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We study ergodic properties of Markovian multiclass many-server queues which are uniform over scheduling
policies, as well as the size of the system. The system is heavily loaded in the Halfin–Whitt regime, and
the scheduling policies are work-conserving and preemptive. We provide a unified approach via a Lyapunov
function method that establishes Foster-Lyapunov equations for both the limiting diffusion and the prelimit
diffusion-scaled queueing processes simultaneously.

We first study the limiting controlled diffusion, and show that if the spare capacity (safety staffing)
parameter is positive, the diffusion is exponentially ergodic uniformly over all stationary Markov controls,
and the invariant probability measures have uniform exponential tails. This result is sharp, since when there
is no abandonment and the spare capacity parameter is negative, then the controlled diffusion is transient
under any Markov control. In addition, we show that if all the abandonment rates are positive, the invariant
probability measures have sub-Gaussian tails, regardless whether the spare capacity parameter is positive
or negative.

Using the above results, we proceed to establish the corresponding ergodic properties for the diffusion-
scaled queueing processes. In addition to providing a simpler proof of the results in Gamarnik and Stolyar
[Queueing Syst (2012) 71:25–51], we extend these results to the multiclass models with renewal arrival pro-
cesses, albeit under the assumption that the mean residual life functions are bounded. For the Markovian
model with Poisson arrivals, we obtain stronger results and show that the convergence to the stationary dis-
tribution is at an exponential rate uniformly over all work-conserving stationary Markov scheduling policies.
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1. Introduction. Multiclass many-server queues in the Halfin–Whitt (H–W) regime have
been extensively studied as a useful model for large-scale service systems. In this paper we focus
on ergodic properties of such multiclass queueing models. The ergodic properties of these systems
have been the subject of great interest in applied probability (for a discussion see [20, 33, 34, 35,
32, 16]). It is important to understand if a queueing system is stable and the rate at which a
performance measure converges to the steady state under different scheduling or routing policies.
For the multiclass “V” network, Gamarnik and Stolyar [20] prove the tightness of the stationary
distributions of the diffusion-scaled state processes under any work conserving scheduling policy,
provided that there is

√
n safety staffing (n is the scaling parameter). They show that the diffusion-

scaled queueing processes are ergodic under all work conserving scheduling policies, and have
exhibited exponential tail bounds for the stationary distribution. The proofs of these significant
results utilize some natural test functions based on the total workload, but there is no uniform
Foster–Lyapunov equation to exhibit the rate of convergence to the stationary distribution. For
the limiting diffusion of the “V” network, when the control equals (0, . . . ,0,1)T, which arises as the
limit of a static priority policy, the ergodic properties established in Dieker and Gao [17] for a class
of piecewise Ornstein–Uhlenbeck (O–U) processes arising in many-server queues with phase-type
service times can be applied. Exponential ergodicity is also established for the limiting diffusion
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(as a special case of a more general class of SDEs) under any constant control in Arapostathis et
al. [9].

The following important open questions are addressed in this paper:
(1) Is the limiting controlled diffusion exponentially ergodic under all stationary Markov con-

trols? How different are the tail asymptotics of the invariant measures with or without abandon-
ment?

(2) Is there a unified approach based on Foster–Lyapunov theory that can be used to establish
uniform exponential ergodicity for both the limiting diffusion and the diffusion-scaled queueing
processes?

We provide affirmative answers to all these questions. We consider multiclass models with
(delayed) renewal arrivals, class-dependent exponential service times, and class-dependent expo-
nential patience times. We assume that the system is operating under work-conserving and pre-
emptive scheduling policies. It is well known that the diffusion-scaled queueing processes under
such scheduling policies converge weakly to a limiting diffusion with a drift given in (2.2) and a
diagonal constant covariance matrix (see [10, 26]).

We start with the limiting controlled diffusion. When the controls are constant, the limiting
diffusion has a piecewise linear drift and belongs to a class of piecewise O–U processes. Applying
[17, Theorem 3] to our model with positive abandonment rate, one can deduce that the limiting
diffusion is exponentially ergodic under a specific constant control corresponding to a static priority
scheduling policy (see Remark 2.1). On the other hand, it is shown in [9, Theorem 3.5] that the
limiting diffusion is exponentially ergodic under any constant control (see Remark 2.2). The proofs
of these results rely on the construction of a common quadratic-type Lyapunov function for the
piecewise linear equations. However, this methodology only works for constant controls, and leaves
the question of stability over Markov controls open.

We exploit Lyapunov functions that are constructed in an intricate manner in order to capture
both the total workload on the positive half-space and the idleness on the negative half-space.
Such functions are of course quite natural, and have been used as test functions in [20] to derive
tail bounds. However, for the diffusion, the total workload and idleness need to be treated with
the proper “weights” or “tilting”, interacting with a “smoothing” cut-off function which needs to
be deployed. Such delicate care is not only needed for the drift as usual, but more importantly,
for the second-order derivatives. For multiclass queueing models in the Halfin–Whitt regime, such
constructions appear to be necessary in order to deal with both the workload and idleness processes
simultaneously. This constitutes our first main methodology contribution in this paper.

We present Foster–Lyapunov equations that are uniform over all Markov controls, and show that
(a) if the spare capacity parameter (safety staffing) is positive, then the limiting diffusion is uni-

formly exponentially ergodic, and the corresponding invariant probability measures have uniform
exponential tails;

(b) when the abandonment rates are all positive, regardless the spare capacity parameter being
positive or negative, in addition to uniform exponential ergodicity, we show that the invariant
probability measures have sub-Gaussian tails.
These answer the questions in (1) above.

We then show that the Foster–Lyapunov equations for the limiting diffusion offer a very natural
tool with which we establish uniform ergodic properties for the diffusion-scaled queueing processes.
This answers the question in (2). In this manner we provide a unified approach to the study of the
limiting diffusion and the corresponding diffusion-scaled processes.

In the case of Poisson arrivals, by employing the same Lyapunov functions used for the limiting
diffusion, we show that the corresponding results in (a) above hold for the diffusion-scaled queueing
processes (see also Section 2.3). Sub-Gaussian tails are not possible for the invariant distribution
of the diffusion-scaled queueing processes, and one can only hope for tails that decay faster than
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any exponential. On the other hand, when the abandonment rates are all positive, we improve
somewhat on the results in [20], although a conjecture stated in that paper still remains open.
Even though in the cases of Poisson and renewal arrivals the limiting diffusions agree, with the
only differences lying in the covariance functions, for the analysis of the prelimit processes, we need
to augment the state process in the renewal case.

With renewal arrivals, we consider the Markov process composed of the diffusion-scaled queueing
processes and the interarrival age processes of the renewal arrivals. The Lyapunov functions used
for the limiting diffusion are adapted to construct appropriate Lyapunov functions for the joint
processes. On the other hand, the hazard rate functions and mean residual lifetime functions of
the interarrival times must be also used in a proper manner to take into account the age processes
as suggested in [28]. We prove the following results under the assumption that the residual lifetime
function is bounded: (a′) if the spare capacity parameter (safety staffing) is positive, we prove a
Foster–Lyapunov equation, which shows that the joint Markov process is positive Harris recurrent
under any work-conserving stationary Markov scheduling policy; (b′) if the abandonment rates are
all positive, we obtain a Foster–Lyapunov equation which shows that the first absolute moments
of the invariant distribution are uniformly bounded. If we impose the additional assumption that
the hazard rate function is bounded, we show that the marginal of the stationary distribution
corresponding to the queueing state has exponential moments.

This work also relates to the vast literature on the validity of diffusion approximations for queues
in heavy traffic. We focus on the literature of many-server queueing models in the H–W regime, and
refer the readers to [21, 14, 27, 23, 37, 38, 13] and references therein for results in the conventional
(single-server) heavy-traffic regime. For the single-class GI/M/n queues, Halfin and Whitt [25]
established the interchange of limits, and they used a bounding argument via single-server queues
to show the tightness of the steady-state distributions of the diffusion-scaled processes. Dai et al.
[15] studied the validity of the multidimensional diffusion approximations for GI/Ph/n+M queues
with phase-type service times. Aghajani and Ramanan [1] proved the convergence of the stationary
distributions of suitably scaled infinite-dimensional measure-valued processes for the GI/GI/N
queues in the H–W regime, and they also studied the ergodic properties of the SPDE limit of the
same model in [2]. We also refer the readers to the steady state analysis of many-server queues
in [18, 19, 11, 12]. All these studies are on the single-class many-server queues. For multiclass
many-server queues in the H–W regime this topic still remains wide open. The only known result
is for the Markovian ‘N’ network [33] where Stolyar proves the interchange of limits for the model
without abandonment under a particular static priority policy.

Uniform exponential ergodicity can substantially simplify the study of ergodic control problems,
since there is a rich body of existing theory that can be applied [4, Chapter 3]. On the other hand,
if the system is not endowed with such blanket stability properties, and the running cost functional
is not near-monotone, then the analysis of these problems can be quite involved. In the study of
ergodic control of the “V” network in [3], a key structural property of the system dynamics had
to be identified due to the lack of uniform stability and near-monotonicity of the running cost. It
was assumed that all the abandonment rates are strictly positive but no positive safety staffing
requirement was imposed. The results in this paper enable the study of ergodic control problems
for the “V” network when there is no abandonment but there is positive safety staffing. Uniform
stability properties are yet to be explored for multiclass multi-pool networks. Without such blanket
stability properties, ergodic control problems for multiclass multi-pool networks have been recently
studied in [6, 7, 8], under the hypothesis that at least one abandonment rate is positive.

1.1. Notation. We summarize some of the notation used throughout the paper. We use Rm
(and Rm+ ),m≥ 1, to denote real-valuedm-dimensional (nonnegative) vectors, and write R form= 1.
For x, y ∈ R, we let x ∨ y = max{x, y}, x ∧ y = min{x, y}, x+ = max{x,0} and x− = max{−x,0}.
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For a set A ⊆ Rm, we use Ac, ∂A, and 1A to denote the complement, the boundary, and the
indicator function of A, respectively. A ball of radius r > 0 in Rm around a point x is denoted by
Br(x), or simply as Br if x = 0. We also let B ≡ B1. The Euclidean norm on Rm is denoted by
| · |, and 〈· , ·〉 stands for the inner product. Also for x∈Rm, we let ‖x‖1 :=

∑
i|xi|, xmax := maxi xi,

and xmin := mini xi, and x± :=
(
x±1 , . . . , x

±
m

)
. For a finite signed measure ν on Rm, and a Borel

measurable f : Rm→ [1,∞), we define the f -norm of ν by

‖ν‖f := sup
g∈B(Rm), |g|≤f

∣∣∣∣∫
Rm
g(x)ν(dx)

∣∣∣∣ , (1.1)

where B(Rm) denotes the class of Borel measurable functions on Rm. Observe that ‖ · ‖1 = ‖ · ‖TV,
the latter denoting the total variation norm.

