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Abstract. We study a queueing system with a fixed number of parallel service stations
of infinite servers, each having a dedicated arrival process, and one flexible arrival stream
that is routed to one of the service stations according to a “weighted” shortest queue policy.
We consider the model with general arrival processes and general service time distributions.
Assuming that the dedicated arrival rates are of order n and the flexible arrival rate is of
order

√
n, we show that the diffusion-scaled queueing processes converge to a stochastic

Volterra integral equation with “ranks” driven by a continuous Gaussian process. It reduces
to the limiting diffusion with a discontinuous drift in the Markovian setting.

1. Introduction

We consider a system of parallel service stations, each of which has a dedicated arrival
process and an infinite number of servers. There is also a flexible arrival stream which can be
served by any of service stations, according to a “weighted” shortest queue routing policy.
This model was previously studied in [9, 5, 15] when the arrival processes are Poisson and
the service times are i.i.d. exponential. In this paper we study the model with general arrival
processes and service times with general distributions. The model has many applications,
such as CDMA cellular systems [20] and customer service systems. The model is also related
to the studies of “load balancing” in the sense that the “weighted” shortest queue policy for
the flexible arrivals balances the load of each of the service stations. We refer the readers
to the recent survey on load balancing in [6], and [22, 23] for studies on joining the shortest
queue policy in infinite-server queues.

We study the system behavior under heavy traffic, that is, when the arrival rates are
scaled to grow to infinity, while the service times are unscaled. In the Markovian setting
(Poisson arrivals and exponential service times), when the dedicated arrivals are of order
n and the flexible arrival stream is of order

√
n, Fleming and Simon [9] conjectured the

diffusion limit with a discontinuous drift, which was then formally proved by Chao [5]. Krylov
and Lipster [15] considered a similar model with a modification in the service process when
the queues are over a threshold, and proved a diffusion limit with both discontinuous drift
and variance coefficients. The discontinuity in the drift is a consequence of the “weighted”
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shortest queue policy, and in fact, the diffusion limit can be also regarded as a diffusion
with “ranks” in the drift. The discontinuity in the drift prevents us from applying the
standard techniques in establishing heavy-traffic scaling limits for queueing processes (such
as the continuous mapping theorem applied to the integral mapping for standard Markovian
many-server queues [17]). The idea to circumvent the discontinuity in the drift and/or
variance coefficient in [5, 15] is to show that the time spent by the process in the set of their
discontinuity is almost surely Lebesgue measure zero. The methods in [5, 15] rely heavily on
semi-martingales (constructed from the Poisson arrival and exponential service processes).
However, their approaches through the (super-)martingale characterization do not apply to
the non-Markovian setting we are considering.

For G/GI/∞ queues with general arrival process and service times, a functional central
limit theorem (FCLT) is established in [13]. In that paper, the FCLT for the diffusion-scaled
queueing process gives a Gaussian process limit, which has two independent components,
capturing the randomness in the arrival and service processes, respectively. We adapt that
approach to our setting, and in fact, will use directly the results on the convergence of these
components. We will show that the limit in the FCLT for our model is a multidimensional
stochastic Volterra integral equation with “ranks” in the integral term and driven by Gaussian
processes (essentially the same Gaussian components as those in the limit for standard
G/GI/∞ queues with an additional Gaussian component resulting from the initial quantities),
see equation (2.9). However, similarly to [5, 15], we have to tackle the issue of the “ranks” in
the integral term of the limit as a consequence of the “weighted” shortest queue policy. We
refer to [3] for the existence, uniqueness and perturbation results for the multidimensional
stochastic Volterra integral equation driven by Brownian motions with Lipschitz continuous
coefficients. Here, (2.9) does not satisfy the sufficient conditions for existence and uniqueness
discussed in [3], because of discontinuity of the drift coefficients due to the “ranks”.

We show that the limiting stochastic Volterra integral equation has a unique weak solution
with continuous paths. In order to prove the existence of a weak solution, we employ the
Girsanov change-of-measure theorem for Brownian motion and Brownian sheet (noting that
the driving Gaussian processes are functionals of either Brownian motion or Brownian sheet).
We include the terms with “ranks” in a construction of a semi-martingale that is a Brownian
motion with a random drift, which will become a Brownian motion under a new measure. We
also prove an important property of the limit process regarding the “ranks”, as in [5, 15]: the
cumulative time that the limit process lies at the boundary (that is, when any two “weighted”
queues are equal) has Lebesgue measure zero with probability one. For that purpose, we
again exploit the Girsanov theorem and representations under the new measure.

In order to prove the convergence of the diffusion-scaled queueing processes to the limit
process, we exploit some existing convergence results for the driving Gaussian components
for standard G/GI/∞ queues [13]. However, from the representation (4.1), the integral
component with “ranks” under the “weighted” shortest queue policy forbids us from applying
the continuous mapping theorem directly. To tackle this issue, we exploit the property of the
limit process at the boundary mentioned above.

Our limit process (2.9) is related to the works on diffusions with discontinuous drifts in
various applications. For example, the weak uniqueness of the diffusions with piece-wise
constant coefficients are established by Bass and Pardoux [2], weak uniqueness for diffusions
with discontinuous coefficients by Krylov [14], and the strong uniqueness of the diffusions
with rank-based coefficients are discussed in [10]. See e.g., [1, 7, 11] for the related stationary
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distributions and applications to the performance of functionally generated portfolios in
financial markets. More generally, it is relevant to the theory of (stochastic) differential
equations with discontinuous right hand side, see e.g., [8] for differential equations.

The remaining paper is organized as follows. In Section 2, we describe the model in
detail and state the main results Theorems 2.1-2.2. In Section 3, we prove the existence
and uniqueness (Theorem 3.1) of a weak solution to the limiting stochastic Volterra integral
equation. We prove the convergence the diffusion-scaled processes in Section 4. We show how
the limiting stochastic Volterra integral equation is reduced to the limiting diffusion with
discontinuous drift in the Markovian case in the Appendix.

