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Healthcare services are often provided by a large network of physicians and clinic facilities to patients

with various levels of health conditions and preferences. Appointment scheduling is used to manage access to

these services by matching patient demand with physician availability. This raises tremendous challenges for

providers due to the heterogeneity in patient preference and physician availability. We propose a preference-

based “nested” network model that consists of most practical operational constraints. Our model considers

patients with varied priorities who can visit any clinic location and provider of their preference, and request

the day and time of the appointment of their choice. The common challenges of patient no-show, cancellation,

and uncertainty of physician availability are taken into account. We formulate this model as a Markov

decision process and propose an approximate dynamic programming approach to provide robust scheduling

policies. We also analyze the joint appointment scheduling and physician capacity planning problem as a

mixed-integer nonlinear program. The proposed scheduling policies maximize revenue and minimize physician

overtime and idle time while satisfying patient preferences. These policies are shown to perform within a close

bound to the best achievable policy. They are also robust under patient demand uncertainties. We highlight

the importance of considering patient heterogeneity and preference as well as systematic uncertainties to

provide an optimal set of appointments.

Key words : OR in Health Services, Healthcare Provider Network, Patient Choice, Mixed Multinomial

Logit Model, Joint Appointment Scheduling and Capacity Planning

1. Introduction

Outpatient services contributed to 28.2% of the total spending per capita on subservice categories

in 2018, which is the second highest per capita (Frost et al. 2018). This population includes Ameri-

cans younger than age 65 and covered by employer-sponsored insurance. Every hospital outpatient

service system is complex and consists of an integrated network of multiple physicians, clinic facil-

ities, patients and other healthcare professionals. This complex network is known as a healthcare

provider network (HPN). HPNs are an integral part of the healthcare delivery system. In many

healthcare settings around the world, outpatient clinics are part of a provider network. In this

HPN, a patient can be sent to multiple clinic facilities for any number of tests and treatments.

A physician can see patients at different clinics on different days of the week and there can be
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more than one physician at the same location. Similarly, patients can schedule appointments at

a clinic of their choice with a physician of their preference or urgent patients (walk-in patients)

can visit without making an appointment. Despite the interdependence among the facilities and

the care providers, they are rarely studied as a complex network system. There is limited research

with a focus on this multi-clinic, multi-provider problem. Ignoring this complex interrelationship

can lead to unfilled appointment slots and a long waiting list. At a major healthcare system in

Pennsylvania during 15 months period, 30 outpatient clinics of a single specialty service suffered

from more than 20% uncompleted appointments slots and 650 overdue (waitlisted) patients. In a

setting like this, which includes a network of more than 50 outpatients clinics and 6 hospitals with

more than 3.8 million outpatient clinic visits annually, it becomes even more critical to consider

the network effect in the scheduling model.

Appointment schedulers use a two-step design process to book appointments (Wang and Gupta

2011): clinic profile setup and appointment booking step. In the first step, the available physicians’

time on each workday is divided into appointment slots based on physicians’ preference and their

administrative duties. Here, we first focus on the second step of Appointment Booking. Once we

have available time slots for the physicians, this capacity needs to be allocated when a patient

requests an appointment. We then propose a framework to solve both steps simultaneously. Gupta

and Denton (2008) proposed a road map of the state of the art in the design of appointment

management systems and identified major challenges in the development of a practical optimization

system for appointment scheduling.

In traditional appointment scheduling research, patients are given a fixed day and time for the

appointment to maximize their health system’s operational objectives. But this lack of flexibility

for patients leads to patient dissatisfaction and lower revenues, increased no-show rates, and dis-

continuity in care. Studies have shown that scheduling patients while matching their preferences

can benefit clinics. For example, matching patients with their preferred Primary Care Physicians

(PCP) (O’Hare and Corlett 2004) and offering them a convenient time (Lacy et al. 2004) can lead

to higher revenue and increased efficiency due to a lower no-show rate. While there is a vast liter-

ature in the service industry (airlines, hospitality, and manufacturing (Zhang and Adelman 2009,

Verma 2010) the healthcare operations research literature has mainly ignored patient preference

in appointment booking (Gupta and Denton 2008). To our knowledge, Rohleder (2000), Wang

and Gupta (2011), Feldman et al. (2014), and Liu et al. (2019) are the only studies that consider

patient preference while generating optimal scheduling policies. We highlight the similarities and

differences to these studies in the literature review section.

Patient appointment preference consists of the patients’ choice of physician, day of the appoint-

ment, time of the day, and clinic location (Douglas et al. 2005, Hunter et al. 2009). In addition,
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patient preferences are non-homogeneous and vary by patients. Research has shown that many

patients prefer the continuity of care (physicians they know), while others prefer faster access to

care (Baker et al. 2005, Gerard et al. 2008). When a request for an appointment is made it can

be categorized into different classes based on patients’ history and request. In this paper, based

on the request type, we divide the appointment requests into three classes, Dedicated, Flexible,

and Urgent. Patients with dedicated requests are more likely to wait for a specific provider. These

patients might be the ones who have assigned particular physicians as their PCP and therefore, will

wait for any available appointment they can get. Patients with flexible requests do not have any

preference for a specific provider but will have a preference for the day and time of the appointment.

On the other hand, Urgent or same-day requests need to be fulfilled on the same day.

In our model, we consider an HPN with multiple clinics and multiple physicians at each clinic

with patient preference being governed by a Mixed Multinomial Logit (MMNL) model (McFad-

den and Train 2000). Unlike traditional appointment scheduling models, this model offers a set of

appointments for the customers to choose from based on patients’ preferences. Traditionally, the

appointment scheduling is driven by the objective of minimizing indirect (lead time) and direct

(time spent at the clinic) waiting time and overbooking. However, in reality, patients have a prefer-

ence for their appointment and some patients can wait longer to have appointments of their choice.

Therefore, minimizing waiting time alone may not be sufficient. Similarly, in a network setting,

while overbooking is important to increase revenue, equal attention should be paid to physician

idle time. Since physicians have other duties besides clinic appointments, they can perform those

duties instead of sitting idly. Physician capacity uncertainty is another important yet not gener-

ally considered factor in the appointment scheduling literature. According to Gupta and Denton

(2008), in the case of advance scheduling, primary clinics also need to decide how to respond to any

unplanned shortfall in capacity. This uncertainty might arise due to physicians’ illness or emergency

which can impact the indirect waiting times of patients, sometimes resulting in revenue losses due

to patients leaving the system.

Here, we address the problem of finding the optimal sets of appointments to offer which maximize

network profit while satisfying patient preferences. We identify the network architecture of the

problem and formulate it as a Markov decision process (MDP). We present an approximate dynamic

programming (ADP) approach to solve this MDP. This ADP makes use of the properties of a single

period scheduling problem which allocates patients without considering the current state of the

system. We show that this single period problem is convex and can be solved to global optimality.

We develop theoretical bounds on the performance of the single period policy and show that in

certain scenarios the performance bound is ≈ 1− 1/
√

2π. Our proposed policies outperform the

simple greedy approaches used in practice in almost all scenarios and this performance improvement
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can be up to 55%. We also show that the proposed dynamic scheduling model is robust under

more general demand distributions. For this, we assume that the patient demand follows a doubly

stochastic Poisson arrival process. Finally, we propose a mixed integer non linear program (MINLP)

for the joint capacity planning and appointment scheduling problem. We also show that there exists

a globally optimal solution to the joint capacity planning and scheduling problem. This model can

be used for the two-step design process on a daily basis.

We make the following distinctive contributions to the appointment scheduling literature:

• We consider patient priority and multi-dimensional patient preferences for appointment

scheduling as a network. This network consists of multiple physicians and multiple clinic loca-

tions. Our numerical experiments show that with proposed heuristic policies healthcare systems

can achieve improvements in profit of up to 55%.

• Our proposed policies can be used with more general stochastic demand. Therefore, they can

be implemented in practice without significant loss of performance.

• For the simultaneous two-step design process, we propose a novel joint capacity and appoint-

ment scheduling model. Our numerical results show significant improvements in the objective

function can be achieved.

The remainder of the paper is organized as follows. We present an in-depth comparison of our

approach and the models developed in the literature in section 2. The literature review is divided

based on the different features of the proposed model. Section 3 describes the network model in

detail. In section 4, we formulate the model as an MDP and present different components of the

MDP. We study the properties of the single period problem in section 5 and present the approximate

dynamic programming heuristic in section 6. In section 7, we present the advantage of the heuristic

approach using numerical experimentation. Section 8 presents the robustness of the model under

general demand distribution and discusses the joint capacity planning and appointment scheduling

model. Finally, we conclude by discussing future possibilities to improve the model. Appendix A

can be referred for a list of notation used in the paper. Appendix B and C present the proofs for

lemmas and propositions. The appendices are provided as an online supplement.

2. Literature Review

Appointment scheduling literature can be divided into inter-day and intra-day scheduling. In case

of inter-day scheduling appointments are booked on a multi-day planning horizon. The scheduler

decides how to allocate demand arriving on the current day into future days (Patrick et al. 2008, Liu

et al. 2010, Feldman et al. 2014). Under intra-day scheduling patient demand is known, service time

is stochastic and service order is determined by maximizing physician utilization and minimizing

patient wait time. The problem of intra-day scheduling is similar to that of job-shop scheduling
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(machine scheduling) and has been extensively studied (Leung 2004, Chakraborty et al. 2010).

Inter-day scheduling, on the other hand, has been less explored but has been a focus of research

in recent years. In this research, we focus on the problem of inter-day and intra-day scheduling

simultaneously. For a more detailed background on appointment scheduling and the challenges we

refer to Cayirli and Veral (2003) and Gupta and Denton (2008).

In the following paragraphs we discuss the relevant literature on network effect in appointment

scheduling, customer preference, patient class, and no-show rate and highlight our contributions

in comparison to the literature.

According to our literature research, network effect in appointment scheduling has rarely been

studied before. The only relevant paper is Liu et al. (2019). They focused on non-sequential and

sequential offerings of appointments to the patients of different types. Where in the non-sequential

setting the patient is offered a set of appointments at the same time and the patient is supposed to

choose an appointment from them or leave without making an appointment. In the later setting,

each patient is offered appointments one at a time. If the patient does not like an appointment,

another option is offered or else the patient can leave without making an appointment. However,

in their model, the network structure is generated due to the flexibility of scheduling appointments

at different time slots on a given day. We consider a different network of clinics and physicians.

Customer preference has been studied extensively in revenue management, hospitality industry,

and assortment planning. In many ways, the assortment planning problem is similar to appoint-

ment scheduling. Assortment planning problems study the optimal offering of a set of products to

customers based on their choices. Bront et al. (2009) and Rusmevichientong et al. (2010) showed

that the assortment planning problem with multiple customer types where customers chose an

option from the offer set using a multinomial logit (MNL) model is NP-Hard. Gallego et al. (2011)

proposed a choice-based linear program which can be used to approximate the assortment planning

problem. We use a similar approach to solve the appointment scheduling problem. We refer to

Talluri and Van Ryzin (2004) for a more detailed review of assortment planning literature. Gallego

and Topaloglu (2014) and Rayfield et al. (2015) can be referred for a detailed overview of the

literature on the use of logit models in revenue management and product pricing problem. While a

substantial body of literature exists in healthcare appointment scheduling which focuses on deter-

mining choice model parameters, very few focus on the use of these models to maximize patient

access. To our knowledge only Rohleder (2000), Wang and Gupta (2011), Feldman et al. (2014),

Liu et al. (2019) and Liu et al. (2020) have considered patient preference in their appointment

scheduling models. Wang and Gupta (2011) also considered intra-day scheduling but overall patient

preference for physician and time slot is independently captured using fixed probabilities. Feldman

et al. (2014), on the other hand, considered inter-day patient preference with an MNL choice model
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(McFadden 1973). Liu et al. (2019) assumed that patients choose from available appointments

uniformly. Liu et al. (2020) focus on sequential offering of appointments where patient choice fol-

lows MNL distribution. Whereas, our study focuses on multi-dimensional patient preference for

physician, day and time of the appointment as well as the location of the clinics, for which we use

an MMNL model (McFadden and Train 2000) to represent heterogeneous patient preferences. The

MNL choice model estimates the parameter for every individual choice maker. However, a large

number of choice situations per individual is needed to estimate these parameters consistently.

On the other hand, MMNL can utilize any distribution for the random coefficients and allow for

“random taste variations and correlation in unobserved factors over time” (Train 2009). Rohleder

(2000) studied intra-day scheduling with three levels of patient preference, i.e., with three differ-

ent probabilities patients request special slots and these special slots can be determined from two

distributions (uniform and end-of-period). In the end-of-period policy patients request any of the

last five slots with equal probability.

Most of the literature in appointment scheduling is limited to only one or two patient classes.