2. Uniform exponential ergodicity of the diffusion limit. In Section 2.1 we describe
the limiting diffusion, and proceed with a summary of the results and the technical approach in
Sections 2.2 and 2.3, respectively. Some important definitions are in Section 2.4, followed by the
main technical results in Sections 2.5 and 2.6.

2.1. The limiting controlled diffusion. We consider a controlled m-dimensional stochastic
differential equation (SDE) of the form

dXt = b(Xt,Ut)dt+σ(X(t))dWt , X(0) = x0 ∈Rm , (2.1)

with b : Rm→Rm given by

b(x,u) = `−M(x−〈e,x〉+u)−〈e,x〉+Γu =

{
`−
(
M + (Γ −M)ueT

)
x , 〈e,x〉> 0 ,

`−Mx, 〈e,x〉 ≤ 0 .
(2.2)

Here, `∈Rm, u∈Rm+ satisfies 〈e,u〉= 1 with e= (1, . . . ,1)T ∈Rm, M = diag(µ1, . . . , µm) is a positive
diagonal matrix, and Γ = diag(γ1, . . . , γm) with γi ∈ R+, i ∈ I := {1, . . . ,m}. The process Wt is
a standard m-dimensional Brownian motion, and the covariance function σ : Rm → Rm×m is a
positive diagonal matrix. Such a process arises as a limit of the suitably scaled queueing processes
of multiclass Markovian many-server queues in the H–W regime [10, 26].

In these models, if the scheduling policy is based on a static priority assignment on the queues,
then the vector u in (2.1) corresponds to a constant control which is an extreme point of the convex
set

∆ := {u∈Rm : u≥ 0 , 〈e,u〉= 1} .

Remark 2.1. As mentioned earlier, ergodicity and exponential ergodicity of a class of piecewise
O–U processes as in (2.1) have been addressed in [17]. In this model, they assume that M is a
nonsingular M-matrix such that the vector eTM has nonnegative components, Γ = αI, and `=−βu
for positive constants α, β, and a constant vector u ∈∆. Applying their results to the multiclass
M/M/n+M model with abandonment, exponential ergodicity of the limiting diffusion under the
specific constant control ū= (0, . . . ,0,1)T, corresponding to class m being given the least priority,
is established in [17, Theorem 3]. On the other hand, for the multiclass M/M/n model without
abandonment, that is, Γ = 0, positive recurrence is established for the limiting diffusion with the
control ū but the rate of convergence is not identified [17, Theorem 2].

Remark 2.2. The model in (2.1) with M a nonsingular M-matrix, and for constant control Ut
has also been studied extensively in [9] (as a special class of the Lévy–driven SDEs studied there).
It is shown in that paper that when Γ = 0, the quantity

% := −
〈
e,M−1`

〉
(2.3)
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plays a fundamental role in the characterization of stability. Specifically, it is shown in [9, Theo-
rem 3.2] that if % > 0, then Xt is positive recurrent under any constant control Ut, and if % < 0
(% = 0), then it is transient (cannot be positive recurrent) under any stationary Markov control
satisfying Γv(x) = 0 a.e. [9, Theorem 3.3]. Another interesting property of % which we find in [9,
Corollary 5.1] is that, provided Γ = 0, and the diffusion under some stationary Markov control v
is positive recurrent with invariant probability measure πv, then necessarily

% =

∫
Rm
〈e,x〉− πv(dx) . (2.4)

This can be interpreted as follows: the ‘average idleness’ in the steady state always equals the spare
capacity parameter. These results of course apply to the problem at hand since M is a diagonal
matrix. In addition, the rate of convergence is shown to be exponential if either Γu= 0 or Γu 6= 0
for any constant control u∈∆ [9, Corollary 4.2].

Let Usm denote the class of Borel measurable maps v : Rm→∆. Every element v of Usm is identified
with the stationary Markov controls Ut = v(Xt). Under any such control, it is well known that
(2.1) has a unique strong solution which is a strong Feller process [24]. Let P v

t (x,dy) denote its
transition probability.

The diffusion in (2.1) is called uniformly stable (in the sense of [4, Definition 3.3.3]), if under any
v ∈Usm, the process Xt is positive recurrent and the collection of invariant probability measures is
tight. We say that (2.1) is uniformly exponentially ergodic, if it is uniformly stable and there exist
positive constants C and γ and a function V : Rm→ [1,∞) such that∥∥P v

t (x, · )−πv(·)
∥∥
TV
≤ CV(x)e−γt ∀(x, t)∈Rm×R+ ,

and all v ∈Usm.

2.2. Brief summary of the results. In Theorem 2.1 we show that if % > 0, then (2.1) is
uniformly exponentially ergodic. Therefore, when Γ = 0, (2.4) holds over all stationary Markov
controls v ∈ Usm. In addition, the invariant probability measures have uniform exponential tails,
and by that, we mean that there exists some ε > 0, such that supv∈Usm

∫
Rm eε|x| πv(dx)<∞. On the

other hand, if Γ > 0, then the associated invariant probability measures have sub-Gaussian tails,
that is, supv∈Usm

∫
Rm eε|x|

2
π(dx)<∞ for some ε > 0 (see Theorem 2.2).

In Section 3 we address the n-server networks. We first present the results for the models with
(delayed) renewal arrival processes in Section 3.2. The counterpart of Theorem 2.1 here is given in
Theorem 3.1, and this is established for renewal arrivals (this should be compared to [20, Theo-
rem 2]). In this theorem, the hazard rate functions are assumed bounded. This is a rather strong
assumption, but the result, which asserts uniform exponential tails for the invariant distributions
under work-conserving stationary Markov policies is equally strong. With strictly positive aban-
donment parameters, and with the hazard rate function only locally bounded, we establish uniform
stability of the queueing system under all work-conserving stationary Markov policies in Theo-
rem 3.2. With possibly zero abandonment in all classes, and with positive

√
n safety staffing, we

show in Theorem 3.3, that the combined renewal age and queueing state process is positive Har-
ris recurrent. In addition, if the limit of the safety staffing is positive, the invariant probability
distributions are tight. In this result, the hazard rate function is assumed only locally bounded.

Networks with Poisson arrivals are studied in Section 3.3. We show in Corollary 3.1 that positive
spare capacity implies exponential ergodicity. However, as noted in [20] the invariant distribution
of an n-server network cannot have a sub-Gaussian tail. This property is recovered only at the
weak limit as n→∞, and it is worthwhile comparing [20, Theorem 4] with Theorem 2.2, which
in addition shows uniform exponential ergodicity. When all abandonment rates are positive, we
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can only exhibit a stronger Foster–Lyapunov equation (see Theorem 3.4) which implies that eδ|x|

is uniformly integrable over the invariant probability distributions for any δ > 0.
In addition to these results, we investigate the properties in Theorem 2 (i) and Theorem 4 (i) of

[20]. We provide proofs of the analogous results for the limiting diffusion in Lemma 2.2 and The-
orem 2.3, respectively, using Foster–Lyapunov techniques. The counterpart of Lemma 2.2 for the
n-system is given in Theorem 3.5 and is an improvement over the statement in [20, Theorem 2 (i)].
However, we have not been able to prove or disprove the related conjecture in [20, p. 33].

2.3. Summary of the technical approach. The first important step in the study of this
problem is the construction of appropriate Lyapunov functions. We use two building blocks for
these functions: one represents the total workload, and the other is a measure of idleness. The
scaling of these in (2.9) plays a crucial role. Two scaling parameters are used: θ to balance the
mix of workload and idleness, and ε to handle the terms arising from the second derivatives in the
extended generator of the controlled diffusion. Equally important are the cones in Definition 2.1.
Note that although the drift of the diffusion is piecewise-linear when the control is constant, it
becomes quite complicated under a (stationary) Markov control. Careful analysis of the drift of the
diffusion in (2.2) on these cones enables us to obtain the drift inequalities and Foster–Lyapunov
equations in Lemma 2.1 and Theorems 2.1 and 2.2. The more specialized results in Section 2.6
involve Lyapunov functions which are sums of two exponentials.

The relation between the prelimit dynamics and the limiting diffusion can be described as follows.
For a model with Poisson arrivals, the process {X̂n(t)}t≥0 describing the (diffusion-scaled) total
number of jobs in the system is a controlled Markov process with generator (see (3.12) and (3.37))

Ân
z f(x̂) :=

∑
i∈I

λni
(
f(x̂+n−1/2ei)− f(x̂)

)
+
∑
i∈I

(
µni zi + γni qi(x̂, z)

)(
f(x̂−n−1/2ei)− f(x̂)

)
.

Here, the vector z = (z1, . . . , zm)∈Zm+ is the control parameter, with zi denoting the number of jobs
of class i in service, {λni }i∈I , {µni }i∈I , and {γni }i∈I are the arrival, service rates, and abandonment
rates, respectively, and q = (q1, . . . , qm) is the vector of queue sizes. Using the diffusion-scaled
variables ẑn and q̂n defined in (3.7) as

ẑni :=
1√
n

(
zi−

λni
µni

)
− %

n

m
, and q̂ni :=

qi(x, z)√
n

,

we obtain

Ân
z f(x̂) =

∑
i∈I

λni
n

f(x̂+n−1/2ei)− 2f(x̂) + f(x̂−n−1/2ei)

n−1

+
∑
i∈I

(
µni

%n

m
+µni ẑ

n
i + γni q̂

n
i

)f(x̂−n−1/2ei)− f(x̂)

n−1/2
.

(2.5)

As shown in (3.32), for any work-conserving job allocation z ∈ Zm+ , there exists a vector u ∈ ∆
such that ẑn = x̂− 〈e, x̂〉+u, and q̂n = 〈e, x̂〉+u. Using these identities in (2.5), and letting n→∞,
we obtain the generator of the controlled diffusion in (2.1) (see also Remark 2.3). There is some
difficulty though with translating the Foster–Lyapunov equation for the diffusion into an analogous
equation for the operator Ân

z . This is because, whereas ẑn is of order
√
n, the queue sizes q̂n are

not bounded. We circumvent this problem by establishing drift inequalities in Lemma 2.1 for the
truncated drift given in (2.14). This facilitates using the same Lyapunov function for the stability
analysis of the diffusion and the prelimit, and consequently, we have a unified approach to the
problem.

When studying the diffusion-scaled model with renewal arrivals, the Lyapunov function has to
be augmented to account for the age processes (see (3.8)). The analysis is more intricate in this
case, and deriving the Foster–Lyapunov equations in Theorem 3.1 requires extra care.



