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Abstract. We study shot noise processes when the shot noises are weakly dependent,
satisfying the ρ-mixing condition. We prove a functional weak law of large numbers and a
functional central limit theorem for this shot noise process in an asymptotic regime with
a high intensity of shots. The deterministic fluid limit is unaffected by the presence of
weak dependence. The limit in the diffusion scale is a continuous Gaussian process whose
covariance function explicitly captures the dependence among the noises. The model and
results can be applied in financial and insurance risks with dependent claims, as well as
queueing systems with dependent service times.

To prove the existence of the limit process, we employ a new existence criterion established
in [42] which uses a maximal inequality requiring a set function with a superadditivity
property. We identify such a set function for the limit process by exploiting the ρ-mixing
condition. To prove the weak convergence, we establish the tightness property and the
convergence of finite dimensional distributions. To prove tightness, we construct two
auxiliary processes and apply an Ottaviani-type inequality for weakly dependent sequences.

1. Introduction

Shot noise processes have been extensively studied in applied probability and stochastic
models. They have been used in risk and insurance theory, financial models, queueing theory,
earthquake models, physics, and so on (see, e.g., [47, 5, 52, 35, 8, 29, 49, 10, 22]). A shot
noise process X := {X(t) : t ≥ 0} is typically defined by

X(t) :=

A(t)∑
i=1

H(t− τi, Zi), t ≥ 0, (1.1)

where A := {A(t) : t ≥ 0} is a counting process of shots with arrival times {τi : i ∈ N},
{Zi : i ∈ N} is a sequence of Rk-valued (k ≥ 1) random vectors denoting the noises, and
H : R+ × Rk → R is a deterministic product-measurable function representing the shot
shape or the impulse response function.

The sequence of random variables {Zi : i ∈ N} in (1.1) is often assumed to be i.i.d. in
the literature; see, e.g., [12, 14, 15, 18, 30, 31, 32, 35, 50, 22]. Due to the vast literature
we highlight the important results that are most relevant to our asymptotic analysis on
functional limit theorems. With Poisson arrivals and i.i.d. noises, it is shown in [30, 32]
that under certain conditions on the shot shape function, the shot noise process presents
long-range dependence phenomena, and the properly scaled process (under the conventional
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asymptotic regime scaling both time and space) results in a self-similar Gaussian process
and fractional Brownian motion (FBM). Recently in [36], with Poisson arrivals and power-
law non-stationary noises, it is shown that the integrated shot noise process under the
conventional scaling has a self-similar Gaussian process which has non-stationary increments
(a generalization of FBM). It is also shown in [31, 22, 21, 24, 25, 26] that the scaling limit can
be also an infinite-variance stable process with i.i.d. noises, provided with certain power-law
shot shape functions and/or renewal arrivals. As a special case of the compound stochastic
processes studied by Iglehart [20], it is shown that the scaled shot noise processes with a
renewal arrival process and i.i.d. noises, in the large asymptotic regime (only scaling up the
arrival rate and space without scaling time), result in a continuous Gaussian process. In
addition, as a special case of the shot noise processes with conditionally independent and
non-stationary noises in [42], when the noises are i.i.d., under more general conditions, a
continuous Gaussian process limit is also established, extending the results in [20]. It is
worth noting that unlike the conventional scaling regime, the Gaussian limiting processes in
[20, 42] do not exhibit long range dependence phenomena.

However, the i.i.d. assumption on the noises {Zi : i ∈ N} can be restrictive for certain
applications. In insurance risk theory, ruin probabilities are studied with {Zi : i ∈ N} being
dependent claims in [54]. In [46], a cluster shot noise model is studied where {Zi : i ∈ N}
depends the same ‘cluster mark’ within each cluster, so that the noises within each cluster
are correlated. Since the queueing process (or the process counting the number of busy
servers) of infinite-server queues is a special class of shot noise processes, the i.i.d. assumption
on the service times does not hold for some applications, for example, the length of stay
(treatment process) of patients at emergency rooms can be correlated [38, 39]. It is therefore
important to understand the asymptotic behavior of the shot noise processes with dependent
noises. In this paper we focus on shot noises that are weakly dependent, satisfying the
ρ-mixing condition. Many dependent variables satisfy this mixing condition, for example,
strictly stationary, countable-state, irreducible and aperiodic Markov chains, and the discrete
autoregressive process of order one.

We prove a functional weak law of large numbers (FWLLN) and a functional central limit
theorem (FCLT) for shot noise processes with weakly dependent noises, in an asymptotic
regime where the arrival rate is large while the shot noise distributions F and shot shape
function H are fixed (unscaled); see Assumptions 2 and 3. Such a regime is often referred to
as the “high intensity/density regime”; see, e.g., [4, 17, 20, 44]. In this regime, we assume
that the arrival process, after being appropriately centered and scaled, converges weakly
to a continuous limit process; see Assumption 3. This includes renewal processes, and
more general (non-stationary) counting processes as long as such an FCLT holds. It is
even possible that the interarrival times are weakly dependent under mixing conditions,
which results in a Brownian motion limit (see Chapter 19 in [6] together with the inverse
mapping in [60]). We establish a stochastic process limit for the similarly centered and
scaled shot noise processes (Theorem 2.2). The limit process can be decomposed into a
sum of two independent processes, one as an integral functional of the limit arrival process,
and the other as a continuous Gaussian process. When the arrival limit is Gaussian, the
limit process becomes a Gaussian process. We give explicit characterizations for the limit
processes in Theorem 2.2. It is worth mentioning that the weakly dependence assumption
has no impact upon the fluid limit (Theorem 2.1). There is an extra term, compared with
the i.i.d. case, in the covariance structure of the limit Gaussian process (the function Γ(t, s, u)
in Theorem 2.2), which itself captures all the dependence in the noises. It is also important
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to note that like the i.i.d. and conditionally independent cases, the Gaussian limit in the
case with weakly dependent noises does not exhibit long range dependence phenomena. We
provided two examples to explicitly calculate the extra term and demonstrate the impact
of dependence among noises upon the covariance functions. They include an example of a
first-order autoregressive process of shot noises, and a shot noise process with batch arrivals
in which noises within each batch are symmetrically correlated while noises across batches
are mutually independent.

The general class of shot noise processes studied in this paper includes several well known
models as special cases. First, multiplicative shot noise models are an important class, where
the shot shape function H takes the form H(t, x) = H̃(t)ϕ(x) for a monotone function H̃(t)
and a measurable function ϕ : Rk → R. Such a model has been widely studied in financial
modeling [9] and insurance risk [15, 51], where, for example, the function H̃ can have an
exponential, power-law or polynomial decay. Second, the compound process with weakly
dependent variables is also a special case of the multiplicative models; see Theorem 2.3.
It can be used to model batch arrival processes where the batch sizes are correlated, or
the work-input process where the work requirements are correlated, provided that their
correlation structure satisfies the ρ-mixing condition. Third, the queueing and work-input
processes of infinite-server queues are also special cases of shot noise processes, although
not belonging to the multiplicative models. In this setting, the shot shape function H takes
the forms H(t, x) = 1(t < x) and H(t, x) = x1(t < x) for the queue length and work-input
processes, respectively. The (two-parameter) queueing process has been well studied in
[39, 43]. As a consequence of Theorem 2.2, we obtain an FCLT for the work-input process
for the infinite-server queues with ρ-mixing service times (Theorem 2.4). In all these special
models, we use the first-order autoregressive process of shot noises to demonstrate the impact
of the noises upon the covariance functions.

The proof of the FCLT consists of three key components. The first is to establish the
existence of the limiting Gaussian process in the space C. For this, the standard existence
criterion, Theorem 13.6 in [6], cannot be used. Instead, we can apply the new existence
criterion, Theorem 5.3 in [42], which relies on a new maximal inequality using a set function
with the superadditivity property instead of being a finite measure. By calculating the second
moment of the process increment and exploiting the properties of the ρ-mixing condition, we
are able to identify such a set function. It is worth noting that such a set function may not
be always identified under any mixing condition, for example, the strong α-mixing condition
fails. The second is to prove the convergence of finite dimensional distributions (Lemma
3.5), for which we adapt the central limit theorems (CLTs) for dependent variables under
mixing conditions [57] and [11]. The third is to show tightness, which is technically the
most challenging component. We construct two auxiliary processes, and use sophisticated
moment bounds for dependent variables under strong mixing conditions [1, 53], and apply
an Ottaviani-type inequality (see, e.g., [2]) in a nontrivial manner. See also Remark 3.1.

Finally, it is worth highlighting that the high intensity/density regime is different from
the conventional regime where the time and shot noises are being scaled up simultaneously.
It remains open to study the shot noise processes with weakly dependent noises under the
conventional scaling regime.

1.1. Organization of the paper. The rest of the paper is organized as follows. In Section
1.2, we collect notation used throughout the paper. In Section 2, we describe the model in
detail, state the main results and present several examples. We also discuss the multiplicative
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models and the work-input processes in infinite-server queues in Section 2. The proofs are
given in Section 3. In the appendix, we provide an overview of the new existence criterion
in [42] and the Ottaviani-type inequality in [2].

1.2. Notation. Throughout the paper, N denotes the set of natural numbers. Rk (Rk+)
denotes the space of real-valued (nonnegative) k-dimensional vectors, and we write R (R+) for
k = 1. For a, b ∈ R, we write a ∧ b = min{a, b} and a ∨ b = max{a, b}. Let Dk = D(R+,Rk)
denote the space of Rk-valued cádlág functions on R+. (Dk, J1) denotes space Dk equipped
with Skorohod J1 topology with the metric dJ1 (see, e.g., (12.13) in [6] and (3.2) and its
extension to domain R+ in [60, Chapter 3]). Note that the space (Dk, J1) is complete
and separable. We write D for Dk when k = 1. Let C ⊂ D be the subset of continuous
functions. When considering functions defined on finite intervals, we write D([0, T ], R) for
T > 0. All random variables and processes are defined on a common complete probability
space (Ω,F , P ). Notations → and ⇒ mean convergence of real numbers and convergence
in distribution, respectively. The abbreviation a.s. means almost surely. We use lower-
case o notation for real-valued function f and non-zero g, we write f(x) = o(g(x)) if
limx→∞ |f(x)/g(x)| = 0.