However, in practice, patients can have multiple priorities and ignoring that can have signifi-

cant operational impacts. Patrick et al. (2008), Sauré et al. (2012) studied advanced appointment

scheduling for diagnostic resource and radiation therapy respectively, under the multi-priority

patient setting. Astaraky and Patrick (2015) considered multi-class surgical scheduling with multi-

resources. However, in all of these studies, the authors did not consider patient preferences, which

plays an important role in outpatient clinic scheduling. Wang et al. (2020) divided patients into

scheduled and walk-in classes. Lee et al. (2018) considered two patient types namely, returning and

follow-up. However, they did not consider walk-in patients. Stein et al. (2020) proposed a general

framework which considers n patient classes where each patient may consume variable capacity

from available resources. However, they do not consider no-show and overbooking in their model.

Feldman et al. (2014) proposed appointment scheduling policies for single patient class, making

their analysis simpler than ours. They explained how their approach of appointment scheduling

for single patient class can be extended to multiple patient class having heterogeneous preferences.

However, in this paper, we build upon their framework and propose appointment scheduling poli-

cies for the case of multiple appointment request classes as well as multiple physicians and multiple

clinic locations, thus a “nested” network. We consider three specific appointment request types,

Urgent (Walk-in), Flexible and Dedicated. In addition, with analytical and numerical results we

show that the proposed policies perform well in various conditions including more general demand

distributions. We also propose a framework for two-step clinic design process. In this framework,

we solve the joint appointment scheduling and physician capacity planning problem.
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The topic of no-show has been a focus of research for more than a decade now, because of its

impact on the overall healthcare system. Zeng et al. (2010) studied a problem with overbooking for

patients with heterogeneous no-show probabilities. They did not consider urgent patient demand

and only consider independent and identically distributed (iid) service times across patients. Liu

et al. (2010) proposed heuristic dynamic policies to appointment scheduling while considering

patient no-show and cancellation. But in their model, they did not consider patient preference

and assume that patients accept any available appointment given to them. Feldman et al. (2014)

proposed a general formulation for advanced appointment scheduling with no-show and cancella-

tion. They assumed a probability with which the clinics retain their patients until the day of the

appointment. This probability depends on the number of days between the scheduling day and

the appointment day (indirect waiting time). As patients schedule appointments further into the

future, they are less likely to be retained. Since no-show and cancellation have become standard

modeling components in patient scheduling, we include them in our model formulation.

3. The Preference-based “Nested” Network Model

We consider K= {1, ...,K} care providers who can treat patient at L= {1, ...,L} clinic locations.

Each clinic is covered by at least one care provider. We assume that the following sequence of events

occurs on each epoch. First, the appointment system checks the current schedule (state) and the

set of available appointments. This set is comprised of available physicians, days, time slots (same

day or future), and clinic locations. Second, arriving appointment requests are categorized into

one of the three classes (Dedicated, Flexible, Urgent). Third, a subset of appointments is offered

to the patients and they either choose to schedule an appointment or leave without scheduling.

Fourth, some patients with scheduled appointments may cancel their appointments or have a no-

show. Fifth, some physicians can cancel an already scheduled appointment, which will need to be

rescheduled in the future. We build upon the framework proposed by Liu et al. (2010) and Feldman

et al. (2014). Our objective is to offer the optimal set of appointments to patients based on their

preference for a physician, location, day and time, giving more flexibility to the patients. Note that

we do not consider access time and direct waiting time in the model.

The patient demand arises from three sources, denoted as c∈C= {D,F,U} for Dedicated, Flex-

ible and Urgent requests, respectively. These requests arrive independently following a Poisson

process. Let λD
l be the total arrival rate for Dedicated requests at location l. This dedicated request

has different arrival rates for different physicians. Therefore, by the Poisson thinning (sampling)

property, it can be considered as a separate subclass D1,D2, ...,DK , represented as λD
lk. Let λU

l be

the arrival rate of Urgent requests at location l ∈ L. In practice, Urgent requests do not need to

schedule appointments, but this demand needs to be accounted for in the scheduling model. Let
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λF be the total arrival rate of Flexible requests to the network. Patients with flexible requests can

be treated at any location and by any physician. This flexibility can be exploited by the network

provider so that more patients with Dedicated and Urgent requests can be treated at each location.

(Full flexibility is assumed. If Flexible requests can be fulfilled at only a subset of the locations,

then the network model can be decomposed into two disconnected networks.) Given any scheduling

policy, we let λF
l be the rate of Flexible requests that are “allocated” to location l ∈L. Evidently,

we must have λF =
∑

l∈L λ
F
l .

The proposed appointment scheduling framework can be depicted by a ‘nested’ network. The

overall appointment scheduling model has a network structure due to multiple locations (Fig 1).

On the other hand, the location specific appointment scheduling model has a slightly different

network structure due to the flexibility of physicians (Fig 2).

λU
1 λD

1 λF λD
2 λU

2
. . .

Location 1 Location 2 . . .

Figure 1 Overall scheduling network. λD
l = average arrival rate of Dedicated requests at location l. λF =

average arrival rate of Flexible requests. λU
l = average arrival rate of Urgent requests for location l

λD
l,1 λU

l λF
l

λD
l,2

Physician 1 Physician 2

Figure 2 Location specific scheduling network. λD
l,k = average arrival rate of Dedicated requests of at location

l for provider k. λF
l = average arrival rate of Flexible requests. λU

l = average arrival rate of Urgent requests for
location l

In this network, patients with Urgent requests can go to any clinic location and since they have

to be treated at that particular location we can consider them as l separate streams of patients

corresponding to the l clinic locations. Similarly, Dedicated requests can only be fulfilled at the

locations where their respective physicians are available. Finally, Flexible requests can be fulfilled

at any of the l clinic locations. At location level, Urgent and Flexible requests can be completed by
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any physician, while patients with Dedicated requests have to be seen by their respective physicians.

This pooling of physician capacity at multiple clinics to serve Flexible requests provide significant

benefit to healthcare providers. This provides more flexibility to patients, as well as helps with

better utilization of resources. In this paper, we assume complete flexibility of Flexible requests (we

discuss its extensions to limited flexibility in Section 10). We illustrate the advantages of network

effect through a numerical example in Section 7.3.3.

Let scheduling horizon be D= {0,1, ...,D}, where day 0 corresponds to the current day, and each

day is divided into T= {1, ..., T} time slots. We have, S= {(k, d, t, l)|k ∈K, d∈D, t∈T, l ∈L ⊂L}

is a set of all possible appointments. We offer a choice set S = {(k, d, t, l)|k ∈K ⊂K, d ∈ D ⊂

D, t∈T ⊂T, l ∈L ⊂L}, comprising of available physicians, days, time slots, and clinic locations.

Choice set S offered to patients is a subset of the all appointments S. This choice set differs by

patient class. Therefore, the offer set is represented as S c, for c∈C. The probability that a patient

schedules an appointment s = (k, d, t, l) ∈ S at location l with physician k at time slot t, d days

into the future is given as a joint probability function Ps(S c). Note that, all patients except ones

having Urgent requests have an option of not scheduling an appointment.

The patient choices in outpatient networks are modeled by an MMNL model. In MMNL models,

entities can be divided into distinct classes and each of these classes will have their own attribute

parameter values. For example, in this model patients requesting appointments for the same class

will have the same parameter values. However, these parameters vary across appointment class. One

of the advantages of MMNL over MNL is that it allows for different patients to have different choice

parameters. Given that we have divided appointment requests into three classes C= {D,F,U} and

availability set S c, we can write the choice probability as

Ps(S
c) =


vcs

1 +
∑

s′∈S c vcs′
, c∈ {D,F}, (1a)

vcs∑
s′∈S c vcs′

, c∈ {U}. (1b)

Here, each patient associates a preference weight of vcs with the option of scheduling an appoint-

ment s. The option of not scheduling an appointment has a nominal weight of 1 for Dedicated

and Flexible patient classes. These weights vcs can be calculated using discrete choice experiments

similar to Hole (2008). The availability sets are described as follows. For Dedicated requests of

physician k ∈K and location l ∈ L, S D
k,l = {(d, t)|d ∈ D ⊂ D, t ∈ T ⊂ T}; for Urgent requests at

location l ∈L, S U
l = {(k, d, t)|k ∈K ⊂K, d= 0, t∈T ⊂T, (k, d, t, l) /∈ {φ}}; where (k, d, t, l) /∈ {φ}

means that Urgent requests have to be fulfilled. Finally for the Flexible requests we have S F =

{(k, d, t, l)|k ∈K ⊂K, d∈D ⊂D, t∈T ⊂T, l ∈L ⊂L}.
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Henceforth unless specified we will use the generic offer set S c. Using the Poisson thinning

property we can divide the patient arrival at different nodes as λcPs(S c). The probability that a

patient leaves the system without making an appointment, can be given as

N(S c) = 1−
∑
s

Ps(S
c) =


1

1 +
∑

s′∈S c vcs′
, c∈ {D,F}, (2a)

0, c∈ {U}. (2b)

Once the appointments have been scheduled, a patient can cancel or may not show up. We

assume that the cancellation probability depends on the indirect waiting time and the patient class.

Similar to Feldman et al. 2014, we represent the retention probability (1 - cancellation probability)

of a patient of class c who called i days ago to make an appointment d days into the future from

today as δcid. Similarly, we represent the show-up probability (1 - no-show probability) for a patient

of class c who called i days prior to make an appointment for today and has not canceled it until

the current day as rci . These probabilities can be a general function of i, d and c.

4. The MDP Formulation

We formulate the problem of determining optimal probabilities with which to offer the appointment

scheduling problem as an MDP. Given the appointment requests on each day, patients are offered

a set of appointments. The Markov Decision process and its properties are presented below.

Scheduling Policy (π)Appointment Schedule

State (Z), Reward (Rπ)

Action (hπ)

Figure 3 Markov Decision Process: Schematic of policy-environment interaction.

State Space – Let Z(d) = {Zi,s,c(d)|k ∈ K,0 ≤ i ≤ d ≤ D, t ∈ T, l ∈ L, c ∈ C} be the appointment

schedule at the beginning of the day d, where Zi,s,c(d) is the number of requests of class c who called

in i days ago and booked an appointment s= (k, d, t, l), for d days into the future or (d− i+ d)

from day d. We assume that all appointments are of equal length.

Action Set – The task of the scheduler (an online system or a person) is to offer a set of appointments

to each patient at each decision epoch. Let hπ(Zπ(d),S c) denote the probability with which the

subset S c of appointments are offered to the patients having requesting a class c appointment
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on day d, when the system state is Z(d) under policy π. To be valid, any action must satisfy the

following constraints for all states Zπ(d):∑
S c

hπ(Zπ(d),S c) = 1, hπ(Zπ(d),S c)≥ 0, c∈C. (3)

Here, the first constraint in (3) states that requests of all classes have to be assigned a slot from

the set of available assignment slots corresponding to their class including the null set (no appoint-

ment). For example, patients with Dedicated requests will either be offered a set of appointments

to see their specific provider or none at all. On the other hand, patients with Urgent requests will

only be offered appointments on the same day, and they cannot leave without making an appoint-

ment. Finally, the offering probability should be non-negative, i.e., the second constraint in (3).

For notational brevity, we can represent the set of constraints as H.

Transition Probabilities – Under this policy the state, Zπi,s,c(d), evolves when appointments are

made and canceled. On any given day, if patients call to make appointments then we can update

the state by the expected number of appointments which will be scheduled. This expected number

can be calculated as a product of the arrival rate of the requests, the offer probability of set S c and

the selection probability of the patient. We also consider the retention probability (1 - cancellation

probability) δc0d for a patient of class c who called on the current day and scheduled an appointment

for day d. Specifically, we can write

Zπi,s,c(d+ 1) =

Pois (
∑

S c λcδc0dPs(S
c)hπ(Zπ(d),S c)) if 1 = i≤ d≤D

Bin
(
Zπi−1,s,c(d), δci−1,d

)
if 2≤ i≤ d≤D

(4)

Similarly, we assume that every day some random number of appointments are canceled. We

assume that this number follows a binomial distribution which can be computed as shown in (4).

Bin(n,p) represents a binomial random variable with parameters n = Zπi−1,s,c(d) and p = δci−1,d.