A. Arapostathis, H. Hmedi and G. Pang: Uniform exponential ergodicity of multiclass many-server queues 7

Remark 2.3. Note that if we let ζ = %
m
e+M−1`, with % as in (2.3), then a mere translation

of the origin of the form X̃t =Xt− ζ results in a diffusion of the form (2.1) with the constant ` in
the drift taking the form `=− %

m
Me. Therefore, without loss of generality, we assume throughout

the paper that the drift in (2.2) takes the form

b(x,u) = − %

m
Me−M(x−〈e,x〉+u)−〈e,x〉+Γu . (2.6)

For f ∈ C2(Rm) and u∈∆, we define a(x) =
(
aij(x)

)
1≤i,j≤m := σ(x)σ(x)T, and

Luf(x) =
1

2
trace

(
a(x)∇2f(x)

)
+
〈
b(x,u),∇f(x)

〉
, (2.7)

with ∇2f denoting the Hessian of f .

2.4. Preliminaries. We start with two definitions.
Definition 2.1. For δ ∈ [0,1], we define the following cones

K+
δ :=

{
x∈Rm : 〈e,x〉 ≥ δ‖x‖1

}
,

K−δ :=
{
x∈Rm : 〈e,x〉 ≤−δ‖x‖1

}
.

Note that K+
0 (K−0 ) is the nonnegative (nonpositive) canonical half-space, and K+

1 (K−1 ) is the
nonnegative (nonpositive) closed orthant. Also we have the following identities:

〈e,x+〉 =
1± δ

2
‖x‖1 , 〈e,x−〉 =

1∓ δ
2
‖x‖1 for x∈ ∂K±δ , δ ∈ [0,1] . (2.8)

We fix some convex function ψ ∈ C2(R) with the property that ψ(t) is constant for t≤−1, and
ψ(t) = t for t≥ 0. This is defined by

ψ(t) :=


− 1

2
, t≤−1 ,

(t+ 1)3− 1
2
(t+ 1)4− 1

2
, t∈ [−1,0] ,

t , t≥ 0 .

For ε > 0 we define
ψε(t) := ψ(εt) ,

Thus ψε(t) = εt for t≥ 0. A simple calculation also shows that ψ′′ε (t)≤ 3
2
ε2.

Definition 2.2. We let βi := γi
µi

for i∈ I. With θ and ε positive constants, we define

Ψε(x) :=
∑
i∈I

ψε(xi)

µi
, Ψ(x) :=

∑
i∈I

ψ(xi)

µi
,

and Ψ∗ε,θ(x) :=εθΨ(−x) + Ψε(x) .

(2.9)

The function Ψ plays a fundamental role in our analysis. The quantity Ψ(x+) represents of course
the total workload, while Ψ(x−) is a measure of idleness. These functions, without the smooth
cutoff part, are also used in [20] as test functions to estimate the tails of the invariant distribution
of the prelimit diffusion-scaled processes.

The function Ψ∗ε,θ “follows” the norm ‖ · ‖1, in the sense that

ε 1∧θ
µmax
‖x‖1− m

2
≤ Ψ∗ε,θ(x) ≤ ε 1∨θ

µmin
‖x‖1 . (2.10)
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We also have ψ′(−1/2) = 1/2, from which we obtain∑
i∈I

ψ′ε(xi)xi ≥ ε‖x+‖1−
m

2
, and −

∑
i∈I

ψ′(−xi)xi ≥ ‖x−‖1−
m

2
. (2.11)

Note also that
− ε
∑
i∈I

ψ′(−xi)xi ≤ ε〈e,x〉 ≤
∑
i∈I

ψ′ε(xi)xi . (2.12)

Using the parameter βi in Definition 2.2 and (2.6), we write the following identities, which we
use frequently in the rest of the paper.〈

∇Ψε(x), b(x,u)
〉

= − %

m

∑
i∈I

ψ′ε(xi)−
∑
i∈I

ψ′ε(xi)xi + 〈e,x〉+
∑
i∈I

ψ′ε(xi)(1−βi)+ui

−〈e,x〉+
∑
i∈I

ψ′ε(xi)(βi− 1)+ui ,
(2.13a)

〈
∇Ψ(−x), b(x,u)

〉
=

%

m

∑
i∈I

ψ′(−xi) +
∑
i∈I

ψ′(−xi)xi−〈e,x〉+
∑
i∈I

ψ′(−xi)(1−βi)+ui

+ 〈e,x〉+
∑
i∈I

ψ′(−xi)(βi− 1)+ui .
(2.13b)

2.5. Main results on uniform exponential ergodicity. The following lemma presents
some important drift inequalities which are used frequently throughout the paper. Recall the
definitions in (2.9). In order to apply the drift inequalities for the diffusion to the prelimit in
Section 3, we often need to truncate the diffusion-scaled queueing processes. To prepare for this,
we present a more general version of these inequalities than what is needed in this section.

For a constant c∈ [1,∞] we define bc(x,u) :=
(
b1
c(x,u), . . . , bmc (x,u)

)T
, with

bic(x,u) := −%µi
m
−µi

(
xi−〈e,x〉+ui

)
− γi〈e,x〉+ui 1{xi≤c} . (2.14)

Lemma 2.1. Assume %> 0, and let θ be a positive constant satisfying

θ(βmax− 1)+ ≤ 1 . (2.15)

Then, the function
V (x) := exp

(
Ψ∗ε,θ(x)

)
= exp

(
εθΨ(−x) + Ψε(x)

)
(2.16)

satisfies, for any constant c∈ [1,∞],

〈
∇V (x), bc(x,u)

〉
≤

ε
(
θ%+ m

2ε
(1 + εθ)− (θ∧ 1)‖x‖1

)
V (x) ∀x∈K−0 ,

−ε
(
%
m
− θ%− θm

2
+ θ‖x−‖1

)
V (x) ∀ (x,u)∈K+

0 ×∆.
(2.17)

Proof. The bound on K−0 follows by first multiplying (2.13b) by εθ, then adding this equation
to (2.13a), and using (2.11).

We proceed to derive the stated bound on K+
0 ×∆. Note that〈

∇Ψ(−x), bc(x,u)
〉

=
〈
∇Ψ(−x), b(x,u)

〉
,

that is, it is equal to the right-hand side of (2.13b) for any c≥ 1, since ψ′(−r) = 0 for r ≥ 1. We
write 〈

∇Ψε(x), bc(x,u)
〉

= − %

m

∑
i∈I

ψ′ε(xi)−
∑
i∈I

ψ′ε(xi)
(
xi−〈e,x〉+ui

)
−〈e,x〉+

∑
i∈I

ψ′ε(xi)βiui 1{xi≤c} .
(2.18)
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It holds that
− %

m

∑
i∈I

ψ′ε(xi) ≤ −ε
%

m
on K+

0 . (2.19)

Also, by (2.11), we have

θε
%

m

∑
i∈I

ψ′(−xi) + θε
∑
i∈I

ψ′(−xi)xi ≤ εθ%+ εθ
m

2
− εθ‖x−‖1 on Rm , (2.20)

and ∑
i∈I

ψ′ε(xi)
(
xi−〈e,x〉+ui

)
≥ 0 for x∈K+

0 (2.21)

by (2.12). Thus, if βmax ≤ 1, then it is clear from (2.13a) and (2.18)–(2.21), that (2.17) holds for
any positive ε and θ.

Next suppose βmax > 1. We proceed by carefully comparing the terms in (2.13b) and (2.18).
Define

Î := {i∈ I : γi >µi} , Î+(x) := {i∈ Î : xi ≥ 0} , and Î−(x) := {i∈ Î : xi < 0} . (2.22)

Since θ(βmax− 1)+ ≤ 1, and βi > 1 on Î, we have

εθ
∑

i∈Î+(x)

ψ′(−xi)(βi− 1)+ui ≤
∑

i∈Î+(x)

ψ′ε(xi)βiui 1{xi≤c} ,

which we combine with ∑
i∈Î−(x)

ψ′ε(xi)ui−
∑

i∈Î−(x)

ψ′ε(xi)βiui 1{xi≤c} ≤ 0 ,

to write

εθ
∑

i∈Î+(x)

ψ′(−xi)(βi− 1)+ui +
∑

i∈Î−(x)

ψ′ε(xi)ui−
∑
i∈Î

ψ′ε(xi)βiui 1{xi≤c} ≤ 0 . (2.23)

By the definitions in (2.22), we have the identity

ε
∑

i∈Î−(x)

ψ′(−xi)ui = ε
∑
i∈Î

ui−
∑

i∈Î+(x)

ψ′ε(xi)ui . (2.24)

Using again the fact that ψ′(−r) = 0 for r≥ 1, we obtain

εθ〈e,x〉+
∑

i∈Î−(x)

ψ′(−xi)(βi− 1)+ui ≤ εθ(βmax− 1)+〈e,x〉+
∑

i∈Î−(x)

ψ′(−xi)ui

≤ ε〈e,x〉+
∑

i∈Î−(x)

ψ′(−xi)ui

≤ ε〈e,x〉+
∑
i∈Î

ui−〈e,x〉+
∑

i∈Î+(x)

ψ′ε(xi)ui

(2.25)

for all (x,u) ∈ K+
0 ×∆. In the second inequality of (2.25) we used the fact that θ(βmax − 1)+ ≤ 1,

and in the third we used (2.24). Multiplying (2.23) by by 〈e,x〉+, and adding it to (2.25), and then
combining the resulting sum with the inequality

〈e,x〉+
∑
i∈Îc

ψ′ε(xi)ui− ε〈e,x〉+
∑
i∈Îc

ui ≤ 0 ,
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where Îc denote the complement of Î with respect to I, we obtain

εθ〈e,x〉+
∑
i∈Î

ψ′(−xi)(βi− 1)+ui− ε〈e,x〉+ +
∑
i∈I

ψ′ε(xi)〈e,x〉+ui

−〈e,x〉+
∑
i∈Î

βiψ
′
ε(xi)ui 1{xi≤c} ≤ 0 .

(2.26)

Replacing the term −ε〈e,x〉+ in (2.26) with −
∑

i∈I ψ
′
ε(xi)xi preserves this inequality by (2.12).

Thus, by (2.13b), (2.18)–(2.20), and (2.26), we obtain〈
∇Ψ∗ε,θ(x), bc(x,u)

〉
≤ −ε %

m
+ εθ%+ εθ

m

2
− εθ‖x−‖1 ∀ (x,u)∈K+

0 ×∆,

from which the second bound in (2.17) follows. This completes the proof. �
Recall the definitions in (1.1) and (2.7). Also recall that πv denotes the invariant probability

measure of the process governed by (2.1) for a control v ∈ Usm, under which {X(t)}t≥0 is positive
recurrent.

Theorem 2.1. Assume that %> 0, and in addition to (2.15), let

0 < θ ≤ %

3m(2%+m)
. (2.27)

Then the following hold:
(a) There exists ε0 > 0, such that for each ε≤ ε0, the function V in (2.16), satisfies the Foster–

Lyapunov equation

LuV (x) ≤ κ0− ε
( %

2m
+ θ‖x−‖1

)
V (x) ∀(x,u)∈Rm×∆ , (2.28)

for some positive constant κ0 which depends only on ε and θ. In particular, the process {X(t)}t≥0

is positive recurrent under any control v ∈Usm, and∫
Rm
V (x)πv(dx) ≤ 2m

ε%
κ0 . (2.29)

(b) There exist positive constants γ and Cγ such that∥∥P v
t (x, · )−πv(·)

∥∥
V
≤ CγV (x) e−γt ∀(t, x)∈R+×Rm , ∀v ∈Usm . (2.30)

Proof. Recall the definitions in (2.9), and also define

ψ∗ε,θ(t) := εθψ(−t) +ψε(t) , t∈R .