2. Model and Results

We first state the assumptions to study the shot noise process X defined in (1.1). We
start with the shot shape or the response function H. To simplify notations, we define the
following functions: for each 0 ≤ u ≤ s ≤ t,

G1(t, u) := E[H(t− u, Z1)] =

∫
Rk
H(t− u, x)dF (x), (2.1)

G2(t, u) := E
[
H(t− u, Z1)

2
]

=

∫
Rk
H(t− u, x)2dF (x),

G̃(t, u) := Var
(
H(t− u, Z1)

)
= G2(t, u)−G1(t, u)2,

Ǧ1(t, s, u) := E
[
H(t− u, Z1)−H(s− u, Z1)

]
=

∫
Rk

(
H(t− u, x)−H(s− u, x)

)
dF (x),

Ǧ2(t, s, u) := E
[(
H(t− u, Z1)−H(s− u, Z1)

)2]
=

∫
Rk

(
H(t− u, x)−H(s− u, x)

)2
dF (x),

G̃(t, s, u) := Var
(
H(t− u, Z1)−H(s− u, Z1)

)
= Ǧ2(t, s, u)− Ǧ1(t, s, u)2.

Assumption 1. For each x ∈ Rk, the shot shape function H(·, x) ∈ D is monotone. The
function G1(t, u) is continuous in u for each t ≥ 0. For 0 ≤ t ≤ T ,

lim
δ↓0

∫
[0,T ]

Ǧ2(t, t− δ, u)dΛ(u) = 0. (2.2)

Remark 2.1. The monotonicity condition of H(t, x) in t is usually assumed in the literature
of shot noise processes, and is critical in this paper, for example, in the proofs of Lemmas
3.6 and 3.8. The continuity of G1(t, ·) is needed for the continuity of the limit process X̂1

(see (2.8) in Theorem 2.1) and the convergence of finite dimensional distributions of X̂n
2

(Lemma 3.5). When H(·, x) is continuous and monotone for each x ∈ Rk, it is evident the
assumption is satisfied. However, there are cases in which G1(t, ·) is continuous while H(·, x)
is not; see, e.g., the work-input process considered in Section 2.3.
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For the sequence of noises {Zi : i ∈ N}, we impose the following ρ-mixing assumption.
The notion of ρ-mixing condition was first introduced in [28] by Kolmogorov and Rozanov.
We refer the reader to [7] for a thorough review on mixing conditions. Note that the ρ-mixing
condition is weaker than uniform strong mixing (φ-mixing, [19]) but stronger than strong
mixing (α-mixing, [48]).

Assumption 2. The sequence of random vectors {Zi : i ∈ N} is weakly dependent and
stationary with a continuous c.d.f. F (x) for x ∈ Rk. The sequence {Zi : i ∈ N} satisfies that
Cρ :=

∑∞
k=1 ρk <∞, where

ρk := sup

{
|E[ξζ]− E[ξ]E[ζ]|
‖ξ‖2‖ζ‖2

: ξ ∈ Fm, ζ ∈ Gm+k,m ≥ 1

}
,

with Fk := σ{Zi : 1 ≤ i ≤ k}, Gk := σ{Zi : i ≥ k} and ‖ξ‖2 := (E[ξ2])1/2. Furthermore, for

any T ≥ 0, ‖H(T,Z1)‖8+δ < ∞ for some δ ∈ (0,∞]. Assume that
∑∞

k=1 k
2ρ
γ/(4+γ)
k < ∞

for some 0 < γ < 2.

Denote F c as the complement of c.d.f. F , i.e., F c(x) = 1− F (x) for x ∈ Rk.
We provide an example where the condition Cρ <∞ in Assumption 2 holds. Suppose that

{Zi : i ∈ N} is a strictly stationary Markov chain with a finite state space. If {Zi : i ∈ N} is
irreducible and aperiodic, then Cρ is indeed finite. In particular, ρk decays exponentially
fast as k →∞; see page 201 in [6]. See also the example in Remark 2.3.

We consider a sequence of shot noise processes indexed by n and let n→∞. We write
An and Xn and the associated {τni } for the nth process, while the sequence {Zi : i ∈ N} and
the c.d.f F as well as the shot shape function H are fixed (independent of n). We assume
that the arrival processes are independent of the noises. We make the following assumptions
on arrival processes An.

Assumption 3. The sequence of arrival processes An with An(0) = 0 satisfies an FCLT:

Ân :=
√
n
(
Ān − Λ

)
⇒ Â in (D, J1) as n→∞, (2.3)

where Ān := n−1An, Λ := {Λ(t) : t ≥ 0} is a deterministic, strictly increasing and continuous

function with Λ(0) = 0, and Â is a continuous process with mean zero and Â(0) = 0.

Note that Assumption 3 implies an FWLLN for the fluid-scaled arrival process Ān:
Ān ⇒ Λ in (D, J1) as n→∞. The assumption of strictly increasing cumulative arrival rate
function Λ(t) in the limit means that the arrival rate λ(t) (if it exists) is strictly positive.

Common examples of the limit process Â include a (time-changed) Brownian motion and

a Gaussian process. In the former case, a typical limit process is Â(t) = B(c2aΛ(t)) where
c2a captures the variability and B is a standard Brownian motion. The condition (2.3) is
satisfied by many models of arrival processes, including renewal process, stationary point
processes with weakly dependent interarrival times, Markov-modulated Poisson process,
Hawkes process, etc.; we refer the reader to the discussion below Assumption 1 in [42]. In
the case of renewal processes, c2a represents the squared coefficient of variation (SCV) of the
interarrival times. If the interarrival times form a stationary ergodic sequence with a finite
second moment satisfying certain mixing conditions, then the partial sum process satisfies
an FCLT with a Brownian motion limit and its variance coefficient captures the correlation,
see for example, Section 19 in [6]. Then the FCLT for the arrival counting process follows
directly by applying the continuous mapping theorem for the centered inverse mapping in
Chapter 13.7 in [60].
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Define the process X̄n := {X̄n(t) : t ≥ 0} by X̄n(t) := n−1Xn(t) for t ≥ 0, we have the
following FWLLN for X̄n. We observe that the dependence in the noises does not affect the
fluid limit, which is the same as in the case of i.i.d. noises.

Theorem 2.1. (FWLLN) Under Assumptions 1–3,

X̄n(t)⇒ X̄(t) in (D, J1) as n→∞, (2.4)

where X̄ := {X̄(t) : t ≥ 0} is a continuous deterministic function, defined by

X̄(t) :=

∫
[0,t]

G1(t, u)dΛ(u), t ≥ 0, (2.5)

with G1(t, u) in (2.1).

Define the process X̂n := {X̂n(t) : t ≥ 0} by

X̂n(t) :=
√
n(X̄n(t)− X̄(t)), t ≥ 0, (2.6)

where X̄(t) is given in (2.5).

Theorem 2.2. (FCLT) Under Assumptions 1–3,

X̂n ⇒ X̂ in (D, J1) as n→∞, (2.7)

where X̂ := {X̂(t) : t ≥ 0} can be written as a sum of two independent continuous stochastic

processes X̂1 := {X̂1(t) : t ≥ 0} and X̂2 := {X̂2(t) : t ≥ 0}. X̂1 is defined by

X̂1(t) := Â(t)G1(t, t)−
∫
(0,t]

Â(u)dG1(t, u), t ≥ 0. (2.8)

X̂2 is a Gaussian process of mean zero and covariance function

R̂2(t, s) := Cov
(
X̂2(t), X̂2(s)

)
=

∫
[0,t∧s]

(
G2(t, s, u)−G1(t, u)G1(s, u) + Γ(t, s, u)

)
dΛ(u), (2.9)

where

G2(t, s, u) :=

∫
Rk
H(t− u, x)H(s− u, x)dF (x), t ≥ u ≥ 0, s ≥ u ≥ 0, (2.10)

and

Γ(t, s, u) :=
∞∑
l=2

(
E[H(t− u, Z1)H(s− u, Zl)]−G1(t, u)G1(s, u)

+E[H(s− u, Z1)H(t− u, Zl)]−G1(s, u)G1(t, u)

)
. (2.11)

Remark 2.2. We make the following remarks:

(i) When the arrival limit Â is Gaussian, X̂1 is also Gaussian; see Remark 2.3 in [42].
(ii) The series in (2.11) is summable under Assumption 2. In particular, for each

summand in (2.11), it is upper bounded by 2E[(|H(t− u, Z1)| ∨ |H(s− u, Z1)|)2]ρk
so that the summation is bounded by 2E[(|H(t− u, Z1)| ∨ |H(s− u, Z1)|)2]Cρ <∞.

(iii) Under Assumptions 1–2, it is easy to verify that Γ(t, s, u) and R̂2(s, t) are continuous
in both s and t.
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(iv) The limit process X̂1 is the same as that in the case of i.i.d. noises. The limit

process X̂2 is different, whose covariance has the extra term Γ(t, s, u) capturing
the dependence in the noises. When the noises i.i.d., the term Γ(t, s, u) vanishes.
It is well known in the limit theorems (CLT or FCLT) of partial sums of weakly
dependent variables that an extra term appears in the covariance of the limit
capturing the correlations, separating from that in the i.i.d. case; see, e.g., Chapter
4 in [6], [7] and [11]. Our result indicates the same separating property in the

covariance functions of X̂2 also holds, despite the effect of the impose response
function H.

(v) As in the case of i.i.d. noises [42], the limit processes X̂1 and X̂2 are independent.
The weak dependence among the noises do not affect the independence of the two
processes. In addition, the variability in the arrival process, as captured in the limit
Â, appears only in X̂1, while the fluid limit Λ(t) of the arrival process appears in

the covariance function of X̂2. The variability in the noises affects only X̂2. This
can be regarded as a variability separation property of the arrival processes and
the noises. This property has been observed in the study of infinite-server queues
[34, 37, 41].

Example 2.1. We give an example where R̂2(t, s) can be further simplified. Let {Zi : i ∈ N}
be a first-order discrete autoregressive process, referred to as DAR(1) process; see [27]. Let
Z1 be distributed with c.d.f F , and for l ≥ 2,

Zl = δl−1Zl−1 + (1− δl−1)Sl,
where {δi : i ∈ N} is a sequence of i.i.d. Bernoulli random variables with P (δi = 1) = α =
1 − P (δi = 0) for α ∈ (0, 1) and {Si : i ≥ 2}, independent of {δi : i ∈ N} and Z1, is a
sequence of i.i.d. random variables with c.d.f. F . Then, it is easy to verify that {Zi : i ∈ N}
is stationary and satisfies the ρ-mixing condition (also φ and α-mixing conditions). In this

case, the covariance function R̂2(t, s) reduces to

R̂2(t, s) =
1 + α

1− α

∫
[0,t∧s]

(
G2(t, s, u)−G1(t, u)G1(s, u)dΛ(u), (2.12)

for t, s ≥ 0. In the case of i.i.d. noises, we have α = 0, and thus the effect of dependence
among noises is evident, with the covariance function R̂2(t, s) increasing nonlinearly in the
simple form of the multiplying coefficient 1+α

1−α .

