Non-stationary self-similar Gaussian processes
as scaling limits of power-law shot noise processes

and generalizations of fractional Brownian motion
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ABSTRACT. We study shot noise processes with Poisson arrivals and non-stationary noises. The
noises are conditionally independent given the arrival times, but the distribution of each noise
does depend on its arrival time. We establish scaling limits for such shot noise processes in two
situations: 1) the conditional variance functions of the noises have a power law and 2) the conditional
noise distributions are piecewise. In both cases, the limit processes are self-similar Gaussian with
non-stationary increments. Motivated by these processes, we introduce new classes of self-similar
Gaussian processes with non-stationary increments, via the time-domain integral representation,
which are natural generalizations of fractional Brownian motions.

1. INTRODUCTION

Fractional Brownian motion (FBM) is a Gaussian process with dependent stationary increments.
Its dependence structure is best described when viewed in the context of a generalized process.
Under this perspective, the spectrum of FBM is a power function which scales in the same way
at all frequencies. The exponent of the power function then characterizes both the high and low
frequencies. FBM has been used to model data with long-range dependence (low frequencies), for
example, tree ring width, which varies from year to year and has been identified as one of the natural
stationary time series data sets which exhibit long-range dependence (see, e.g., [35, 43]). FBM has
also been used in the context of high frequency to model the behavior of the logarithm of stock prices
when measured at very high frequencies (see, e.g., [14, 16]), and to study rough stochastic volatility
(see, e.g., [11, 12, 24]). In this paper, we study non-stationary shot noise processes characterized by
a power law and obtain variants of FBM as their scaling limits. Such self-similar Gaussian processes
with non-stationary increments may be useful to study high frequency data.

A shot noise process involves the cumulative effect of the arrivals of certain noises (shots) whose
influence lingers for a while according to some response function. Non-stationary shot noise processes
are used to model many stochastic systems, for example, see [1, 9, 17, 39, 40, 41, 59] and references
therein. A useful model for non-stationary noises is to allow the distribution of the noises to depend
on the arrival times of the shots. This model has been studied in [40] for infinite-server queues
with service times dependent on the arrival times, and in [41] for general non-stationary shot noise
processes. In [40, 41], when the arrival process has a Brownian limit, as in the case of a renewal
process, the limit process is a non-stationary Gaussian process, which is not self-similar.

With i.i.d. noises, it is shown in [28] that when the shot shape function is regularly varying,
an FBM arises as the scaling limit of the shot noise process in the conventional scaling regime
(both time and space are scaled), capturing the long range dependence effect. In [26], a self-similar
stationary Gaussian limit is also proved for explosive shot noise processes with a Poisson arrival

2000 Mathematics Subject Classification. 60F17; 60G15; 60G18.
Key words and phrases. Power-law shot noise process, non-stationary increments, self-similar Gaussian process,
scaling limits, functional central limit theorem, fractional Brownian motion.



2 GUODONG PANG AND MURAD S. TAQQU

process. Also, in Chapter 3.4 of [44], in the same setting as [28], the integrated shot noise process is
shown to converge weakly to an FBM.

In this paper, we study a non-stationary shot noise process, with a Poisson arrival process of
shot noises, where the distribution of each noise depends on its arrival time, but where these noises
are conditionally independent given their arrival times. The shot shape (response) function is
regularly varying as in [28, 44]. The conditional variance function of the noises is time-varying
(time-inhomogeneous). As noted in the paragraph after equation (1.4) in [29], in certain cases, it is
actually the integrated shot noise process that is the object of greatest interest. That is the focus
of the current paper. We consider two interesting cases: (i) the conditional variance function is
regularly varying and (ii) the conditional variance function is piecewise constant. In the conventional
scaling regime, under the proper scalings of the space, we show that the scaled shot noise processes
converge to non-stationary Gaussian processes, which are self-similar and have continuous sample
paths (see the functional central limit theorems, FCLTs, Theorems 3.1 and 4.1).

The proof of weak convergence uses a new sufficient convergence criterion (Theorem 6.1 in the
Appendix) developed in Pang and Zhou [41], which extends the classical convergence criterion,
Theorem 13.5 in Billingsley [5]. It relies on new maximal inequalities that relax the requirement
of having a finite measure as the probability or moment upper bound for the increments of the
processes (Theorems 10.3 and 10.4 in [5]). It allows the upper bound to be a set function with a
superadditivity property (see Definition 6.1 and Theorems 5.1 and 5.2 in [41]). To verify that the
convergence criterion applies, we compute the second and fourth moments of the increments of
the scaled shot noise processes (Lemmas 3.1 and 3.3), verify that they induce a finite set function
that satisfies the superadditivity property (Lemma 3.2), and thus prove the probability bound
for the increment of the scaled shot noise processes (Lemma 3.4). To prove the existence of the
process in the space D, the classical existence criterion Theorem 13.6 in [5] is also extended in [41]
(See Theorem 5.3 therein and Theorem 6.2 in the Appendix). We apply this existence criterion
to establish the existence of the limit process in the space ID. The continuity of the sample paths
follows from the continuity of the process in quadratic mean, as noted in Proposition 3.1.

The study of the power-law shot noise processes introduces new classes of self-similar Gaussian
processes that have non-stationary increments. We provide time-domain representations of such new
self-similar processes in Section 5. They are natural generalizations of FBM to the non-stationary
setting. The existence of these processes and the continuity of their sample paths can be established
in the same way as was done for the limit processes of the shot noise processes. In addition, we
provide their spectral representations, which are also natural generalizations of those of FBM. Many
other sample path and probabilistic properties of these processes remain to be studied, for example,
possible extensions of continuity properties by Marcus and Shepp [36] for certain Gaussian processes
with non-stationary increments.

1.1. Literature review. There is a vast literature on shot noise processes with i.i.d. noises, for
example, the work in [6, 10, 15, 19, 26, 27, 28, 29, 32, 37, 48] for Poisson shot noise processes, and
in [46, 57, 52, 33, 45] for more general shot noise processes, as well as on their applications. Our
work is in line with the scaling limits of shot noise processes in the conventional asymptotic regime,
which has focused on i.i.d. noises. The classical work by Kliippelberg and Mikosch [26] and [28]
has established self-similar stationary Gaussian limits. A few papers also establish stable-motion
limits. Kliippelberg et al. [27] proved an FCLT for Poisson shot noise processes which has an
infinite-variance stable limit process. Iksanov [20] and Iksanov et al. [21] studied renewal shot noise
processes, and proved FCLTs under various conditions on the shot shape function. Iksanov et al.
[22, 23] recently studied renewal shot noise processes with immigration and proved scaling limits
and convergence to stationarity. In [2], a class of shot-noise fields with a marked stationary Poisson
process and a power-law response function is studied and a-stable random field limit is established.
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This work also contributes to the study of shot noise processes with noises that are neither
independent nor identically distributed. Here we assume that the noises are non-stationary and
conditionally independent given an arrival time. There is a limited literature on such shot noise
processes. In [33], the noises are modulated by a finite-state Markov chain and are conditionally
independent with a distribution depending on the state of the chain at the arrival time of the shot
noise. In [45], a cluster shot noise model is studied where the noises depend on the same ‘cluster
mark’ within each cluster. In [42], the noises are assumed to be weakly dependent satisfying the
p-mixing condition, and an FCLT is established in the high intensity asymptotic regime.