Write the diffusion matrix as σ= diag
(
2λ̃1, . . . ,2λ̃m

)1/2
. For the queueing network, λ̃i = 1

2
λi(1+c2

a,i),
where λi is the arrival rate (of the fluid limit), and c2

a,i is squared coefficient of variation of the

renewal arrival process (see Section 3.1). In the case of a system with Poisson arrivals, λ̃i = λi, as
in (2.5). See Section 3.1 for the definition of these parameters. We have

1

2
trace

(
a∇2V (x)

)
=

(∑
i∈I

λ̃i
µi

(ψ∗ε,θ)
′′(xi) +

∑
i∈I

λ̃i
µ2
i

[
(ψ∗ε,θ)

′(xi)
]2)

V (x) ∀x∈Rm .

Recall that ψ′′ε ≤ 3
2
ε2. Therefore, since also ψ′ε ≤ ε, θ≤ 1, and

∑
i
λ̃i
µi

= 1 (see (3.1)), we obtain

1

2
trace

(
a∇2V (x)

)
≤ ε
(

3
2
(ε+ θ) + εC̄

)
V (x) , with C̄ :=

∑
i∈I

λ̃i
µ2
i

. (2.31)



A. Arapostathis, H. Hmedi and G. Pang: Uniform exponential ergodicity of multiclass many-server queues 11

We also have θ%+ θm
2
≤ %

6m
, and 3

2
θ ≤ %

4m
by (2.27). Thus (2.28) follows from (2.17) by selecting

ε < %
6m(3+2C̄)

, while (2.29) follows by (2.28) and Itô’s formula in the usual manner.

We now turn to part (b). Write (2.28) as

LuV (x) ≤ κ0−κ1V (x) , (2.32)

We follow the proof of [29, Theorem 6.1] which uses a δ-skeleton chain {Xδn}n∈N. Note that we
can use any δ > 0, because P v

δ (x,B)> 0 for any set B with positive Lebesgue measure. Thus, for
simplicity, we use δ= 1. Then, with t= n+ s, s∈ [0,1), we have∥∥P v

t (x, ·)−πv(·)
∥∥
V

= sup
g∈B(Rm), |g|≤V

∣∣∣∣∫
Rm
P v
n+s(x,dy)g(y)−

∫
Rm
g(y)πv(dy)

∣∣∣∣
≤
∫
Rm
P v
s (x,dy)

∥∥P v
n (y, ·)−πv(·)

∥∥
V
.

(2.33)

Next, we estimate
∥∥P v

n (y, ·)−πv(·)
∥∥
V

using [30, Theorem 2.3]. Using Itô’s formula and (2.32), we
obtain (see [4, Lemma 2.5.5])∫

Rm
P v
t (x,dy)V (y) = Evx

[
V (Xt)] ≤

κ0

κ1

+ e−κ1tV (x) ∀(t, x)∈R+×Rm , ∀v ∈Usm . (2.34)

Therefore, with B a ball such that κ0
κ1
≤ e−

κ1
2

(
1− e−

κ1
2

)
V (x) for x∈Bc, we have∫

Rm
P v

1 (x,dy)V (y) ≤ e−
κ1
2 V (x) +

κ0

κ1

1B(x) ,

which establishes equation (14) in [30].
The inequality in (2.29) implies that the collection of invariant probability measures {πv : v ∈Usm}

is tight. By the invariance of πv, tightness, and the Harnack inequality applied to the densities of
πv (see [4, Lemma 3.2.4 (b)]), we have∫

Rm
πv(dy)P v

1/2(y,B) = πv(B) ≥ β0 > 0

for some constant β0 independent of v ∈Usm. Using tightness once more, we can select a ball BR ⊃B

such that ∫
BR

πv(dy)P v
1/2(y,B) ≥ β0

2
.

This implies that supy∈BR P
v
1/2(y,B) ≥ β0

2
. We now employ the parabolic Harnack inequality for

operators in nondivergence form [22, Theorem 4.1] (for a simpler statement which uses the notation
in this paper see [5, Theorem 4.7]). The parabolic Harnack inequality asserts that there exists a
positive constant CH such that

sup
y∈BR

P v
1/2(y,B) ≤ CH inf

y∈BR
P v

1 (y,B) ∀v ∈Usm .

Therefore, P v
1 (x,B)≥ 1

2
C−1

H β0 for all x∈B and v ∈Usm. Thus, with δ0 := 1
4
C−1

H β0 we can write

η := inf
y∈B

P v
1 (x,B)− δ0 ≥ δ0 ∀x∈B , ∀v ∈Usm ,

which establishes [30, equation (23)].
As seen then from equations (19)–(20) and (24)–(25) in [30, Theorem 2.3] there exist positive

constants C0 and γ depending only on κ0, κ1, η, and δ0, such that∥∥P v
n (x, ·)−πv(·)

∥∥
V
≤ C0e−γnV (x) . (2.35)

Thus, using (2.35) in (2.33), and applying (2.34) once more, we obtain (2.30) for a constant Cγ
independent of v ∈Usm. This completes the proof. �



12 A. Arapostathis, H. Hmedi and G. Pang: Uniform exponential ergodicity of multiclass many-server queues

Throughout the paper we let Kr, or K(r), for r > 0, denote the closed cube

Kr := {x∈Rm : ‖x‖1 ≤ r} . (2.36)

We also let ψ̄ε = ψε + 1 so that the function is strictly positive, and define Ψ̄ and Ψ̄ε analogously
to (2.9).
Remark 2.4. Assume that %> 0, and consider the function

V(x) :=
(
εθΨ̄(−x) + Ψ̄ε(x)

)p
(2.37)

for some p≥ 1. Then it follows directly from the proofs of Lemma 2.1 and Theorem 2.1 that there
exist positive constants ε, θ, κ̄0, κ̄1, and a cube K ⊂Rm, depending only on p, such that

LuV(x) ≤

κ̄0 1K(x)− κ̄1V(x) ∀x∈K−0 ,

−pε %
2m

(
V(x)

) p−1
p ∀ (x,u)∈K+

0 ×∆.

In Theorem 2.2 which follows we do not assume that %> 0.

Theorem 2.2. Assume that Γ > 0. With C̄ as defined in (2.31), let

θ =
(1−βmin)∨ 1

2

βmax

, and ε0 :=
1

2
√
C̄

[
θ∧βmin

(
βmin ∧ 1

2

)] (1∧ θ)µmin

(1∨ θ)2µmax

. (2.38)

Then, for any ε≤ ε0, the function

Ṽ (x) := exp
(

1
2

[
Ψ∗ε,θ(x)

]2)
= exp

(
1
2

[
εθΨ(−x) + Ψε(x)

]2)
satisfies the Foster–Lyapunov equation

LuṼ (x) ≤ κ̃0− ε2
[
θ∧βmin

(
βmin ∧ 1

2

)]
1∧θ

2µmax
‖x‖21 Ṽ (x) ∀(x,u)∈Rm×∆ , (2.39)

for a positive constant κ̃0 which depends only on ε and the system parameters. In particular,
the process Xt governed by (2.1) is uniformly exponentially ergodic, and the associated invariant
probability measures have sub-Gaussian tails.

Proof. We borrow some calculations from the proof of Lemma 2.1. Using (2.24), and scaling this
with the new definition of θ in (2.38), we have

(
(1−βmin)∨ 1

2

)(
−
∑
i∈I

ψ′ε(xi)xi + 〈e,x〉
∑
i∈I

ψ′ε(xi)(1−βi)+ui

)
+ εθ〈e,x〉

∑
i∈I

ψ′(−xi)(βi− 1)+ui ≤ 0 .

(2.40)

Here % is not necessarily positive, so by (2.11) we have

− %

m

∑
i∈I

ψ′ε(xi) + εθ
%

m

∑
i∈I

ψ′(−xi) + εθ
∑
i∈I

ψ′(−xi)xi ≤ ε
(
|%|+ θ|%|+ θ

m

2
− θ‖x−‖1

)
(2.41)

on Rm. Note that

〈e,x〉
∑
i∈I

ψ′ε(xi)(1−βi)+ui ≤ ‖x+‖1(1−βmin)
∑
i∈I

ψ′ε(xi)ui ≤ ‖x+‖1(1−βmin) .
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Thus, using (2.11), we have(
βmin ∧ 1

2

)(
−
∑
i∈I

ψ′ε(xi)xi + 〈e,x〉
∑
i∈I

ψ′ε(xi)(1−βi)+ui

)
≤ ε
(
βmin ∧ 1

2

)(
m
2ε
−βmin‖x+‖1

)
. (2.42)

Let θ̄ := θ ∧ βmin

(
βmin ∧ 1

2

)
. Adding (2.40)–(2.42), using (2.13a) and (2.13b), and also (2.10), we

obtain

Ψ∗ε,θ(x)
〈
∇Ψ∗ε,θ(x), b(x,u)

〉
≤ ε
(
|%|+ θ|%|+ θm

2
+
(
βmin ∧ 1

2

)
m
2ε
− θ̄‖x‖1

))
Ψ∗ε,θ(x)

≤ ε
(
|%|+ θ|%|+ θm

2
+
(
βmin ∧ 1

2

)
m
2ε

)
1∨θ
µmin
‖x‖1

− ε2θ̄
(

1∧θ
µmax
‖x‖1− m

2ε

)
‖x‖1

≤ εĉ0− ε2θ̄ 1∧θ
µmax
‖x‖21 ∀ (x,u)∈K+

0 ×∆,

(2.43)

where
ĉ0 :=

(
|%|+ θ|%|+ θm

2
+
(
βmin ∧ 1

2

)
m
2ε

)
1∨θ
µmin

+ m
2
θ̄ .

It is straightforward to verify that (2.43) is also valid onK−0 ×∆. Following the proof of Theorem 2.1,
we have

trace
(
a∇2Ṽ (x)

)
≤
[

3
2
ε(ε+ θ)Ψ∗ε,θ(x) + ε2(1∨ θ)2C̄

(
1 +

(
Ψ∗ε,θ(x)

)2
)]
Ṽ (x)

≤ ε
[
ε(1∨ θ)2C̄ + 3

2
ε(ε+ θ) 1∨θ

µmin
‖x‖1 + ε3C̄ (1∨θ)4

µ2min
‖x‖21

]
Ṽ (x) .