Example 2.2. Consider the following model with a batch arrival process An(t) =
∑AnB(t)

i=1 Bi,

AnB(t) being the arrival process of batches and Bi being the size of the ith batch. Assume
that the noises are independent of the batch arrival process. For simplicity, let the noises
be real-valued. Suppose that the noises within each batch are symmetrically correlated,
that is, each pair of noises (Zk, Zl) within a batch has the same joint distribution function
Ψ(x, y) = P (Zk ≤ x, Zl ≤ y), for arbitrary pair (k, l) in the batch and x, y ∈ R, and in
addition, Ψ(x,∞) = Ψ(∞, y) = F (x). (Note that an infinite-server queueing model with
batch arrivals and with such symmetrically correlated service times within batches is studied
in [38].)

Assume that AnB(t) satisfies an FCLT as in Assumption 3, that is, ÂnB :=
√
n(ĀnB−ΛB)⇒

ÂB in (D, J1) as n→∞, where ĀnB := n−1AnB and ΛB := {ΛB(t) : t ≥ 0} is the cumulative
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arrival rate of the batches (deterministic, strictly increasing and continuous with ΛB(0) = 0),

and the limit process is ÂB(t) = B(c2a,BΛB(t)) is a time-changed Brownian motion with a

standard Brownian motion B(t) and coefficient of variability c2a,B. (Note that as discussed
below Assumption 3, this process AnB itself can be a renewal process, stationary point
process with weakly dependent interarrival times with c2a,B capturing the variabilities and

correlations, and so on.) Suppose that the batch size variables {Bi : i ≥ 1} are independent of
the arrival process AnB, and i.i.d. positive integer valued. Let each Bi have a probability mass
function {pk : k ≥ 1} with finite mean mB and variance σ2B, and SCV c2B = σ2B/m

2
B. Then

it can be shown that Ân =
√
n(Ān − Λ)⇒ Â in (D, J1) as n→∞, where Λ(t) := mBΛB(t)

and Â(t) = B(c2aΛ(t)) with c2a := mB(c2a,B + c2B). It is easy to check that the sequence of

noises satisfies the ρ-mixing condition (also, the φ and α mixing conditions).
Then by Theorem 2.2, we obtain that the weak convergence of the diffusion-scaled

processes. The limit process X̂1(t) is given by the Itô integral

X̂1(t) =

∫ t

0
G1(t, u)dB(c2aΛ(u)), t ≥ 0,

and the limit process X̂2(t) is a continuous Gaussian process with mean zero and covariance
function

R̂2(t, s) = mB

∫
[0,t∧s]

((
G2(t, s, u)−G1(t, u)G1(s, u)

)
+ Γ(t, s, u)

)
dΛB(u), (2.13)

for t, s ≥ 0, where G1(t, u) and G2(t, s, u) are given in (2.1) and (2.10), respectively, and

Γ(t, s, u) = 2(E[B∗]− 1)

(∫
R

∫
R
H(t− u, x)H(s− u, y)dΨ(x, y)−G1(t, u)G1(s, u)

)
,

with

E[B∗] =
mB(c2B + 1) + 1

2
.

Note that B∗ has the stationary-excess distribution of the bath size Bi, that is, p∗k = P (B∗ =

k) = 1
mB

∑∞
j=k pj for k ≥ 1; see, e.g., [59].

Observe that the impact of dependence among noises is captured in the double integral
term in Γ(t, s, u) above. Recall that any positively correlated bivariate c.d.f. can be
approximated by a linear combination of the two extremals given the marginals [58], that is,

Ψ(x, y) ≈ Ψ̃ρ(x, y)(x, y) = ρF (x ∧ y) + (1− ρ)F (x)F (y) where ρ ∈ (0, 1) is the correlation
parameter. Using this, we obtain an approximation of Γ(t, s, u):

Γ̃(t, s, u) = 2ρ(E[B∗]− 1)

(∫
R

∫
R
H(t− u, x)H(s− u, y)dF (x ∧ y)−G1(t, u)G1(s, u)

)
.

This implies that the covariance function is approximately increasing linearly in the correla-
tion parameter ρ.

In [46], a shot noise process with cluster marks is studied, where cluster arrivals are Poisson
and each entity of each cluster may arrive with certain random nonnegative “displacement”
(delay). Our model with batch arrivals above allows more general arrival processes of
clusters but all entities in a cluster arrive at the same time. The marks (noises) are
mutually independent across clusters but the noises within each cluster have a particular
decomposable structure with two independent components, a common random variable
for the cluster and another i.i.d. random variable. If, in addition, we assume that the
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marks (noises) are an additive function of the two components as studied in Section
4 of [46], then we can use the above covariance formula for this particular shot noise

process with cluster marks. In particular, suppose that in each batch, Zi = Z̃0 + Z̃i for a
common random variable Z̃0 with c.d.f, F̃0, and i.i.d. random variables Z̃i with c.d.f. F̃ ,
independent of Z̃0. Then the marks (noises) within each cluster are symmetrically correlated,

Corr(Zk, Zl) = V ar(Z̃0)

V ar(Z̃0)+V ar(Z̃1)
for each pair (k, l) in the cluster (batch). And we have

Ψ(x, y) = P (Zk ≤ x, Zl ≤ y) = P (Z̃0 + Z̃k ≤ x, Z̃0 + Z̃l ≤ y) =
∫
R F̃ (x− z)F̃ (y − z)dF̃0(z),

and F (x) = P (Z̃0 + Z̃i ≤ x) =
∫
R F̃ (x− z)dF̃0(z). They can be easily used to calculate the

covariance function R̂2(t, s) in (2.13). In future work it would be interesting to establish
the functional limit theorems for the shot noise process with general cluster marks where
entities of each cluster may arrive with random “displacement” and study the impact of
such “displacement”.

2.1. Multiplicative models. The multiplicative models have the shot shape function H
of the form

H(t, x) := H̃(t)ϕ(x), t ≥ 0, x ∈ Rk,
where ϕ : Rk → R is a measurable function. Assumption 1 requires that the function H̃ is
monotone and continuous since

G1(t, u) = E[H(t− u, Z1)] = H̃(t− u)E[ϕ(Z1)] for 0 ≤ u ≤ t.
In addition, it requires that mϕ := E[ϕ(Z1)] and σ2ϕ := Var(ϕ(Z1)) are finite.

The limit process X̂1 in Theorem 2.2 becomes

X̂1(t) = mϕH̃(0)Â(t)−mϕ

∫
(0,t]

Â(u)dH̃(t− u), t ≥ 0.

If Â is a Gaussian process with mean 0 and covariance function R̂a(t, s), then the covariance

function of X̂1 is

R̂1(t, s) = m2
ϕ

∫
[0,t]

∫
[0,s]

H̃(t− u)H̃(s− v)dR̂a(u, v), t, s ≥ 0.

If Â(t) = caB(Λ(t)) is a time-changed Brownian motion where the constant ca > 0 can
be regarded as a coefficient of variation and Λ(t) is in Assumption 3, then the covariance

function R̂1(t, s) becomes

R̂1(t, s) = (camϕ)2
∫
[0,t∧s]

H̃(t− u)H̃(s− u)dΛ(u), t, s ≥ 0.

The limit process X̂2 in Theorem 2.2 has the covariance function

R̂2(t, s) =

∫
[0,t∧s]

(
σ2ϕH̃(t− u)H̃(s− u) + Γ(t, s, u)

)
dΛ(u), t, s ≥ 0,

where

Γ(t, s, u) = 2H̃(t− u)H̃(s− u)

∞∑
l=2

[
E[ϕ(Z1)ϕ(Zl)]−m2

ϕ

]
.
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Example 2.3. We provide some examples of the shot shape functions. These are often
used in the study of financial modeling and insurance risks [9, 15, 51].

(i) Exponential Decay. The function H(t, x) takes the form

H(t, x) = xe−bt for b > 0.

Here H̃(t) = e−bt, ϕ(x) = x and G1(t, u) = E[e−b(t−u)Z1] = e−b(t−u)E[Z1] for
0 ≤ u ≤ t.

(ii) Power-law Decay.

H(t, x) =
x

1 + ct
for c > 0.

Here H̃(t) = 1/(1 + ct), ϕ(x) = x and G1(t, u) = E[Z1]/(1 + c(t− u)) for 0 ≤ u ≤ t.
The effect decay is slower than for the exponential case and the effect of the shot
stays longer in the data.

(iii) Polynomial Decay.

H(t, x) = xt−α, for α > 0.

We have H̃(t) = t−α, ϕ(x) = x and G1(t, u) = (t− u)−αE[Z1] for 0 ≤ u < t.

It is evident that the conditions in Assumption 1 are satisfied for these functions H.

Example 2.4. With the DAR(1) noises {Zi} in Example 2.1, we obtain that

R̂2(t, s) =
1 + α

1− α
σ2ϕ

∫
[0,t∧s]

H̃(t− u)H̃(s− u)dΛ(u), t, s ≥ 0.

The impact of dependence among noises is captured in the coefficient 1+α
1−α , increasing in the

parameter α.

2.2. Compound process under ρ-mixing condition. Consider the following special
case of the multiplicative model:

X(t) =

A(t)∑
i=1

Zi, t ≥ 0,

where {Zi : i ∈ N} are real-valued random variables. Here, we have H̃(t) ≡ 1, t ∈ R+ and
ϕ(x) = x for each x ∈ R+. Note that in this case, the function Γ(t, s, u) becomes

Γ(t, s, u) = 2
∞∑
l=2

(
E[Z1Zl]− (E[Z1])

2
)
.

As a consequence of Theorem 2.2, we obtain the following theorem for the compound
processes under ρ-mixing condition.

Theorem 2.3. Under Assumptions 2–3, (2.4) in the FWLLN holds with the limit X̄ given
by

X̄(t) := E[Z1]Λ(t), t ≥ 0,
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and (2.7) in the FCLT holds with the limit X̂ = X̂1 + X̂2 where X̂1 and X̂2 are independent,

X̂1 = E[Z1]Â and X̂2 is a continuous Gaussian process with mean zero and covariance
function: for t, s ≥ 0,

R̂2(t, s) := Cov
(
X̂2(t), X̂2(s)

)
= Λ(t ∧ s)

[
Var(Z1) + 2

∞∑
l=2

(
E[Z1Zl]− (E[Z1])

2
)]
.