2. Model and Results

Let (Ω,F , {Ft}t≥0,P) be a filtered probability space where all the random variables and
processes are defined. We consider a queueing system with K service stations, each of
which has its own dedicated arrival process and an infinite number of parallel servers. In
addition, there is a flexible arrival stream, which can be served by any of the stations. Let
Ak = {Ak(t) : t ≥ 0} be the dedicated arrival process at station k = 1, . . . , K, with arrival
rate λk and arrival times τk,i, i ∈ N, and A0 = {A0(t) : t ≥ 0} be the flexible arrival process,
with arrival rate λ0 and arrival times τ0,i, i ∈ N. Assume that these arrival processes are
mutually independent. Let Xk = {Xk(t) : t ≥ 0} be the process counting the number of
jobs in station k for k = 1, . . . , K, and denote the counting process of jobs in the K service
stations by X = (X1, . . . , XK).

For jobs initially in service in station k, let η0k,j, j = 1, . . . , Xk(0), be their remaining
service times, and for the newly arrivals from the stream Ak, let ηk,i, i ∈ N, be their service
times. For the jobs from the arrival stream A0, let η0,i, i ∈ N, be their service times. We
assume that the remaining service times {η0k,j}k,j are i.i.d. continuous random variables with
cumulative distribution function (c.d.f.) F0, and the service times {ηk,i}k,i are all i.i.d. with
c.d.f. F . Let us denote the upper tail probabilities by F c

0 = 1− F0 and F c = 1− F for F0

and F , respectively. Without loss of generality, assume that the mean of F is one.
For each station k, we associate a “weight” αk > 0, in order to evaluate the status of

station k by a score αkXk(·) and our routing policy depends on the scores. If the score αkXk

of station k is lower than those of the other stations, then we route the newly arriving jobs to
station k. More specifically, for the ith job from the arrival stream A0, at the arrival time τ0,i,
it is routed to station k if the score of station k is the lowest among the other scores, that is,

αkXk(τ0,i) < min
` 6=k

α`X`(τ0,i) . (2.1)

And if there are multiple stations that have the lowest scores, then job i is routed to the
station with the smallest number. For example, if stations 1 and 2 have the same score, i.e.,
α1X1(τ0,i) = α2X2(τ0,i) at the time τ0,i of the arrival of job i, then job i is routed to station
1 . The ties of the scores are resolved this lexicographic way. For each x = (x1, . . . , xK) ∈ RK

+ ,
define an indicator function

δk(x) =

{
1 if k = min{j : αjxj = min1≤`≤K α`x`},
0 otherwise,

(2.2)

and the set Rk := {x ∈ RK
+ : δk(x) = 1} for k = 1, . . . , K. Then we have δk(x) = 1Rk

(x)
for x ∈ RK

+ , k = 1, . . . , K . Moreover, Rj ∩ Rk = ∅ for j 6= k , and ∪Kk=1Rk = RK
+ .
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Since δk(c x) = δk(x) for every x ∈ RK
+ , c > 0 , we see that each set Rk forms a cone for

k = 1, . . . , K .
Then with these indicator functions, the process Xk(t) can be described as

Xk(t) =

Xk(0)∑
j=1

1{η0k,j>t} +

Ak(t)∑
i=1

1{τk,i+ηk,i>t} +

A0(t)∑
i=1

δk(X(τ0,i−))1{τ0,i+η0,i>t}, t ≥ 0. (2.3)

We consider a sequence of such queueing systems, indexed by n, and the scaling limit. We
first make the following assumption on the arrival rates.

Assumption 1. Assume that for k = 1, . . . , K, λnk/n→ λk as n→∞, and λn0/
√
n→ λ0 as

n→∞.

Let X̄n
k := n−1Xn

k for k = 1, . . . , K. The following FLLN holds. We use D(R+,Rd)
to denote Rd-valued càdlàg functions, endowed with the Skorohod J1 topology written as
(D(R+,Rd), J1). When d = 1, we write D = D(R+,R) and use (Dd, J1) to denote the d-fold
product topology. When the space is restricted on the fixed time interval [0, T ] for some T > 0,
we write D[0,T ] := D([0, T ],R) and use (Dd

[0,T ], J1) to denote the d-fold product topology.

Theorem 2.1. Under Assumption 1, if there are deterministic constants X̄k(0), k = 1, . . . , K
such that (X̄n

1 (0), . . . , X̄n
K(0))⇒ (X̄1(0), . . . , X̄K(0)) in RK

+ as n→∞,

(X̄n
1 , . . . , X̄

n
K)⇒ (X̄1, . . . , X̄K) in (DK , J1) as n→∞, (2.4)

where

X̄k(t) = X̄k(0)F c
0 (t) + λk

∫ t

0

F c(t− s)ds, t ≥ 0. (2.5)

The limits have a steady state X̄∗ = (X̄∗1 , . . . , X̄
∗
K) with X̄∗k = λk for each k = 1, . . . , K.

Observe that in the fluid limit, the “weighted” shortest queue policy in (2.1) is irrelevant
as indicated in (2.5), and the associated steady state values X̄∗k = λk. This is evident since
the extra load An0 (t) is of order

√
n while the fluid scale is of order n. It is then necessary to

consider the queueing dynamics in the diffusion scale.
Let X̂n

k :=
√
n(X̄n

k − X̄∗k) for k = 1, . . . , K. Denote X̂n = (X̂n
1 , . . . , X̂

n
K). Note that we

center the process X̂n
k by its equilibrium point. It is then clear that if αk = 1/λk,

δk(X
n(t)) = δk(X̂

n(t)), t ≥ 0.