Studies on FBMs are extensive, and various extensions have been developed; see, e.g., [44]
for a survey. It is important that the self-similarity property is preserved; however, stationary
increments can be relaxed. One well-known example is the so-called bi-fractional Brownian motion
[44]. Non-stationary increments may appear in other applications, for example, in the study of
fractional-colored stochastic heat equations [55], a self-similar Gaussian process solution is obtained
which does not have stationary increments. The class of semi-stationary Brownian processes,
introduced in [3], is Gaussian with non-stationary increments in general, but can be made self-similar
if the integrands are chosen properly.

Shot noise processes and FBMs are both extensively used in financial models. We have mentioned
the papers [26, 28, 27]. Earlier studies include [47] and [7], and we also refer to the recent studies
in financial models in [51] and limit order books in [25]. The shot noise processes can be used to
model limit-order books for very- or ultra-high frequency data. On the other hand, FBM has been
used in portfolio optimization with transaction costs [8, 50] and rough stochastic volatility [4]. It
would be interesting to see how one can use the generalized FBM in these studies. It may be also
worth investigating whether shot noise processes could be used to model market microstructures in
a way that FBM arises naturally to model the dependence structure of stochastic volatility.

It is worth mentioning the applications of these processes in other contexts. Shot noise processes
are also used to study a damped harmonic oscillator subject to a random force in physics [53]. In
[49], the random forces are modeled as i.i.d. symmetric a-stable random variables and in [40] they
are modeled with a conditional Gaussian distribution of mean zero and time-dependent covariance
matrix. FBM is also often used to model internet traffic [30, 54, 38|.

1.2. Organization of the paper. The paper is organized as follows. In the next subsection we
introduce the notation. In Section 2, we describe the model in detail and present the assumptions we
make on the scaling processes. In Section 3, we establish the scaling limits in the case of power-law
conditional variance functions of noises. In Section 4, the case of piecewise constant conditional
variance functions of noises is studied. We introduce new classes of non-stationary self-similar
Gaussian processes, generalizing FBM, in Section 5. In the Appendix we state, for completeness,
the definition of set functions satisfying the superadditivity property and present the associated
sufficient weak convergence criterion and the existence theorem.

1.3. Notation. All random variables and processes are defined in a common complete probability
space (Q, F, P). Throughout the paper, N denotes the set of natural numbers. R” (R’i) denotes
the space of real-valued (nonnegative) k-dimensional vectors, and we write R (R) for £ = 1. For
a,b € R, we write a A b = min{a,b} and a Vb = max{a,b}. Also, ax =aV 0 and a_ = —(a A0).
Let D = D(R4,R) denote R-valued function space of all cadlag functions on R;. (D, J7) denotes
space D equipped with Skorohod J; topology with the metric dy,, see, e.g., [5, 13, 58]. Note that
the space (D, Jp) is complete and separable. Let C be the subset of D for continuous functions.
Notations — and = mean convergence of real numbers and convergence in distribution, respectively.

The abbreviation a.s. means almost surely. Notation 4 represents ‘equal in distribution’. We write
f(z) ~ g(x) for two real-valued functions f and g (non-zero) if lim, ,~ f(z)/g(z) = 1.
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2. NON-STATIONARY POWER-LAW SHOT NOISE PROCESSES

The shot noise process S* := {S*(y) : y € R} is defined as
o0
S*y)= > g (y—S)R(S;), yeR (1)
j=—00

Here {S; : j € Z} is a sequence of Poisson arrival times of shots with rates A, and R; is the noise
caused by shot j at time S;. The effect of the noises lingers as indicated by the presence of the
nonnegative shot shape function g*. Assume that the random variables R;, j € Z, are conditionally
independent given {S;} and that the distribution of R; depends on the time S;, in particular,

P(R; <r|Sj=u) =F,(r), ueR, reR. (2)

We write R;(S;) to indicate explicitly that R; depends on S;. Assume that, given arrival times
{S;}, the conditional mean of R; is zero and the conditional variance of R; is finite, that is, for
each u € R,

Kafw) = [ rdF(r) =0, Ka(w)i= [ PdR) € 0.00) (3)
where the integrations are Witf respect to r. We also assuie that F [R,;(Si)‘l] < 00, that is,
Ky(u) == / rtdF,(r) € (0,00), foreach u€R. (4)
We study the integrated shot noie process S := {S(t) : t € Ry} defined by
S(t) == Z (9(t = 8;) — g(=S))) R;(S;), tERy, ()
where " .
o) = [ g, teR.. (©

Note that we are only considering the integrated effect of noises from time zero forward. The
integrated process S(t) is defined such that S(0) = 0; abusing notation, we also write S(t) =
5 S*(y)dy. See also Definition 3.4.1 in [44].1

Assume that the shot shape function ¢g* is heavy-tailed, namely,
g =y "L (y), y=0, (7)

and g*(y) = 0 for y < 0, where L* is a positive slowly varying function at +oo, and locally bounded
away from 0 and oo in [0, 00), and

pe(1/2,1). (8)
Then the function g in (6) satisfies
g(t) = tl_BL(t)a t >0, (9)
where the slowly varying function L satisfies
L*(t
L(t) ~ ®) as t — 4oo.

1-8

p the literature, for example in Chapter 3.4 in [44], one does not include a star in the shot noise process as in g
in (1). Since the integrated shot noise process appears frequently in the sequel, we reverse this convention in order to
simplify the notation. We thus add stars in (1), define g as in (6) and omit stars in the definition (5) of the integrated
shot noise process.
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We focus on the integrated shot noise process S(t) in (5). Observe 2 that the process S(t) can be
written as

// ot = u) — g(—w))rN(du, dr), €Rs, (10)

where N is a Poisson random measure with the intensity F,,(dr)\du. Informally,

E[ / / h(u)rpN(du,dr)] = / h(uw) / P E[N(du, dr)]
_ / h(u)< / rdeu(r)>)\du: / h(u) K, (u)Adu,

where the p'" conditional moment is denoted K,(u) = [rPdF,(r). It equals 0 if p=1 by (3). In
the sequal we often use the Poisson random measure N (du) with intensity Aadu; thus writing

E[//h(u)rpN(du, dr)] = E[/h(u)Kp(u)Nl(dU)],
since here a = 1.

The auto-covariance function for the process S(t) is given in the following lemma.?

Lemma 2.1. The auto-covariance function of S(t) is

Cov(S( = )\/ g(t —u) — g(—u)) (g(s — v) — g(—u)) Ka(u)du
= [ ot ) = gla) o+ 20— g(w) Ka(—u)d

SNt
+ )\/ g(t —u)g(s — u)Ka(u)du, (11)
0
fort,s € Ry, where Ka(-) is defined in (3).
Proof. By (10), we have
Cov(S(t),S(s))

= E[ / / / / g(t —u) — g(—u)) (g(s — v) — g(—v))r' N (du, dr)N (dv, dr")

= / / g(t —u) — g(—u)) (g(s — u) — g(—u))r?dF,(r)du
— )\/OO (g(t —u) — g(—u)) (g(s —u) — g(—u)) (/ 2dF )du

Then the claim follows from the definitions of ¢ in (6) and Ks(u) in (3). O

We shall consider two classes of conditional variance functions Ko(u) in (3):
e Case (i) Power-law conditional variance functions;
e Case (ii) Piecewise constant conditional variance functions.