Remark 2.3. With the DAR(1) noises {Zi} in Example 2.1, we obtain that the covariance

function R̂2(t, s) reduces to

R̂2(t, s) =
1 + α

1− α
Λ(t ∧ s)Var[Z1], t, s ≥ 0.

Observe that the process X̂2 becomes a Brownian motion with time change using Λ(t), and
the term 1+α

1−α captures the correlation among the noises. In the i.i.d. case (α = 0), the

covariance function R̂2(t, s) = Λ(t ∧ s)Var[Z1] for t, s ≥ 0. It is evident that as α increase,
the correlation increases the covariance function nonlinearly in the simple form 1+α

1−α .

2.3. The work-input process in infinite-server queues. Consider an infinite-server
queue with an arrival process An as in Assumption 3 and service times {Zi : i ∈ N} as
in Assumption 2. This model has been studied in [43]. The total queue length process
Qn := {Qn(t) : t ≥ 0} can be written as

Qn(t) =

An(t)∑
i=1

1(τni + Zi > t), t ≥ 0.

It is a shot noise process with H(t, x) = 1(x > t) and G1(t, u) = E[1(Z1 > t−u)] = F c(t−u)
for 0 ≤ u ≤ t. The conditions in Assumption 1 are satisfied since F is continuous. The
FWLLN and FCLT for the queueing process Qn are obtained as a consequence of the
two-parameter process limits in [43], and also as a special case of the results in this paper.

Here we focus on the work-input process Wn := {Wn(t) : t ≥ 0} defined by

Wn(t) =

An(t)∑
i=1

Zi1(τni + Zi > t), t ≥ 0.

We refer the reader to [33] for the FCLT with An being a Poisson process under the
conventional scaling regime, where the limit process is a fractional Brownian motion. The
process Wn is a shot noise process with H(t, x) = x1(x > t). For each x ∈ R, H(t, x) =
x1(x > t) is monotone. The function G1 becomes

G1(t, u) = E[Z11(Z1 > t− u)] =

∫
(t−u,∞)

xdF (x) for 0 ≤ u ≤ t. (2.14)

The conditions in Assumption 1 are satisfied since F is continuous.
Let the fluid-scaled processes W̄n := {W̄n(t) : t ≥ 0} be defined by W̄n(t) := n−1Wn(t)

for t ≥ 0. Define the deterministic functions

W̄ (t) :=

∫
[0,t]

∫
(t−u,∞)

xdF (x)dΛ(u), t ≥ 0. (2.15)

It is easy to check that W̄ (t) is a continuous function. Let the diffusion-scaled processes

Ŵn := {Ŵn(t) : t ≥ 0} be defined by Ŵn(t) :=
√
n(W̄n(t)− W̄ (t)) for t ≥ 0. By Theorems

2.1–2.2, we obtain the following theorem for the work-input processes.
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Theorem 2.4. Under Assumptions 2–3,

W̄n ⇒ W̄ in (D, J1) as n→∞,
where W̄ is defined in (2.15), and

Ŵn ⇒ Ŵ in (D, J1) as n→∞,
where the limit Ŵ = {Ŵ (t) : t ≥ 0} is continuous and can be written as Ŵ = Ŵ1 + Ŵ2 with

Ŵ1 and Ŵ2 being independent. Ŵ1 is defined by

Ŵ1(t) = Â(t)G1(t, t)−
∫
(0,t]

Â(u)dG1(t, u), t ≥ 0,

with G1(t, u) in (2.14), and Ŵ2 is a continuous Gaussian process with mean 0 and covariance
function:

Cov(Ŵ2(t), Ŵ2(s)) =

∫
[0,t∧s]

(
G2(t, s, u)−G1(t, u)G1(s, u) + ΓW (t, s, u)

)
dΛ(u),

where, by denoting Z̃l(x) = Zl1(Zl > x) for any l ∈ N and x ∈ R,

ΓW (t, s, u) =
∞∑
l=2

([
E[Z̃1(t− u)Z̃l(s− u)]− E[Z̃1(t− u)]E[Z̃l(s− u)]

]
+
[
E[Z̃1(s− u)Z̃l(t− u)]− E[Z̃1(s− u)]E[Z̃l(t− u)]

])
for t, s ≥ 0.

Example 2.5. Suppose that the service times {Zi} are DAR(1) as in Example 2.1. We
have the covariance function

Cov(Ŵ2(t), Ŵ2(s)) =
1 + α

1− α

∫
[0,t∧s]

(
G2(t, s, u)−G1(t, u)G1(s, u)

)
dΛ(u),

for t, s ≥ 0, where

G2(t, s, u) = E
[
Z2
11(Z1 > t ∨ s− u)

]
=

∫
(t∨s−u,∞)

x2dF (x),

and G1(t, u) is given in (2.14). The impact of dependence among service times is captured
by the multiplicative coefficient 1+α

1−α .

3. Proof of Theorem 2.2

Since Theorem 2.1 is directly implied by Theorem 2.2, we focus on the proof of Theorem
2.2 in this section. Note that in the proofs we assume that for each x ∈ Rk, H(t, x) is
nondecreasing in t and nonnegative for brevity, and it can be easily verified that the proofs
extend to the general monotone assumption.

Recall G1(t, u) in (2.1). We first give a representation for the process X̂n, which follows
from simple calculations.
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Lemma 3.1. The process X̂n defined in (2.6) can be written as X̂n = X̂n
1 + X̂n

2 , where the

processes X̂n
1 and X̂n

2 are given by

X̂n
1 (t) :=

∫
(0,t]

G1(t, u)dÂn(u)

= Ân(t)G1(t, t)−
∫
(0,t]

Ân(u−)dG1(t, u), t ≥ 0,

where Ân(u−) denotes the left limit of Ân at time u, and

X̂n
2 (t) :=

1√
n

An(t)∑
i=1

(
H(t− τni , Zi)−G1(t, τ

n
i )
)
, t ≥ 0.

For the convergence of X̂n
1 , by Lemma 6.1 in [42] (with the distribution function Ft(·)

replaced with F (·)), the proof becomes a direct application of continuous mapping theorem.
We omit the proof for brevity.

Theorem 3.1. Under Assumptions 2 and 3, X̂n
1 ⇒ X̂1 in (D, J1) as n→∞, where X̂1 is

as given in Theorem 2.2.

We prove the convergence of the processes X̂n
2 in three steps:

Step 1: The existence of the limit Gaussian process X̂2 in C (Section 4.1, Theorem 3.3).

Step 2: The convergence of finite dimensional distributions of X̂n
2 to those of X̂2 (Section

3.2, Lemma 3.5).

Step 3: The tightness of X̂n
2 in the space D (Section 3.3, Lemma 3.11).

We summarize these results in the following theorem.

Theorem 3.2. Under Assumptions 2–3, X̂n
2 ⇒ X̂2 in (D, J1) as n → ∞, where X̂2 is as

given in Theorem 2.2.

3.1. Existence of the limit process X̂2 in C. To prove the existence theorem, we first
provide some properties on the increments of the limiting process X̂2.

Lemma 3.2. For each 0 ≤ s ≤ t,

E
[∣∣X̂2(s)− X̂2(t)

∣∣2]
=

∫
(s,t]

(
G̃(t, u) + Γ(t, t, u)

)
dΛ(u)

+

∫
[0,s]

(
G̃(t, s, u) + Γ(t, t, u) + Γ(s, s, u)− 2Γ(t, s, u)

)
dΛ(u). (3.1)

Proof. The proof of (3.1) follows by (2.9) and direct calculations. �

Definition 3.1. Fix T > 0. For any 0 ≤ s ≤ t ≤ T , define a nonnegative function
V : R+ × R+ → R+ by

V (s, t) := C̃
(
Λ(t)− Λ(s)

)
+(1 + 2Cρ)

∫
[0,T ]

∫
Rk

(
H(t− u, x)−H(s− u, x)

)2
dF (x)dΛ(u). (3.2)

where
C̃ := sup

0≤t,u≤T
[G̃(t, u) + Γ(t, t, u)] <∞.
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We need the following definition of a set function with a superadditivity property.

Definition 3.2. Let µ be a set function from the Borel subset of R+ into R+ ∪ {∞} such
that

(i) µ is nonnegative and µ(∅) = 0;
(ii) µ is monotone, that is, if A ⊆ B ⊂ R+, then µ(A) ≤ µ(B);
(iii) µ is superadditive, that is, for any disjoint Borel sets A and B, µ(A) + µ(B) ≤

µ(A ∪B).

Proposition 3.1. The function V introduced in Definition 3.1 has the following properties:

(i) V (t, t) = 0 for each t ∈ [0, T ];
(ii) V (s, t) is nondecreasing in t for each s and nonincreasing in s for each t, and thus

it is evident that V (s, t) ≤ V (s, T ) ≤ V (0, T ) for each s, t ≥ 0;
(iii) V (s, t) is continuous in both s and t;
(iv) For any Borel set A ⊂ [0, T ], let

ν(A) := sup {V (s, t) : (s, t] ⊂ A} .
ν satisfies all the conditions in Definition 3.2 and ν((s, t]) = V (s, t) for 0 ≤ s ≤ t ≤
T .