We choose this specific value of αk = 1/λk to establish the following FCLT. Note that since
all the service times are i.i.d. with mean one, the value λk is the (offered) load at each station.
Thus, the routing criterion chooses the station with minimum ratio of the current state and
the steady state. When λk’s are equal for all k, the routing policy becomes the so-called
“joining the shortest queue” (JSQ) policy. Thus, the routing policy can be regarded as a
“weighted” JSQ policy with the weights being the reciprocal of the offered load.

Let Ânk(t) := 1√
n
(Ank(t) − λnkt) for t ≥ 0 and k = 1, . . . , K, and let Ân0 (t) = 1√

n
An0 (t) for

t ≥ 0. We make the following assumption for these scaled arrival processes.

Assumption 2. The following hold for the arrival processes:

(i) In addition to the conditions in Assumption 1, for each k = 1, . . . , K, there exists

λ̂k ∈ R such that λ̂nk :=
√
n(λnk/n− λk)→ λ̂k as n→∞.
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(ii) There exist mutually independent Brownian motion (Â1, . . . , ÂK) such that

(Ân1 , . . . , Â
n
K)⇒ (Â1, . . . , ÂK) in (DK , J1) as n→∞

where Âk
d
= ckB̂k(t) for the variance coefficient ck > 0 and a standard Brownian

motion B̂k (mutually independent over k).

(iii) Ân0 ⇒ λ0e in (D, J1) as n → ∞, where e(t) ≡ t for t ≥ 0. Moreover, associating

measures on [0, T ] to the nonnegative, non-decreasing, càdlàg functions Ân0 and λ0e,

we assume the total variation distance between dÂn0 and λ0de converges weakly to 0,
as n→∞ for every T > 0.

In the second condition, when the arrival processes Ak ’s are mutually independent renewal
processes with the interarrival times having mean λ−1k and variance σ2

k, if Ank is defined

by scaling the interarrival times by n−1, then Âk(t) =
√
λ3kσ

2
kB̂k(t) for standard Brownian

motion B̂k(t) (see, e.g., [21, Chapter 13.7]).
We also make the following assumption on the initial condition.

Assumption 3. There exists a random vector (X̂1(0), . . . , X̂K(0)) ∈ RK such that

(X̂n
1 (0), . . . , X̂n

K(0))⇒ (X̂1(0), . . . , X̂K(0)) in RK
+ as n→∞.

Under this condition, given the scaling of X̂k, it is also clear that X̄k(0) = X̄∗k = λk for
each k = 1, . . . , K.

For the FCLT below, we also assume that F0(t) = Fe(t) =
∫ t
0
F c(s)ds, the equilibrium

(stationary excess) distribution of F . Recall that we have assumed that the mean for the c.d.f.
F is one. In the scaling limits, we have the following three mutually independent driving
noises:
(i) some K-dimensional, independent Gaussian processes X̂·,0 := (X̂1,0, . . . , X̂K,0)

′,

(ii) another K-dimensional, independent Gaussian process, X̂·,1 := (X̂1,1, . . . , X̂K,1)
′ and

(iii) the K-dimensional, independent Brownian motions (Â1, . . . , ÂK) with strictly positive
variance rates (c1, . . . , cK) from Assumption 2.

The processes X̂k,0 and X̂k,1 are independent continuous Gaussian processes, independent

of Âk, with mean zero and covariance functions: for t, t′ ≥ 0,

Cov(X̂k,0(t), X̂k,0(t
′)) = λ0

(
F c
e (t ∨ t′)− F c

e (t)F c
e (t′)

)
, (2.6)

Cov(X̂k,1(t), X̂k,1(t
′)) = λk

∫ t∧t′

0

(
F c(t ∨ t′ − s)− F c(t− s)F c(t′ − s)

)
ds. (2.7)

In addition, the processes X̂k,0 and X̂k,1 are independent of X̂k′,0 and X̂k′,1 as well as Âk′

for every k′ 6= k. The process
∫ t
0
F c(t− s)dÂk(s) is also a continuous Gaussian process with

covariance function: for k = 1, . . . , K,

Cov
(∫ t

0

F c(t− s)dÂk(s),
∫ t′

0

F c(t′ − s)dÂk(s)
)

= ck

∫ t∧t′

0

F c(t− s)F c(t′ − s)ds.

As we shall see later in (3.2) and in (3.5), respectively, X̂k,0 and X̂k,1 can be represented as a
time-changed, Brownian bridge driven by another Brownian motion, and as a time-changed,
Kiefer process driven by a Brownian sheet, independent from the Brownian motions.
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Theorem 2.2 (FCLT). Under Assumptions 1, 2 and 3, we have

(X̂n
1 , . . . , X̂

n
K)⇒ (X̂1, . . . , X̂K) in (DK , J1) as n→∞, (2.8)

where X̂ = (X̂1, . . . , X̂K) is the unique weak solution to the following system of stochastic
Volterra integral equations with ranks, driven by independent, continuous Gaussian processes
(X̂1,0, . . . , X̂K,0), (X̂1,1, . . . , X̂K,1) and Brownian motions (Â1, . . . , ÂK): for k = 1, . . . , K,

X̂k(t) = X̂k(0)F c
e (t) + λ̂kFe(t) + λ0

∫ t

0

δk(X̂(s))F c(t− s)ds

+

∫ t

0

F c(t− s)dÂk(s) + X̂k,0(t) + X̂k,1(t),

(2.9)

where Fe is the equilibrium distribution function that satisfies F0(·) = Fe(·) =
∫ ·
0
F c(s)ds.