2The sum and integral notation are related as follows:
N(t) +
> (=59 = [ glt—wN(du),
i=1 0
where N (t) is Poisson with arrival times S;’s.
3Recall that if M is a Poisson random measure on a metric space S with intensity m, then COV( fs hidM, fs thM) =
J hihodm.
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The specific conditions are stated in the corresponding assumptions below.

3. POWER-LAwW CONDITIONAL VARIANCE FUNCTIONS

In this section, we prove the FCLT for the process S in (5), appropriately scaled, in Case (i). The
specific assumption characterizing Case (i), is as follows:

Assumption 1 (Case (i)). Assume that Ky(t) =t "L_(t) for t < 0 and Ky(t) =t~V L(t) for
t > 0, where v € (0,1), L_(t) and L. (t) are positive slowly varying functions converging to positive
constants at —oo and 400, respectively. Also assume that L*(y) converges to a positive constant as
y — co. In addition,
Ky(u)
K (u)?
for all u € R, where Ky is defined in (4) and x € R} is a constant.

<K (12)

In this case, the conditional variance function Ks(t) converges to zero as t — +oo. Since the

conditional mean of noises is zero, the condition in (12) means that the scaled conditional kurtosis
Ka(u)
Ko (u)?

functions L such that Li(u)/L2 (u) < k, then the condition (12) is satisfied.

is bounded for all u € R. For instance, if K4(u) = u;27f1i(u) for some positive slowly varying

Example 3.1. Suppose that the conditional distributions F,(r) in (2) is Gaussian with mean zero,
variance Ka(u) = u~" and thus kurtosis Ky(u) = 3u=%” for v > 0. Then the condition in (12) is
satisfied. See also Remark 3.3 concerning the inclusion of slowly varying functions.

3.1. The limit process.

We first introduce the limit process, S , and study its properties.

Definition 3.1. Let S := {S'(t) :t € Ry} be a zero-mean Gaussian processes defined by
t

S =c [ ((=wi" = (i)l 2B, (13)

— 00

where ¢ € R is a constant, and E(du) s a Gaussian random measure on R with the Lebesgue control
measure du.

We state the following properties of the covariance functions and of the increment moments.

Lemma 3.1. The process S has covariance functions

Cov(S(t),5(s)) = /_ ’ ((t — )i - (_u)}fﬁ) ((s ) (_u)gﬂ> lu|Vdu,  (14)
fort,seRy. Fort>s >0,
W(s,1) = E[|S(t) - $(5)|*] = / (=} (s ) ) ul 7 (15)

Proof. The covariance function follows as in the proof of Lemma 2.1. For ¥, we have

A~ A~ A~

W(s,t) = Var(S(t)) + Var(S(s)) — 2Cov(S(t), S(s))

:/t ((t—u)ﬁ_(—u);ﬁ)2|uy—mu+/

—00 —00

-2 / (- - ) (- ' - ()l

—0o0

S

(s =)' — ()} ") uldu
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= /St ((t - u)fr_ﬁ - (—u)}r_ﬂ>2|u|_7du +/

—00

s

((t—wi? (s - u)i_6>2\u|_7du

= /: ((t—u)}[ﬁ — (s —u)}[ﬁ)?]u\ydu—k/m

= /t ((t_u)};ﬂ - (s—u)}r_6>2\u|_”’du. (16)

—00

((t —u) (s u)};ﬂ)ﬂuwdu

Note that we have replaced (—u)ffﬁ by (s — u)}fﬁ in the first integral of the third equality when
u € (s,t), since both are equal to zero. O

Remark 3.1. Note that the process S does not have stationary increments if v is not equal to zero.
Recall that an FBM By = {Bg(t) : t € R} has stationary increments and we get

E[(Bu(t) — By(s))?] = E[By(t — s)%] = 0%t — s]*, t,s R, (17)

for some 02 > 0. The proofs of existence of the process in D and the continuity of sample paths as
well as the weak convergence of scaled random walks with long range dependence to the FBM all rely
on the stationary increments property. Due to the simple expression (17) for the FBM, the proofs
are straightforward, because the classical maximal inequality (Theorems 10.3 and 10.4 in [5]) and
as a consequence the sufficient convergence criterion (Theorem 13.5 in [5]) can be directly applied.
However, this approach does not work for our model since the second moment of the increment of S
does not induce a measure. If ¥(s,t) induces a measure, we would have W(r,s) + ¥(s,t) = ¥(r,t)
for any t > s > r > 0, but we have this equality if and only if ¢t = s = r > 0. The function ¥ does,
however, induce a set function satisfying the following superaddivity property and therefore the
generalized maximal inequalities in Theorems 5.1 and 5.2 of [41] can be applied.

Lemma 3.2. The function ¥ in (15) satisfies the following properties:
(i) U(s,s) =0 and ¥(s,t) >0 for each t > s > 0;
(ii) ‘non-decreasing’: W (s,t) < U(s,t') fort' >t >s>0;
(iii) ‘superadditive’: ¥(r,s) + V(s,t) < VU(r,t) fort>s>r > 0.
In addition, limg_,; U(s,t) = 0, and V(0,t) is continuous at t.

Proof. The first two properties are evident. We focus on the third. Let ¢t > s > r > 0. We have
\II(Ta t) - \II(T’ 5) - \I](Svt)

= [ (-0t ) - [

t ((t—wi? (s u)lgﬁ)Qyurwu

_Oo/_; <(3 — w7 = (r - u)i‘ﬂ)ﬂuy-mu i
- /_; <(t ) M N b CE T e (. u)};ﬁ)ﬂumdu
‘/L(“—wrﬂ—@—uﬁ”fmrwu
[ (=0 =m0 s [ (5= 0 = = 02
-/ ; (0~ 0 — (5~ ) (6w — ()l
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> 0. (18)
The last claim on the continuity of ¥ follows directly from the definitions. O

Proposition 3.1. The process S in (13) is well-defined, has continuous sample paths, and is
self-similar with Hurst parameter
3 Y

H_§—5—§e(0,1). (19)
Proof. To see that the process S in (13) is well-defined, we first check that the deterministic
integrands in (14) are square integrable. First, consider the variance formula of S by letting ¢ = s.
At u = t, we consider (¢t — u)?fw, which requires that 2 — 25 +1 >0, i.e., f < 3/2. At u=0, we
consider u?>~2#+1=7 which requires that 2—284+1—+ > 0, i.e., v < 3—28. At u = —o0, we consider
w?(=B=1)=7+1 \which requires 2(1 — 8 — 1) — v+ 1 < 0, that is, v > 1 — 28. Given § € (1/2,1) and
v € (0,1), these conditions are all satisfied. This proves the well-definedness of the process S,

We now show that the Gaussian process S can be viewed as a random element in the space D with
the specified finite-dimensional distributions. We apply Theorem 6.2 in the Appendix (Theorem
5.3 in [41], which is a generalization of Theorem 13.6 in [5]). We need to verify the following three
conditions:

(i) The finite dimensional distributions are consistent. This is evident from the definition.