Proof. The properties (i)–(ii) are straightforward to check. For (iii), for any δ1, δ2 ∈ R,

V (s, t)− V (s− δ1, t− δ2)

= C̃
(
Λ(t)− Λ(t− δ2)− (Λ(s)− Λ(s− δ1))

)
+ (1 + 2Cρ)

∫
[0,T ]

∫
Rk

(
H(t− u, x)−H(s− u, x)

)2
dF (x)dΛ(u)

− (1 + 2Cρ)

∫
[0,T ]

∫
Rk

(
H(t− δ2 − u, x)−H(s− δ1 − u, x)

)2
dF (x)dΛ(u)

= C̃
(
Λ(t)− Λ(t− δ2)− (Λ(s)− Λ(s− δ1))

)
+ (1 + 2Cρ)

∫
[0,T ]

Ǧ2(t, t− δ2, u)dΛ(u) + (1 + 2Cρ)

∫
[0,T ]

Ǧ2(s, s− δ1, u)dΛ(u)

+ 2(1 + 2Cρ)

∫
[0,T ]

∫
Rk

[H(t− u, x)−H(t− δ2 − u, x)]

× [H(t− δ2 − u, x)−H(s− u, x)]dF (x)dΛ(u)

− 2(1 + 2Cρ)

∫
[0,T ]

∫
Rk

[H(s− u, x)−H(s− δ1 − u, x)]

× [H(t− u, x)−H(s− δ1 − u, x)]dF (x)dΛ(u). (3.3)

Note that the last two terms in (3.3) are bounded by

2(1 + 2Cρ)

(∫
[0,T ]

Ǧ2(t, t− δ2, u)dΛ(u)

)1/2(∫
[0,T ]

Ǧ2(t− δ2, s, u)dΛ(u)

)1/2

,

and

2(1 + 2Cρ)

(∫
[0,T ]

Ǧ2(s, s− δ1, u)dΛ(u)

)1/2(∫
[0,T ]

Ǧ2(t, s− δ1, u)dΛ(u)

)1/2

,
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respectively, due to Cauchy-Schwarz inequality. By the continuity of Λ and (2.2) in Assump-
tion 1 that for each T ≥ t ≥ 0, limδ→0

∫
[0,T ] Ǧ2(t, t− δ, u)dΛ(u) = 0, we show that each term

in (3.3) converges to 0 as δ1 → 0 and δ2 → 0. Now the continuity of V has been proved.

For (iv), the superadditivity property follows from the inequality
∑n

i=1 x
2
i ≤

(∑n
i=1 xi

)2
for each n ≥ 1 if all elements of {xi : 1 ≤ i ≤ n} have the same sign. �

Lemma 3.3. For 0 ≤ s ≤ t ≤ T ,

E
[∣∣X̂2(s)− X̂2(t)

∣∣2] ≤ V (s, t).

Proof. First, by direct calculations we obtain

Γ(t, t, u) + Γ(s, s, u)− 2Γ(t, s, u)

= 2

∞∑
l=2

E
[[
H(t− u, Z1)−H(s− u, Z1)

]
×
[
H(t− u, Zl)−H(s− u, Zl)

]
−
(
G1(t, u)−G1(s, u)

)2]
. (3.4)

Notice that for each l ≥ 2,

(G1(t, u)−G1(s, u))2 = E[H(t− u, Z1)−H(s− u, Z1)]E[H(t− u, Zl)−H(s− u, Zl)].
By the definition of the ρ-mixing condition, each summand in (3.4) is upper bounded by

2‖H(t− u, Z1)−H(s− u, Z1)‖22 ρk.
Therefore, we have

Γ(t, t, u) + Γ(s, s, u)− 2Γ(t, s, u) ≤ 2‖H(t− u, Z1)−H(s− u, Z1)‖22 Cρ. (3.5)

By Lemma 3.2 and (3.5), we have

E
[∣∣X̂2(r)− X̂2(s)

∣∣2]
≤ C̃

(
Λ(t)− Λ(s)

)
+

∫
[0,s]

(
‖H(t− u, Z1)−H(s− u, Z1)‖22 + 2Cρ‖H(t− u, Z1)−H(s− u, Z1)‖22

)
dΛ(u)

≤ C̃
(
Λ(t)− Λ(s)

)
+ (1 + 2Cρ)

∫
[0,T ]
‖H(t− u, Z1)−H(s− u, Z1)‖22dΛ(u),

which is equal to V (s, t) in (3.2). �

We now state the probability bound for the increments of the limit process X̂2.

Lemma 3.4. For 0 ≤ r ≤ s ≤ t ≤ T and any ε > 0,

P
(∣∣X̂2(r)− X̂2(s)

∣∣ ∧ ∣∣X̂2(s)− X̂2(t)
∣∣ ≥ ε) ≤ 3

ε4
V (r, s)V (s, t).

Proof. We have

P
(∣∣X̂2(r)− X̂2(s)

∣∣ ∧ ∣∣X̂2(s)− X̂2(t)
∣∣ ≥ ε)

≤ 1

ε4
E
[∣∣X̂2(r)− X̂2(s)

∣∣2 ∣∣X̂2(s)− X̂2(t)
∣∣2]

≤ 1

ε4

(
E
[∣∣X̂2(r)− X̂2(s)

∣∣4])1/2(E[∣∣X̂2(s)− X̂2(t)
∣∣4])1/2
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=
3

ε4
E
[∣∣X̂2(r)− X̂2(s)

∣∣2]E[∣∣X̂2(s)− X̂2(t)
∣∣2]

where the equality follows from the fact that the kurtosis of a normal random variable is 3.
The claim then follows from Lemma 3.3. �

We are now ready to prove the existence theorem. Note that the ρ-mixing condition is
important here since we are unable to obtain a set function satisfying the superadditivity
property if the ρ-mixing condition is relaxed, for example, under the strong α-mixing
condition, the bounds in Lemma 3.3 and 3.4 do not hold.

Theorem 3.3. The centered Gaussian process X̂2 with covariance function given in (2.9)
has continuous sample paths a.s.

Proof. The proof is done in two steps. First, we show that X̂2 ∈ D by applying Theorem
4.1 in the Appendix (a generalization of the classical existence criterion in Theorem 13.6
in [6]). In the new existence criterion, we need to verify three conditions: (i) Consistency
of the finite dimensional distributions satisfying the conditions of Kolmogorov’s existence
theorem, which is easily satisfied by the Gaussian distributional property of the process
X̂2. (ii) Condition (4.1): a probability inequality for the increment of the process which
requires the set function satisfying the superadditivity property. This is implied by the
probability bound in Lemma 3.4. (iii) The continuity property: for any ε > 0 and t ∈ [0, T ),

limδ↓0 P
(∣∣X̂2(t)− X̂2(t+ δ)

∣∣ > ε
)

= 0. This is implied by the following: for all t ∈ [0, T ),

lim
δ↓0

E
[∣∣X̂2(t)− X̂2(t+ δ)

∣∣2] = 0.

This follows by the formula in Lemma 3.2 and the continuity properties of Γ(t, s, u) in both
s and t, and Assumption 1.

In the second step, we show the existence in C given the existence in D, for which it
suffices to show that the process X̂2 is stochastically continuous (Theorem 1 in [16]) or
equivalently, it is continuous in quadratic mean since the process is Gaussian. This follows
from Lemma 3.2 and the continuity properties of Γ and Assumption 1. This completes the
proof. �

3.2. Convergence of finite dimensional distributions. Before proceeding to the proof,
for each n ≥ 1, we define the set Υn to be the collection of the trajectories of {An(t) : t ≥ 0}
as

Υn =

{
An : sup

0≤t≤T

∣∣∣∣An(t)

n
− Λ(t)

∣∣∣∣ ≤ ε(n) and max
1≤i≤An(T )

|τni+1 − τni | ≤ ε(n)

}
, (3.6)

where ε(n) → 0 as n → ∞ is chosen such that P (Υn) → 1 as n → ∞. It is evident that
under Assumption 3, such a function ε(n) exists. Thus, we can fix a trajectory An ∈ Υ and
regard it as deterministic without loss of generality.

Lemma 3.5. The finite dimensional distributions of X̂n
2 converge weakly to those of X̂2 as

n→∞.

Proof. Fix any 0 ≤ t ≤ T and trajectory An ∈ Υn (defined in (3.6)), and we first prove that

X̂n
2 (t)⇒ X̂2(t) in R as n→∞. To simplify the notation, we denote

Hni (t) := H(t− τni , Zi)−G1(t, τ
n
i ). (3.7)
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We apply Theorem 2.1 and Proposition 2.1(a) in [57], with Sn =
∑An(t)

j=1 Xjn, Xjn = Hnj (t)

and Sn(a, b) =
∑a+b

j=a+1Xjn, 0 ≤ a, 1 ≤ b ≤ n− a in their notation. To that end, we need to
verify

(i): supn∈N,1≤j≤n ‖Hnj (t)‖2+δ < +∞, where 0 < δ ≤ ∞;

(ii): supa,b,nE[Sn(a, b)2]/b <∞;
(iii): ρn = o(1);
(iv): Var(Sn)→∞ as n→∞ and

∑∞
l=0 c̃(`) <∞, where

c̃(`) = max
n:`<n

c̃n(`),

and
c̃n(`) = sup

p,m:|p−m|≥`,1≤p≤n,1≤m≤n

∣∣E[HnpHnm]
∣∣.

We remark that conditions (i) and (ii) are required by Proposition 2.1 in [57] with ε = γ = 0.
The l-mixing condition in Theorem 2.1 in [57] is implied by condition (iii) since ρ-mixing
is stronger than l-mixing; see page 513 in [57]. Conditions (iv) is additionally required by
Theorem 2.1 in the last-mentioned reference.

Condition (i) and (iii) are directly implied by Assumption 2.
For condition (ii), we have

1

b
E
[
Sn(a, b)2

]
=

1

b
E

[( a+b∑
i=a+1

Hni (t)

)2]

=
1

b

a+b∑
i=a+1

E
[(
Hni (t)

)2]
+

2

b

a+b∑
i,j=a+1 , i<j

E
[
Hni (t)Hnj (t)

]
≤ 1

b

a+b∑
i=a+1

‖H(T,Z1)‖22 + 2‖H(T,Z1)‖22/b
a+b∑

i,j=a+1 ,i<j

ρ|j−i|

≤ (1 + 2Cρ)‖H(T,Z1)‖22 <∞.
For condition (iv), we have

Var(Sn)

n
=

1

n
Var

(An(t)∑
j=1

Hni (t)

)

=
1

n

An(t)∑
i=1

E
[(
Hni (t)

)2]
+

2

n

An(t)∑
i,j=1 ,i<j

E
[
Hni (t)Hnj (t)

]
=

1

n

An(t)∑
i=1

E
[(
Hni (t)

)2]
+

2

n

An(t)∑
i,j=1 ,i<j

rni,j , (3.8)

where

rni,j := E[Hni (t)Hnj (t)]

= E[H(t− τni , Zi)H(t− τnj , Zj)]−G1(t, τ
n
i )G1(t, τ

n
j ).
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By stationarity of {Zi : i ∈ N}, for fixed `, we consider

Rn` :=

An(t)−`∑
i=1

rni,i+` =

An(t)−`∑
i=1

(
E[H(t− τni , Zi)H(t− τni , Zi+`)]−G1(t, τ

n
i )2
)

+

An(t)−`∑
i=1

∆
n,(1)
i,` +

An(t)−`∑
i=1

∆
n,(2)
i,` ,

where

∆
n,(1)
i,` := E

[
H(t− τni , Zi)

[
H(t− τni+`, Zi+`)−H(t− τni , Zi+`)

]]
,

∆
n,(2)
i,` := G1(t, τ

n
i )[G1(t, τ

n
i )−G1(t, τ

n
i+`)].