Remark 2.1. If we denote the last three Gaussian processes in (2.9) by Ŷk(t) =
∫ t
0
F c(t−

s)dÂk(s) + X̂k,0(t) + X̂k,1(t) and assume F has a density f and F (0) = 0, then we can write

X̂k(t) = X̂k(0)F c
e (t) + λ̂kFe(t) + λ0

∫ t

0

δk(X̂(s))F c(t− s)ds+ Ŷk(t)

=

∫ t

0

(
−X̂k(0)F c(s) + λ̂kF

c(s) + λ0δk(X̂(s))− λ0
∫ s

0

δk(X̂(s))f(s− u)du

)
ds+ Ŷk(t)

(2.10)

for every t ≥ 0. Observe that in the “drift”, there is not only a discontinuous term λ0δk(X̂(t)),

but also a memory of the process X̂(t) in the term λ0
∫ t
0
δk(X̂(s))f(t− s)ds.

Remark 2.2 (Diffusion with discontinuous drift). When the c.d.f. F is given by F (t) = 1−e−t,
t ≥ 0, it can be shown that the stochastic equation in (2.10) reduces to the diffusion with
discontinuous drift studied in [5] and [15] (with some modification on the coefficients and also
in the drift due to the absence of queue thresholds, see also the conjecture in [9]), that is,

dX̂k(t) = (λ̂k + λ0δk(X̂(t))− X̂k(t)) dt+
√
λk + c2k dB̃k(t) , (2.11)

for standard Brownian motion (B̃1, . . . , B̃K). The proof of this property is given in the
Appendix.

Remark 2.3 (Atlas models). We remark that in the completely symmetric case, that is,

λk’s are all equal, we have λ̂k’s are also all equal, and assuming that X̂k(0) have the same

distribution for all k, then the limit process X̂k(t) in (2.9) becomes symmetric over k with

the ranks δk(X̂(t)) only ranking the coordinates without weights at each time t. When
α1 = · · · = αK, this resembles the first-order Atlas model in stochastic portfolio theory [7],
which is a diffusion with both the drift and variance coefficients depending only on ranking,
driven by Brownian motion.

3. Existence and uniqueness of a weak solution to the limiting stochastic
Volterra integral equation with ranks

In this section, we prove that the stochastic Volterra integral equation in (2.9) has a unique
weak solution that has continuous paths.
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Theorem 3.1. The stochastic Volterra integral equation (2.9) has a unique weak solution
in C(R+,RK). Namely, on some filtered probability space (Ω,P,F , {Ft}t≥0), a continuous,

adapted, K-dimensional process X̂ = (X̂1, . . . , X̂K)′, an independent, K-dimensional Gaussian

process X̂·,0 := (X̂1,0, . . . , X̂K,0)
′, another independent, K-dimensional Gaussian process

X̂·,1 := (X̂1,1, . . . , X̂K,1)
′ determined by the covariance functions (2.6), and an independent,

K-dimensional Brownian motion Â· with variance rates (c1, . . . , cK) specified in Assumption 2
satisfy (2.9) almost surely, and the solution is unique in the sense of probability law. Moreover,
almost surely, ∫ ∞

0

K∑
k,`=1, k 6=`

1{αkX̂k(t)=α`X̂`(t)}dt = 0 , (3.1)

where {αk}1≤k≤K are the associated weights in (2.1).

Before proceeding to the proof, we make the following observations on the Gaussian
processes X̂·,0 := (X̂1,0, . . . , X̂K,0)

′ and X̂·,1 := (X̂1,1, . . . , X̂K,1)
′. The process X̂k,0 is equivalent

in distribution to a time-changed Brownian bridge Ŵ 0
k :

X̂k,0(t) = λ
1/2
k W 0(Fe(t)) = λ

1/2
k Ŵ 0

k (1− e−t) . (3.2)

Recall that the Brownian bridge W 0
k is the unique strong solution to the one-dimensional

SDE [12]:

dŴ 0
k (t) = −Ŵ

0
k (t)

1− t
dt+ dB̆k(t) ,

where B̆k(t) is an independent standard Brownian motion. Thus we can write

X̂k,0(t) = λ
1/2
k

(
−
∫ 1−e−t

0

W 0
k (s)

1− s
ds+ B̆k(1− e−t)

)
= −

∫ t

0

X̂k,0(s)ds+ λ
1/2
k B̆k(1− e−t) , (3.3)

for standard Brownian motions B̆k(t), independent of B̂k(t)’s in Assumption 2 (ii). The
second equality follows from a calculation using change of variables for the integrable term.

Next, the Gaussian process X̂k,1 is equivalent in distribution to a time-changed Kiefer

process, K̂k(t, x), that is,

X̂k,1(t) = −
∫ t

0

∫ t

0

1s+x≤tdK̂k(λks, F (x)) = −
∫ t

0

∫ t

0

1s+x≤tdK̂k(λks, 1− e−x). (3.4)

Recall that, similar to Brownian bridge, the Kiefer process K̂k(t, x) can be written in terms

of Brownian sheets Ŵk(t, x), that is, K̂k(t, x) is the unique strong solution to the SDE [19]:

K(t, x) = −
∫ x

0

K(t, y)

1− y
dy + Ŵk(t, x).

So we have

X̂k,1(t) = −
∫ t

0

∫ t

0

1s+x≤tds,x

(
−
∫ 1−e−x

0

K(λks, y)

1− y
dy + Ŵk(λks, 1− e−x)

)
= −

∫ t

0

X̂k,1(s)ds+

∫ t

0

∫ t

0

1s+x≤tdŴk(λks, 1− e−x) , (3.5)
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where Ŵk’s are mutually independent Brownian sheets, which are also independent of the
standard Brownian motions B̂k’s in (3.3) and Bk’s in Assumption 2 (ii).