Here, n represents the number of appointments booked i− 1 days ago to book an appointment s

for class c and p represents the retention probability of patients who called i− 1 days ago to book

an appointment s. Similarly, there are some patients who call in on day d to make the same day

appointment. We can express this number as

Zπi,s,c(d) = Pois

(∑
S c

λcPs(S
c)hπ(Zπ(d),S c)

)
if i= d= 0 (5)

Net Reward – The total expected profit associated with a given state-action pair consists of three

components, revenue generated from completed appointments (R), overtime (Co) and idle time

cost (Cı) from appointments scheduled above and below the regular physician capacity respec-

tively. The regular capacity (Ckl) represents the number of appointments a provider k can com-

plete in regular time at a clinic location l on a given day. To model the resource uncertainty,
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we consider a probability γkl with which a physician retains any scheduled appointment, i.e.,

1−physician cancellation probability. We assume that
∑

k γkl > 0, i.e. not all physicians can cancel

the appointments at the same time at the same locations. There will be at least one physician to

cover a clinic location. This step can be ensured at the time of capacity allocation. Since patients

with Flexible and Urgent requests do not have a strict preference for physicians the capacity uncer-

tainty does not affect the revenue generated from appointment scheduled by them as long as there

is another physician who can complete the appointments. Additionally, patients with Dedicated

requests may want to reschedule the appointment. We further assume that with probability βc

patients with Dedicated requests may not reschedule the appointment. This results in a loss of

net revenue by βc(1− γkl). We assume βc = 0 for patients with requests of classes c ∈ {F,U}. The

rescheduled requests can be considered as new Dedicated request. This capacity uncertainty also

poses an extra burden on other physicians. Therefore, there will be an additional cost or penalty.

The new expected cost can be calculated by reducing the regular capacity of a particular physician

by a factor of γkl.

We formulate the three components of the objective as below. For each patient served, a nominal

revenue of 1 unit is generated. Therefore, the first component R on a given decision epoch d, can be

represented as R :=
∑

ktcli Y
π
ktlci(d), the number of appointments booked with provider k at location

l for day d and slot t on day d− i and the corresponding patients showed up for their appointment.

For i = 0 this is equal to the total number of same day appointment requests. For i > 0 we can

compute the number of requests resulting in patient showing up for their appointments using a

binomial distribution Bin(n,p). Here, n=Zπi,kitl,c(d) is the number of booked appointments at the

beginning of day d and p= rci is the probability that a patient will show up. Note that the no-show

rate depends on the patient type. We can represent Y π
ktlci(d) as

Y π
ktlci(d) =

Pois (
∑

S c λcrc0(1−βc(1− γkl))Pk0tl(S c)hπ(Zπ(d),S c)) if i= 0,

Bin
(
Zπi,kitl,c(d), rci

)
if 1≤ i≤D.

(6)

We assume that the system incurs a unit cost of θı for the idle time and θo for the overtime a

provider spends at a clinic. The second and the third components are due to overtime (Co) and

idle time cost (Cı) and are represented as

Co = θo
∑
k,l

[(∑
t

(
D∑
i=1

Zπi,kitl,c(d)

)
+Zπ0,k0tl,c(d)

)
− γklCkl

]+

,

Cı = θı
∑
k,l

[(∑
t

(
D∑
i=1

Zπi,kitl,c(d)

)
+Zπ0,k0tl,c(d)

)
− γklCkl

]−
,

respectively, where [.]+ = max{.,0} and [.]− =−min{.,0}. The cost is positive if the total number

of appointments scheduled for day d are higher or less than the expected physician capacity.
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Let Rπ(hπ(Zπ(d),S c)) be the immediate reward received after the transition from day d to d+1.

Then we have Rπ(hπ(Zπ(d),S c)) = R−Co −Cı. The objective is to find the best policy π that

maximizes the steady-state expected profit per day, i.e., solve the following maximization problem

sup
π

lim
d̄→∞

1
¯d+ 1

E

{
d̄∑

d=0

Rπ(hπ(Zπ(d),S c))

∣∣∣∣Zπ(0) = z

}
, ∀z,hπ ∈H (7)

where z is the initial state of the system.

We remark that the MDP formulation gives strict priority to Urgent requests so that they receive

treatment on the same day, and also gives priority to Dedicated requests in terms of their preference

of location and physician. However, Flexible requests are accommodated to the largest extent at

various locations of the hospital network while minimizing overtime and idle time cost.

The MDP problem formulation presented here suffers from the “curse of dimensionality” and

is intractable. First, the state space Zπ(d) is multidimensional and can alone grow large as the

decision epoch increases. Second, the decision variable hπ(Zπ(d),S c) is multidimensional in state

space, available appointments and patient class. Therefore, the number of decision variables will

increase exponentially. Using conventional dynamic programming algorithms such as value or policy

iterations becomes infeasible. In the following sections, we will study the properties of a single

period model and show how we can use this model to develop efficient ADP approach to solve the

appointment scheduling problem.

5. Properties of the Single Period Model

We now consider a single period model (static model) that makes each subset of choices in the

scheduling horizon available for appointments with a fixed probability without considering the

current state of the system. Therefore, we can define h(S c) as the fixed probability with which we

make the subset S c available to appointment requests of class c.

It is shown that retention probability is decreasing in d (day of appointment requested), so that

patients who schedule appointments further into the scheduling horizon are more likely to cancel

the appointments (Gallucci et al. 2005). Therefore, the overall probability that the appointment

is retained until the day of the appointment can be given as δ̄cd = δc0dδ
c
1d · · · δcdd, where δcd′d is the

retention rate for a patient of class c who called d′ day before and scheduled an appointment for

day d. This represents decreasing retention probability as d increases. Given that the patient has

not canceled her/his appointment until the day of the appointment, we assume a show-up rate (=

1 - No-show rate) of rcd for the patient. The offer probability h(S c) is determined by solving the

optimization problem that maximizes the net reward per decision epoch:

max
h∈H

R−Co−Cı (8)
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where
R=

∑
c,s,S c

λcαckdlδ̄
c
dPs(S

c)h(S c), Co = θo
∑
k,l

E[χ+
k,l], Cı = θı

∑
k,l

E[χ−k,l],

with αckdl = rcd(1−βc(1− γkl)), and χk,l = Pois

(∑
c,d,t,S c λcδ̄cdPs(S

c)h(S c)

)
− γklCkl.

Note that the constraints of this single period policy (8) are the same as in the multi-stage MDP

(7). The optimization program in (8) has 2|K||D||T||C| decision variables, which can grow exponentially

in practical situations. For example, for a clinic with 5 providers, a scheduling horizon of a week

and 4 time blocks per day, the total number of choices becomes 25∗7∗4∗3 = 2420. We present an

equivalent reformulation (9)-(15) below. The number of decision variables in the reformulation is

|S||C|+1, which makes the problem tractable. This approach was first used by Topaloglu (2013) to

study joint stocking and product offer decisions under the multinomial logit model. Feldman et al.

(2014) then use this approach for appointment scheduling for a single clinic single physician with

patients following the MNL choice model. Here, we adapt that approach to our network model

under the MMNL and multidimensional patient preferences.

Consider the following optimization problem where xs(c) can be interpreted as the probability

that a patient of class c schedules an appointment s and ul(c) represents the probability that a

patient of class c leaves without making an appointment at a clinic location l.

max
x,u

R̃− C̃o− C̃ı (9)

where

R̃=
∑
c,s

λcαckdlδ̄
c
dxs(c), C̃o = θo

∑
k,l

E[χ̃+
k,l], C̃ı = θı

∑
k,l

E[χ̃−k,l], χ̃k,l = Pois

(∑
c,d,t

λcδ̄cdxs(c)

)
−γklCkl

subject to ∑
d,t

xs(c) +ul(c) = 1 c=Dk,∀k ∈K,∀l ∈L (10)∑
s

xs(c) +
∑
l

ul(c) = 1 c= F (11)∑
k,d,t

xs(c) = 1 d= 0,∀l ∈L, c=U (12)

ul(c) = 0 ∀l ∈L, c=U (13)

xs(c)− vcsul(c)≤ 0 s∈ S, c∈ {D,F} (14)

xs(c), ul(c)≥ 0 ∀c∈C,∀s∈ S. (15)

Scheduling probabilities in the case of Dedicated patient class should sum up to 1 over all days and

time slots for all physician and clinic locations, as shown in (10). Constraint (11) represents that the

sum of probabilities for Flexible requests should be equal to 1 over all physicians, days, time slots
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and clinic locations. Similarly, (12) represents that the sum of probabilities for Urgent class should

be equal to 1 over all physicians and time slots for all locations on the same day (d=0). Urgent

class requests cannot remain unfulfilled (13). Constraint (14) defines the relationship between the

probabilities of scheduling and not scheduling an appointment for Dedicated and Flexible class

requests. For notational brevity we represent these feasibility constraints (10)–(15) as X . We derive

following theorem to show the equivalence of (8) and (9)-(15).

Theorem 1. h∗ = {h∗(S c) : S c ⊂ S, c ∈ C} is an optimal solution to the problem (8), if and

only if (x∗s(c), u
∗
l (c)) is a feasible solution to the problem (9)–(15), where

x∗s(c) =
∑
S c

Ps(S
c)h∗(S c), and u∗l (c) =

∑
S c

N(S c)h∗(S c), ∀c∈C.

The proof (Appendix C) follows by showing that if h∗ is an optimal solution to the original

problem, we can construct a solution (x∗, u∗) using the definition given above, which is feasible and

has an optimal objective equal to the original single period problem. Similarly, given the optimal

solution (x∗, u∗) we can construct an optimal solution h∗ as follows. We reorder and re-index

the appointment sets such that we have x∗s1(c)/vcs1 ≥ x
∗
s2

(c)/vcs2 ≥ · · · ≥ x
∗
sn

(c)/vcsn , where n is the

number of all available slots. We define the subsets S c
s1
,S c

s2
, ...,S c

sn
as S c

j = {s1, s2, ..., sj}. We set

xsn+1
= 0 for the scheduling probability for any appointment outside the scheduling horizon. We

can then let

h∗(φ) =


u∗l (c)−

x∗s1 (c)

vcs1
, c=Dk,∀k ∈K,∀l ∈L∑

l u
∗
l (c)−

x∗s1 (c)

vcs1
, c= F

0, for c=U,

h∗(S c
sj

) =



[
1 +

∑
s∈S c

j
vcsj

][
x∗sj (c)

vcsj
−

x∗sj+1
(c)

vcsj+1

]
, ∀c∈ {D,F}[∑

s∈S c
j
vcsj

][
x∗sj (c)

vcsj
−

x∗sj+1
(c)

vcsj+1

]
, ∀c=U

0, for S c 6⊂ S.

(16)

The resulting problem is nonlinear with convex and differentiable objective (Lemma 1) and linear

constraints. Additionally, the first and second derivatives of the objective function can be analyti-

cally computed (see proof of Lemma 1 in Appendix C). Therefore, we can find a global optimum

for this problem using gradient descent approaches such as sequential quadratic programming or

interior-point method.

Lemma 1. θoE[χ̃+
k,l] + θıE[χ̃−k,l] is convex and differentiable with respect to xs(c).

The static model above (9)–(15) proposes a simple strategy to assign appointment requests to

slots. We now develop bounds on the performance of this static model. To this end, we study a
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deterministic approximation of the static problem (9)–(15), where the objective function is the

deterministic analog of the net expected revenue generated from appointment completion (9). In

other words, we assume that the demand is deterministic and equal to the average arrival rate.

Consider the optimization problem:

max
(x,u)∈X

R̃− C̆o− C̆ı (17)

where

C̆o = θo
∑
k,l

χ̆+
k,l, C̆ı = θı

∑
k,l

χ̆−k,l, χ̆k,l =
∑
c,d,t

λcδ̄cdxs(c)− γklCkl.

This deterministic formulation (17) provides appointments to patients with a fixed probability

under the assumption that all random variables take their expected values. Our approach is to first

construct an upper bound on the expected profit per day generated by the optimal policy (V ∗),

which depends on the state of the system, given in (7). We use Lemma (2) and Proposition (1) to

give a performance bound for the scheduling probabilities from solving problem (9)–(15).

Lemma 2. Let Z∗ be the optimal objective of the problem (17). Then Z∗ ≥ V ∗ holds.

Let Π(x,u) be the objective function of this static problem. If (x∗, u∗) is an optimal solution

to this problem, then by the definition of h∗ (Theorem 1) the static policy generates an expected

profit of Π∗ per day. Because V ∗ is the optimal expected profit, we have Π∗/V ∗ ≤ 1. The following

proposition provides a lower bound on the ratio Π∗/V ∗.

Proposition 1. If Π∗ is optimal objective to the problem (8),

Π∗

V ∗
≥ 1− θo + θı√

2π
max

( ∑
kl(
∑

c,d,t λ
cδ̄cdv

c
s/ν

c)/
√
γklCkl− 1∑

c,s λ
cδ̄cd(α

c
kdl + θı)vcs/ν

c− θı
∑

kl γklCkl
,

1

α∗kdl
√

(γklCkl)∗− 1

)
(18)

where νc = 1 +
∑

s∈S c vcs and
∑

s∈S c vcs for c∈ {D,F} and c=U, respectively.