Observe that by the Cauchy–Schwarz inequality, we have

∆
n,(1)
i,` ≤

(
E
[
H(t− τni , Zi)2

]
E
[(
H(t− τni+`, Zi+`)−H(t− τni , Zi+`)

)2])1/2
=

(
G2(t, τ

n
i )

∫
Rk

(
H(t− τni+`)−H(t− τni )

)2
dF (x)

)1/2

.

Now, given the trajectories of An in Υn and continuity of G1(t, ·) and the condition on
Ǧ2(t, s, ·) in (2.2) (recall Assumption 1), for each fixed ` and t ≥ 0, we obtain that

max
1≤i≤a+b−`

∆
n,(1)
i,` → 0 and max

1≤i≤a+b−`
∆
n,(2)
i,` → 0 as n→∞.

Thus, we have

Rn` =

∫ t

0
E[H(t− u, Z1)H(t− u, Z1+`)−G1(t, u)2]dAn(u) + o(n).

Therefore, as n→∞,

2

n

An(t)∑
i<j

rni,j =
2

n

An(t)−1∑
`=1

Rn` → 2
∞∑
`=1

∫ t

0
E[H1(t)H1+`(t)]dΛ(u)

=

∫ t

0
Γ(t, t, u)dΛ(u).

Thus, by (3.8), we obtain

Var(Sn)

n
→ σ2 :=

∫ t

0
[G̃(t, u) + Γ(t, t, u)]dΛ(u) as n→∞. (3.9)

We have verified conditions (i)–(iv), and by Theorem 2.1 and Proposition 2.1(a) in [57], we
have

Sn/
√

Var(Sn)⇒ N(0, 1) as n→∞. (3.10)

By definition of Sn, we have Sn =
√
nX̂n

2 (t). Thus, by (3.9) and (3.10), we have

X̂n
2 (t)⇒ N(0, σ2)

d
= X̂2(t) as n→∞,

where “
d
=” denotes “equal in distribution”.
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To finish the proof, by Cramér-Wold theorem, it suffices to show that for any m ∈ N+

and 0 ≤ t1 < t2 < · · · < tm ≤ T and {ai ∈ R : i = 1, ...,m},
m∑
i=1

aiX̂
n
2 (ti)⇒

m∑
i=1

aiX̂2(ti) as n→∞.

We have proved the case when m = 1 above. Now we consider the case when m = 2. By
simple algebra, we can write

√
n

2∑
i=1

aiX̂
n
2 (ti) = a1

An(t1)∑
i=1

Hni (t1) + a2

An(t2)∑
i=1

Hni (t2)

=

An(t2)∑
i=1

Hn,∗i ,

where

Hn,∗i :=

{
a1Hni (t1) + a2Hni (t2) for 1 ≤ i ≤ An(t1),

a2Hni (t2) for An(t1) + 1 ≤ i ≤ An(t2).

Since the randomness of Hn,∗i comes only from Zi, the dependence between Hn,∗i is the same
between Hni . Therefore, the similar arguments for the first case apply. It is clear that this
argument can be extended for any general m > 2. This completes the proof. �

3.3. Tightness. For any real-valued function f on [0, T ], denote its modulus of continuity
by

ωδ(f) := sup
|x−y|≤δ, x,y∈[0,T ]

|f(x)− f(y)|, δ > 0. (3.11)

Define the processes D̂n := {D̂n(x) : x ∈ [0, T ]} by

D̂n(x) :=
1√
n

n∑
i=1

(
H(x, Zi)− E[H(x, Z1)]

)
, x ∈ [0, T ]. (3.12)

We next show the tightness of {D̂n : n ≥ 1} in the space D.

Lemma 3.6. Under Assumptions 1–2, for each η > 0,

lim
δ↓0

lim sup
n→∞

P
(
ωδ(D̂

n) > η
)

= 0. (3.13)

Proof. We prove that

lim
δ↓0

lim sup
n→∞

∥∥∥∥ sup
%(x,y)≤δ

|D̂n(x)− D̂n(y)|
∥∥∥∥
2

= 0, (3.14)

where
%(x, y) := ‖H(x, Z1)−H(y, Z1)‖2, for x, y ∈ [0, T ]. (3.15)

This implies that
lim
δ↓0

lim sup
n→∞

E
[
ωδ(D̂

n)2
]

= 0. (3.16)

To see that, suppose (3.14) holds, then for any ε > 0, there exits δ0 > 0, n0 ∈ N such that
for all n ≥ n0, ∥∥∥∥ sup

%(x,y)≤δ0
|D̂n(x)− D̂n(y)|

∥∥∥∥
2

≤ ε. (3.17)



20 GUODONG PANG AND YUHANG ZHOU

By Assumption 1, there exists δ1 > 0 such that %(x, y) ≤ δ0 when |x− y| ≤ δ1. That is, the
set {(x, y) : |x− y| ≤ δ1} is a subset of {(x, y) : %(x, y) ≤ δ}. Thus,∥∥∥∥ sup

|x−y|≤δ1
|D̂n(x)− D̂n(y)|

∥∥∥∥
2

≤
∥∥∥∥ sup
%(x,y)≤δ0

|D̂n(x)− D̂n(y)|
∥∥∥∥
2

≤ ε. (3.18)

We proceed to prove (3.14). Define the bracket number N(δ, T ) as the minimal number
of N that there exist points t1, ..., tN ∈ [0, T ] such that for each t ∈ [0, T ], there exists a ti
for which %(t, ti) ≤ δ. To show (3.14), we apply Theorem 2.2 in [1] (under strong α-mixing
condition) with Q = 4, 0 < γ < 2 in their notation. The first summable condition there
obviously holds by our Assumption 2. It then suffices to show that N(δ, T ) = O(δ−2) so

that the integral condition
∫
[0,1] δ

−γ/(2+γ)N(δ, T )1/4dδ <∞ is fulfilled.

Define g(t) = E[H(t, Z1)H(T,Z1)] for t ∈ [0, T ]. Since H ∈ D is nondecreasing, then the
function g is also nondecreasing. Thus, for a given δ > 0, we can choose a partition of [0, T ]
by 0 = t0 < t1 < ... < tN = T such that g(ti+1−)− g(ti) ≤ δ2 for every i. Then, for each i
and s ∈ [ti, ti+1),

%(s, ti)
2 ≤ E[(H(s, Z1)−H(ti, Z1))H(T,Z1)] ≤ g(ti+1−)− g(ti) ≤ δ2. (3.19)

Since g ∈ D, the number of jump points with jump size greater than δ2 is finite; see Theorem
12.2.1 in [60]. Therefore, after making sure that above mentioned jump points are among
t0, ..., tN , the number N , an upper bound for the bracket number N(δ, T ), is bounded by a
constant times 1/δ2. The proof is now complete. �

Lemma 3.7. Under Assumptions 1–2,

sup
n∈N

E

[
sup

x∈[0,T ]
D̂n(x)2

]
<∞. (3.20)

Proof. Fix δ > 0, choose {xi : 0 ≤ i ≤ [T/δ] + 1} such that 0 = x0 < x1 < ... < x[T/δ]+1 = T
and xi+1 − xi = T/δ for each i. Then, for any n0 ∈ N,

sup
n∈N

E

[
sup

x∈[0,T ]
D̂n(x)2

]
≤ max

1≤n≤n0

E

[
sup

x∈[0,T ]
D̂n(x)2

]
+ sup
n∈N

[T/δ]+1∑
i=1

E
[
D̂n(xi)

2
]

+ sup
n≥n0

E
[
ωδ(D̂

n)2
]
. (3.21)

The first summand is the maximum over finite many finite values. For the second summand,
by similar calculation and arguments in (3.9), we conclude that it is finite. The finiteness of
the last summand (when n0 large enough) is an immediate consequence of Lemma 3.6. �

Lemma 3.8. Under Assumptions 1–2,

D̂n ⇒ D̂ in (D, J1) as n→∞, (3.22)

where D̂ = {D̂(x) : x ≥ 0} is a continuous centered Gaussian process with covariance
function

Cov
(
D̂(x), D̂(y)

)
=

(
E
[
H(x, Z1)H(y, Z1)

]
−
∫
Rk
H(x, z)dF (z)

∫
Rk
H(y, z)dF (z)

)
+
∞∑
j=2

[(
E
[
H(x, Z1)H(y, Zj)

]
−
∫
Rk
H(x, z)dF (z)

∫
Rk
H(y, z)dF (z)

)
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+

(
E
[
H(x, Zj)H(y, Z1)

]
−
∫
Rk
H(x, z)dF (z)

∫
Rk
H(y, z)dF (z)

) ]
.

Proof. The tightness property is proved in Lemmas 3.6 and 3.7. The convergence of finite
dimensional distributions can be done by a similar but simpler argument as in the proof of
Lemma 3.5, and thus its proof is omitted. We thus obtain the weak convergence of D̂n to D̂.