(2.44)

Combining (2.43) and (2.44), we obtain

trace
(
a∇2Ṽ (x)

)
+
〈
∇Ṽ (x), b(x,u)

〉
≤
[
ε2(1∨ θ)2C̄ + ε

(
3
2
(ε+ θ) 1∨θ

µmin
+ ĉ0

)
‖x‖1

− ε2
(
θ̄ 1∧θ
µmax
− ε2C̄ (1∨θ)4

µ2min

)
‖x‖21

]
Ṽ (x) ,

from which the validity of (2.39) on K+
0 ×∆ follows by selecting ε sufficiently small. Verifying the

validity of (2.39) on K−0 ×∆, is simpler, and is a straightforward application of (2.10), (2.11), and
(2.44). This finishes the proof. �
Remark 2.5. The counterpart of Remark 2.4 applies relative to Theorem 2.2. In particular,

the function V in (2.37) for p > 0 is a Lyapunov function. Indeed, there exist positive constants ε,
θ, κ̌0 and κ̌1, and a cube K ⊂Rm, depending only on p, such that

LuV(x) ≤ κ̌0 1K(x)− κ̌1V(x) ∀ (x,u)∈K+
0 ×∆.

Remark 2.6. It is worth noting that if Γ > 0, then by choosing θ > 0 as in (2.38), the function

V̆ (x) := exp
(
ηθΨ(−x) + ηΨ(x)

)
satisfies

LuV̆ (x) ≤ κ̆0− κ̆1‖x‖1V̆ (x) ∀ (x,u)∈K+
0 ×∆,

for all η > 0, and for some positive constants κ̆0 and κ̆1 depending only on η. Indeed, using (2.13a),
(2.13b), and (2.40), we deduce, with θ̂ := 1−

(
(1−βmin)∨ 1

2

)
, that

1

ηV̆ (x)

〈
∇V̆ (x), b(x,u)

〉
=

%

m

∑
i∈I

(
θψ′(−xi)−ψ′(xi)

)
−
∑
i∈I

(
(1− θ̂)ψ′ε(xi)xi− θψ′ε(−xi)

)
xi

+ (1− θ̂)〈e,x〉+
∑
i∈I

ψ′(xi)(1−βmin)
+ui

≤ m

2
(1− θ̂+ θ) +

%

m

∑
i∈I

(
θψ′(−xi)−ψ′(xi)

)
−
(
βmin(1− θ̂)∧ θ

)
‖x‖1 ,

where we also used (2.11) and (2.12). The rest is routine.
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2.6. Results concerning the tail of the invariant distribution. Gamarnik and Stolyar
in [20] conjecture that, provided % > 0, exp

(
θ
∑

i x
−
i

)
is integrable under an invariant probability

measure for all θ > 0. They prove this when γi ≤ µi for all i∈ I [20, Theorem 2 (i)]. The proof is for
the diffusion-scaled queueing processes, and relies on a simple comparison to a system with infinitely
many servers. For this proof to go through though, it seems necessary that all i satisfy γi ≤ µi. We
improve upon this result, by showing that eθx

−
i is integrable under an invariant probability measure

for all θ > 0, for any i such that γi ≤ µi. Of course this proof applies to the limiting diffusion, but
we show in Section 3 how to recover this property for the prelimit in Theorem 3.5. The general
conjecture remains open.

We need some notation. We let

I1 := {i∈ I : γi ≤ µi} , (2.45)

and for a positive constant η, we define

Φ1(x) :=
∑
i∈I1

ψ(−xi)
µi

, and V1(x) := exp
(
ηΦ1(x)

)
. (2.46)

Lemma 2.2. Assume that % > 0. Let η > 0 be arbitrary, and V (x) = exp
(
Ψ∗ε0,θ(x)

)
, with ε0 as

in Theorem 2.1, and the constant θ chosen to satisfy (2.15) and (2.27). Then

Lu(V1 +V )(x) ≤

κ0 1K(x)−κ1‖x‖1
(
V1(x) +V (x)

)
∀x∈K−0 ,

κ0 1K(x)− ε0
%

8m

(
V1(x) +V (x)

)
∀ (x,u)∈K+

0 ×∆

for some positive constants κ0 and κ1, and some cube K ∈Rm.

Proof. Using (2.13a) and (2.13b), we write

1

V1(x)

〈
∇V1(x), b(x,u)

〉
=

1

2
η|I1|+ η

%

m

∑
i∈I1

ψ′(−xi)− η
(

1

2
|I1| −

∑
i∈I1

ψ′(−xi)xi
)

− η〈e,x〉+
∑
i∈I1

(1−βi)ψ′(−xi)ui .
(2.47)

Let

H(x) := trace
(
a∇2Φ(x)

)
+
〈
∇Φ(x), a

(
∇Φ(x) + 2∇Ψ∗ε,θ(x)

)〉
.

Recall the definition in (2.36). It is clear from (2.8) that we can select δ ∈ (0,1) and r > 0 such that

H(x)V1(x) +
(
ηm

2
+ η%

)
V1(x) ≤ ε0

%

4m
V (x) ,

and V1(x) ≤ V (x) ∀x∈Kc
r ∩K+

δ .
(2.48)

Combining (2.28) and (2.48), we obtain

Lu(V1 +V )(x) ≤ κ0−
ε0

2

( %

4m
+ θ‖x−‖1

)(
V1(x) +V (x)

)
∀x∈Kc

r ∩K+
δ , (2.49)

and all u∈∆. By (2.47), we have

1

V1(x)

〈
∇V1(x), b(x,u)

〉
≤ η

(
m
2

+ %
)
− η

∑
i∈I1

x−i . (2.50)
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Consider the set

K :=

{
x∈K+

0 \K+
δ : 1

2
η
∑
i∈I1

x−i ≤ η
(
m
2

+ %
)

+H(x) + ε0

%

4m

}
.

Since H is bounded on Rm, it is clear by the definition of K that V1 and LuV1 are both bounded
on K. Therefore, since V is coercive on K, that is, lim inf{|x|→∞ , x∈K} V (x)→∞, there exists r◦ > 0
such that ∣∣LuV1(x)

∣∣ ≤ ε0

%

4m
V (x) , and V1(x)≤V(x) ∀(x,u)∈ (K∩Kc

r◦)×∆ . (2.51)

On the other hand, we have

LuV1(x) ≤ −
(
ε0

%

4m
+
η

2
‖x−‖1

)
V1(x) ∀ (x,u)∈ (K+

0 \K+
δ )∩Kc (2.52)

by (2.50). Equations (2.51) and (2.52), together with (2.28) and (2.49), imply that

Lu(V1 +V )(x) ≤ κ0−
ε0

2

( %

4m
+
(
θ∧ η

2

)
‖x−‖1

)(
V1(x) +V (x)

)
∀x∈Kc

r∨r◦ ∩K
+
0 .

The estimate on K−0 is straightforward. Indeed, (2.47) shows that V1 satisfies this estimate, and
(2.28) asserts the same for V . This completes the proof. �

The following is immediate from Lemma 2.2.

Corollary 2.1. Suppose %> 0. Then the function exp
(
η
∑

i∈I1
ψ(−xi)
µi

)
is integrable under the

invariant distribution for any η > 0.

In [20, Theorem 4 (i)] it is shown that if ν is any limit of the invariant distributions of the
diffusion-scaled queueing processes, then there exists some θ such that f(x) = exp

(
θ
∑

i(x
−
i )2
)

is
integrable under ν. As is pointed out in [20], this property holds only at the limit. The function
f is not integrable under the stationary distribution of the prelimit model. The proof is rather
tedious and is approached via truncations (see [20, Proposition 12]). In what follows, we provide a
simple proof of this result, by showing that this property holds for the limiting diffusion.

Recall the definitions in (2.45) and (2.46).

Theorem 2.3. Assume that %> 0, and let

Φη(x) :=
∑
i∈I1

ψη(−xi)
µi

, Ṽη(x) := exp
(

1
2

[
ηΦη(x)

]2)
, and V (x) := exp

(
Ψ∗ε0,θ(x)

)
,

with ε0 and θ chosen as in Lemma 2.2. Then there exists η > 0, such that the function V := ṼηV
satisfies

LuV(x) ≤ c0− c1V(x) ∀ (x,u)∈Rm×U .

Proof. As in (2.47), we have〈
∇Φη(x), b(x,u)

〉
=

1

2
|I1|+

%

m

∑
i∈I1

ψ′η(−xi)−
(

1

2
|I1| −

∑
i∈I1

ψ′η(−xi)xi
)

−〈e,x〉+
∑
i∈I1

(1−βi)ψ′η(−xi)ui ∀ (x,u)∈Rm×∆.
(2.53)

Let

H̃η(x) :=
1

2
trace

(
a∇2

[
Φη(x)

]2)
+

1

2

〈
∇
[
Φη(x)

]2
, a
(
∇
[
Φη(x)

]2
+ 2∇Ψ∗ε,θ(x)

)〉
.
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Note that H̃η(x)≤ c0η
2 + c1η

4
[
Φη(x)

]2
for some positive constants c0 + c1. Consider the set

K̃ :=

{
x∈K+

0 : η
∑
i∈I1

x−i ≤
|I1|

2
+ η%+

(
η2H̃η(x) + ε0 η

%

4m

)[
Φη(x)

]−1
}
.

It is clear that Φη(x) is bounded on this set, and thus the same applies to H̃η, and
〈
∇Φη(x), b(x,u)

〉
.

Thus we have

sup
x∈K̃

[
η2H̃η(x) + η2Φη(x)

〈
∇Φη(x), b(x,u)

〉]
−−→
η↘0

0 . (2.54)

However, (2.28) and (2.54) imply that η may be selected small enough so that

LuV(x) ≤ κ0− ε
( %

4m
+ θ‖x−‖1

)
V(x) ∀(x,u)∈ (K+

0 ∩ K̃)×∆ . (2.55)

On the other hand, by (2.53) and the definition of K̃, we have

η2H̃η(x) + η2Φη(x)
〈
∇Φη(x), b(x,u)

〉
≤ 0 ∀ (x,u)∈ (K+

0 ∩ K̃c)×∆ ,

which also implies (2.55) on (K+
0 ∩ K̃c)×∆. Since the bound on K+ is clear, this completes the

proof. �

3. Uniform ergodicity of multiclass many-server queues. For a detailed description
of this model, see [3]. Here we only review the basic structure which is used for our results. We
consider a sequence of GI/M/n+M queues with m classes of customers, indexed by n, which is
the number of servers. Customers of each class form their own queue and are served in the order
of their arrival.

3.1. Model and assumptions. Let Ani , i ∈ I = {1, . . . ,m}, denote the arrival process of
class-i customers with arrival rate λni . We assume that {Ani }i∈I are renewal processes defined as
follows. Let {Rij : i∈ I , j ∈N} be a collection of independent positive random variables such that,
for each i ∈ I, {Rij}j∈N have a common distribution function Fi having a density fi, mean equal
to 1, and squared coefficient of variation (SCV) c2

a,i ∈ (0,∞). Let

hi(τ) :=
fi(τ)

1−Fi(τ)
, and ζi(τ) :=

∫∞
τ

(
1−Fi(r)

)
dr

1−Fi(τ)

for τ ≥ 0, denote the hazard rate and the mean residual life functions for each i ∈ I, respectively.
The arrival process Ani is then given by

Ani (t) := max
{
k≥ 0:

k∑
j=1

Rij ≤ λni t
}
, t≥ 0 , i∈ I .