This theoretical bound has interesting properties. If a physician’s capacity is larger than the

total expected demand for that physician (
∑

c,d,t λ
cδ̄cdv

c
s/ν

c), then the denominator of the first

term in max(·, ·) can be simplified to
∑

c,s λ
c(αckdl + θı)v

c
s/ν

c − θı
∑

kl γklCkl. This represents the

revenue due to scheduled appointments. If the demand decreases or the capacity increases, the

idle time will increase or the number of appointments scheduled will decrease, resulting in the

lower bound. In contrast, if the demand increases or the capacity decreases, the single period

objective value approaches the optimal dynamic policy. Similarly, when the physician capacity is

smaller than the expected demand, the denominator can be simplified to α∗kdl
√

(γklCkl)∗− 1. In

this case, as the physician capacity increases, the objective value of single period scheduling policy

approaches the objective value of the dynamic optimal policy. We can further simplify the bound

when the minimum no-show rate is 0 or α∗kdl = 1. In cases when (θo + θı)/(α
∗
kdl

√
(γklCkl)∗− 1)< 1,
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we can simplify the bound as 1− 1/
√

2π. In a real clinic setting with a single specialty having

3 and 2 physicians at two clinics, an overtime and idle time cost of 1.5 times the regular pay, a

uniformly decreasing choice parameter max(1.5,5− 0.5d) and a scheduling horizon of 7 days, the

single period policy objective is theoretically at least 40.6% (62.8% practical bound) of the optimal

dynamic policy objective. Therefore, the single period scheduling policy can be used to get good

performance.

6. Development of Approximate Scheduling Policy

In the previous section, we discussed some structural properties of the single period scheduling

model. While this can be used in practice with a “good enough” solution quality, it does not

consider the current state of the system. In this section, we develop an approximate dynamic policy

which addresses this problem by proposing a dynamic policy. The main idea behind this policy is

that on each decision epoch patients will be offered a set of appointments optimally while assuming

that future appointments are offered using a fixed probability, h(S c) for S c ∈ S and c ∈ C. We

present a general derivation which is independent of the fixed probabilities used.

At any decision epoch we start with an appointment schedule z = {zi,s,c|1 ≤ i ≤ d ≤D}. This

represents the number of appointment requests of class c who called in i days ago and will book

an appointment s, d days into the future from today. Our objective is to find an optimal policy π

that allocates the requests arriving on the current decision epoch with probability q and assumes

a fixed probability h for requests which arrive on the future decision epochs.

We can rewrite the dynamic problem (7) as maximizing the difference of the long run total

expected rewards between the dynamic policy π and the static policy which uses fixed offer policy

h. Because both policies offer appointments using identical probabilities after the current decision

epoch. Since the appointments on current decision epoch can only be scheduled till day D (schedul-

ing horizon), the appointment schedules are stochastically identical beyond the scheduling horizon.

Therefore, the objective of the MDP (7) can be approximated by the difference between the total

expected rewards generated over next D + 1 days under the dynamic policy (Lπ) and the static

policy (L). This difference can be written as maxq∈HLπ(z, q, h)−L(z,h). Since the second term in

the objective is independent of q, we can further simplify it as maxq∈HLπ(z, q, h). Give the current

state of the system we can calculate the objective as

max
q∈H

∑
c,s

Gc,s(z, q, h)

where H is defined in (3) and G is defined by

Gc,s(z, q, h) =E

{
D−d∑
i=1

Āi,i+d + B̄d(q) +
d∑
i=1

C̄id(h)− θo

[
D−d∑
i=1

Ai,i+d(z) +Bd(q) +
d∑
i=1

Cid(h)− γklCkl

]+
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− θı

[
D−d∑
i=1

Ai,i+d(z) +Bd(q) +
d∑
i=1

Cid(h)− γklCkl

]−}
. (19)

Here, Ai,i+d is the number of requests arriving i days ago for an appointment d days from today and

will not be canceled by the morning of their appointments. Āi,i+d is the number of requests resulting

in patient show up. Similarly, Bd is the number of requests arriving today to make an appointment

for d days from today and will not result in cancellation till the day of the appointment. B̄d is the

number of requests resulting in patient show up. Cid is the number of appointments arriving on ith

day in the scheduling horizon for an appointment on dth day and will not be canceled till the day

of the appointment. Finally, C̄id is the number of requests resulting in patient show up. We can

define these variables as below

Ai,i+d = Bin(zi,i+d, δ
c
i,i+d), Āi,i+d = Bin(zi,i+d, α

c
kdlδ

c
i,i+d),

Bd = Pois
(∑

S c

λcδ̄cdPs(S
c)q(S c)

)
, B̄d = Pois

(∑
S c

λcαckdlδ̄
c
dPs(S

c)q(S c)
)
,

Cid = Pois
(∑

S c

λcδ̄d−iPk,d−i,t(S
c)h(S c)

)
, C̄id = Pois

(∑
S c

λcαckdlδ̄
c
d−iPk,d−i,t(S

c)h(S c)
)
, (20)

where zi,i+d = zi,k(i+d)tl,c is the number of requests arriving i days ago for an appointment d days

from today αckdl = rcd(1− βc(1− γkl)), and δci,i+d is the probability that a patient who called on

day i requests to make an appointment on day i+ d. δ̄d is the probability that the appointment is

retained until the day of the appointment. δ̄d is defined in section 5. The optimal policy q∗ depends

on the current state of the system z and can give the optimum appointment set offer probability.

Note that the number of decision variables in the current system still grows exponentially. Since the

problem structure is similar to the original single period problem (8), it can be reformulated to be

tractable by approximating the binomial random variables A and Ā as Poisson random variables

with their corresponding means.

7. Computational Experiments
7.1. Description of other heuristic policies

Here, we define a total of five scheduling policies which can be used for appointment scheduling

while considering heterogeneous patients preference. Some of these are discussed above and some

are aimed to capture real world appointment scheduling practices.

Current Policy (CP) is aimed to replicate the real world scheduling practices. In practice, when

a patient calls for an appointment, the scheduler asks for her/his preference and if available, it

is allocated to her/him. Otherwise, the patient will be put on a waiting list or she/he can leave

without making an appointment. In this approximation, we ignore any waiting list. Therefore, in
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this policy, we assume that all of the available appointments can be offered to patients according

to the choice probability of their request class.

Single Period Policy (SP) is obtained by solving the single period optimization problem (8) or

its tractable reformulation (9)–(15). The optimum offer set probability h∗ can be calculated from

the optimum scheduling probability (x∗, u∗) by using Theorem 1.

Dynamic Policy (DP) is obtained by solving the approximate dynamic policy problem

maxq∈H
∑

csGcs(z, q, h). Given the state of the system z and single period scheduling policy h, it

will give the scheduling probability with which an appointment is scheduled. This probability is

calculated at every decision epoch. Once the scheduling probability is obtained, we can calculate

the offer set probability hπ(Z(d),S c). In this policy, the single period offer probability is calculated

by solving the problem (8) and it stays constant throughout.

Dynamic - Current Policy (DCP) is similar to DP. The only difference is that we use the

choice probability (same as CP) to calculate the fixed scheduling policy h. Since we are comparing

the CP and SP it makes sense to create a dynamic policy which uses CP to schedule patients.

Open Access Policy (OAP) is widely used in many clinic setups. In this policy appointments are

only scheduled for short term, i.e., just on the same-day or in some cases same day and next-day.

We can develop a dynamic version of the OA policy with patient choice by changing the scheduling

horizon to 1 day, i.e., day 0 and 1. The rest of the procedures follow same as DP.

7.2. Data Description

All computational experiments were conducted using one year scheduling data from a single spe-

cialty clinics at a major healthcare system in the east coast of USA. In this specialty, 19 physicians

serve 7 clinics.

Arrival data and classification. In the historical scheduling data the appointments were categorized

into 3 classes, namely, new, returning and walk-in (same day). We assume that these appointments

belong to 3 classes of appointment requests, Urgent, Flexible, and Dedicated corresponding to the

appointments in the historical data. The average arrival rates for dedicated, flexible and urgent

requests were derived from the historically booked appointment and the patients in the waiting

list for each class. Due to the unavailability of categorized appointment requests in the historical

data we used the following classification as an estimate. New requests were assigned as Flexible,

the follow up requests were assigned as Dedicated, and requests without a prior appointment were

classified as Urgent. This classification of appointment requests can be improved by collecting data

on patient history and the type of healthcare service requested as future appointment requests

arrive. For the numerical experiments in this paper, the arrival rates for urgent requests vary

between 2.5 and 6.5 across different clinics, the arrival rate for all flexible appointments is 80, and

the arrival rates for dedicated appointments vary between 5.5 and 7 across all physicians.
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Capacity. The capacity Ckl was determined as the average number of appointment slots booked

by the physicians at the clinic location in the past one year. The average capacity for across all

providers was 7.5. For the numerical studies in subsections 7.3.2 and 7.3.3, we assume the capacity

uncertainty coefficient γkl to be 1 for all physicians. In subsection 7.3.4, we study the effect of γ

(capacity uncertainty) and β (probability that dedicated patients are not going to reschedule an

already scheduled appointment once it is canceled by the clinic) on the problem objective.

Cancellation Rate. After discussions with the schedulers, the cancellation rate was assumed to

be solely dependent on the difference between the day when appointment was made (i) and the

day of the appointment (d). We assume the probability of cancellation of requests (1 − δ̄cd) as

max(0.2,0.04(d − i)), which is a slight modification of the one used by Feldman et al. (2014).

This cancellation rate has an upper bound of 0.2 to make it more realistic for a longer scheduling

horizon. We assume that if an appointment was not canceled by the day of the appointment, the

patient will show up for the appointment.

Cost parameters. To see the sensitivity of overtime and idle time cost, we vary θo, θi as 1.25, 1.5,

and 1.75 assuming the regular revenue as 1. The idle time cost is assumed to be the same as

overtime cost.

Choice parameter. To see how sensitive the solution is to the choice parameter, we consider two

choice parameters, a uniformly decreasing parameter va = max(1.5,5−0.5d) and a constant param-

eter vb = 1.5 . We take the minimum choice parameter as 1.5 because the choice parameter corre-

sponding to not scheduling any appointment is 1, and we assume patients would prefer scheduling

an appointment compared to leaving without making any appointment.

Scheduling horizon. As the scheduling horizon affects the optimum profit and the schedule, we vary

the scheduling horizon (D) as 2, 7 and 15 days, which includes the current day. We assumed two

slots per day (morning, afternoon) for the computational experiment, since the choice parameters

depend on the different population setting.

7.3. Numerical Results

7.3.1. Design of numerical experiments We conducted simulation studies to compare

policies described in Section 7.1, with respect to the expected net profit per day. This profit

was calculated as the difference of the revenue generated from the total number of appointments

completed and the overtime and idle time costs because of the appointments scheduled over and

under the daily capacity limit respectively, of each physician. On each day, we determine the offer

set for each patient class using the policy definition. Then, we sample the total number of patients

requesting appointments for each class. Each patient chooses an appointment from the offer set

using the choice probability (1a)–(1b) or leaves without making an appointment. Once scheduled,



21

each patient can cancel the appointment based on the associated cancellation probability or have a

no-show on the day of the appointment. Using the updated schedule we calculate the revenue and

the number of appointments scheduled and hence the profit for that day. We repeat this process

for 100 days out of which the first 40 days are set as the warm up period. We conduct 100 such

replications. We keep the same random seed for different policies for a particular iteration to have

the same random demand. We used Intel® Xeon® CPU E5-2680 v3 @ 2.50GHz with 10 cores and

32 Gb RAM to conduct these simulations.

Table 1 Benchmark comparison of the scheduling policies

Choice Horizon θo = θı Expected net reward per day

DP DCP SP OAP CP

va

7

1.25 276.29 276.5∗(0.07) 267.59(-3.15) 276.67∗(0.14) 238.8(-13.57)

1.50 253.01 254.81∗(1.06) 242.02(-4.1) 253.28∗(0.33) 212.11(-16.02)

1.75 229.21 232.48∗(1.43) 216.14(-5.7) 229.34∗(0.06) 185.14(-19.23)

15

1.25 276.76 267.07(-3.5) 266.97(-3.54) 276.67∗(-0.03) 199.36(-27.97)

1.50 253.13 243.57(-3.81) 241.73(-4.51) 253.27∗(0.34) 171.11(-32.73)

1.75 229.21 219.47(-4.25) 215.99(-5.77) 229.34∗(0.06) 142.24(-37.94)

vb

7

1.25 263.63 259.81(-1.45) 247.95(-5.95) 260.42(-1.22) 223.2(-15.34)

1.50 241.34 237.02(-1.6) 222.12(-7.89) 236.99∗(-1.42) 195.87(-18.87)

1.75 218.28 214.12(-1.91) 196.12(-10.15) 213.2(-2.33) 168.31(-22.89)

15

1.25 262.68 246.68(-6.09) 248.37(-5.45) 260.42∗(-0.86) 160.7(-38.82)

1.50 240.68 221.76(-7.76) 222.68(-7.42) 236.92∗(-1.2) 129.75(-46.62)

1.75 218.15 196.36(-9.99) 196.64(-9.86) 213.2(-2.27) 98.17(-55)

(.) Percentage gap of different policies with respect to DP
* Performance of DP is statistically different except when marked
θ= overtime and idle time cost; va, vb = choice parameters

7.3.2. Benchmark comparison of various policies The benchmark comparison results of

the simulation are given in Table 1. The first three columns of the table describe each scenario,

which has different scheduling horizons, overtime and idle time cost parameter (θo = θı) and patient

choice parameter. The next five columns give the expected net reward per day by different policies

over different scenarios. The result from open access policy (OAP) is constant for different schedul-

ing horizon. We see that performance of DP is significantly better than other policies with 95%

confidence level in most scenarios, except in the case of OAP since the performance of DP does

not change significantly by the number of days in the scheduling horizon. From the performance

gap of different policies with respect to DP, we see that DP performs the best in all but 3 sce-

narios, where DCP gives better performance than DP. In these scenarios the scheduling horizon is

shorter and the choice parameter is decreasing uniformly. DCP likely performs worse because the

random scheduling policy CP is a short-sighted policy which does not consider long-term effects

and performs much worse for longer scheduling horizon. As the overtime cost and the scheduling
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horizon increase, it is important to offer the optimal set while considering future uncertainty. The

performance gap of SP and CP with respect to DP is up to 9.86% and 55.0%, respectively, making

CP the worst performing policy. This might be because these are static policies and cannot adapt

to the demand uncertainty and the changes in the schedules. On the other hand, DP and DCP

offer the appointment slot based on the appointment schedule on the current day. Since CP is the

most accommodating scheduling policy for the customers, it performs the worst. This change in

the objective varies by different overtime/idle time costs θ. As θ increases, the performance gap

with DP is increasing, meaning that DP performs even better with higher overtime and idle costs.