(ii) For 0 <r < s < t,

E[|5(r) = 5(s)|*[S(s) — S@)|*] < CU(r, )%, (20)

where U is a real-valued set function on Ri defined in (15), and C' > 0 is some constant.
By Hoélder’s inequality, it suffices to show that

E[|S(s) - S@)|"] < Cu(s, 1), (21)

This follows from the Gaussian property of S and Lemma 3.1 by setting C' = 3. (See also Remark
3.2 below).
(iii) For each € > 0,
}{%P(\S(t—%h)—é‘(t)\ >e) =0, teRy. (22)

This follows from Markov’s inequality, (15) and the continuity of the functions W.

We show next that the process S has continuous sample paths almost surely. We apply Theorem
1 in [18], which states that if a real-valued Gaussian process with sample paths in D is stochastically
continuous, then it has sample paths in C almost surely. It is well known that a real-valued Gaussian
process is continuous in quadratic mean if and only if it is stochastically continuous [18]. Thus it
suffices to show that the process S is continuous in quadratic mean, that is,

lim E[|5(s) - SHF] =0 forall teR. (23)

This follows from the continuity of the function W.

Finally, we verify the self-similarity property. Let ¢ > 0. We have

S0 = [ (1@t wi? - )i 2B

—00

i

/ t ((6t - (—eu)};ﬁ)a*v/2|u|*'ycl/23(du)

= [ (= k)l B ) (21)

where H = % — 8 — 3. This completes the proof of Proposition 3.1. (Il
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3.2. Weak convergence of the scaled process.

We now focus on the weak convergence, as a — oo, of the scaled process S, := {9, () : t € Ry}
indexed by a subscript a € R:

& o Slat)
Sa(t) == ba) t e Ry, (25)
where the process {S(¢) : t € Ry} is defined in (5), and
b(a) ~ a®? P2 as a— oco. (26)

We prove an FCLT for S, as a — co. Note that scaling limits for the power-law shot noise process
Sa(t) have been studied when g* satisfies (7) and the noises {S;} are i.i.d., see Chapter 3.4 in
[44]. It was shown that the limit process is an FBM. Here, since the distributions of noises are
non-stationary, the limit process turns out to be non-stationary Gaussian. The stationary-increment
property of the limit will be lost but the self-similarity property is preserved.

We next study the weak convergence of the scaled processes S, in (25). We need the following
lemma on the moments of the increments of the scaled processes S,. Recall that N (du,dr) is a
Poisson random measure with intensity F,(dr)\du in (10), and N,(du) is a Poisson random measure
with intensity Aadu.

Lemma 3.3. Fort> s >0 and all n,
. . 1 t
E[(Sa(t) — Sa(s))z} = b(a)Q)\/ (g(at — au) — glas — au))* K (av)adu, (27)
where Ko is defined in (3). Moreover,

BI(5u(6) - $u())'] = [( s [ (otat o — s — ) Koo o)) |
[ / (at — au) — g(as — au))" (K4(au) — 3K2(au)2)Na(du)}

t
[/ g(at — au) (K4(au) — 3Ks(au) )Na(du)}, (28)
where Ky is defined in (4 )

Proof. We can write

Su(t) — Sals / / glat — ) — gas — w))rN(du, dr)
+ bla) /a:t /OO g(at —u)rN(du,dr). (29)

Note that the two terms on the right hand side are independent. Also, the expectations of both
terms are equal to zero (since the conditional mean of the noises is zero). Thus we have

B[(8ul6) ~ $:(9))°] =y [ slat = wPKa(w)du

(@)*" Jas
1 as
+ b(a)Q)\/oo(g(at —u) —glas — u))ZKg(u)du, (30)
where Ks(u ) is deﬁned in (3) and g(t) = 0 for ¢ < 0. Since

u)? Ky (u)d glat —u) — g(as — u))> Ko (u)du,
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we can combine the two integrals and make a change of variables to obtain (27).

For the fourth moment (27), we again use the integral representation in (29). By conditioning
and since the conditional mean of noises is zero (see (3)), we have that

E[(Sa(t) = Sa(s)"]

- @E[(/aat /_Zg(at — u)rN(du, dr)ﬂ (31a)

+ b(1)4E[</GS /OO (g(at — ) —g(as—u))rN(du,dr)>4] (31b)

b<a)4E[< / :t / Z glat — u)rN (du, dr)>2

_ « (/OO /Z (g(at - ) —g(as—u))rN(du,dr)>2]. (31¢)

We obtain this expression because expanding (a + b)4, we get a* + b* + 6a2b? when the terms with
a or b raised to the power 1 vanish, due to the fact that the conditional mean of the noises is zero.
Similarly, for the first term (31a), by conditioning, we obtain that it is equal to

b@lw)‘*E[ /: glat — au)‘*Kdau)Na(du)}

+ b@f)‘lE[/st /St (g(at — au)QKg(au)> (g(at — CI/U)QKQ(CL’U)) 1(u # v)Ny(du)Ny(dv)|. (32)

Indeed, by expanding (31a), we get the product N(duy,dr1)N (dug,dre)N (dus,drs)N(dug,dry).
The first term in (32) results from the case u; = us = uz = u4 and in the second term in (32) the
4 .
9) = 6 such pairs.

We need to evaluate the double integral in (32). We do so through the relation

@EK / glat - au)ng(au)Na(du)>2] (33a)

u’s are pairwise equal. There are

— b@iyl E[ / t glat — au)4K2(au)2Na(du)} (33b)

+ 6(2)4E[/St /St (g(at - au)2K2(au)) (9(at - av)ZKg(a’u)) 1(u # v)Na(du)]\_fa(dv)} . (33¢)

By replacing the double integral in (32) by the two terms (33a) and (33b) given in this equation,
we obtain that the first term (31a) is equal to

1

WE[/: glat — au)4K4(au)Na(dU)}

+ b@i)‘lE[(/:g(at - au)gKg(au)Na(du)> T — b(a)4E[/:g(at - au)4K2(au)2Na(du)}

Similarly, the second term (31b) is equal to

b(i)4E[/ {otat — ) — g(as - au>)4K4<au>Na(du>]

—00
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+ b@i)‘*E[(/_oo (9(at — au) — g(as — au))2K2(au)Na(du)>2]
- bé’mE[ /_ OO (g(at — au) — g(as — au))4K2(au)21\7a(du)]. (35)

The third term (31c) is equal to

b@(j)zlE [( / t glat — au)2K2(au)]\_fa(du)> ( / Oo (g(at — au) — g(as — au))’ Ks(au) a(du))]
Thus, combining (34)—(36), we obtain the expression in (28). (32

Remark 3.2. Under the conditions on b(a) in Theorem 3.1, the second moment of the increment
of S, in Lemma 3.3 converges to that of the limit S given in Lemma 3.1. Since the limit process is

mean-zero Gaussian, we have E[(S(t) — S(s))4] = 3(E[(S'(t) — 5‘(3))2])2, while this property does
not hold in general for the scaled process S,. We obtain, however, an expression which converges to
the same limit as a — oo.

As a consequence of Lemma 3.1, it is also easy to show that for 0 < r < s <t and any € > 0, we

have
P([S(r) = 5(s)| v |S(s) = ()| = €) < %xy(n £)?.