Proof of Theorem 3.1. Let us consider a probability space (Ω,P,F , {Ft}t≥0) under which the

independent Brownian motions (Â1, . . . , ÂK) in Assumption 2, independent Brownian bridges

(Ŵ 0
1 , . . . , Ŵ

0
K) in (3.3) and independent Kiefer processes (K̂1, . . . , K̂K) in (3.4) are defined.

For k = 1, . . . , K, let

R̂k(t) := λ̂kt+ ckB̂k(t) + λ0

∫ t

0

δk(X̂(s))ds (3.6)

and
Ŝk(t) := X̂k(0)F c

e (t) + X̂k,0(t) + X̂k,1(t) . (3.7)

Denote R̂ = (R̂1, . . . , R̂K)′ and Ŝ = (Ŝ1, . . . , ŜK)′. Then R̂ is a semi-martingale with respect

to the filtration {Ft}t≥0, which is a Brownian motion with a random drift. The process Ŝk is

a continuous Gaussian process starting at X̂k(0) for k = 1, . . . , K. Recall the representations

of X̂k,0(t) and X̂k,1(t) in (3.2) and (3.4), respectively, using Brownian bridge Ŵ 0
k (t) and

Kiefer process K̂k(t, x) (through the Brownian sheet Ŵk. Also let X̂·,0 = (X̂1,0, . . . , X̂K,0)
′

and X̂·,1 = (X̂1,1, . . . , X̂K,1)
′. Similarly for Ŵ 0, K̂ and Ŵ . Note the mutual independence

between B̂(t), X̂0(t) and X̂1(t), and hence the mutual independence between B̂(t), Ŵ 0 and

Ŵ .
Then with (3.6)-(3.7), the stochastic integral equation (2.9) can be rewritten as

X̂k(t) =

∫ t

0

F c(t− s)dR̂k(s) + Ŝk(t) (3.8)

for k = 1, . . . , K, t ≥ 0, where the semimartingale R̂ depends on X̂ as in (3.6) and the

continuous Gaussian process Ŝ is independent of B̂.
We shall first construct a weak solution. To construct a solution to this stochastic equation,

we use change of measure in such a way that the semi-martingale R̂k(s) becomes a Brownian
motion under a new measure.

(Step 1: Construction) We consider a K-dimensional standard Brownian motion β̃ :=

(β̃1, . . . , β̃K) and the independent Gaussian process Ŝ in (3.7) constructed from the indepen-

dent Brownian bridges Ŵ 0
· and the independent Kiefer processes K̂· through the Brownian

sheets, independent of β̃, on a filtered probability space (Ω̃, F̃ , {F̃(t)}t≥0, P̃), and we define
ξ := (ξ1, . . . , ξK), M := (M1, . . . ,MK),

ξk(t) := Ŝk(t) +

∫ t

0

F c(t− s)ckdβ̃k(s) , Mk(t) := β̃k(t)−
∫ t

0

( λ̂k
ck

+
λ0
ck
δk(ξ(s))

)
ds , (3.9)

with the indicator function δk in (2.2) for k = 1, . . . , K, t ≥ 0, and

Z(t) = exp

(
K∑
k=1

∫ t

0

( λ̂k
ck

+
λ0
ck
δk(ξ(s))

)
dβ̃k(s)−

1

2

K∑
k=1

∫ t

0

( λ̂k
ck

+
λ0
ck
δk(ξ(s))

)2
ds

)
; t ≥ 0 .

Here, M is a K-dimensional, drifted Brownian motion with at most linearly growing drifts.
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Then the stochastic exponential Z is a continuous martingale under the probability

measure P̃ , and hence, for a fixed T > 0, we define a new probability measure Q̃ by

dQ̃
dP̃

∣∣∣
F̃(T )

:= Z(T ) .

Applying the Girsanov theorem (Theorem 3.5.1 of [12] for Brownian motions and also see e.g.,
Proposition 1.6 of [16] for Brownian sheets), we see M is a K-dimensional, standard Brownian

motion, independent of Ŝ, under the probability measure Q̃ . Here, by the Girsanov theorem,
we remove the drifts of the drifted Brownian motion but we do not shift the Brownian sheets
that drive the independent Gaussian processes Ŝ. Thus, under (Ω̃, F̃ , {F̃(t)}t≥0, Q̃) , the

adapted continuous process ξ, the continuous Gaussian process Ŝ, and the Brownian motion
M satisfy the equation

ξk(t) = Ŝk(t) +

∫ t

0

F c(t− s)ckdMk(s) +

∫ t

0

λ̂kF
c(t− s)ds+ λ0

∫ t

0

F c(t− s)δk(ξ(s))ds

for k = 1, . . . , K , 0 ≤ t ≤ T . Thus, ξ , M , Ŝ in (3.9) satisfy the system (2.9) of stochastic

Volterra integral equations for 0 ≤ t ≤ T under the new measure Q̃. Since T > 0 is arbitrary,
by the above construction, there is a weak solution for t ≥ 0 to the system (2.9) of the
stochastic Volterra integral equations.

(Step 2: Uniqueness) The joint distribution of the weak solution (X̂, Â, X̂·,0, X̂·,1) to (2.9) is
uniquely determined by the Girsanov change of measure as in the proof of Proposition 5.3.10
of [12], that is, first we localize the problem by defining the sequence of the first passage

times for X̂ to the sphere of integer radiuses, centered at the origin, secondly we apply the
Girsanov change of measure with those stopping times, and then we take the limits. Note
that the Gaussian processes (X̂·,0, X̂·,1) are independent of the Brownian motion Â. When

the initial values X̂(0) are randomized, we may determine the distribution as in Corollary
5.3.11 of [12].