For the existence of the process D̂ in C, we calculate the second moment of the increment:

E
[∣∣D̂(x)− D̂(y)

∣∣2] = V ar
(
H(x, Z1)−H(y, Z1)

)
+ 2

∞∑
j=2

[
E
[[
H(x, Z1)−H(y, Z1)

][
H(x, Zj)−H(y, Zj)

]]
−
(∫

Rk

(
H(x, z)−H(y, z)

)
dF (z)

)2]
. (3.23)

By Assumption 2, we obtain that

E
[∣∣D̂(x)− D̂(y)

∣∣2] ≤ (1 + 2Cρ)E
[[
H(x, Z1)−H(y, Z1)

]2]
. (3.24)

Since H is nondecreasing, then we can apply Theorem 13.6 in [6] to prove the existence in
D, and thus in C by the continuity in quadratic mean. This completes the proof. �

Define the two-parameter processes V̂ n(t, x) by

V̂ n(t, x) :=
1√
n

An(t)∑
i=1

(
H(x, Zi)− E[H(x, Z1)]

)
, t, x ≥ 0. (3.25)

Lemma 3.9. Under Assumptions 1–3, for any ε > 0,

lim
δ↓0

lim sup
n→∞

P

(
sup
t∈[0,T ]

sup
|x−y|≤δ ,x,y∈[0,T ]

∣∣V̂ n(t, x)− V̂ n(t, y)
∣∣ > ε

)
= 0. (3.26)

Proof. Recall the definition of D̂n in (3.12). Observe that

sup
t∈[0,T ]

sup
|x−y|≤δ ,x,y∈[0,T ]

∣∣V̂ n(t, x)− V̂ n(t, y)
∣∣

≤ max
`≤An(T )

sup
|x−y|≤δ x,y∈[0,T ]

∣∣V̂ n(τn` , x)− V̂ n(τn` , y)
∣∣

= max
`≤An(T )

√
`

n
ωδ(D̂

`). (3.27)

For x, y ∈ [0, T ], define

Li(x, y) := H(x, Zi)− E[H(x, Z1)]−H(y, Zi) + E[H(y, Z1)]. (3.28)

Let ln = [n(5−κ)/8] = o(
√
n) for κ > 1. Then, applying the Ottaviani-type inequality under

strong α-mixing in Lemma 4.1 (noting αn ≤ ρn/4, see [7], and also [2, Lemma 3]), we obtain

P

(
max

`≤An(T )

√
`

n
ωδ(D̂

`) > 3ε

)
≤

Bn,1(δ) +Bn,2(δ) + 1
4 [An(T )/ln]ρln

1−max`=1,...,An(T ) P
(√

`/n ωδ(D̂`) > ε
) , (3.29)

where

Bn,1(δ) := P

(√
An(T )

n
ωδ(D̂

n) > ε

)
,
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and

Bn,2(δ) := P

(
max

p,q∈{1,...,An(T )},
0<q−p≤2ln

sup
x,y∈[0,T ],
|x−y|≤δ

1√
n

∣∣∣∣ q∑
i=p+1

Li(x, y)

∣∣∣∣ > ε

)
. (3.30)

First, by the trajectories of An defined in (3.6),√
An(T )

n
→
√

Λ(T ) <∞ as n→∞.

Thus, by Lemma 3.6,
lim
δ↓0

lim sup
n→∞

Bn,1(δ) = 0.

Next, for large enough n, we have (when 1 < κ < 3), [An(T )/ln]ρln = O(n(κ
2−4κ+3)/8) = o(1),

and thus
lim
δ↓0

lim sup
n→∞

[An(T )/ln]ρln = 0.

As for Bn,2(δ), we truncate Li(x, y) as follows. For any M > 0 and i ∈ N,

Li(x, y) = Li,M (x, y) + Li,Mc(x, y), (3.31)

where

Li,M (x, y) := Li(x, y)1(|Li(x, y)| ≤M),

Li,Mc(x, y) := Li(x, y)1(|Li(x, y)| > M).

(Such a convention, denoting the truncated function by subscripting M or M c, applies to
other functions or processes as well and will not cause confusion in the context.) Then we
have

max
p,q∈{1,...,An(T )}

0<q−p≤2ln

sup
x,y∈[0,T ]
|x−y|≤δ

1√
n

∣∣∣∣ q∑
i=p+1

Li(x, y)

∣∣∣∣
≤ max

p,q∈{1,...,An(T )}
0<q−p≤2ln

sup
x,y∈[0,T ]
|x−y|≤δ

1√
n

∣∣∣∣ q∑
i=p+1

Li,M (x, y)

∣∣∣∣
+ max
p,q∈{1,...,An(T )}

0<p−q≤2ln

sup
x,y∈[0,T ]
|x−y|≤δ

1√
n

∣∣∣∣ q∑
i=p+1

Li,Mc(x, y)

∣∣∣∣
≤ 2Mln/

√
n+ max

p,q∈{1,...,An(T )}
0<q−p≤2ln

sup
x,y∈[0,T ]
|x−y|≤δ

1√
n

∣∣∣∣ q∑
i=p+1

Li,Mc(x, y)

∣∣∣∣.
Evidently, for any fixed M > 0, limn→∞ 2Mln/

√
n = 0. On the other hand, by stationarity

of {Zn : n ≥ 1},

P

(
max

p,q∈1,...,An(T )
0<q−p≤2ln

sup
x,y∈[0,T ]
|x−y|≤δ

1√
n

∣∣∣∣ q∑
i=p+1

Li,Mc(x, y)

∣∣∣∣ > ε/2

)
(3.32)
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≤ P

(
max

p,q∈1,...,An(T )
0<q−p≤2ln

sup
x,y∈[0,T ]
|x−y|≤δ

1√
n

q∑
i=p+1

|Li,Mc(x, y)| > ε/2

)
(triangle inequality)

≤ 2ln(An(T )− 2ln)P

(
sup

x,y∈[0,T ]
|x−y|≤δ

1√
n

2ln∑
i=1

|Li,Mc(x, y)| > ε/2

)
(by stationarity of {Zi})

≤ 2ln(An(T )− 2ln)P

(
2√
n

2ln∑
i=1

|H(T,Zi) + E[H(T,Zi)]|1(|H(T,Zi)| > M/2) > ε/2

)
.

(by definition of Li)

We then apply Theorem 4.1 in [53]. Choose p = 4, r = 8 in their notation, then by (4.4) in
[53],

E

( 2√
n

2ln∑
i=1

|H(T,Zi) + E[H(T,Zi)]|1(|H(T,Zi)| > M/2)

)4
 ≤ K l2n

n2
,

where K is a constant since it is assumed that ‖H(T,Z1)‖8+δ < ∞ for some δ > 0 in
Assumption 2.

An application of Markov’s inequality to (3.32) yields an upper bound:

2ln(An(T )− 2ln)Kl2n/n
2 ≤ O(l3n/n) = o(1),

when κ ∈ (7/3, 3).

To finish the treatment for the second summand in (3.43), we need to show that the
denominator in (3.29) is bounded above from zero for large enough n and small enough δ.

By Lemma 3.6, there exist δ0 > 0 and n0 = n0(δ0) such that P
(
ωδ(D̂n) > ε

)
< 1/2 for all

δ < δ0 and n > n0. Thus, for δ < δ0,

max
`=n0,...,An(T )

P

(√
`

n
ωδ(D̂

`) > ε

)
≤ max

`=n0,...,An(T )
P
(
ωδ(D̂

`) > ε
)
< 1/2.

For ` < n0 and δ > 0, we have

ωδ(D̂
`) ≤ 2 sup

x∈[0,T ]

∣∣D̂`(x)
∣∣ ≤ 2 sup

x∈[0,T ]

∣∣D̂`
M (x)

∣∣+ 2 sup
x∈[0,T ]

∣∣D̂`(x)− D̂`
M (x)

∣∣,
where D̂`

M (x) is defined as

D̂`
M (x) :=

1√
`

∑̀
i=1

(
H(x, Zi)− E[H(x, Z1)]

)
1(|H(x, Zi)| ≤M/2), x ∈ [0, T ].

Thus,

max
`=1,...,n0−1

P

(√
`

n
ωδ(D̂

`) > 2ε

)
≤ max

`=1,...,n0−1
P

(√
`

n
sup

x∈[0,T ]

∣∣D̂`
M (x)

∣∣ > ε/2

)

+ max
`=1,...,n0−1

P

(√
`

n
sup

x∈[0,T ]

∣∣D̂`(x)− D̂`
M (x)

∣∣ > ε/2

)
.
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Note that supx∈[0,T ]
∣∣D̂`

M (x)
∣∣ ≤ √`Mn0. Thus the first term on the right hand side converges

to 0 as n→∞. The second term is upper bounded by

16n0
nε2

n0∑
i=1

E
[
|H(T,Zi)|21(|H(T,Zi)| > M/2)|

]
= o(1).

Therefore, the denominator in (3.29) is bounded above from zero for large enough n and
small enough δ. This completes the proof of the lemma. �

Lemma 3.10. Under Assumptions 1–3, for any ε > 0,

lim
δ↓0

lim sup
n→∞

P

(
sup
|s−t|≤δ
s,t∈[0,T ]

sup
x∈[0,T ]

∣∣V̂ n(t, x)− V̂ n(s, x)
∣∣ > ε

)
= 0. (3.33)

Proof. It suffices to show that

lim
δ↓0

lim sup
n→∞

P

(
max

0≤jδ≤T
j∈N

sup
jδ≤t≤(j+1)δ

sup
x∈[0,T ]

∣∣V̂ n(t, x)− V̂ n(jδ, x)
∣∣ > 3ε

)
= 0.

The probability in this equation can be bounded by

[T/δ]+1∑
j=1

P

(
sup

jδ≤t≤(j+1)δ
sup

x∈[0,T ]

∣∣V̂ n(t, x)− V̂ n(jδ, x)
∣∣ > 3ε

)

=

[T/δ]+1∑
j=1

P

(
max

`=An(jδ)+1,...,An((j+1)δ)
sup

x∈[0,T ]

1√
n

∣∣∣∣∣ ∑̀
i=An(jδ)+1

(
H(x, Zi)− E[H(x, Zi)]

)∣∣∣∣∣ > 3ε

)
.

Applying the Ottaviani-type inequality in Lemma 4.1 (Lemma 3 in [2]), we obtain the
quantity above is further bounded by

[T/δ]+1∑
j=1

(
Cj,n,1(δ) + Cj,n,2(δ) +

1

4
[(An((j + 1)δ)−An(jδ))/ln]ρln

)
/ (1− Cj,n,3) (3.34)

where

Cj,n,1(δ) := P

(
sup

x∈[0,T ]

1√
n

∣∣∣∣∣
An((j+1)δ)∑
i=An(jδ)+1

(
H(x, Zi)− E[H(x, Zi)]

)∣∣∣∣∣ > ε

)
, (3.35)

Cj,n,2(δ) := P

(
max

p,q∈{An(jδ)+1,...,An((j+1)δ)}
0<q−p<2ln

sup
x∈[0,T ]

1√
n

∣∣∣∣∣
q∑

i=p+1

(
H(x, Zi)− E[H(x, Zi)]

)∣∣∣∣∣ > ε

)
,

(3.36)
and

Cj,n,3(δ) := max
`=An(jδ)+1,...,An((j+1)δ)

P

(
sup

x∈[0,T ]

1√
n

∣∣∣∣∣
An((j+1)δ)∑

i=`

(
H(x, Zi)− E[H(x, Zi)]

)∣∣∣∣∣ > ε

)
.

(3.37)

Recall the trajectories of {An(t) : t ≥ 0} defined in (3.6).
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We first treat Cj,n,1(δ) in (3.35). Recall D̂n defined in (3.12). We have

Cj,n,1(δ) = P

(
sup

x∈[0,T ]

∣∣∣√An((j + 1)δ)/nD̂An((j+1)δ)(x)−
√
An(jδ)/nD̂An(jδ)(x)

∣∣∣ > ε

)
.

