
+

∣∣∣∣∣∣ 1

N

AN (t+u)∑
i=AN (t)+1

(
1ζi>t+u−τNi

−Gc(t+ u− τNi )
)∣∣∣∣∣∣ .

The second term has already been treated in Step 1, as well as ĀN (t+ δ)− ĀN (t), which bounds
the third term. It remains to treat the first term. Let

∆N
1 (t, u) : =

1

N

AN (t)∑
i=1

1t−τNi <ζi≤t+u−τNi
,

sup
u≤δ

∆N
1 (t, u) =

1

N

AN (t)∑
i=1

1t−τNi <ζi≤t+δ−τNi
,

P
(

sup
u≤δ

∆N
1 (t, u) > ε

)
≤ 1

ε2
E

[(
1

N

AN (t)∑
i=1

1t−τNi <ζi≤t+δ−τNi

)2]
.

Let P (ds, du, dζ) be a PRM on R+×R+×R+ with mean measure dsduG(dζ), and P̄ the associated
compensated measure. We have

E

[(
1

N

AN (t)∑
i=1

1t−τNi <ζi≤t+δ−τNi

)2]
= E

[(
1

N

∫ t

0

∫ ∞
0

∫ t+δ−s

t−s
1u≤ΥN (s−)P (ds, du, dζ)

)2
]

≤ 2E

[(
1

N

∫ t

0

∫ ∞
0

∫ t+δ−s

t−s
1u≤ΥN (s−)P̄ (ds, du, dζ)

)2
]

+ 2E

[(
1

N

∫ t

0
(Gc(t− s)−Gc(t+ δ − s))ΥN (s)ds

)2
]
.

The first term is of order N−1, and tends to 0 as N →∞. The second term is bounded by 2(λ∗)2

times (∫ t

0
(G(t+ δ − s)−G(t− s))ds

)2

≤
(∫ t+δ

t
G(u)du−

∫ δ

0
G(u)du

)2

≤ δ2 .
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Consequently

lim sup
N

1

δ
sup
t≤T

P

(
sup
u≤δ

∆N
1 (t, u) > ε

)
→ 0, as δ → 0 .

Step 3. The case of R̄N1 . Essentially the same argument will work in the case of R̄N1 (Gc was
decreasing, Φ is increasing). The details are left to the reader. �

Remark 4.1. A proof of Lemma 4.8 can be found in [21]. There the authors use the fact that the
integral of Gc(t − s) (resp. Φ(t − s)) can be integrated by parts, since Gc (resp. Φ) is decreasing
(resp. increasing), thus simplifying step 1 of the proof. However, the present version of step 1, which
follows the same argument as Lemma 4.6, allows to shorten step 2.
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