(Step 3: proof of (3.1)) To show (3.1), we first show that for the processes ξ in (3.9) under P̃ ,∫ T

0

K∑
k,`=1, k 6=`

1{αkξk(t)=α`ξ`(t)}dt = 0 (3.10)

and then once again, we apply the Girsanov theorem to show that (3.10) holds under Q̃ as in

Step 1, and hence, the weak solution X̂ satisfies (3.1). Thus, it suffices to show (3.10) under

P̃ where Ŝ and β̃ are independent. Note that since the tail probability F c and positive

constants ck are deterministic, each integral
∫ t
0
F c(t − s)ckdβ̃k(s) is normally distributed

with mean 0 and variance
∫ t
0
(F c(t − s)ck)2ds for each k = 1, . . . , K , independent of Ŝ

under P̃ .
It follows that for every k 6= ` , t ≥ 0 , and for every fixed (θ1, . . . , θK) ∈ RK ,

P̃
(
αk

(
θk +

∫ t

0

F c(t− s)ckdβ̃k(s)
)

= α`

(
θ` +

∫ t

0

F c(t− s)c`dβ̃`(s)
))

= 0 ,
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and hence, by the tower property of the conditional probability and by the independence, we
have for any k 6= ` and t ∈ [0, T ] ,

P̃(αkξk(t) = α`ξ`(t))

= Ẽ
[
P̃
(
αk

(
Ŝk(t) +

∫ t

0

F c(t− s)ckdβ̃k(s)
)

= α`

(
Ŝ`(t) +

∫ t

0

F c(t− s)c`dβ̃`(s)
)∣∣∣Ŝ(t)

)]
= Ẽ

[
P̃
(
αk

(
θk +

∫ t

0

F c(t− s)ckdβ̃k(s)
)

= α`

(
θ` +

∫ t

0

F c(t− s)c`dβ̃`(s)
))∣∣∣θk=Ŝk(t),

θ`=Ŝ`(t)

]
= 0 .

(3.11)

Here, Ẽ represents the expectation under P̃ . Thus, we obtain (3.10) under P̃ , because

Ẽ
[ ∫ T

0

K∑
k,`=1, k 6=`

1{αkξk(t)=α`ξ`(t)}dt
]

=

∫ T

0

K∑
k,`=1, k 6=`

P̃(αkξk(t) = α`ξ`(t))dt = 0 .

By the reasoning in the previous paragraph, we claim the property (3.1). �

Corollary 3.1. Recall the conic set Rk defined from the indicator function δk in (2.2) and
δk(·) = 1Rk

(·) for k = 1, . . . , K. We denote the closure of Rk by Rk for every k. The
stochastic equation

X̂k(t) = X̂k(0)F c
e (t) + λ̂kFe(t) + λ0

∫ t

0

1Rk
(X̂(s))F c(t− s)ds

+

∫ t

0

F c(t− s)dÂk(s) + X̂k,0(t) + X̂k,1(t), k = 1, . . . , K

(3.12)

has a unique weak solution in C(R+,RK) .

Proof. Thanks to (3.1), the integrals
∫ ·
0
1Rk

(X̂(s))F c(t− s)ds and
∫ ·
0
δk(X̂(s))F c(t− s)ds

are the same almost surely. �

4. Proof for the convergence to the limit

We have the representation

X̂n
k (t) = X̂n

k (0)F c
0 (t) + λ̂nk

∫ t

0

F c(t− s)ds+

∫ t

0

δk(X̂
n(s−))F c(t− s)dÂn0 (s)

+

∫ t

0

F c(t− s)dÂnk(s) + X̂n
k,0(t) + X̂n

k,1(t) + X̂n
k,2(t), (4.1)

where

X̂n
k,0(t) :=

1√
n

Xn
k (0)∑
j=1

(
1η0k,j>t − F

c
e (t)

)
= − 1√

n

Xn
k (0)∑
j=1

(
1η0k,j≤t − Fe(t)

)
,

X̂n
k,1(t) :=

1√
n

An
k (t)∑
i=1

(
1τnk,i+ηk,i>t − F

c(t− τnk,i)
)
,
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X̂n
k,2(t) :=

1√
n

An
0 (t)∑
i=1

δk(X
n(τn0,i−))

(
1τn0,i+η0,i>t − F

c(t− τn0,i)
)
.

Note that this assumption of F0 = Fe is essential since we are centering the process X̄n
k by its

equilibrium X̄∗k , and in the derivation of the representation of Xn
k (t), the term −

√
nλkF0(t)

cancels out the term
√
nλk

∫ t
0
F c(t− s)ds only if F0 = Fe.

The joint convergence in the following lemma follows directly from the existing results for
each component in [13, 18] for the heavy-traffic analysis of G/GI/∞ queues and the mutual
independence of the corresponding limits.

Lemma 4.1. Under Assumptions 1, 2 and 3,(∫ ·
0

F c(· − s)dÂnk(s), X̂n
k,0, X̂

n
k,1

)
k=1,...,K

⇒
(∫ ·

0

F c(· − s)dÂk(s), X̂k,0, X̂k,1

)
k=1,...,K

,

in (D3K , J1) as n→∞, where the limits X̂k,0 and X̂k,1 are given in Theorem 2.2.

Lemma 4.2. Under Assumptions 1 and 2,

X̂n
k,2 ⇒ 0 in (D, J1) as n→∞. (4.2)

Proof. For each t, by conditioning on the filtration generated by the arrival process An0 , we
have

E
[(
X̂n
k,2(t)

)2]
=

1

n
E

[
An

0 (t)∑
i=1

δk(X
n(τn0,i−))F (t− τn0,i)F c(t− τn0,i)

]

≤ 1√
n
E

[∫ t

0

F (t− s)F c(t− s)dA
n
0 (s)√
n

]
→ 0 as n→∞,

where the convergence follows from Assumption 2 that
An

0√
n
⇒ λ0e in D.