Therefore, in practice, appointment schedulers can see significant gains by using DP or OAP policy.

The choice parameters has significant impact on the objective values. We see that in case of

vb (where the preference weights remains constant as we go further in the booking period), DP

performs better compared to other policies. This implies that when patients are willing to wait

longer for their appointments, then the performance of DP is significantly better compared to

other policies. As the scheduling horizon increases, the performance of DP, SP and OAP remain

constant irrespective of the choice parameters. However, the performance of policies derived from

CP deteriorate as the scheduling horizon increases. This is more predominant in case of va. This

might be because with the choice parameter va, less and less patients schedule long term appoint-

ments. However, in the case of vb, more patients can schedule appointments later in the horizon,

thereby increasing the profit. But eventually, the effect of overtime cost and idle time cost causes

the overall objective to reduce faster.

7.3.3. Illustration of the network effect In our scheduling framework, we assume that the

Flexible appointment requests can be allocated to any clinic location and/or physician. Next we

illustrate advantages of using this pooled demand vs when these Flexible requests have independent

demand for each clinic and they are allocated to them separately without considering this pooling

effect. We conduct a numerical study where we compare the pooling effect scenario with a new

scenario where Flexible requests’ demand is equally divided to different clinic and we modify (11)

to allow patients to be seen only at corresponding clinic locations.

Table 2 shows that as the overtime cost increases, the improvement in the objective value pro-

vided by the pooled effect increases. Static Policy (SP) with the pooling effect can provide a

significant improvement of up to 8.6%. In the previous numerical study (Table 1), we saw that

the performance of SP remains constant for different scheduling horizon. We see similar pattern

here. We also observe that the performance gain provided by the pooling effect is more significant

when the choice parameter decrease with the scheduling horizon, compared to the case when the

choice parameter remain constant. Therefore, in practice, we should be able to see similar gains in
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Table 2 Benchmark comparison of the SP with demand pooling

Choice Horizon θo = θı Expected net reward per day for SP

No Demand Pooling Demand Pooling

va

7

1.25 265.27 267.5 (0.84)

1.50 232.84 241.82∗(3.86)
1.75 199.01 216.09∗(8.58)

15

1.25 265.34 267.5 (0.82)

1.50 233.11 241.85∗(3.75)
1.75 199.43 216.09∗(8.36)

vb

7

1.25 247.33 247.33(-0.0)

1.50 217.56 221.05∗(1.61)
1.75 186.09 194.91∗(4.74)

15

1.25 247.13 247.53 (0.16)

1.50 218.17 221.47 (1.51)

1.75 185.21 195.33∗(5.46)
(.) Percentage gap of different policies with respect to SP with no demand pooling
* Performance of SP with no demand pooling is statistically different except when marked
θ= overtime and idle time cost; va, vb = choice parameters

our objective function. The dynamic policies DP and DCP can provide advantage on top of these

gains provided due to the pooling effect. This numerical study shows that network pooling can be

a significant advantage, specially when patients are Flexible in their choice of clinic location.

7.3.4. Effects of physician uncertainty and rescheduling of Dedicated patients In

previous numerical studies, we assumed that physicians cannot cancel their appointment once they

are scheduled (γ = 1). In other words, there is no physician uncertainty. Now, we illustrate how

this physician uncertainty (γ) and the rescheduling probability of Dedicated requests (β) affects

the performance of our scheduling policies. We conduct numerical studies where γ ∈ {1,0.95,0.85}

and β ∈ {0.0,0.5,1.0}. The results of this study are shown in Table 3. Since there are no physician

cancellation for γ = 1, the objective does not vary for different values of β.

We observe from Table 3 that as γ decreases the objective value decreases in general, because

the effective physician capacity has reduced. We further see that as β increases the objective value

decreases, since less Dedicated requests are being rescheduled. We notice that this change is more

significant when the choice parameter decreases with scheduling horizon (va). We remark that

for smaller values of γ and β the objective value in the case of SP does not change significantly.

Therefore, in practice, SP will be robust to small changes in physician capacity. In the case of CP,

we see a different trend. The objective value first increases and then decreases as γ decreases. This

is an indicator of higher idle time cost in the beginning. As γ decreases, the effective physician

capacity is reduced, thereby, reducing the idle time cost and increasing the overall objective value.

But eventually the physician capacity becomes lower than the average demand. This leads to lower

objective value. From this study we can see that even in the case of significant physician uncertainty,

the proposed SP outperforms the CP policy in most scenarios.
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Table 3 Benchmark comparison of the SP with physician uncertainty

Policy Choice Horizon θo = θı Expected net reward per day for SP

γ =1.00 γ =0.95 γ =0.85

β = 0 β = 0 β = 0.5 β = 1 β = 0 β = 0.5 β = 1

SP

va
7

1.25 266.79 264.74∗
(−0.77)

261.60∗
(−1.94)

258.32∗
(−3.17)

242.49∗
(−9.11)

233.76∗
(−12.38)

220.61∗
(−17.31)

1.50 241.07 238.76∗
(−0.96)

235.83∗
(−2.17)

232.74∗
(−3.45)

202.41∗
(−16.04)

188.84∗
(−21.67)

176.99∗
(−26.58)

1.75 215.36 210.21∗
(−2.39)

204.83∗
(−4.89)

200.00∗
(−7.13)

166.09∗
(−22.88)

155.27∗
(−27.90)

142.03∗
(−34.05)

15
1.25 266.79 264.74∗

(−0.77)
261.60∗
(−1.94)

258.32∗
(−3.17)

242.49∗
(−9.11)

232.54∗
(−12.84)

217.65∗
(−18.42)

1.50 241.07 238.76∗
(−0.96)

235.83∗
(−2.17)

232.74∗
(−3.45)

201.71∗
(−16.33)

190.72∗
(−20.88)

175.19∗
(−27.33)

1.75 215.36 209.80∗
(−2.58)

205.19∗
(−4.72)

200.25∗
(−7.02)

165.05∗
(−23.36)

149.89∗
(−30.40)

141.62∗
(−34.24)

vb
7

1.25 247.92 249.65∗
(0.70)

245.59∗
(−0.94)

242.95∗
(−2.00)

235.97∗
(−4.82)

231.51∗
(−6.62)

219.50∗
(−11.46)

1.50 221.92 224.29∗
(1.07)

220.22∗
(−0.77)

217.74∗
(−1.89)

202.55∗
(−8.73)

188.97∗
(−14.85)

176.56∗
(−20.44)

1.75 195.90 198.62∗
(1.39)

194.66
(−0.63)

192.30∗
(−1.84)

164.87∗
(−15.84)

154.18∗
(−21.29)

138.86∗
(−29.12)

15
1.25 247.79 249.58∗

(0.72)
245.84∗
(−0.79)

243.17∗
(−1.86)

235.43∗
(−4.99)

231.15∗
(−6.71)

219.41∗
(−11.45)

1.50 221.93 224.20∗
(1.02)

220.51
(−0.64)

217.78∗
(−1.87)

202.40∗
(−8.80)

191.44∗
(−13.74)

176.87∗
(−20.31)

1.75 195.96 198.25∗
(1.17)

194.76
(−0.61)

192.16∗
(−1.94)

164.97∗
(−15.81)

152.18∗
(−22.34)

139.60∗
(−28.76)

CP

va
7

1.25 239.83 242.30∗
(1.03)

239.42
(−0.17)

235.76∗
(−1.69)

231.91∗
(−3.30)

226.14∗
(−5.71)

220.63∗
(−8.00)

1.50 213.22 216.40∗
(1.49)

213.67
(0.21)

210.03∗
(−1.49)

204.42∗
(−4.13)

199.82∗
(−6.28)

195.29∗
(−8.41)

1.75 186.61 190.49∗
(2.08)

187.92
(0.70)

184.30∗
(−1.24)

176.93∗
(−5.19)

173.50∗
(−7.03)

169.94∗
(−8.94)

15
1.25 199.46 208.92∗

(4.74)
204.94∗

(2.75)
201.02∗

(0.78)
212.41∗

(6.49)
204.91∗

(2.73)
197.53∗
(−0.97)

1.50 170.86 182.54∗
(6.83)

178.40∗
(4.41)

174.27∗
(2.00)

187.46∗
(9.72)

180.32∗
(5.54)

173.17∗
(1.35)

1.75 142.26 156.16∗
(9.77)

151.85∗
(6.74)

147.52∗
(3.70)

162.52∗
(14.24)

155.73∗
(9.47)

148.82∗
(4.61)

vb
7

1.25 223.38 229.41∗
(2.70)

225.93∗
(1.14)

221.79
(−0.71)

224.35
(0.44)

218.28∗
(−2.28)

211.78∗
(−5.19)

1.50 195.93 203.43∗
(3.83)

199.93∗
(2.04)

195.64
(−0.15)

198.02∗
(1.06)

192.76∗
(−1.62)

186.87∗
(−4.63)

1.75 168.49 177.45∗
(5.32)

173.94∗
(3.23)

169.49
(0.59)

171.68∗
(1.89)

167.23
(−0.75)

161.96∗
(−3.88)

15
1.25 162.12 175.01∗

(7.95)
170.93∗

(5.44)
168.11∗

(3.69)
188.97∗

(16.56)
181.47∗

(11.93)
174.02∗

(7.34)

1.50 131.02 146.89∗
(12.11)

142.56∗
(8.81)

139.61∗
(6.55)

164.53∗
(25.58)

157.05∗
(19.87)

149.50∗
(14.11)

1.75 99.91 118.77∗
(18.87)

114.18∗
(14.28)

111.10∗
(11.19)

140.10∗
(40.22)

132.63∗
(32.74)

124.98∗
(25.09)

(.) Percentage gap of different scenarios with respect to the case of no physician cancellation
* Performance of SP/CP without physician cancellation is statistically different except when marked
θ= overtime and idle time cost; va, vb = choice parameters
γ = probability that a physician retains their appointment
β = probability that a Dedicated patient will reschedule an appointment if it has been canceled by the physician

8. Robustness with Stochastic Intensity

We now assume that the demand follows a doubly stochastic Poisson process, where the mean

arrival rate is a random variable following a general probability distribution with finite support
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such that Λc has a probability mass function ζi := P(Λc = λci), ∀i ∈ 1, ..., n. In Appendix B, we

show that the new static policy objective function (27) is also differentiable and convex. Therefore,

we can still achieve a globally optimal solution to (27). We can use similar approach section 6 and

derive the results for all of the policies described in section 6. We conducted simulation experiments

with arrival intensities following finite support distribution λc + 0.1λc{n+1
2
− i} with probability

ζi = 1/n, where λc is the original arrival intensities used in section 7, i= 1, ..., n and n= 3. This

results in the same expected arrival rate as in Table 1.