We assume the following structural hypotheses on the collection {Fi}i∈I , which are enforced in
this subsection without further mention.

Assumption 3.1. The distribution functions {Fi}i∈I satisfy Fi(0) = 0, and have a locally
bounded density fi with unbounded support. In addition, the mean residual life functions {ζi}i∈I
are bounded.
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The service and patience times are exponentially distributed, with class-dependent rates, µi and
γi, respectively, for class-i customers. The arrival, service and abandonment processes of each class
are mutually independent.

The queueing process (counting the number both in service and in queue for each class) of the
nth system Xn = {Xn(t) : t≥ 0} is governed by

Xn
i (t) = Xn

i (0) +Ani (t)−Y n
i

(
µni

∫ t

0

Zni (s)ds

)
−Rn

i

(
γni

∫ t

0

Qn
i (s)ds

)
for i∈ I and t≥ 0. Here Y n

i andRn
i , are mutually independent rate-1 Poisson processes, independent

of the initial conditions Xn
i (0) and the arrival processes Ani , for all i ∈ I. Also, Zni (s) and Qn

i (s)
represent the numbers of class-i jobs in service and in queue at time s, s≥ 0, respectively.

3.1.1. The Halfin–Whitt regime. The parameters satisfy the following limits as n→∞
for all i∈ I:

λni
n
→ λi > 0 , µni → µi > 0 , γni → γi ≥ 0 ,

λni −nλi√
n

→ λ̂i ,
√
n (µni −µi) → µ̂i ,

ρni :=
λni
nµni

→ ρi :=
λi
µi

< 1 ,
m∑
i=1

ρi = 1 .

(3.1)

The assumptions in (3.1) imply that

%n :=
√
n

(
1−

m∑
i=1

λni
nµni

)
→ % :=

m∑
i=1

ρiµ̂i− λ̂i
µi

∈R . (3.2)

We define the diffusion-scaled variables by

X̂n
i (t) =

1√
n

(
Xn
i (t)− λ

n
i

µni

)
− %

n

m
, Ẑni (t) =

1√
n

(
Zni (t)− λ

n
i

µni

)
− %

n

m
,

Q̂n
i (t) =

1√
n
Qn
i (t) , and Âni (t) =

1√
n

(
Ani (t)−λni t

)
, i∈ I .

(3.3)

Then, we obtain the following representation of X̂n
i (t):

X̂n
i (t) = X̂n

i (0)− %
nµni
m

t−µni
∫ t

0

Ẑni (s)ds− γni
∫ t

0

Q̂n
i (s)ds

+ Âni (t)− M̂n
S,i(t)− M̂n

R,i(t) , t≥ 0 ,

(3.4)

where

M̂n
Y,i(t) :=

1√
n

(
Y n
i

(
µni

∫ t

0

Zni (s)ds

)
−µni

∫ t

0

Ẑni (s)ds

)
,

M̂n
R,i(t) :=

1√
n

(
Rn
i

(
γni

∫ t

0

Qn
i (s)ds

)
− γni

∫ t

0

Qn
i (s)ds

)
,

and the last two terms M̂n
Y,i(t) and M̂n

R,i(t) are square integrable martingales associated with the
service and abandonment processes, respectively. The martingales are compensated rate-1 Poisson
processes with random time changes, with respect to the natural filtration, see [3].
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Note that the diffusion-scaled arrival processes satisfy

Ân ⇒ diag
(
λ1c

2
a,1, . . . , λmc

2
a,m

)1/2
W in (Dm, J1) as n→∞ ,

where W is a standard m-dimensional Wiener process and (Dm, J1) represents the space of càdlàg
functions in Rm endowed with the Skorokhod J1 topology. Assuming that X̂n(0)⇒X(0) = x0 for
a constant x0 ∈Rm, it then follows that X̂n⇒X in (Dm, J1) as n→∞, where the limit process X

satisfies (2.1) with σ(Xt) = diag
(
λ1(1 + c2

a,1), . . . , λm(1 + c2
a,m)

)1/2
. In the case of Poisson arrivals,

we have c2
a,i = 1 and thus σ(Xt) = diag

(
2λ1, . . . ,2λm

)1/2
.

Remark 3.1. Note that this scaling is different from that used in [10, 26, 3], where the centering
term uses nρi for the processes Xn

i (t) and Zni (t). Here we use the prelimit parameters λ
n
i/µni together

with the “adjustment” %n/m, which can be regarded as the “reallocation” of the “safety staffing”.
Recall that when %n > 0 (and %> 0), the condition in (3.2) is equivalent to the positive square-root
safety staffing rule (see [36]). In addition, the diffusion-scaled process X̂n converges to the limiting
diffusion X with the drift given in (2.6). That follows from the standard martingale convergence
technique in [31] using the representation of X̂n in (3.4).

3.1.2. Scheduling policies. We define the space

Zn(x) :=
{
z ∈Zm+ : zi ≤ xi , ‖z‖1 = n∧‖x‖1

}
.

A scheduling policy is called (stationary) Markov if Zn(t) = z
(
Xn(t), Sn(t)

)
for some function

z : Zm+ × Rm+ → Zn(x), in which case we identify the policy with the function z. Let Sn(t) =(
Sn1 (t), . . . , Snm(t)

)
, where Sni (t) denotes the age process for class-i customers, defined by

Sni (t) := t− 1

λni

Ani (t)∑
j=1

Rij , t≥ 0 .

Let

rni (si) := λni
fi(λ

n
i si)

1−Fi(λni si)
, si ≥ 0 , (3.5)

denote the scaled hazard rate function for the interarrival times of Ani (t).
Under a Markov policy, the process (Xn, Sn) is Markov with extended generator

Anz g(x, s) :=
∑
i∈I

∂g(x, s)

∂si
+
∑
i∈I

rni (si)
(
g(x+ ei, s− siei)− g(x, s)

)
+
∑
i∈I

(
µni zi + γni qi(x, z)

)(
g(x− ei, s)− g(x, s)

)
,

(3.6)

for g ∈ Cb(Rm×Rm) and (x, s) ∈ Zm+ ×Rm+ . Here, qi(x, z) = xi− zi, and ei ∈Rm denotes the vector
with the ith element equal to 1 and the rest of its elements equal to 0.

Let

x̂ni (x) :=
1√
n

(
xi−

λni
µni

)
− %

n

m
, ẑni (x) :=

1√
n

(
zi−

λni
µni

)
− %

n

m
, and q̂ni (x, z) :=

qi(x, z)√
n

. (3.7)

We let Xn denote the state space of the process X̂n. This is a countable subset of Rm. Since
x 7→ x̂n(x) is invertible, the set Zn(x) can be equivalently written as a function of x̂n, and abusing
the notation we write this as Zn(x̂n). In order to keep the notation simple, we often drop the
superscript n from x̂n, when this is used to denote a generic element of Xn.
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3.2. Results with renewal arrivals. The first main result is Theorem 3.1 below which is
the counterpart of Theorem 2.1 for the nth system. In order to state this theorem and demonstrate
its proof, we need some additional notation which we introduce next.

Let V be the function in (2.16) with µn replacing µ in its definition, and parameters ε > 0 and
θ ∈ (0,1). Let

ζni (τ) := ζi(λ
n
i τ) , τ≥ 0 , i∈ I .

In Theorem 3.1 below, we use the Lyapunov function Vn defined by

Vn(x̂, s) := Gn(x̂, s) +V (x̂) , (x̂, s)∈Xn×Rm+ , (3.8)

with
Gn(x̂, s) :=

∑
i∈I

(
1− ζni (si)

)(
V (x̂+n−1/2ei)−V (x̂)

)
, (x̂, s)∈Xn×Rm+ .

Note that, by Assumption 3.1, for any fixed θ, we can choose ε̃0 = ε̃0(θ)> 0 small enough so that

ε

∣∣∣∣∣∑
i∈I

1

µni

(
1− ζni (si)

)(
θψ′(−yi) +ψ′(yi)

)∣∣∣∣∣ ≤ 1

2
∀ε≤ ε̃0(θ) , ∀ (y, s)∈Rm×Rm+ , ∀n∈N . (3.9)

Then, provided ε≤ ε̃0(θ), we have

1

2
V (y) ≤ Vn(y, s) ≤ 3

2
V (y) . (3.10)

We define

V̂ n(x) := V
(
x̂n(x)

)
, and Ĝn(x, s) :=

∑
i∈I

(
1− ζni (si)

)(
V
(
x̂n(x+ ei)

)
−V

(
x̂n(x)

))
(3.11)

for x ∈ Zm+ . Then the generator Ânz of the diffusion-scaled state process (X̂n, Sn) under a policy z
takes the form

ÂnzV (x̂, s) = Anz V̂ n(x, s) , and ÂnzG(x̂, s) = Anz Ĝn(x, s) , (3.12)

where Anz is as defined in (3.6).
We need to introduce some constants used in the results. First, for a function f on Rm, if we

define
df(x;y) := f(x+ y)− f(x) ,

it then follows by a repeated use of the mean value theorem that there exists a constant Ĉ1 such
that ∣∣dV̂ n(x± ej;±ei)− dV̂ n(x;±ei)

∣∣ ≤ 1

n
Ĉ1ε(ε+ θ)V̂ n(x) ∀ i, j ∈ I , (3.13)

and the same bound holds for
∣∣dV̂ n(x;ei) + dV̂ n(x;−ei)

∣∣. Also, by Assumption 3.1, (3.5), and the

convergence of the parameters in (3.1), there exists a constant Ĉn
0 depending on n (implicitly

through λni ), such that

sup
n∈N

max
i∈I

(
rni (τ)

n
∨
(
1 + ζni (τ)

))
≤ Ĉn

0 ∀ τ ≥ 0 . (3.14)

We define

C̃n
0 := m2Ĉn

0 Ĉ1 , C̃n
1 := Ĉ1

(
m2Ĉn

0 µ
n
i +m(m− 1)

(
Ĉn

0

)2
+
∑
i∈I

λni
n

)
, (3.15)
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and

θ0(n) :=
1

1 + (βn
max
− 1)+

∧ 1

2µnmax(C̃
n
0 + Ĉ1)

∧ %
n

m

(
m+ 2%n + 4

(
C̃n

1 +mĈ1 Ĉ
n
2 +mĈn

3

))−1

. (3.16)

Recall ε̃0(θ) in (3.9). We are ready to state the first main result of this section.