Next, we consider the increment, for t, u ≥ 0,∣∣X̂n
k,2(t+ u)− X̂n

k,2(t)
∣∣ ≤ 1√

n

An
0 (t)∑
i=1

1t<τn0,i+η0,i≤t+u

+
1√
n

An
0 (t)∑
i=1

(F (t+ u− τn0,i)− F (t− τn0,i))

+
1√
n

An
0 (t+u)∑

i=An
0 (t)+1

δk(X
n(τn0,i−))

∣∣1τn0,i+η0,i>t+u − F c(t+ u− τn0,i)
∣∣.
(4.3)

For the first term, since it is nondecreasing in u, we have, for δ > 0 and ε > 0,

P

 sup
u∈[0,δ]

1√
n

An
0 (t)∑
i=1

1t<τn0,i+η0,i≤t+u > ε/3
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≤ 9

ε2
E

 1√
n

An
0 (t)∑
i=1

1t<τn0,i+η0,i≤t+δ

2
≤ 18

ε2
E

 1√
n

An
0 (t)∑
i=1

1t<τn0,i+η0,i≤t+δ − (F (t+ δ − τn0,i)− F (t− τn0,i))

2
+

18

ε2
E

 1√
n

An
0 (t)∑
i=1

(F (t+ δ − τn0,i)− F (t− τn0,i))

2
=

18

ε2
E
[

1√
n

∫ t

0

(F (t+ δ − s)− F (t− s))(1− (F (t+ δ − s)− F (t− s)))dA
n
0 (s)√
n

]
+

18

ε2
E

[(∫ t

0

(F (t+ δ − s)− F (t− s))dA
n
0 (s)√
n

)2
]
. (4.4)

Here the first term converges to zero as n→∞, and the second term satisfies

1

δ
lim sup
N→∞

sup
t∈[0,T ]

E

[(∫ t

0

(F (t+ δ − s)− F (t− s))dA
n
0 (s)√
n

)2
]

≤ 1

δ
sup
t∈[0,T ]

λ20

(∫ t

0

(F (t+ δ − s)− F (t− s))ds
)2

=
1

δ
sup
t∈[0,T ]

λ20

(∫ t+δ

t

F (s)ds−
∫ δ

0

F (s)ds

)2

≤ λ20δ, (4.5)

which converges to zero as δ → 0.
For the second term in (4.3), it satisfies (4.5). Now for the third term in (4.3), it can be

bounded by

1√
n

(An0 (t+ u)− An0 (t)),

which is nondecreasing in u, so that the supremum over u ∈ [0, δ] is bounded by 1√
n
(An0 (t+

δ)− An0 (t)). Then, by the convergence of
An

0√
n
⇒ λ0e in D, we obtain that for small enough δ,

lim sup
N→∞

P

(
sup
u∈[0,δ]

1√
n

(An0 (t+ u)− An0 (t)) > ε/3

)
= 0.

Thus, by the Corollary on page 83 of Billingsley [4], we have shown that

1

δ
lim sup
N→∞

sup
t∈[0,T ]

P

(
sup
u∈[0,δ]

∣∣X̂n
k,2(t+ u)− X̂n

k,2(t)
∣∣ > ε/3

)
→ 0 as δ → 0.

This completes the proof. �
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Proof of Theorem 2.2. We first observe that (4.1) can be rewritten as

Ẑn
k (t) := X̂n

k (t)−
∫ t

0

δk(X̂
n(s−))F c(t− s)dÂn0 (s)

= X̂n
k (0)F c

0 (t) + λ̂nk

∫ t

0

F c(t− s)ds

+

∫ t

0

F c(t− s)dÂnk(s) + X̂n
k,0(t) + X̂n

k,1(t) + X̂n
k,2(t)

(4.6)

for k = 1, . . . , K , 0 ≤ t ≤ T , and write Ẑn := (Ẑn
1 , . . . Ẑ

n
k ) . Because of the tightness of the

sequence (X̂n
k (0), λ̂nk)n≥1 in R2 and the tightness of the sequence(

(Ân0 (·), (Ânk(·), X̂n
k,0(·), X̂n

k,1(·), X̂n
k,2(·)), k = 1, . . . , K)

)
n≥1

in (D4K+1
[0,T ] , J1) , we claim the tightness of the sequence(
X̂n(·), Ẑn(·), Ân0 (·)

)
n≥1

=
(
X̂n

1 (·), . . . , X̂n
K(·), Ẑn

1 (·), . . . , Ẑn
K(·), Ân0 (·)

)
n≥1

(4.7)

in (D2K+1
[0,T ] , J1) .

Now let us take a weak limit point (X̂∞(·), Ẑ∞(·), Â∞0 (·)) of the sequence (4.7) in
(D2K+1

[0,T ] , J1) . Without loss of generality, we may assume that the whole sequence may

converge weakly to this limit point. By the Skorokhod representation theorem for the
separable metric space (D2K+1

[0,T ] , J1) , we may take almost sure convergence

lim
n→∞

(X̂n(t), Ẑn(t), Ân0 (t)) = (X̂∞(t), Ẑ∞(t), Â∞0 (t)) (4.8)

for all but countably many t on [0, T ] , by extending the probability space, if necessary. The
filtration for the corresponding probability space is taken to be the one generated by all these
processes.

The limits of the right side of (4.6), that is, the limit of Ẑn(·) = (Ẑn
1 (·), . . . , Ẑn

K(·)) can be
represented as

Ẑ∞k (t) = X̂k(0)F c
0 (t) + λ̂k

∫ t

0

F c(t− s)ds

+

∫ t

0

F c(t− s)dÂk(s) + X̂k,0(t) + X̂k,1(t)

(4.9)

for 1 ≤ k ≤ K , 0 ≤ t ≤ T , and it is continuous on [0, T ] . Thus, the almost sure convergence

of Ẑn to Ẑ∞ in (DK
[0,T ], J1) is uniform on [0, T ] . With the same reasoning, the almost sure

convergence limn→∞ Â
n
0 (t) = λ0t is also uniform on [0, T ] , that is,

lim
n→∞

sup
0≤t≤T

|Ân0 (t)− λ0t| = 0 .