Indeed, we have

P( S(r) = 8(s)| v |S(s) — S()| > e)

< LB[I50) - $()P15() - S

< S (B[150) - s6)1) " (B]|56) - s1])
< %\Ix(r, t)?,

using the increment moment formulas in Lemma 3.1 and the monotonicity property of . In the
lemma below we prove the analogous property for the scaled process S,, which in general is not
Gaussian.

Lemma 3.4. For0<r<s<t<T <o0, alla>0 and any € > 0,
N N N N C
P([8u(r) = Su(9)| V [ Su(s) = Su(®)] = €) < S0(r,)% (37)

where C > 0 is a constant, and V(s,t) = EHS’(t) - 5’(5)|2] as given in Lemma 3.1.
Proof. We have as above,

P(\Sa(r) — Su(8)| V| Sals) = Salt)] > e)

< (B8 = 50l]) " (21800 - Sl ]) ™ 39)

Note that the nondecreasing property of the set function ¥ implies that W(r, s)U(s,t) < W¥(r,t)2.
By (28) in Lemma 3.3, it suffices to show that

E[(b(;2 /t (g(at — au) — glas — au))zxz(au)Na(du)ﬂ S CU(s, 02 as a oo, (39)

—00



12 GUODONG PANG AND MURAD S. TAQQU

for some constant Cy > 0, independent of s, ¢, and

! ) 4 — au 2\N u as a (0. ¢]
b(a)4E[ /_ (gtat = o) = glas = au)) (K (aw)  3Ka(an)?) Ny (d )] =0 oo, (40)

1
b(a)*
where K4 is defined in (4).
We first prove (39). To show the convergence of the expectation, we proceed in two steps:

i) convergence in distribution of the random process inside the expectation for each fixed s,t € Ry
as a — oo, that is,

E[/t (9(at — au))4(K4(au) - 3K2(au)2)Na(du)] —0 as a— oo, (41)

! /t (9(at — au) — g(as — au))QKg(au)Na(du) = CV20(s,t), as a— oo, (42)

b(a)? J oo
for each s,t € Ry and constant C' > 0 (which implies the convergence in distribution for their
squares),
and
ii) the uniform integrability of the sequence
1 t 2 — 2
{<W /Oo (9(at — au) — g(as — au)) Kz(au)Na(du)> ta € R+}. (43)

Then the convergence in (39) follows from Theorem 3.5 in [5].
To prove (42), it suffices to show the convergence of the corresponding characteristic functions,
that is,

t
E[exp (zﬂb(i)?/ (9(at — au) — g(as — au))2K2(au)Na(du)>] — exp(i0CV(s,t)) as a— 0.

- (44)
The left hand side is equal to

exp ( /_ ; [exp (m . (;2 (glat — au) — glas — au))QKQ(au)> _ 1] Aadu).

We have

1

b(a)2/ (9(at — au) — g(as — au))2K2(au) aXdu

a ~ ) 1 , )
= b(a)2)\/_ ((at — GU)JBL((at —au)4) — (as — au)gﬁL((as —au)1)) (au)_"L_(au)du

+ o [ (et =)Lt = an0) (a5 = ) L((as = au)) @) L (o)

a37257'y 0 B B o
- WA( [ (=0 niat = a)) = (5 = 07 El(as = au)))*(0) (e

+ /0 ((t— u)}[BL((at —au)y) — (s — u)i_ﬁL((as — au)+))2(u)lvl~)+(au)du>.
(45)

Using the asymptotic behavior of b(a) in (26), it follows that the right hand side of (45) converges
to C'U(s,t)? for some constant C' > 0. Similarly, we obtain

b((lz)4 /_ (g(at —au) — g(as — au))4K2(au)2 axdu —0 as a— oc. (46)
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Thus by Taylor remainder theorem, we have shown (44).
Now to prove the uniform integrability of the sequence in (43), it suffices to show that

sup £ Kb(i)? / " (glat — au) — glas - au))QKz(au)Na(du)ﬂ < . (47)

—0oQ
Similar to the calculations leading to (32), since the conditional expectation of noises is zero, we
obtain that the expectation in (47) is equal to

1 t _
E [bW)G / (9(at — au) — g(as — au))6K2(au)3Na(du)

—00

_ 1 5 / (9(at — au) — g(as — au))ﬁKg(au)3 aldu

b(a)® /o
a 0 B B o
- W)‘ /_OO ((at — aw) P L((at — au)y) — (as — aw) TP L((as — au)4))*(auw) 2 L (au)’du
+ 6(2)2)\/0 ((at — au)}[’BL((at —au)y) — (as — au)}[’BL((as - au)+))6(au);3vl~/+(au)3du

(3/2-8-7/2) [ [0 )
= W)\ < /_oo (¢t —w) P L((at — au)y) — (s — )y " L((as — au) ) (w) 2 L (au)*du

+ /O ((t —w) P L((at — au)1) — (s — w) P L((as — au)+))6(u);3vi+(au)3du>.

By the assumption in (26), we obtain the claim in (47).
Next we prove (41) since (40) follows similarly. We have

1)4 / g(at — au)* (K4(au) — 3K>(au)?) ardu

b(a
¢

. a 4—48 (au) —2v7 2
= b(a)4)\/s (at — au) L(at — au)? <3K2(au)2 1)3(au) 7L(au)?)du

1 a4(3/2*/5*7/2) t K4(au) ~
=—X ———A t —u)* ¥ L(at — au)( ————5 —1)3u" 'L Hd

- % by /S (t —u) (at — au) (3K2(au)2 ) u (au)?)du
—0 as a— oo, (48)

where the convergence follows from the assumption (12). This completes the proof. O

We now prove the weak convergence of S, in Case (i).
Theorem 3.1. Under the assumptions in Case (i), we have the weak convergence
Se=S5 in (D,J)) as a— oo, (49)
where the scaled process S, is defined in (25) and the limit process S is given in Definition 13.

Proof. We apply Theorem 6.1 in the Appendix below to prove the weak convergence. We first prove
the convergence of finite-dimensional distributions, that is,

(Sa(tr), - Sa(tr)) = (S(t1),...,S(tx)) in R as a— oo, (50)
for t; >0,i=1,...,k. We start with £ = 1 (removing the subscript 1 for brevity). We have

E[exp (z@S‘a(t)ﬂ exp 19/ / g(at —u) g(—u))rN(du,dr))}

~ exp / i / e ie@@(at—u)—g(—u))r)
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1
m(g(at —u) — g(—u))r} Fu(dr))\du)

= exp (/_C: /_Z {exp (Z'gb(la)(g(at —au) — g(—au))r)

1
@(Q(at —au) — g(—au))r} Fau(dr))\adu>.