Table 4 Benchmark comparison of the scheduling policies under stochastic arrival intensity

Choice Horizon θo = θı Expected net reward per day

DP DCP SP OAP CP

va

7

1.25 271.98 274.71∗(1) 256.11(-5.83) 272.9∗(0.34) 220.16(-19.05)

1.50 247.09 251.70∗(2.2) 229.89(-6.91) 248.61∗(0.77) 192.72(-22.27)

1.75 221.51 228.47∗(3.14) 202.98(-8.37) 223.79∗(1.03) 164.7(-25.65)

15

1.25 271.86 263.78∗(-2.97) 256.11(-5.79) 272.9∗(0.38) 182.01(-33.05)

1.50 247.10 237.58∗(-3.7) 229.38(-6.9) 248.64∗(0.88) 153.04(-38.63)

1.75 221.89 210.73(-5.03) 202.53(-8.72) 223.79∗(0.86) 123.4(-44.39)

vb

7

1.25 254.97 244.93(-3.94) 237.05(-7.03) 254.53∗(-0.17) 205.04(-19.58)

1.50 230.30 218.93(-5.07) 210.07(-8.84) 231.1∗(0.48) 176.9(-23.58)

1.75 205.45 192.29(-6.4) 182.45(-11.2) 207.49∗(1) 148.53(-27.7)

15

1.25 253.46 235.28(-7.17) 235.3(-7.17) 254.53∗(0.42) 143.21(-43.5)

1.50 229.49 207.88(-9.4) 209.62(-8.63) 231.25∗(1.13) 111.62(-52.09)

1.75 205.29 180.21(-12.22) 183.36(-10.69) 207.49∗(1.07) 79.25(-61.4)

(.) The quantity in the parenthesis is the percentage gap of different policies with respect to DP
* Performance of DP is statistically different except when marked
θ= overtime and idle time cost; va, vb = choice parameters

Comparison of Table 4 with Table 1 shows that the objective value reduces in comparison to

the case of constant arrival rate for all policies. The reduction is 5.9%, 10.2%, 3.40% and 13.04%

for DP, DCP, SP and CP, respectively. This shows that the affect of the uncertainty in demand is

more on CP and DCP compared to SP and DP. Similarly, the percentage gap of DP with respect to

all other policies have improved. The maximum percentage gap of SP and CP with respect to DP

has increased to 11.2% and 61.4%, respectively. Therefore, DP provides an additional advantage

compared to the other heuristic policies in case of more general patient demand .

9. Joint Appointment Scheduling and Capacity Planning

In this section, we leverage the proposed appointment scheduling framework to build a joint

appointment scheduling and physician capacity planning model. Here, we define a scenario Dynamic

Joint - Current Policy (DJCP), where we assume a fixed probability CP to schedule future appoint-

ments and our objective is to find the optimum scheduling probability and the optimum physician
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capacity for the current decision epoch d. We can formulate the DJCP problem for a single period

as in (9) by adding following additional constraints to the static problem discussed in section 5.

xs(c)≤Ckl, ∀s∈ S, ∀c∈C (21)∑
k

Ckl ≥ 0, ∀l ∈L (22)

and C ∈Ω, where Ω is the set of constraints which can be derived from physicians’ preference of

which clinic locations they can go to. Constraint (21) ensures that no appointments are scheduled if

physician capacity is not available and (22) is coverage constraint ensuring that all clinic locations

are covered by at least one physician. From the solution of this problem we can find the optimum

capacity and scheduling probability. Since the objective function of this problem is not differentiable

anymore, we solve this problem by reformulating it as a Mixed Integer Nonlinear Program (MINLP)

max
h∈H

E
[
R̃− Čo− Čı

]
(23)

where

Čo = θo
∑
k,l

χ̌+
k,l, Čı = θı

∑
k,l

χ̌−k,l, χ̌k,l =
∑
c,d,t

λcδ̄cdxs(c)− γkl
n∑
i=1

Čkl,i+1,

subject to

Ckl =
n−1∑
i=0

Čkl,i+1, ∀k ∈K, ∀l ∈L (24)

Čkl,i+1 ≥ Čkli, ∀k ∈K,∀l ∈L, ∀i∈ {0,1, ..., n} (25)

Čkli ∈ {0,1} , ∀k ∈K, ∀l ∈L (26)

where n is the upper bound on the capacity. Based on these relationships and given Ckl we can

determine Čkli and vice versa. By substituting the values (x,u,C ) and (x,u, Č ) into the objective

functions (23) and (9), respectively, we can show that the objective values are equal. Therefore,

we can say that these two formulations are equivalent.

Corollary 1. There exists a global optimal solution to the joint capacity planning and appoint-

ment scheduling problem (23) if Ω is a closed set.

Since Č belongs to a closed subset Ω and (23) is also convex and differentiable in terms of x

for a fixed Č (Lemma 1) we can say that there exists a global optimum for this MINLP problem.

However, this problem is not jointly convex anymore in x and Č due to binary variables. Therefore,

we cannot use gradient descent approaches to solve this problem. Proposition 2 shows the convexity

of (23) upon relaxing the binary variables. Since we can calculate the exact first and second

derivatives with respect to x, we are able to solve the original problem by using Generalized
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Bender’s decomposition. Therefore, we can solve this problem by decomposing it into a master

problem (Č -space) and a sub-problem (x-space).

Proposition 2. The continuous relaxation of the joint mixed integer nonlinear programming

problem (23) is a convex problem.

Table 5 Benchmark comparison of the DJCP and DCP under joint capacity planning and scheduling

Choice Horizon θo = θı DCP DJCP

va
7

1.25 276.5 283.80∗(2.64)
1.50 254.81 263.50∗(3.41)
1.75 232.48 242.96∗(4.51)

15
1.25 267.07 271.10∗(1.51)
1.50 243.57 249.10∗(2.27)
1.75 219.47 227.44∗(3.63)

vb
7

1.25 259.81 267.00∗(2.77)
1.50 237.02 246.18∗(3.86)
1.75 214.12 224.21∗(4.71)

15
1.25 246.68 237.08∗(-3.89)
1.50 221.76 212.80∗(-4.04)
1.75 196.36 188.20∗(-4.16)

(.) Percentage gap of different policies with respect to DCP
* Performance of DJCP is statistically different except items marked as *
θ= overtime and idle time cost; va, vb = choice parameters

Furthermore, we conduct numerical experiments to show that a meaningful gains in the net

objective can be achieved by using DJCP. From results shown in Table 5, we find that the DJCP

improves upon the best scheduling policy objective in all the scenarios by comparing these results

with Table 1. We can see that as the per unit overtime and idle time cost increases the improvement

in the objective produced by DJCP is higher. In our numerical experiments, we see improvements

of as much as 4.75%. Furthermore, we see that the benefit of using a joint planning and schedul-

ing is higher if patient choice parameters are decreasing with scheduling horizon. Therefore, this

policy might be helpful in real world HPNs where the physician capacity is limited. However, this

improvement in the performance gap does not change significantly with increasing horizon. For

the case of constant choice parameter vb the performance of DJCP is worse than DCP. This is

likely because we are using the random policy to assign future capacity and appointments and with

longer scheduling horizon performance of CP decreases rapidly (Table 1).

10. Conclusion

Through this work, our aim is to develop an implementable appointment scheduling system by

considering a setup that is more general than the ones presented in the literature. To develop and

test the model we rely on three main assumptions. First, we consider the availability of physicians as

the only resource needed to schedule an appointment. Second, we assume that patients with Flexible
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requests have complete flexibility and can be allocated to any clinic location. Similarly, Urgent

and Flexible requests can be fulfilled by any physician. Third, we use the common assumption in

appointment scheduling research of letting the demand follow a Poisson distribution.

Practical Implementation. This model is specially useful for online scheduling systems like Simply-

Book and Zocdoc, where healthcare systems can offer multiple appointments to patients so that

they can satisfy patient demand while maximizing profit and without losing any demand. In this

paper, we have developed an automated patient scheduling model which can generate appointment

sets to be offered to multi-priority patients with heterogeneous preferences, no-show and cancella-

tion probabilities and multiple resources. Our model offers a set of appointments to patients as soon

as appointment requests arrive. It does not assume a first-come-first-serve queue like traditional

scheduling models.

For practical implementation, as soon as the appointment request arrives, a scheduler (or the

online model) can run the chosen policy using the scheduling system. A subset of appointment

sets are then shown to the patient. This is more suitable for the online scheduling system since

the appointments are not shown sequentially. The single run of DP takes approximately 30 sec

to run on a 2.50GHz CPU with 4 cores and 16 Gb RAM. On the other hand, OAP and SP

take less than 15 seconds to run. Our results show that the proposed dynamic open access policy

(OAP) with scheduling horizon of two days, works quite well for almost all scenarios. Therefore, an

appointment set resulting in good performance can be shown to customers in very short time. After

that customer can select the preferred appointment. In most practical settings, different patients

will have varying preferences. We can use the Dynamic Policy (DP) to model this case by first

classifying the patient into the 3 patient classes. This policy assumes that future appointments are

scheduled with a fixed policy (SP, this can be achieved by assuming an average patient preferences).

Once an appointment request arrives, the preference specific to the requesting patient can be used

to solve the DP and to achieve the patient specific appointment set. Therefore, we can have as

many patient classes as the number of patients without increasing the number of decision variables.

Future work. The methodology could be expanded in the future along several directions. One pos-

sible direction is to refine the allocation of resources by considering room and nurse availability

in the formulation. Another direction could be to add simple linear constraints to allow Flexible

and Urgent requests to be completed by a specific physician, at a location of choice. For instance,

the pool of possible locations for the fulfillment of Flexible requests could be reduced based on

the location of the patient and distance that a patient is willing to travel. The addition of linear

constraints would change neither the structure of the formulation of this model, nor the solution

methodology because the constraint set will remain convex. Therefore, we can still use gradient
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descent techniques to solve the single step optimization problem. Additionally, empirical data could

be obtained regarding appointment requests so that an empirical distribution could be used to

generate a dynamic scheduling policy that does not rely on an unrealistic Poisson distribution.

In the development of the model, we also showed that the proposed policies are robust under

a more general doubly stochastic Poisson process. This shows the practicality of our proposed

scheduling policies. To our knowledge, appointment requests are not gathered in clinics and there

were no readily available datasets at the moment of the development of this model to test the

methodology under an empirical distribution of appointment requests. Given appropriate data, the

bounds around expected demand can also be used to model the appointment scheduling problem

as a robust dynamic programming problem. Reliable patient behavior data is currently a bot-

tleneck for healthcare systems to estimate various model parameters described in here. However,

online scheduling systems can easily collect data and compute these model parameters. This should

further improve the performance of the model. Finally, appointments of different length can be

considered by assuming different patient classes and patients needing these appointments can be

constrained so that they will not be offered other appointments. Note that we do not consider the

uncertainty of the length of appointment. Future work could include this feature to further improve

the patient experience. The aforementioned refinements to the model impose significant efforts in

data collection and relaxation of assumptions; however, it would be favorable for the model to be

implemented in healthcare sites to witness its efficacy in practical situations.

Overall, the framework presented here is a significant improvement in the existing development

of appointment scheduling system research. We proposed a more efficient, profitable system which

maximizes patient access that could be beneficial to healthcare providers and patients. This model

may serve as framework for future research that account for the heterogeneity/complexity in pref-

erences, need, and availability.
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Appendix A: List of Notation

Parameter Description

k Index corresponding to physicians
l Index corresponding to location
d Index corresponding to day of appointment
t Index corresponding to time slot of appointment
c Index corresponding to class of patient
s Index corresponding to an appointment (k, d, t, l)
K Number of physicians
L Number of clinic locations
D Number of days in scheduling horizon
T Number of slots in a given day
K Set of physicians
L Set of locations
C Set of patient classes
D Set of days in scheduling horizon
T Set of slots in a day
S Set of all appointments
λD
lk Arrival rate of dedicated requests for location l and physician k
λU
l Arrival rate of urgent requests
λF Arrival rate of flexible requests
S Subset of appointments offered to patient requesting appointment
S c Subset of appointments offered to patient of class c
vcs Utility /preference weight of the appointment s for patient c
Ps(S

c) Probability that an appointment s is selected if a subset S c is offered
N(S c) Probability that a patient leaves the system without making an appointment
δcid Probability with which patient of class c retain an appointment booked i days ago

for d days into the future from current day
rc Probability with which patient of class c will show up for an appointment scheduled

for current day and booked i days prior
Z(D) Appointment schedule at the beginning of the day D
Zi,s,c(D) Number of appointments requests of class c arriving on i days ago for an appoint-

ment s for d days into the future
hπ(Zπ(D),S c) Probability with which a subset S c of appointments are offered to the patients with

class c requests for an appointment on day D when the state of the system is Z(D)
under policy π