Moreover, since the right hand of (4.9) is continuous almost surely in t ∈ [0, T ], so

is Ẑ∞k for each k. Note that the integrand δk(X̂
n(s−))F c(· − s) of

∫ ·
0
δk(X̂

n(s−))F c(· −
s)dÂn0 (s) is bounded and F c is differentiable with a bounded derivative. Then, the sequence
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{
∫ t
0
δk(X̂

n(s−))F c(t− s)dÂn0 (s), t ∈ [0, T ], n ≥ 1} of absolutely continuous functions on [0, T ]
is uniformly equicontinuous. Thus, the almost sure limit

Φk(·) := lim
n→∞

∫ ·
0

δk(X̂
n(s−))F c(· − s)dÂn0 (s) = λ0 lim

n→∞

∫ ·
0

δk(X̂
n(s−))F c(· − s)ds (4.10)

is uniformly converging by the Arzelà-Ascoli theorem, and hence, it is also continuous in
t ∈ [0, T ]. Thus, the limit X̂∞k (t) is continuous in t, because of (4.6) and of continuity of Ẑ∞.

That is, X̂∞(t) = X̂∞(t−) for every t ∈ [0, T ] . Then we have the uniform convergence

lim
n→∞

sup
0≤t≤T

|X̂n(t)− X̂∞(t)| = 0 ,

and X̂∞ satisfies

X̂∞k (t) = Φk(t) + Ẑ∞k (t) , k = 1, . . . , K , t ≥ 0 , (4.11)

where Φk and Ẑ∞k are given in (4.10) and (4.9), respectively.
Now we claim that each Φk is absolutely continuous with respect to Lebesgue measure by

an application of the Riesz representation theorem for bounded linear functionals. Hence, by
a similar argument of the change of measure as in the proof of Theorem 3.1, an analogue of
(3.1) holds for X̂∞, that is,∫ T

0

K∑
k,`=1, k 6=`

1{αkX̂
∞
k (t)=α`X̂

∞
` (t)}dt =

∫ T

0

1∪Kk=1∂Rk
(X̂∞(t))dt = 0 . (4.12)

Here, ∂Rk is the boundary of Rk , i.e., ∂Rk = {x ∈ RK
+ : αkxk = α`x` for some `} for

k = 1, . . . , K.
Since δk(·) is an indicator function of conic set in (2.2), the almost sure convergence (4.8)

of X̂n implies that the almost convergence

lim
n→∞

δk(X̂
n(s−)) = δk(X̂

∞(s−)) = δk(X̂
∞(s)) (4.13)

holds if X̂∞(s) is not on the boundary ∂Rk of the set Rk for k = 1, . . . , K. Thus, thanks

to (4.12), the almost sure limit Φk(t) of
∫ t
0
δk(X̂

n(s−))F c(t− s)dÂn0 (s) in (4.6) is

lim
n→∞

∫ t

0

δk(X̂
n(s−))F c(t−s)dÂn0 (s) = λ0

∫ t

0

δk(X̂
∞(s−))F c(t−s)ds , 0 ≤ t ≤ T . (4.14)

Hence, we claim that (4.11) is reduced to

Ẑ∞k (t) = X̂∞k (t)− λ0
∫ t

0

δk(X̂
∞(s))F c(t− s)ds , 0 ≤ t ≤ T , 1 ≤ k ≤ K .

In other words, because of the representation (4.9), the weak limit point X̂∞(·) satisfies the
stochastic equation (2.9). Thanks to the weak uniqueness in Theorem 3.1, the distribution of

X̂∞(·) is uniquely determined. Therefore, X̂n(·) converges weakly to X̂(·) that satisfies the
stochastic equation (2.9), as n→∞ . �
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5. Appendix

Proof of Remark 2.2. Recall the expression of X̂k(t) in (2.10). We have

− X̂k(0)F c(t) + λ̂kF
c(t) + λ0δk(X̂(t))− λ0

∫ t

0

δk(X̂(s))f(t− s)ds

= −X̂k(0)e−t + λ̂ke
−t + λ0δk(X̂(t))− λ0

∫ t

0

δk(X̂(s))e−(t−s)ds

= λ̂k + λ0δk(X̂(t))−
(
X̂k(0)e−t + λ̂k(1− e−t) + λ0

∫ t

0

δk(X̂(s))e−(t−s)ds

)
. (5.1)

Denoting

X̂A
k (t) =

∫ t

0

F c(t− s)dÂk(s) =

∫ t

0

e−(t−s)ckdB̂k(t) ,

we obtain

X̂A
k (t) = −

∫ t

0

X̂A
k (s)ds+ ckB̂k(t) . (5.2)

Recall the representations of X̂k,0 in (3.3) and X̂k,1 in (3.5).
For the stochastic terms in (5.2), (3.3) and (3.5), since they are mutually independent, we

obtain that the covariance function of their summation at times 0 ≤ t < t′ is equal to

Cov(ckBk(t), ckBk(t
′)) + Cov(λ

1/2
k B̂k(1− e−t), λ1/2k B̂k(1− e−t

′
))

+ Cov

(∫ t

0

∫ t

0

1s+x≤tdŴk(λks, 1− e−x),
∫ t′

0

∫ t′

0

1s+x≤t′dŴk(λks, 1− e−x)
)

= c2kt+ λk(1− e−t) + λk(t− (1− e−t)) = (λk + c2k)t .

That is, the three stochastic terms in (5.2), (3.3) and (3.5) are equivalent in distribution
with a Brownian motion with variance coefficient λk + c2k. In the case of the renewal arrival
process, c2k = λ3kσ

2
k = λkSCVk with SCVk = λ2kσ

2
k being the squared coefficient of variation of

the interarrival times, so the variance coefficient λk + c2k = λk(1 + SCVk). If in addition, the
arrival processes are Poisson, then SCVk = 1, and the variance coefficient λk + c2k = 2λk.

Finally, combining (5.1), (5.2), (3.3) and (3.5), we obtain the expression in (2.11). �
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