Recall that € — 1 — iz ~ —22/2 as x — 0. Thus, we obtain that

I, = logE[exp (wSa(t)ﬂ
~ /Z /Z [— 62 2b(1a)2 (9(at — au) — g(—au))QTQ}Fau(dr))\adu

= /_OO { —? 2b(1a)2 (9(at — au) — g(fau))QKg(au))\a} du

—1—146

—1—10

- / t [_922b(1a)2 (9(at — au) — g(~aw))* Ka(au)ra| du = / t (—fm(a@)du, (51)

—00 —00
where the last equality follows since g(t) = 0 for ¢ < 0. By the assumptions on b(a) in (26), g in (9)
and Ko in Assumption in Case (i), we have

I,(t,u) = l)(iLTP(g(at —au) — g(—au))2K2(au)

= I(tu) = C'((t—w) i ? = (—w)i ) a7, (52)
as a — oo, for some positive C’ > 0. To prove the convergence
E[e‘iegam] — E[e_wé(t)] as a — 00,
it suffices to show that I, (¢, ) is dominated by an integrable function. As in the proof of Theorem
3.4.5 in [44], it can be shown that
1
|g(at —afbjlﬁ)L—(f)(—aU)! <- _% (- W)LBES _ (L)L)
where § > 0 is small and C” is some positive constant. Since G(u) = |u|~7L(u), it is clear that
I,(t,u) can be dominated by an integrable function. Thus we have shown that
S.(t)=S(t) in R as a— oo.
Now for the convergence of finite dimensional distributions, we show that
(Sa(t), - Sa(tr)) = (S(t1),...,S(t)) in R* as a— . (54)

Let 0;, i =1, ..., k, be positive constants. Consider the joint characteristic function

E[eiZf:I ejga(tj):| = E[exp (2% /OO /00 (Ek:ﬁj (g(atj —s) — g(—s)))rN(ds,d'r))}
R R =1

The same calculations above apply to the above equation by considering the function Z?Zl 0; (g(atj —
s) — g(—s)), and thus (54) holds.

We now verify that the conditions (ii)~(iv) of Theorem 6.1 for the weak convergence of S, to S are
satisfied. We have shown (i) the convergence of the finite-dimensional distributions (50). Condition
(ii), namely the continuity of the processes at each t, follows from the proof of Proposition 3.1. The
condition (iii) on the probability bound for the increments of S, is verified by Lemma 3.4. Finally,
condition (iv) holds because W(0, ) is continuous at ¢. This completes the proof of Theorem 3.1. [

(53)
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Remark 3.3. We have assumed that the slowly varying functions L(t) and L (t) (resp. L_(t))
converge to positive constants as ¢ — oo (resp. t — —00)) and assumed that b(a) satisfies (26) to
prove the weak convergence in Theorem 3.1. If Ky(t) = |[t|""L(t) for v € (0,1), L* is a positive
slowly varying function at co and L is a positive slowly varying function at both +oo, then the
weak convergence in Theorem 3.1 holds provided that

b(a) ~ a®? P 2L(a)L(a) as a— oo.

instead of the condition on b(a) in (26).

4. PIECEWISE NOISE FUNCTIONS

In this section, we study Case (ii) where the conditional variance function K»(s) of noises are
piecewise constant. The specific assumptions are as follows.

Assumption 2 (Case (ii)). Let F(*) be a c.d.f. with mean zero, finite second moment o and
finite fourth moment ¢, for £k = 0,...,¢. Assume that there exist finite time points —co = ug <
up < ug < - < uy < ugp; = oo such that the distribution function F,(-) = F®)(-) if u € [ug, upr1).
In this case, Ka(u) and Ky(u) are piecewise constant, taking values o7 and ¢ in the interval
U € [ug,upt1) for £ =0,...,¢, respectively. Let ko be the integer such that 0 € [ug,, uk,+1)-

We prove the weak convergence of the scaled process S,(t) = S(at)/b(a) defined in (25) with
bla) ~ a®*?>PL(a) as a— oo, (55)
where 5 € (1/2,1) is assumed in (8).
Theorem 4.1. Under the assumptions in Case (ii), we have the weak convergence
Sa=28 in (D,J) as n— oo, (56)

where the limit process S:={S(t) : t € R} is a non-stationary self-similar Gaussian process S, with
S ={S(t): t > 0} defined by
t

Sw A2 [ (- wi - (-u)l) B (57)

where E(du) 15 a Gaussian random measure on R with the control measure
o(du) = o91(u < 0)du + op,00(du) + o¢l(u > 0)du
and 8o(du) is the Dirac measure at 0. The self-similarity parameter of S is H = 3/2 — 3 € (1/2,1).

Proof. First, we obtain the covariance function of S(t):
tAs

Cov(S(t), S(s)) = A / ((t+u)'=7 = u") (s + )0 —u!"P)on(du), (58)

—00

for t,s € R, where
oo(du) := og1(u < 0)du + Ugoéo(du) + 021 (u > 0)du.

The second moments of the increments of S is

E[(S(t) —5(s))*] = A / ((t—w)}i? = (s — )y %) oa(du) = (s, 1), (59)

for t > s > 0. By (58), we have

t—s

E[(S(t-5))’] = A/ (t=s-wi? - (fu)};ﬁ)QUQ(du),

—0o0
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It is evident that E[(S(t) - S(s))Q] is not equal to E[(S’(t - s))Q]. However, we observe that as in

the proof of Lemma 3.2, the function \il(s, t) satisfies all the properties in Lemma 3.2. Thus we can
follow a similar argument in the proof of Theorem 3.1.

We first check the convergence of finite-dimensional distributions. Recall (51). Under the
assumptions of g and Ko, we have

/; [b@i)?(g(at —au) — g(—au))2K2(au)/\a} du

a3—28 t - )
— b(a)QA/_oo ((t—w) P L((at — au)y) — (s — w) PL((as — au) 1)) Ka(au)du
~ )‘/_ ((t— “)rﬁ —(s— u)kﬁ)Qag(du).

Then we verify the condition on the probability bound for the increments of S, as in Lemma
3.4, for which we use the moment formulas for the increments in Lemma 3.3. The proof follows
essentially the same argument, but using the pieceiwsie constant conditional variance function
K5 (t) and fourth moment K4(t) in the assumptions of Case (ii). In particular, in the proof of the
convergence of (41), we have

a )\/ (at — K4(au) — 3Kz (au) )du
/2-B) ot
= 5 X 1)1“2)4/\/ (t —u)**PL(at — au)* (Ky(au) — 3Ks(au)?)du

—0 as a— oo.

Here the convergence follows from the assumption on b(a) in (55) and the boundedness of the second
and fourth moments, K,(-),p = 2,4, under the assumptions in Case (ii). The rest of the proof can
be carried out similarly as in the proof of Theorem 3.1. O

5. NEwW CLASSES OF NON-STATIONARY SELF-SIMILAR GAUSSIAN PROCESSES

Motivated by the scaling limits of the shot noise processes in Sections 3 and 4, we introduce three
new classes of self-similar Gaussian processes with non-stationary increments. They reduce to FBM
in special cases. They are characterized via the integral representations, generalizing that of FBM
by Mandelbrot and Van Ness [34].

5.1. A first class. Consider a process X := {X(¢) : ¢ € R} defined by the following (time-domain)
integral representation

d e} (6% (e} [e3% —
XOher 2 { [ (o (0= )% = (0)3) + a2 (¢ = 02— (~02) )l 2B} . (60
teR
where ) )
. g g
% Rz = ]-a 25 3 -5 a5 o 7)7 1

a; € i v >0 aE( 2+2 2+2 (61)
and B(du) is a Gaussian random measure on R with the Lebesgue control measure du. When o = 0,
the integrand ((t — u)$ — (—u)%) is interpreted as 1([0,¢)) for ¢ > 0 and 1((¢,0]) for ¢ < 0. In this
case, when a1 = 1 and ay = 0, we get fg u_V/QB(du) for t > 0, which is a driftless Brownian motion

. . . t —~/2
with variance function [y u~"/?du.