Theorem 3.1. We enforce Assumption 3.1, and, in addition, we assume that the hazard rate

functions {hi}i∈I are bounded. Suppose %n > 0. Then there exists a positive constant Cn
0 (ε), such

that the function Vn in (3.8), with parameters θ= θ0(n) and any ε < θ0(n)∧ ε̃0(θ), satisfies

ÂnzVn(x̂, s) ≤ Cn
0 (ε)− ε %

n

3m
Vn(x̂, s) ∀ (x̂, s)∈Xn×Rm+ , ∀z ∈Zn(x̂) . (3.17)

In particular, under any work-conserving stationary Markov policy, the process (X̂n, Sn) is positive

Harris recurrent, and V (x̂) is integrable under its invariant probability distribution.

Remark 3.2. It is clear from the Foster–Lyapunov equation (3.17), that the stability result in

Theorem 3.1 holds for all n∈N such that %n > 0, and the same applies to Theorem 3.3 and Corol-

lary 3.1. We want to emphasize that this is an important byproduct of the approach in this paper.

One should compare it to [20, Theorem 2], where stability is only stated as an asymptotic property,

or in other words, that it holds for all large enough n.

The convergence of the parameters in (3.1), implies that if the limiting value %= limn→∞ %
n is

positive, then θ0(n) and C0(ε) can be selected independent of n, in a manner that (3.17) holds for all

sufficiently large n. Analogous conclusions can be drawn for Theorems 3.2 and 3.3 and Corollary 3.1

which appear later in this section.

Note also that the difference in the constant multiplying the Lyapunov function between (2.28)

and (3.17) is only due to the bound in (3.10).

For the proof of the Theorem 3.1 we need the following result.

Lemma 3.1. With V̂n(x, s) := Ĝn(x, s) + V̂ n(x), we have the following inequality

Anz V̂n(x, s) ≤
∑
i∈I

(
%nµni
m

+µni ẑi + γni q̂i(x, z)

)√
ndV̂ n(x;−ei)

+ ε(ε+ θ)
1√
n
C̃n

0

∑
i∈I

γni q̂i(x, z)V̂
n(x) + ε(ε+ θ)C̃n

1 V̂
n(x) ,

(3.18)

with C̃n
0 and C̃n

1 as defined in (3.15).

Proof. Recall the definitions in (3.11), and note that

Ĝn
i (x, s) =

(
1− ζni (si)

)
dV̂ n(x;ei) ,

with V̂ n as defined in (3.11). It follows by direct differentiation that

dζni (τ)

dτ
− rni (τ)ζni (τ) = −λni , τ ≥ 0 . (3.19)
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Thus, using (3.13), (3.14), and (3.19), and noting that ζni (0) = 1, we obtain

Anz Ĝn
i (x, s) = −

(
dζni (si)

dsi
+ rni (si)

(
1− ζni (si)

))
dV̂ n(x;ei)

+ rni (si)
(
1− ζni (si)

) ∑
j 6=i , i∈I

(
dV̂ n(x+ ej;ei)− dV̂ n(x;ei)

)
−
(
µni zi + γni qi(x, z)

)(
1− ζni (si)

)∑
j∈I

(
dV̂ n(x− ej;ei)− dV̂ n(x;ei)

)
≤
(
λni − rni (si)

)
dV̂ n(x;ei) + (m− 1)

(
Ĉn

0

)2
Ĉ1ε(ε+ θ)V̂ n(x)

+
m

n
Ĉn

0 Ĉ1ε(ε+ θ)
(
µni zi + γni qi(x, z)

)
V̂ n(x) .

(3.20)

Also,

Anz V̂ n(x) =
∑
i∈I

rni (si)dV̂
n(x;ei) +

∑
i∈I

(
µni zi + γni qi(x, z)

)
dV̂ n(x;−ei) . (3.21)

Applying the identities

zi =
√
nẑi +

λni
µni

+
√
n
%n

m
, and qi(x, z) =

√
nq̂i(x, z) , (3.22)

to (3.21), we obtain

Anz V̂ n(x) =
∑
i∈I

(
rni (si)dV̂

n(x;ei) +λni dV̂
n(x;−ei)

)
+
∑
i∈I

(
%nµni
m

+µni ẑi + γni q̂i(x, z)

)√
ndV̂ n(x;−ei) .

(3.23)

Combining (3.20) and (3.23), and applying once more the estimate in (3.13) and the inequality

|zi| ≤ n, we deduce that

Anz V̂n(x, s) ≤
∑
i∈I

(
%nµni
m

+µni ẑi + γni q̂i(x, z)

)√
ndV̂ n(x;−ei)

+ ε(ε+ θ)
m2

√
n
Ĉn

0 Ĉ1γ
n
i q̂i(x, z)V̂

n(x)

+ ε(ε+ θ)Ĉ1

(
m2Ĉn

0 µ
n
i +m(m− 1)

(
Ĉn

0

)2
+
∑
i∈I

λni
n

)
V̂ n(x) .

This completes the proof. �
Proof of Theorem 3.1. The proof relies on comparing the right hand side of (3.18) to the drift

inequalities in Lemma 2.1. First we fix n∈N, and as done earlier, we suppress the n-dependence of

x̂ni , ẑni , and q̂ni in the calculations, in the interest of simplifying the notation. It is clear from (3.1)

and (3.7) that q̂i ≥ 0 if xi ≥ n, or equivalently, if

x̂i ≥ ϑn :=
√
n(1− ρni )−

√
n

m

(
1−

m∑
i=1

λni
nµni

)
≥ 0 .
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If ε ≤ 1, then ψε(x− y)− ψε(x) ≤ −εy
2

and ψ(−x− y)− ψ(y) ≤ y for all x ≥ 0 and y ∈ [0,1] by
Definition 2.1. Thus, if θ ∈ (0, 1/2] and ε ∈ (0,1], then V (x− y)≤ V (x) for all x≥ 0 and y ∈ [0,1].
This of course implies, since θ0(n)< 1/2, that dV̂ n(x;−ei)≤ 0 if x̂i ≥ 0. Thus, if we write(

%nµni
m

+µni ẑi + γni q̂i(x, z)

)√
ndV̂ n(x;−ei)

=

(
%nµni
m

+µni ẑi + γni q̂i(x, z)1{x̂i<ϑn}

)√
ndV̂ n(x;−ei)

+ γni q̂i(x, z)1{x̂i≥ϑn}
√
ndV̂ n(x;−ei) ,

(3.24)

then the second term on the right-hand side of (3.24) is negative. It is also clear that∣∣∣∣%nµnim
+µni ẑi + γni q̂i(x, z)1{x̂i<ϑn}

∣∣∣∣ ≤ Ĉn
2

√
n (3.25)

for some constant Ĉn
2 depending on the parameters.

Using the identity

V̂ n(x± ei)− V̂ n(x)∓ ∂xi V̂
n(x) =

∫ 1

0

(1− t)∂xixi V̂
n(x± tei)dt , (3.26)

we deduce that ∣∣V̂ n(x± ei)− V̂ n(x)∓ ∂xi V̂
n(x)

∣∣ ≤ 1

n
ε(ε+ θ) Ĉ1 V̂

n(x) , (3.27)

where, we use a common constant to satisfy (3.13) and (3.27). Thus, by (3.24), (3.25), and (3.27),
and using also the identity

∂xi V̂
n(x) =

1√
n
∂x̂iV (x̂) ,

we obtain(
%nµni
m

+µni ẑi+γ
n
i q̂i(x, z)

)√
ndV̂ n(x;−ei)

= −
(
%nµni
m

+µni ẑi + γni q̂i(x, z)1{x̂i<ϑn}

)
∂x̂iV (x̂)

+ γni q̂i(x, z)1{x̂i≥ϑn}
√
ndV̂ n(x;−ei) + ε(ε+ θ)Ĉ1 Ĉ

n
2 V̂

n(x) .

(3.28)

Similarly, addressing the second term on the right-hand side of (3.18), we write

1√
n
C̃n

0 γ
n
i q̂i(x, z) ≤ Ĉn

3 +
1√
n
C̃n

0 γ
n
i q̂i(x, z)1{x̂i≥ϑn} (3.29)

for some constant Ĉn
3 . Using (3.12), (3.28), and (3.29), we deduce from (3.18) that

Ânz Vn(x̂, s) ≤ −
∑
i∈I

(
%nµni
m

+µni ẑi + γni q̂i(x̂, ẑ)1{x̂i<ϑn}

)
∂x̂iV (x̂)

+ ε(ε+ θ)
(
C̃n

1 +mĈ1 Ĉ
n
2 +mĈn

3

)
V (x̂)

+
∑
i∈I

(√
ndV̂ n(x;−ei) + ε(ε+ θ)

1√
n
C̃n

0 V̂
n(x)

)
γni q̂i(x̂, ẑ)1{x̂i≥ϑn} ,

(3.30)

where we express q̂ as a function of x̂ and ẑ, slightly abusing the notation.
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We now turn to the drift inequalities in Lemma 2.1. It follows by (2.17) that there exists a
constant and Cn

0 (ε), such that∑
i∈I

(
−%

nµni
m
−µni (x̂i−〈e, x̂〉+ui)− γni 〈e, x̂〉+ui1{x̂i<ϑn}

)
∂x̂iV (x̂)

+ ε(ε+ θ)
(
C̃n

1 +mĈ1 Ĉ
n
2 +mĈn

3

)
V (x̂) ≤ Cn

0 (ε)− ε %
n

2m
V (x̂)

(3.31)

for all (x̂, u)∈Rm×∆, and for all ε∈
(
0, θ0(n)

)
.

Consider the first sum in (3.31). If 〈e,x〉 ≤ n, then ẑ = x̂ by work-conservation. Note also that
by the scaling in (3.3) combined with (3.2), we have

〈e, x̂〉 =
1√
n

(
〈e,x〉−n

)
.

Thus 〈e, x̂〉> 0 if and only if 〈e,x〉> n. Similarly 〈e, z〉= n if and only if 〈e, ẑ〉= 0. On the other
hand, if 〈e,x− z〉> 0, then we can write z = x− 〈e,x− z〉u, for some u ∈∆. Thus, ẑ = x̂− 〈e, x̂−
ẑ〉u= x̂−〈e, x̂〉u, since 〈e, ẑ〉= 0. We have thus established that for all x∈Rm+ , we have

ẑ = x̂−〈e, x̂〉+u , and q̂(x̂, ẑ) = 〈e, x̂〉+u (3.32)

for some u∈∆. It then follows from (3.32), that the sum of the first two terms on the right-hand
of (3.30) has the bound on the right-hand side in (3.31).

Next, consider the last term in (3.30). By (3.26) and (3.27) we have

dV̂ n(x;−ei) ≤ −∂xi V̂
n(x) +

1

n
ε(ε+ θ) Ĉ1 V̂

n(x) ,

and ∂xi V̂
n(x) = ε√

nµni
V̂ n(x) when x̂i ≥ ϑn. Thus(√

ndV̂ n(x;−ei) + ε(ε+ θ)
1√
n
C̃n

0 V̂
n(x)

)
1{x̂i≥ϑn} ≤ −ε

(
1

µni
− (ε+ θ)

1√
n

(C̃n
0 + Ĉ1)

)
V̂ n(x) ,

which is negative for all ε < θ= θ0(n), by the definition of θ0 in (3.16). Thus, in view of (3.10), we
have established the Foster–Lyapunov equation (3.17) as claimed.