By (3.6), Lemma 3.8 and the Portmanteau Theorem, we obtain

lim sup
n→∞

Cj,n,1(δ) ≤ P

((√
Λ((j + 1)δ)−

√
Λ(jδ)

)
sup

x∈[0,T ]
|D̂(x)| > ε

)

= P

(
sup

x∈[0,T ]
|D̂(x)| > ε/

(√
Λ((j + 1)δ)−

√
Λ(jδ)

))
. (3.38)

Since supx∈[0,T ] |D̂(x)| possesses moments of any order, the probability above converges to 0

faster than any order of δ by the continuity of Λ and Proposition A.2.3 in [56]. Therefore
we have

lim
δ↓0

lim sup
n→∞

[T/δ]+1∑
j=1

Cj,n,1 ≤ lim
δ↓0

[T/δ]+1∑
j=1

P

(
sup

x∈[0,T ]
|D̂(x)| > ε/

(√
Λ((j + 1)δ)−

√
Λ(jδ)

))
= 0.

(3.39)
Next we turn to Cj,n2(δ) in (3.36). Recall the definition of Li(x, y) below (3.27). We have

Cj,n,2(δ) = P

(
max

p,q∈{An(jδ)+1,...,An((j+1)δ)}
0<q−p<2ln

sup
x∈[0,T ]

1√
n

∣∣∣∣ q∑
i=p+1

Li(x, 0)]

∣∣∣∣ > ε

)
. (3.40)

Then limδ↓0 lim supn→∞
∑[T/δ]+1

j=1 Cj,n,2 = 0 follows from similar arguments for Bn2 from

(3.31) to (3.32).

Next, for δ ≤ 1, we have∣∣∣∣∣
[T/δ]+1∑
j=1

[(An((j + 1)δ)−An(jδ))/ln]ρln

∣∣∣∣∣
≤

(
[T/δ]+1∑
j=1

(Λ((j + 1)δ)− Λ(jδ))

)
nρln/ln + 2([T/δ] + 1)ε(n)nρn/ln

=
(

Λ([T/δ] + 2)− Λ(δ) + 2([T/δ] + 1)ε(n)
)
nρn/ln

= o(1), (3.41)

where the last equality follows from ε(n) = o(1) and nρn/ln = o(1).
Given (3.39), (3.40) and (3.41), we have

[T/δ]+1∑
j=1

(
Cj,n,1(δ) + Cj,n,2(δ) +

1

4
[(An((j + 1)δ)−An(jδ))/ln]ρln

)
= 0. (3.42)

To prove (3.34), it now suffices to show that there exists ε0 > 0 such that for sufficiently
large n, small δ and each 1 ≤ j ≤ [T/δ] + 1, we have Cj,n,3(δ) ≤ 1− ε0.



26 GUODONG PANG AND YUHANG ZHOU

Recall the definition of Cj,n,3 in (3.37). For each δ > 0 and j ∈ N, choose a constant knδ,j
such that An(jδ) + 1 ≤ knδ,j ≤ An((j + 1)δ). Then, by a similar argument for Cj,n,2, we
obtain that

lim
δ↓0

lim sup
n→∞

max
`=An(jδ)+1,...,knδ,j

P

(
sup

x∈[0,T ]

1√
n

∣∣∣∣∣
An((j+1)δ)∑

i=`

(
H(x, Zi)− E[H(x, Zi)]

)∣∣∣∣∣ > ε

)
= 0.

On the other hand, by similar argument as (3.38), we have from the Portmanteau Theorem
that for ` ≥ An(jδ) + 1,

lim sup
n→∞

P

(
sup

x∈[0,T ]

1√
n

∣∣∣∣A
n((j+1)δ)∑
i=`

(
H(x, Zi)− E[H(x, Zi)]

)∣∣∣∣ > ε

)

≤ P

((√
Λ((j + 1)δ)−

√
Λ(jδ)

)
sup

x∈[0,T ]
|D̂(x)| > ε

)

= P

(
sup

x∈[0,T ]
|D̂(x)| > ε/

(√
Λ((j + 1)δ)−

√
Λ(jδ)

))
< 1.

Since Λ ∈ C, we conclude that there exists ε0 such that for sufficiently large n, small δ and
each 1 ≤ j ≤ [T/δ] + 1, we have Cj,n,3(δ) ≤ 1− ε0. The proof is now complete. �

Lemma 3.11. The sequence {X̂n
2 : n ≥ 1} is tight in space D.

Proof. By triangle inequality, we have

sup
|s−t|≤δ
s,t∈[0,T ]

|X̂n
2 (t)− X̂n

2 (s)| ≤ sup
|s−t|≤δ
s,t∈[0,T ]

sup
x∈[0,T ]

|V̂ n(t, x)− V̂ n(s, x)|

+ sup
t∈[0,T ]

sup
|x−y|≤δ
x,y∈[0,T ]

|V̂ n(t, x)− V̂ n(t, y)|.

Then the proof is complete by Lemmas 3.9–3.10. �

Remark 3.1. As can be seen from the proof, tightness also holds under the strong α-mixing
condition since the moment bounds and the Ottavian-type inequality we use are established
under the α-mixing condition. However, as mentioned above, the proof of existence of
the limit process X̂2 in C in Theorem 3.3 can be carried out only under the ρ-mixing
condition. In the i.i.d. case, the tightness proof is done in [42] by applying the new sufficient
convergence criterion in (D, J1) (extending the classical result in Theorem 13.5 of [6]) by
verifying the probability bound for the process increments. That approach relies on the new
maximality inequality, extending Theorems 10.3 and 10.4 in [6], that uses the set function
with a superadditivity property instead of a finite measure. However, that approach does not
work for weakly dependent variables under mixing conditions; specifically, the probability
bound for the increments in Lemma 3.4 cannot be established for the scaled processes X̂n

2 .

3.4. Completing the proof of Theorem 2.2.

Proof of Theorem 2.2. Recall the set Υn of trajectories {An(t) : t ≥ 0} defined in (3.6),

which is used in the proofs of the convergence of the process X̂n
2 , both in convergence of

finite-dimensional distributions in Lemma 3.5 and tightness in Lemmas 3.9 and 3.10.



Shot Noise Processes with Dependence 27

We directly obtain the tightness of {X̂n
1 + X̂n

2 : n ∈ N} on Υn given the tightness

property shown for {X̂n
1 } and {X̂n

2 }. For the convergence of their finite dimensional

distributions, we first consider the convergence of X̂n
1 (t) + X̂n

2 (t) for some t ≥ 0 on Υn. Let
An(t) = σ{An(s) : 0 ≤ s ≤ t} be the filtration generated by the arrival process. We have for
ϑ ∈ R,

E
[
eiϑ(X̂

n
1 (t)+X̂

n
2 (t))

]
= E

[
E
[
eiϑ(X̂

n
1 (t)+X̂

n
2 (t))

∣∣∣An(t)
]]

= E
[
E
[
eiϑX̂

n
1 (t)eiϑX̂

n
2 (t)
∣∣∣An(t)

]]
= E

[
eiϑX̂

n
1 (t)E

[
eiϑX̂

n
2 (t)
∣∣∣An(t)

]]
.

On Υn, by the convergence of X̂n
1 , and by the proof of Lemma 3.5 for the convergence

of finite-dimensional distributions of X̂n
2 , we obtain that the above equation converges to

E
[
eiϑ(X̂1(t)+X̂2(t))

]
. The convergence of finite-dimensional distributions follows similarly.

Since P (Υn)→ 1 as n→∞, the proof is complete. �

4. Appendix

4.1. Existence criterion in the space D. A classical existence criterion for a stochastic
process with sample paths in D given its finite dimensional distributions is given in Theorem
13.6 in [6]. That criterion requires a probability bound for the increments of the processes
where the upper bound involves a finite measure. Its proof relies on the classical maximal
inequalities in Theorems 10.3 and 10.4 in [6]. Using the new maximal inequalities requiring
a set function with the superadditivity property, a new existence criterion in the space D is
established in [42]. We now state this criterion of existence in the following theorem. It is
used in the proof of Theorem 3.3.

Recall the definition of a set function with the superadditivity property in Definition 3.2.

Theorem 4.1 (Theorem 5.3 in [42]). There exists a random element X in D([0, T ],R)
with finite-dimensional distributions πt1,··· ,tk for any 0 ≤ t1 < · · · < tk ≤ T , that is,
πt1,··· ,tk(x1, . . . , xk) = P (X(t1) ≤ x1, . . . , X(tk) ≤ xk) for xi ∈ R, i = 1, ..., k, if the following
conditions are satisfied:

(i) the finite dimensional distributions πt1,··· ,tk are consistent, satisfying the conditions
of Kolmogorov’s existence theorem;

(ii) for any 0 ≤ r ≤ s ≤ t ≤ T and ε > 0,

P
(
|X(r)−X(s)| ∧ |X(s)−X(t)| ≥ ε

)
≤ C

ε4β
(
µ(r, t]

)2α
, (4.1)

for some β ≥ 0 and α > 1/2, where C is a positive constant, µ is a finite set
function in Definition 3.2 and µ(0, t] is continuous in t;

(iii) for any ε > 0 and t ∈ [0, T ),

lim
δ↓0

P
(
|X(t)−X(t+ δ)| > ε

)
= 0. (4.2)

4.2. An Ottaviani-type inequality. Let {Xn : n ∈ Z} be a sequence of random elements
in some Banach space E satisfying the strong α-mixing condition [7] with the mixing
coefficients {αn}. Let T be some arbitrary index set. For each i ∈ Z, let Gi ∈ `∞(E× T).
For each t, let Yi(t) = Gi(Xi, t) and Sn(t) =

∑n
i=1 Yi(t) for n ≥ 1 with S0 ≡ 0. Let

‖Sn‖ := supt∈T |Sn(t)|.
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Lemma 4.1 (Lemma 3 in [2]). Suppose that ‖Sm − Sn‖ is measurable for each 0 ≤ n < m.
Then, for each ε > 0 and 1 ≤ k < n,

P
(

max
j=1,...,n

‖Sj‖ > 3ε
)
×
(

1− max
j=1,...,n

P (‖Sn − Sj‖) > ε
)

≤ P (‖Sn‖ > ε) + P
(

max
j,l∈{1,...,n}, 0<l−j≤2k

‖Sl − Sj‖ > ε
)

+ bn/kc × αk. (4.3)
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