To see that the process is well-defined, we check if the square of the integrand in (60) is integrable.
At u = t, we consider (t —u)3® and (¢t — u)?®, which requires that 2o + 1 > 0, that is, a > —1/2.

At u =0, we consider (—u)ia 7*1 which requires that 2a — v + 1 > 0, that is, a > (y — 1)/2. At
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u = —00, we consider (—u)i(afl)dyﬂ, which requires that 2(a«—1) —vy+1 < 0, that is, a < (y+1)/2.
Similarly, at u = +o00, we also require o < (v + 1)/2. Therefore, given the conditions on v and « in
(61), the process X (t) in (60) is well defined.

Observe that when v =0 and « = H — 1/2 for H € (0, 1), the process X in (60) is an FBM By,
which can be expressed through its time-domain representation (see, e.g., Section 2.6, Remark 2.6.8
in [44]). The definition of the process X (¢) in (60) is a natural way to generalize FBMs to be a
Gaussian process with non-stationary increments which preserves the self-similarity property.

Note also that like FBMs, if a3 # 0 and ay = 0, then we can call the process X(t) causal
(non-anticipative) since the integration is over (—oo,t] for ¢ > 0. And when a; = ag, the process
X(t) can be called well-balanced. When a; = 1 and ag = 0, the limit process S in Definition 13 can
be regarded as a special case of the process X (t).

We summarize some basic properties of this process.

Proposition 5.1. The process X has the following properties.

(i) X is a continuous self-similar Gaussian process with Hurst parameter H = a—%—i—§ € (0,1).

(ii) The covariance function of X is

Cov(X (t), X (s)) = /R (a1 ((t—w)? — (—u)?) +az ((t —w)® — (—u)®) )

X (al (s — W% — (—uw)?) +as ((s — w)* — (—u)*) )mrm,
and the second moment of its increment is

D(s,t) := E[(X(t) — X(s))?]
_ /R (a1 (= )% = (5 = w)%) +a2 (¢ = )2 — (5 — )2) )Q\umdu,

fort,s € R. The set function ®(s,t) satisfies the properties in Lemma 3.2.
(iii) The spectral representation of X 1is

{X(t)}er 4 {\/127F(a + 1)/]R (a1 (—iz)™ + ag(iz) ™)

where I'(+) is the Gamma function,

P(x) := 2|z*7 T (1 — 4/2) cos (1=~/2)7/2), z€R,

eztz -1

—f@)Br)} . (62

and B is a Hermitian Gaussian measure on R with the Lebesque control measure dz.

Proof. The existence of the process, the continuity of the sample path and the self-similarity property
follow from similar argument as Proposition 3.1. The proof of (ii) follows from similar arguments in
the proof of Lemmas 3.1 and 3.2.

For the spectral representation, first by (2.6.6) in [44], we have for x > 0,

/ em‘\u]_'yﬂdu = /OO o202 gy 4 /OO e~y 212 gy
R 0 0
=27/271r(1 - 7/2)(4'(1—7/2)#/2 + e—i(l—w/2)7r/2)

— 207/271D(1 — 7/2) cos((1 — 7/2)7/2),
and for x < 0,

/eim]u\_“//QdU—/ e_i”v_7/2(—:r)7/2_1dv+/ ewv_“*/?(—x)V/Q_ldv
R 0 0

— 2(=2)>7'D(1 - /2) cos((1 — v/2)7/2).
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Thus, by (B.1.14) in [44], we have
lu|~"/2B(d / 2)dB(dz),
/. t 7

and then the spectral representation follows from Proposition 2.6.10 as in the first proof of Proposition
2.6.11 for FBMs in [44]. O

Remark 5.1. One obtains a further variation by considering
t
c/ (t —u)*u"V2B(du), t>0, (63)
0
where B(du) is a Gaussian random measure on R with the Lebesgue control measure du and
1 ~ 1
B, >0 ac(-1+2147)
ce v o€ 5 + 2 3 +

Such a process is also a continuous self-similar Gaussian process with Hurst parameter H =
a—3+3€(0,1). For 0 <s<t,

E[(X() — X(s))] = / (t = u)>uVdu + /O (= u)® — (s — w)*[u~"du.

Note that when v = 0, it reduces to the Riemann-Liouville (R-L) FBM introduced by Lévy ([31],
see also Chapter 6 in [44]; modulo some constant scaling). Recall that the increments of R-L FBM
are also non-stationary. The R-L FBM has recently been used to define the rough Bergomi model
to study stochastic volatility in [4]. O

5.2. A second class. An alternative generalization is to consider a process Y defined by the
(time-domain) integral representation as follows:

VWhex £ { [ (o0 (002 = (0%) (00 0 (0= 02 = ()2) (=007 Blaw) |
(64

where

. 1 1
a €R, =12 ~>0, ae<—§+% §+ )

and B(du) is a Gaussian random measure on R with the Lebesgue control measure du. It can be
similarly verified that the process Y is well defined in the same way as X. Analogous to Proposition

5.1, we can show that the process Y () is a continuous self-similar Gaussian process with Hurst

parameter H = o — % + 3 € (0,1). It has covariance function

Cov(Y (1), V(s)) = /R (n (6= w0~ (-00) (-7 (6~ ) — (~)%) (~2)=")

x (a1 (s = w3 = (~0)5) (~0)7" +az (s = w2 = (~u)%) (~w) "% ) du,
and the second moment of its increment
E[(Y () ~ Y(s))’]

_ /R (a1 ((t— w2 — (s —w)%) (~w)3* +az ((t— W)™ — (s —u)®) (—U):7/2)2du7

for s,t € R.
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Remark 5.2. Note that the process X(t) is equivalent in distribution to the process Y (¢) only
when a; = 0. Indeed, by direct calculations, we obtain that the variances of X (¢) and Y (¢) are

Var(X (t)) = /R (al (t—w) = (—w)T) + a2 ((t—w)® = (—u)?) )2‘u|—7du
_ /0 (o (0~ w5 ~ (-w)3) )2(_u):vdu + /Ot (ot - u)i)Quwdu

—00

+ /000 (ag ((t—u)® — (—uw)®) )2(—u):7du,

and

Var(Y (#)) = /R (ar (=% — (~)3) ()7 + s (0~ ) — (~0)) (~u)~"2) du
0 2
- / (al ((t —u)§ — (_u)j*_) (_u)lv/ ) du

—0o0

It is then evident that Var(X(t)) = Var(Y (t)) only when a; = 0.
Also, when ag =0, X (t) and Y (¢) are represented (in distribution) as

02 [ (a (= w5~ (-w)) )lul~7/Bldu).
and
v(t) L /R (ar (¢ = w)% — (~)3) (-7 B(du),

respectively, where the integral for X () goes from —oo to ¢, while that for Y'(¢) goes from —oo only
up to 0.