The remaining conclusions of the theorem are straightforward, in view of the fact that {Sn(t)}t≥0

is positive Harris recurrent, as shown in [28]. Note that since ε < ε̃0(θ), then (3.10) implies that Vn

is bounded from below in Rm×Rm+ . �
In the theorem that follows we assume strictly positive abandonment rates for all classes, and

we use the Lyapunov function

Vn(x̂n, s) :=
∑
i∈I

(
1− ζni (si)

)(
ϕn(x̂ni +n−1/2)−ϕn(x̂ni )

)
+
∑
i∈I

ϕn(x̂ni )

µni
, (3.33)

with

ϕn(y) := ε̃0(θn)θnψ(−y) + ε̃0(θn)ψ(y) , y ∈R ,

ε̃0 as in (3.9), and

θn = 1∧
(1−βnmin)∨ 1

2

βnmax

, βni :=
γni
µni

, i∈ I . (3.34)
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Theorem 3.2. Grant Assumption 3.1, and, in addition, assume that hazard rate functions
{hi}i∈I are locally bounded. Suppose γni > 0 for all i∈ I. Then there exist positive constants c0(n)
and c1(n), depending only on n∈N, such that the function Vn in (3.33) satisfies

ÂnzVn(x̂, s) ≤ c0(n)− c1(n)Vn(x̂, s) ∀ (x̂, s)∈Xn×Rm+ , ∀z ∈Zn(x̂) .

In particular, under any work-conserving stationary Markov policy, the process (X̂n, Sn) is positive
Harris recurrent, and ‖x̂‖1 is integrable under its invariant probability distribution.

Proof. The proof mimics that of Theorem 3.1 also using Remark 2.6. The important difference
here is that, if we let ϕ̂n(xi) :=ϕn

(
x̂ni (xi)

)
, and

φ̂ni (x, s) :=
(
1− ζni (si)

)
dϕ̂n(xi; 1) ,

then, following the steps in (3.20), we obtain

Anz φ̂ni (x, s) =
(
λni − rni (si)

)
dϕ̂n(xi; 1)

−
(
µni zi + γni qi(x, z)

)(
1− ζni (si)

)(
dφn(xi− 1; 1)− dφn(xi; 1)

)
.

(3.35)

As a result, the terms corresponding to the second line of (3.20), for which the assumption that
the hazard rate functions are bounded was invoked, are not present in (3.35). The rest of the proof
is the same. �

Without assuming that the abandonment rates are positive, but with %n > 0, we obtain uniform
stability, that is, tightness of the invariant distributions. To establish this, we scale the Lyapunov
function in (3.33), with a parameter ε > 0. More precisely, we define

Vnε (x̂, s) :=
∑
i∈I

(
1− ζni (si)

)
dϕnε (x̂i;n

−1/2) +
∑
i∈I

ϕnε (x̂i)

µni
, (3.36)

with
ϕnε (y) := θnεψ(−y) +ψε(y) , y ∈R .

The parameter θn depends on certain bounds which we review next. First, as we have seen in
(3.13), there is a constant Č1 such that∣∣dϕnε (x±n−1/2ej;±n−1/2ei)− dϕnε (x;±n−1/2ei)

∣∣ ≤ 1

n
Č1ε(ε+ θ) ∀ i, j ∈ I .

Let also Čn
0 be a bound for ‖maxi ζ

n
i ‖∞. With Ĉn

2 the constant in (3.25), we define

C̄n
0 := m2Čn

0 Č1 , and C̄n
1 := Č1

(
m2Čn

0 µ
n
i +

∑
i∈I

λni
n

)
.

Let θn be equal to the right-hand side of (3.16) after we replace Ĉ1, C̃n
1 , and C̃n

2 with Č1, C̄n
1 , and

C̄n
2 , respectively.

Theorem 3.3. Grant Assumption 3.1, and, in addition, assume that hazard rate functions
{hi}i∈I are locally bounded. Suppose that %n > 0. Then there exist a cube K and a constant C
depending on ε, %n, and θn, defined above, such that the function Vnε in (3.36) satisfies

ÂnzVnε (x̂, s) ≤ εC1K(x̂)− ε %
n

3m
∀ (x̂, s)∈Xn×Rm+ , ∀z ∈Zn(x̂) ,

and for all ε≤ θn. In particular, under any work-conserving stationary Markov policy, the process
(X̂n, Sn) is positive Harris recurrent.

Proof. We follow the proofs of Lemma 3.1 and Theorem 3.1 to obtain the analogous inequality
to (3.30). The result then follows by applying the drift inequality in (2.17), and using the definition
of θn. �
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3.3. Results with Poisson arrivals. In this subsection, we specialize the results to a
sequence of queueing models with Poisson arrivals with rates λni , i ∈ I. Here, under a stationary
Markov policy, the process {Xn(t)}t≥0 is Markov with extended generator

An
z f(x) :=

∑
i∈I

λni
(
f(x+ ei)− f(x)

)
+
∑
i∈I

(
µni zi + γni qi(x, z)

)(
f(x− ei)− f(x)

)
. (3.37)

Define Ân
z analogously to (3.12). Mimicking the proof of Theorem 3.1, we deduce the following,

which we state without proof.

Corollary 3.1. Assume that the arrival processes are Poisson. Suppose %n > 0. Then for
some θ = θ(n) > 0, there exist positive constants ε̂0(n) and Cn

0 (ε), such that the function V in
(2.16) satisfies

Ân
zV (x̂) ≤ Cn

0 (ε)− ε %
n

2m
V (x̂) ∀ x̂∈Xn , ∀z ∈Zn(x̂) ,

and for all ε ∈ (0, ε̂0(n)). In particular, under any work-conserving stationary Markov policy, the
process {X̂n(t)}t≥0 is exponentially ergodic, and V (x̂) is integrable under its invariant probability
measure.

Remark 3.3. Let Znsm denote the class of work-conserving stationary Markov policies for the
process X̂n(t). Suppose % > 0, and let P n,z

t and πnz denote the transition probability and the
stationary distribution, respectively, of X̂n(t) under a policy z ∈ Znsm. Then, Corollary 3.1 implies
that there exist positive constants γ and Cγ not depending on n or z, such that∥∥P n,z

t (x̂, · )−πnz (·)
∥∥
V
≤ CγV (x̂) e−γt , ∀ x̂∈Xn , ∀ t≥ 0 . (3.38)

Also

sup
n∈N

sup
z∈Znsm

∫
Xn
V (x̂)πnz (dx̂) < ∞ .

Note that, if νn denotes the distribution of X̂n(0), then (3.38) implies that∥∥P n,z
t (νn, · )−πnz (·)

∥∥
V
≤ Cγν

n(V ) e−γt ∀ t≥ 0 , (3.39)

where P n,z
t (νn, · ) :=

∫
Xn
νn(dx̂)P n,z

t (x̂, · ) and νn(V ) :=
∫
Xn
V (x̂)νn(dx̂). In particular, if X̂n(0) is

such that supn∈N ν
n(V )<∞, then the convergence in (3.39) is uniform over z ∈ Znsm and n∈N.

We also wish to remark that, provided that the jobs do not abandon the queues, that is, Γ = 0, the
hypothesis %n > 0 is sharp. In fact, there is a dichotomy. As shown in Corollary 3.1, if %n > 0, then
{Xn(t)}t≥0 is uniformly exponentially ergodic. Following for example the proof in [9, Theorem 3.3]
one can show that if %n < 0 and jobs do not abandon the queues, then {Xn(t)}t≥0 is transient
under any Markov scheduling policy.

As explained in [20, p. 33], under positive abandonment in all classes, the invariant distribution
of X̂n cannot integrate a function of the form eε|x̂|

2
for ε > 0, even though the invariant probability

distribution of the limit diffusion has this property as seen in Theorem 2.2. Note that the technique
in the proof of Theorem 3.1 stumbles in (3.27), since this bound is no longer valid for the function
Ṽ of Theorem 2.2.

Nevertheless, we have the following improvement of Corollary 3.1, under positive abandonment
in all classes.

Theorem 3.4. Assume that the arrival processes are Poisson. Suppose lim infn→∞ γni > 0 for
all i∈ I. Then there exist positive constants κ̆0(η) and κ̆1(η), such that the function

V̆ n(x̂) := exp
(
Φ∗η,θn(x̂)

)
= exp

(
ηθnΨ(−x̂) + ηΨ(x̂)

)
,
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with θn given by (3.34), satisfies

Ân
z V̆

n(x̂) ≤ κ̆0(η)− κ̆1(η)‖x̂‖1V̆ n(x̂) ∀ (x̂, z)∈Xn×Zn(x̂) ,

and for all sufficiently large n. In particular, the function exp
(
η‖x̂n‖1

)
is integrable under the

stationary distribution of {X̂n(t)}t≥0 for all η > 0, under any work-conserving stationary Markov
scheduling policy.

Proof. Let V̂n(x) := V̆
(
x̂n(x)

)
. Applying the operator in (3.37) to V̂n and using the analogous

bound to (3.27),

An
z V̂n(x) ≤

∑
i∈I

[
λni

(
∂xiV̂

n(x) + 1
n
η(1 + θ) Ĉ V̂n(x)

)
+
(
µni zi + γni qi(x, z)

)(
−∂xiV̂

n(x) + 1
n
η(1 + θ) Ĉ V̂n(x)

)]
for some constant Ĉ. Using (3.22) we write this as

Ân
z V̆ (x̂) ≤

∑
i∈I

(
−%

nµni
d
−µni ẑi− γni q̂i(x̂, ẑ)

)
∂x̂i V̆ (x̂)

+ η(1 + θ) Ĉ
∑
i∈I

(
λni
n

+
µni
n
zi +

1√
n
γni (x̂i− ẑi)

)
V̆ (x̂) . (3.40)

Thus, using the drift inequality in Remark 2.6 to bound the first term on the right-hand side of
(3.40), and noting that the coefficient of V̆ on the second term on the right-hand side is of order

1√
n
‖x‖1, we establish the result. �
We conclude with the analogous result to Corollary 2.1. We need the following notation.

Î1 :=
{
i∈ I : limsup

n→∞

γni
µni
< 1
}
.

Theorem 3.5. Assume that the arrival processes are Poisson. Suppose lim infn→∞ %n > 0.

Then the function exp
(
η
∑

i∈Î1 x̂
n
i

)
is integrable under the invariant probability distribution of

{X̂n(t)}t≥0 for all η > 0, and for all sufficiently large n.

The proof closely mimics that of Theorem 3.1, and is therefore omitted.
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