H Set of the constraints of MDP
R Revenue generated from total completed number of appointments under the single

period policy
Co Overtime cost under the single period policy
Ci Idle time cost under the single period policy
Ckl Number of appointments a provider k can complete in regular time at a clinic

location l on any given day
γkl Probability with which a physician k retains any scheduled appointment at a loca-

tion l
βc Probability with which a dedicated patient will not reschedule a canceled appoint-

ment
Y π
ktcli The number of appointment requests booked with provider k at location l for day

d and slot t on day d− i and showed up
θo Overtime cost
θi Idle time cost
xs(c) Probability with which a patient of class c schedules an appointment s
ul(c) Probability which which a patient of class c leaves a location without making an

appointment
R̃ Revenue generated from total completed number of appointments given determin-

istic patient demand using single period policy for the reformulated problem (9)



33

Parameter Description

C̃o Overtime cost patient demand using single period policy for the reformulated prob-
lem (9)

C̃i Idle time cost patient demand using single period policy for the reformulated prob-
lem (9)

C̆o Overtime cost given deterministic patient demand using single period policy (17)
C̆i Idle time cost given deterministic patient demand using single period policy (17)
V ∗ Expected net reward generated by the optimal policy which solve the MDP (7)
Z∗ Optimal objective value of the single period deterministic problem (17)
Π Optimal objective value of the single period stochastic problem (9)
Lπ Net reward generated over next |D|+ 1 days under the dynamic policy π
L Net reward generated over next |D|+ 1 days under the single period policy
q Probability with which the approximate dynamic programming policy allocates

appointment requests on day d
R̂ Revenue generated from total completed number of appointments given doubly

stochastic patient demand (27)
Ĉo Overtime cost of scheduled appointments given doubly stochastic patient demand

(27)
Ĉi Idle time cost of scheduled appointments given doubly stochastic patient demand

(27)
ζi Probability mass function of the stochastic arrival rate of patient demand
Ω Set of capacity constraints
Čo Overtime cost of scheduled appointments in the joint appointment schedule and

capacity planning problem (21)
Čo Idle time cost of scheduled appointments in the joint appointment schedule and

capacity planning problem (21)
Čkli Binary variable used to compute the capacity of physician k at location l in the

joint appointment schedule and capacity planning problem (23)

Appendix B: Robustness with Stochastic Intensity

In this extension we assume that the demand follows a doubly stochastic Poisson process, where the mean

arrival rate is a random variable following a general probability distribution with finite support such that

Λc has a probability mass function ζi := P(Λc = λci ), ∀i∈ 1, ..., n.

The single period scheduling problem can be written as:

max
h∈H

E
[
R̂− Ĉo− Ĉı

]
(27)

where

R̂=E

{
Pois

( ∑
c,s,S c

Λcαckdlδ̄
c
dPs(S

c)h(S c)

)}
,

Ĉo = θo
∑
k,l

E[χ̂+
k,l], Ĉı = θı

∑
k,l

E[χ̂−k,l],

with

χ̂k,l = Pois

( ∑
c,d,t,S c

Λcδ̄cdPs(S
c)h(S c)

)
− γklCkl.

Using conditional expectations we have

E
[
R̂
]

=

n∑
i=1

ζiE

{
Pois

( ∑
c,s,S c

λciα
c
kdlPs(S

c)h(S c)

)}
=
∑
c,s,S c

αckdlPs(S
c)h(S c)E [Λc] .
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Similarly we obtain

E
[
Ĉo
]

=

n∑
i=1

ζiE


[

Pois

( ∑
c,d,t,S c

λciPs(S
c)h(S c)

)]+ .

It is evident that the objective function (27) is differentiable and convex by following a similar logic shown

in Lemma 1. Therefore, we can obtain an optimal solution to the single period problem with arrival rate

following a doubly stochastic Poisson arrival when arrival intensity has a finite support. Similarly we can also

rewrite the objective (19) of the approximate dynamic policy as E[Gc,s(z, q, h,Λ
c)] =

∑n

i=1Gc,s(z, q, h,λ
c
i )ζi.

We can derive results for this extension by following the similar approach in the previous sections.

Appendix C: Proofs of Technical Results

Theorem 1 h∗ = {h∗(S c) : S c ⊂ S, c ∈ C} is an optimal solution to the problem (8), if and only if

(x∗s(c), u
∗
l (c)) is a feasible solution to the problem (9)–(15), where

x∗s(c) =
∑
S c

Ps(S
c)h∗(S c), and u∗l (c) =

∑
S c

N(S c)h∗(S c), ∀c∈C.

First, given that h∗ = {h∗(S c)} is an optimal solution to the original problem (8), we show that (x∗, u∗)

is a feasible and optimal solution to the reformulation (9)–(15). If we substitute the value of (x∗, u∗) in (10),

then we have for c=Dk, ∀k ∈K,∑
d,t

xkdtl(c) +ul(c) =
∑
S c

h(S c)

[∑
s

Ps(S
c) +N(S c)

]
=
∑
S c

h(S c) = 1, (28)

where the second equality follows from the definition of choice probability (1a)–(2b). Therefore, (x∗, u∗)

satisfies (10) in the single period case. Similarly, we can show that (x∗, u∗) satisfies (11) by substituting the

value in (11) for c∈ {F}. (x∗, u∗) satisfies (12) for c= U, we can see that by substituting the value of (x∗, u∗)

in (12), ∑
k,d,t

xkdtl(c) =
∑
S c

(∑
k,d,t

Pkdtl(S
c)

)
h(S c) =

∑
S c

h(S c) = 1. (29)

Similarly using the definition of u∗l (c) we have for c= U, ul(c) =
∑

S cN(S c)h(S c) = 0, which satisfies (13).

Now we use indicator function 1(·) to show that (x∗, u∗) satisfies (14). Using the definition of (x∗, u∗) we

have for c∈ {D,F},

x∗s(c)

vcs
=
∑
S c

1(s∈S c)h∗(S c)

1 +
∑

s′∈S c vcs′
≤
∑
S c

h∗(S c)

1 +
∑

s′∈S c vcs′
=
∑
S c

N(S c)h∗(S c) = u∗l (c). (30)

Finally, by substituting the value of (x∗, u∗) in the objective function of the reformulation single period

scheduling problem (9), we can see that it has the same value as the objective of the original single period

objective function (8).

Now we show the second part of the proof by assuming that (x∗, u∗) is an optimal solution to the problem

(9)–(15). Before that, we construct an optimal solution h∗ to the original single period problem using (16).

We reorder the appointments such that x∗s1(c)/vcs1 ≥ · · · ≥ x
∗
sn

(c)/vcsn , where n is the maximum number of

available appointments. Let the appointment request by patient sj = (k, d, t, l) be the jth appointment in the
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above sequence. Now, we can define S c
j with the reordered and redefined sequence as {s1, ..., sj}. Therefore,

we can write ∑
S c⊂S

Psj (S
c)h∗(S c) =

n∑
i=1

Psj (S
c
i )h∗(S c

i ) =

n∑
i=j

Psj (S
c
i )h∗(S c

i )

=

n∑
i=j

vcsj

[
x∗si(c)

vcsi
−
x∗si+1

(c)

vcsi+1

]
= x∗s(c). (31)

In above relationship, the first equality follows from the fact the φ (in the case of dedicated and flexible

requests) and S c
i , i= 1, ..., n, is the list of all available appointments and h∗ is zero for any other appointment

by design. The second equality follows from the fact that sj ∈S c
i only if i≥ j and the third equality follows

from the definition of choice probability (1a)–(1b) and h∗ in (16). The final equality follows from noting that

x∗n+1(c) = 0 and sj is the appointment requested by the patient s.

Now we show that h∗ is a feasible solution the problem by substituting the value in the single period

constraint of (3) as below

∑
S c⊂S

h∗(S c) =



u∗l (c)−
x∗s1

(c)

vcs1
+
∑n

i=1

[
1 +

∑
s∈S c

i
vcsi

][
x∗si

(c)

vcsi
−

x∗si+1
(c)

vcsi+1

]
, c∈Dk,∀k ∈K,∀l ∈L∑

l
u∗l (c)−

x∗s1
(c)

vcs1
+
∑n

i=1

[
1 +

∑
s∈S c

i
vcsi

][
x∗si

(c)

vcsi
−

x∗si+1
(c)

vcsi+1

]
, c∈ F∑n

i=1

[∑
s∈S c

i
vcsi

][
x∗si

(c)

vcsi
−

x∗si+1
(c)

vcsi+1

]
, c= U

=


u∗l (c) +

∑n

i=1 xsi = u∗(c) +
∑

s
xs(c) = 1, c∈Dk,∀k ∈K, l ∈L∑

l
u∗l (c) +

∑n

i=1 xsi = u∗(c) +
∑

s
xs(c) = 1, c∈ F∑

k,d=0,t xk,d,t = 1, c= U.

(32)

The second equality follows by expanding and simplifying the summation expression. The third equality

follows by the assumption that (x∗, u∗) is a feasible solution to the reformulation (9)–(15). Finally, by

substituting the value of h∗ in the objective function (8), we can see that it has the same value as we obtain

from (9) at the optimal solution (x∗, u∗). This completes the proof. �

Lemma 1 θoE[χ̃+
k,l] + θıE[χ̃−k,l] is convex and differentiable with respect to xs(c).

Let F (ψ) = E
{
θo [Pois(ψ)−C ]

+
+θı [Pois(ψ)−C ]

− }
. By using the probability mass function of the Poisson

distribution, we can write

F (ψ) = θo

∞∑
bCc+1

e−ψψi

i!
(i−C ) + θı

dCe−1∑
i=0

e−ψψi

i!
(C − i)

= θo

( ∞∑
bCc+1

e−ψψi

(i− 1)!
−

∞∑
bCc+1

e−ψψi

i!
C

)
+ θı

( dCe−1∑
i=0

e−ψψi

i!
C −

dCe−1∑
i=0

e−ψψi

(i− 1)!

)

= θo

(
ψ

∞∑
bCc

e−ψψi

i!
−C

∞∑
bCc+1

e−ψψi

i!

)
+ θı

( dCe−1∑
i=0

e−ψψi

i!
−ψ

dCe−2∑
i=0

e−ψψi

i!

)
= θo (ψP{Pois(ψ)≥C }−CP{Pois(ψ)≥C + 1})

+ θı (CP{Pois(ψ)≤C -1}−ψP{Pois(ψ)≤C -2}) . (33)
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The differentiability of the above expression follows by the differentiability of Poisson cumulative distribution

function (cdf) with respect to its mean. We can calculate the derivative of the Poisson cdf as

dP{Pois(ψ)≥C }
dψ

=−dP{Pois(ψ)≤C − 1}
dψ

=−
bCc−1∑
i=0

d( e
−ψψi

i!
)

dψ

=

bCc−1∑
i=0

e−ψψi

i!
−
bCc−1∑
i=1

e−ψψ(i−1)

(i− 1)!
= P{Pois(ψ) = C − 1}. (34)

By differentiating both sides of (33) and substituting the differentiation of poisson cdf from (34), we obtain

dF (ψ)

dψ
= θo (P{Pois(ψ≥C )}+ψP{Pois(ψ) = C − 1}−CP{Pois(ψ) = C })

− θı (CP{Pois(ψ) = C -1}+P{Pois(ψ)≤C -2}−ψP{Pois(ψ) = C -2})

= θo

(
P{Pois(ψ)≥C }+ψ

e−ψψC−1

(C − 1)!
−C

e−ψψC−1

C !

)
− θı

(
P{Pois(ψ)≤C − 2}+ C

e−ψψC−1

(C − 1)!
−ψe

−ψψC−2

(C − 2)!

)
= θoP{Pois(ψ)≥C }− θıP{Pois(ψ)≤C − 1}. (35)

To determine the convexity of F (ψ), we can calculate the second order derivate of F (ψ)

d2F (ψ)

dψ
=
d(P{Pois(ψ)≥C }−P{Pois(ψ)≤C − 1})

dψ
= θoP{Pois(ψ) = C − 1}+ θıP{Pois(ψ) = C − 1}. (36)

Since Poisson probability mass function is always positive, we can conclude that the function F (ψ) and

therefore, E
{∣∣∣Pois

(∑
c,d,t

λcδ̄cdxkdt(c)
)
−C

∣∣∣} is convex and differentiable. �

Lemma 2 Let Z∗ be the optimal objective of the problem (17). Then Z∗ ≥ V ∗ holds.