The spectral representation of Y is
itr 1

FOher £ {o=Tl0+1) [ = (0n(-in) 4 o) + anfio) P (@) Blan)} . (65)

where

p(x) = |27 (1 — 5/2)en @A/ 2m/2 g e R
P-(2) = |2"PTIT(1 = y/2)e7 e @HT/2ATE2 g e R,

sgn(z) = 1if x > 0 and sgn(z) = —1 if 2 < 0, and B is a Hermitian Gaussian measure on R with
the Lebesgue control measure dz. Note that by (2.6.6) in [44], we have

Bela) = [ emw) P = [T e
R 0
YT (1 = /2) el 022 4 g 1PTIT(L — yj2)e i (/20

— |x|'y/2—1r(1 o 7/2)€sgn(m)i(1—7/2)7r/27 (66)

and @_(z) follows from similar calculations. The spectral representation follows from (B.1.14) and
Proposition 2.6.10 in [44].
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5.3. A third class. Motivated by the shot noise process in Case (ii), we introduce a third general-
ization of standard FBMs. Consider a process Z defined by the integral representation:

Z@her 2 { [ (o (=03 - (o) +aa (=0 — (-0%) )Blaw)} . (67

teR

where a; € R, i = 1,2, a € (—1/2,1/2) \ {0}, B(du) is a Gaussian random measure on R with the
control measure
o(du) = o_1(u < 0)du + codo(du) + o41(u > 0)du
for o+ > 0 and op > 0 and dg(du) is the Dirac measure at 0.
It is easy to verify that the process Z is well defined, and it is continuous self-similar with
Hurst parameter H = v+ 1/2 € (0,1) \ {1/2}. The covariance function and second moment of
its increments can be also calculated similarly. In particular, with o9 = 0, we have the variance

function
0

Var(Z(t)) = / (a2 (¢t = )2 — (~w)3)* ) o

—00

+/0 (al (t—w)T) +az ((t—w®* = (—uw)®) )2cridu. (68)
However, an FBM By with the representation
/R (ar (4 =) — (~u)) + aa (¢ — )~ (~u)2) ) B(du)

for a« = H — 1/2, has variance

Var(Bp(t)) = /R (al (t—w) = (—wT) + a2 ((t—w)®* = (—u)?) >2du

:/0 (af ((t—u)if(fu)j“_)Q)du

—00

[ (=02 (=02 = (-u)2) ) (69)

Thus it can be seen that if o_ # o4, the process Z(t) cannot be an FBM.
The spectral representation of Z is

(Z(H)her & {\/%F(a +1) /R TN (i) aain) )F@BAn)} . (70)

where
o(x) = / o (du), x€R,
R

and B is a Hermitian Gaussian measure on R with the Lebesgue control measure dz.
Note that by convention, when o = 0, for a; = 1 and as = 0, we have

/ B(du) £ 002y + 0, B(t)
0.0

where Zy ~ N(0,1) and B(t) is the standard Brownian motion, independent of Zy. The process
is not self-similar unless op = 0, in which case the process Z(t) reduces to a Brownian motion
with variance coefficient oy. In general, when a = 0, assuming og = 0, the process Z(t) in (67) is
self-similar with non-stationary increments.
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6. APPENDIX: A SUFFICIENT CONDITION FOR WEAK CONVERGENCE

A classical sufficient condition for a sequence of stochastic processes X,, converging weakly to X
in space (I, Jy) is stated in Theorem 13.5 in [5]. The condition involves probability bounds for the
increments of the processes, which turns out to be straightforward to verify in many applications
(see, e.g., Example 2.2.12 in [56] and the proof of Donsker’s theorem in Section 14 of [5]). The
underlying proof for that condition relies on two maximal inequalities (Theorems 10.3 and 10.4 in
[5]). A critical assumption in those maximal inequalities is the presence of a finite measure in the
probability bounds. However, such a finite measure may not be always attainable, but instead one
can use a set function with a superadditivity property. In [41], the maximal inequalities are extended
for such scenarios in the study of shot noise processes with non-stationary noise distributions. As
a consequence, we obtain a sufficient condition to prove weak convergence of stochastic processes
with sample paths in D which generalizes the classical sufficient criterion, Theorem 13.5 in [5]. The
criterion was implicitly used in [41]. We state it as a theorem and prove it here.

We need the following definition of a set function with a superadditivity property.

Definition 6.1. Let u be a set function from the Borel subset of Ry into Ry U {oco} such that
(i) p is nonnegative and pu(9) = 0;
(ii) p is monotone, that is, if A C B C Ry, then u(A) < u(B);
(i) p is superadditive, that is, for any disjoint Borel sets A and B, u(A) + u(B) < u(AU B).
Let {X,, : n € N} and X be stochastic processes with sample paths in D, and consider the interval
[0, T] for some T > 0.
Theorem 6.1. Suppose that the following hold:
(i) The finite dimensional distributions of X,, converge to those of X;
(ii) For any e >0,
lim P (|X(T) — X(T — )| > ¢€) = 0;
6—0
(iii) There exists a constant C' > 0 such that for any 0 <r < s <t <T withd >0, t —r < 24,
and € > 0, and for alln > 1,
C 2
P(|Xn(r) = Xn(s)| A [Xn(s) = Xn(t)] = €) < =5 (u(r,1]) 5 (71)
where [ is a finite set function as in Definition 6.1, « > 1/2 and § > 0;
(iv) p(0,t] is continuous in t.
Then X, = X in (D[0,T], J1) as n — oo.

Proof. By Theorem 13.3 in [5], it suffices to show that

lim limsupP< sup | Xn(r) — Xn(s)| A | Xn(s) — Xn(t)| > 6) = 0. (72)
6—0 n 0<r<s<t<T,
t—r<2§

By condition (iii) and Theorem 5.2 in [40], condition (72) reduces to

lim sup (u(t,t+ 2(5])2a_1 =0.
0—00<t<T—25

Since p is superadditive (Definition 6.1 (iii)), we obtain that for 0 <t < T — 26 and 6 > 0,
w(t,t +20] < p(0,t + 2] — (0, ).
Since o > 1/2 and (0, ¢] is continuous on the interval [0, 7], we have

. 2a—1
lim su t,t+ 20
6—0 0§t§713726 (u( D
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< lim sup (u(0,t+ 28] — ;L(O,t])m_l = 0.
0—=00<t<T—26
This completes the proof. ]

In addition, the new maximal inequalities result in the following new criterion (Theorem 5.3 in
[41]) to prove the existence of a stochastic process with sample paths in D given its finite dimensional
distributions, extending the classical criterion in Theorem 13.6 in [5].

Theorem 6.2. There ezists a random element X in D([0,T],R) with finite-dimensional distributions
Ty ety JOr any 0 <ty < -+« <ty < T, that is, m, ... ¢, (x1,...,25) = P(X(t1) < z1,..., X (tg) < z1)
forx; e R, i =1,...  k, if the following conditions are satisfied:

(i) the finite dimensional distributions Ty, ... 1, are consistent, satisfying the conditions of
Kolmogorov’s existence theorem;
(ii) for any 0 <r<s<t<T,>0,a>1/2 and e >0,

P(IX(r) - X&) AX() ~ X(0)] 2 €) < 5 (u(r )™ (73)

where C' is a positive constant, 1 is a finite set function in Definition 6.1 and u(0,t] is
continuous in t;
(iii) for any e >0 and t € [0,T),

%PQX(@ —X(t+46)|>¢€) =0. (74)
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