Given that we use the optimal policy, let π∗(S c) be the steady state probabilities with which we offer

a subset S of appointments to patients with class c requests. Therefore, we represent the total number

of patients who requested an appointment s and were scheduled under the optimal policy by a Poisson

random variable A∗s with mean
∑

c,S c λcPs(S c)π∗(S c). Similarly, we let R∗s be the total number of patients

who requested an appointment s and were scheduled under the optimal policy and were retained until the

day of the appointment. Finally, we denote the total number of patients who requested an appointment s

and were scheduled under the optimal policy and showed up as a random variable S∗s . Furthermore, the

show-up and retaining probabilities are independent of the number of patients scheduled. Therefore, we have

E{S∗s}= αcklδ̄
c
dE{A∗s} and E{R∗s}= δ̄cdE{A∗s}. We can calculate the expected profit per day using the optimal

state-dependent policy as

V ∗ =E{
∑

s S
∗
s}−

∑
k,lE

{
θo

[∑
d,tR

∗
kdtl− γklCkl

]+
+ θı

[∑
d,tR

∗
kdtl− γklCkl

]−}
≤
∑

s
E{S∗s}−

∑
k,l

(
θo

[∑
d,t

E{R∗kdtl}− γklCkl
]+

+ θı

[∑
d,t

E{R∗kdtl}− γklCkl
]−)

=
∑
c,s,S

λcαcklδ̄
c
dPs(S

c)π∗(S c)−
∑
k,l

θo
[ ∑
c,d,t,S

λcδ̄cdPkdt(S
c)π∗(S c)− γklCkl

]+
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+θı

[ ∑
c,d,t,S

λcδ̄cdPkdt(S
c)π∗(S c)− γklCkl

]−}
≤Z∗. (37)

Here, the first inequality is by the Jensen’s inequality. The second equality is by the definition of E{S∗s} and

E{R∗s}. For the second inequality, we note that π∗(S c) is a feasible but not necessarily optimal solution to

the problem

max
∑
c,s,S c

λcαcklδ̄
c
dPs(S

c)ω(S c)−
∑
k,l

{
θo

[ ∑
c,d,t,S c

λcδ̄cdPkdt(S
c)ω(S c)− γklCkl

]+
+θı

[ ∑
c,d,t,S c

λcδ̄cdPkdt(S
c)ω(S c)− γklCkl

]−}
s.t.

∑
S c

ω(S c) = 1 ∀c∈C

ω(S c)≥ 0 ∀c∈C.

By using the arguments in proof of Theorem 1, the optimal objective values of this problem and problem

(17) are equal. This completes the proof. �

Proposition 1 If Π∗ is optimal objective to the problem (8),

Π∗

V ∗
≥ 1− θo + θı√

2π
max

( ∑
kl

(
∑

c,d,t
λcδ̄cdv

c
s/ν

c)/
√
γklCkl− 1∑

c,s
λcδ̄cd(α

c
kdl + θı)vcs/ν

c− θı
∑

kl
γklCkl

,
1

α∗kdl
√

(γklCkl)∗− 1

)
(38)

Let (x̂, û) be an optimal solution to the problem (17). Then we have Π(x∗, u∗) ≥ Π(x̂, û) because

(x̂, û) is a feasible but not necessarily optimal solution to the problem (9)–(15). Now, using Lemma 2

we have Π(x∗, u∗)/V ∗ ≥ Π(x̂, û)/V ∗ ≥ Π(x̂, û)/Z∗. Therefore, it is enough to show that the expression

on the right hand side of (38), provides a lower bound on Π(x̂, û)/Z∗. For notation brevity we let φ =∑
c,s
λcαcklδ̄

c
dx̂s(c)−

∑
c,l
λcul(c) and ψkl =

∑
c,d,t

λcδ̄cdx̂kdtl(c). We derive an upper bound on the expectation

E{θo [Pois(ψkl)− γklCkl]+ + θı [Pois(ψkl)− γklCkl]−} as below:

θo

∞∑
j=bγklCklc+1

[j− γklCkl]+
e−ψklψjkl

j!
+ θı

dγklCkle−1∑
j=0

[j− γklCkl]−
e−ψklψjkl

j!

≤ θo [ψkl− γklCkl]+ + θo

∞∑
j=bγklCklc+1

[
[j− γklCkl]+− [ψkl− γklCkl]+

] e−ψklψjkl
j!

+ θı [ψkl− γklCkl]−+ θı

dγklCkle−1∑
j=0

[
[j− γklCkl]−− [ψkl− γklCkl]−

] e−ψklψjkl
j!

≤ θo [ψkl− γklCkl]+ + θo

∞∑
j=bγklCklc+1

[j−ψkl]
e−ψklψjkl

j!

+ θı [ψkl− γklCkl]−− θı
dγklCkle−1∑

j=0

[j−ψkl]
e−ψklψjkl

j!

= θo [ψkl− γklCkl]+ + θoψkl
e−ψklψbγklCklckl

Γ(bγklCklc+ 1)
+ θı [ψkl− γklCkl]−+ θıψkl

e−ψklψdγklCkle−1kl

Γ(dγklCkle)

≤ θo [ψkl− γklCkl]+ + θoψkl
e−bγklCklc(bγklCklc)bγklCklc

Γ(bγklCklc+ 1)
+ θı [ψkl− γklCkl]−
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+ θıψkl
e−dγklCkle(dγklCkle)dγklCkle−1

Γ(dγklCkle)

≤ θo [ψkl− γklCkl]+ + θı [ψkl− γklCkl]−+ θoψkl
e−bγklCklc(bγklCklc)bγklCklc√
2πbγklCklc(bγklCklc/e)bγklCklc

+ θıψkl
e−dγklCkle−1(dγklCkle− 1)dγklCkle−1√

2π(dγklCkle− 1)(dγklCkle− 1)(dγklCkle−1)e−dγklCkle−1

= θo [ψkl− γklCkl]+ + θı [ψkl− γklCkl]−+ θo
ψkl√

2πbγklCklc
+ θı

ψkl√
2π(dγklCkle− 1)

≤ θo [ψkl− γklCkl]+ + θı [ψkl− γklCkl]−+
θo + θı√

2π

ψkl√
γklCkl− 1

. (39)

The first equality follows by the probability mass function of Poisson distribution. The first inequality follows

by adding and subtracting [ψkl− γklCkl]+ and [ψkl− γklCkl]− on the left side of this inequality. The second

inequality follows by noting two cases. First, for j ≥ γklCkl,
[
[j− γklCkl]+− [ψkl− γklCkl]+

]
≤ j − ψkl. We

can show this by using conditions j,ψkl ≥ bγklCklc+ 1 and j ≥ bγklCklc+ 1 ≥ ψkl. Similarly, we can show

that for j ≤ γklCkl,
[
[j− γklCkl]−− [ψkl− γklCkl]−

]
≤ψkl− j. The second inequality follows by arranging the

terms in the summation on the left side of the equality and the third inequality follows because the function

f(ψkl) = e−ψklψγklCklkl attains its maximum at ψkl = γklCkl. The fourth inequality follows by noting that

Γ(bγklCklc+ 1)≥
√

2πbγklCklc(bγklCklc/e)bγklCklc by Stirling’s formula.

Now we construct a lower bound on Z∗. To that end, we find a feasible solution (xcs, u
c) to Z for two cases.

For the first case
∑

c,d,t
λcδ̄cdv

c
s/ν

c <γklCkl, we find a feasible solution by setting xcs = vcs/ν
c and uc = 1/νc as

a feasible solution, where νc is 1 +
∑

s∈S c
j
vcs and

∑
s∈S c

j
vcs for c∈ {D,F} and c= U, respectively. Using this,

we can bound Z∗ as Z∗ ≥
∑

c,d,k,l,t
λcαcklδ̄

c
dv
c
s/ν

c− θı
∑

kl
(γklCkl−

∑
c,d,t

λcδ̄cdv
c
s/ν

c). Similarly for the second

case
∑

c,d,t
λcδ̄cdv

c
s/ν

c ≥ γklCkl, we can bound Π/Z∗ by the following:

1−

[φ−
∑

k,l(θo[ψkl− γklCkl]+ + θı[ψkl− γklCkl]−)]−
[φ−

∑
k,l

E{θo[Pois(ψkl)− γklCkl]+ + θı[Pois(ψkl)− γklCkl]−}]
Z∗

≥ 1− θo + θı√
2π

∑
k,l

ψkl√
γklCkl−1

Z∗

≥ 1− θo + θı√
2π

∑
k,l

ψkl√
γklCkl−1

(α∗kl− θo)
∑

kl
ψkl + θo

∑
kl
γklCkl

≥ 1− θo + θı√
2π
√

(γklCkl)∗− 1

1

(α∗kl− θo) + θo
∑
kl γklCkl∑
kl ψkl

≥ 1− 1√
2π

θo + θı

α∗kl
√

(γklCkl)∗− 1

where α∗kl = maxαkl and (γklCkl)∗ = maxγklCkl. The first inequality follows from (39). The second inequality

follows from substituting the value of Z∗ and α∗kl. The third and the fourth inequalities are from substituting

the value of (γklCkl)∗ and from the case that ψkl ≥ Ckl. We can use both of these cases to generate lower

bound on Π/Z∗ as follows

1− θo + θı√
2π

∑
k,l

ψkl√
γklCkl−1

Z∗

≥ 1− θo + θı√
2π

max

( ∑
kl

(
∑

c,d,t
λcδ̄cdv

c
s/ν

c)/
√
γklCkl− 1∑

c,s
λcδ̄cd(α

c
kl + θı)vcs/ν

c− θı
∑

kl
γklCkl

,
1

α∗kl
√

(γklCkl)∗− 1

)
. (40)
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This completes the proof. �

Proposition 2 The continuous relaxation of the joint mixed integer nonlinear programming problem (23)

is a convex problem.

Since the revenue R̃ is linear in x and independent of
ˆ
C , we only need to show that

ˆ
Co +

ˆ
Cı is convex in

x and
ˆ
C assuming that

ˆ
C ∈ [0,1]. For notational brevity we can write

ˆ
Co +

ˆ
Cı as

F (ψ,
ˆ
C ) = θo

(
ψ

(
1− e−ψ

n−1∑
i=0

ˆ
Ci+1

ψi

i!

)
−
n−1∑
i=0

ˆ
Ci+1

(
1− e−ψ

n∑
i=0

ˆ
Ci
ψi

i!

))

+ θı

(
n−1∑
i=0

ˆ
Ci+1

(
1− e−ψ

n−1∑
i=0

ˆ
Ci+1

ψi

i!

)
−ψ

(
1− e−ψ

n−2∑
i=0

ˆ
Ci+2

ψi

i!

))
. (41)

We can calculate the second derivative of the above function with respect to (ψ,
ˆ
Cj):

∂2F (ψ,
ˆ
Cj)

∂ψ2
= e−ψ

(
θı

n−1∑
i=0

ˆ
Ci+1

(
n−1∑
i=0

(i− 1)iψi−2
ˆ
Ci+1

i!

)
− 2θı

n−1∑
i=0

ˆ
Ci+1

(
n−1∑
i=0

iψi−1
ˆ
Ci+1

i!

)

− θıψ

n−2∑
i=0

(i− 1)iψi−2
ˆ
Ci+2

i!
+ 2θıψ

n−2∑
i=0

iψi−1
ˆ
Ci+2

i!
− 2θı

n−2∑
i=0

iψi−1
ˆ
Ci+2

i!

+ θo

n−1∑
i=0

ˆ
Ci+1

(
n∑
i=0

(i− 1)iψi−2
ˆ
Ci

i!

)
− 2θo

n−1∑
i=0

ˆ
Ci+1

(
n∑
i=0

iψi−1
ˆ
Ci

i!

)
− θoψ

n−1∑
i=0

(i− 1)iψi−2
ˆ
Ci+1

i!

+ 2θoψ

n−1∑
i=0

iψi−1
ˆ
Ci+1

i!
− 2θo

n−1∑
i=0

iψi−1
ˆ
Ci+1

i!
+ θı

n−1∑
i=0

ˆ
Ci+1

(
n−1∑
i=0

ψi
ˆ
Ci+1

i!

)
− θı(ψ− 2)

n−2∑
i=0

ψi
ˆ
Ci+2

i!

+ θo

n−1∑
i=0

ˆ
Ci+1

(
n∑
i=0

ψi
ˆ
Ci
i!

)
− θoψ

n−1∑
i=0

ψi
ˆ
Ci+1

i!
+ 2θo

n−1∑
i=0

ψi
ˆ
Ci+1

i!

)
, (42)

∂2F (ψ,
ˆ
Cj)

∂
ˆ
Cj∂

ˆ
Cl

=
2e−ψψn−1(θın+ θoψ)

Γ(n+ 1)
(43)

∂2F (ψ,
ˆ
Cj)

∂
ˆ
Cj∂ψ

= e−ψ

(
θo

n∑
i=0

iψi−1
ˆ
Ci

i!
− θo

n∑
i=0

ψi
ˆ
Ci
i!

+ θı

(
n−1∑
i=0

iψi−1
ˆ
Ci+1

i!
−
n−1∑
i=0

ψi
ˆ
Ci+1

i!

)
−

ψn−2
(

(θın(−n+ψ+ 1) + θoψ(ψ−n))
∑n−1

i=0
ˆ
Ci+1 + θı(n− 1)n(n−ψ− 1) + θonψ(n−ψ)

)
Γ(n+ 1)

 .

(44)

Since we can calculate the Cholskey decomposition of the Hessian matrix resulting from the second derivatives

(42)-(44) corresponding to the function (41), we can conclude that the function (41)is convex. �


