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ABSTRACT. We study the semimartingale properties for the generalized fractional Brownian motion (GFBM)
introduced by Pang and Taqqu (2019) and discuss the applications of the GFBM and its mixtures to financial
asset pricing. The GFBM is self-similar and has non-stationary increments, whose Hurst index H ∈ (0, 1) is
determined by two parameters. We identify the regions of these two parameter values where the GFBM is a
semimartingale. Specifically, in one region resulting in H ∈ (1/2, 1), it is in fact a process of finite variation
and differentiable, and in another region also resulting in H ∈ (1/2, 1) it is not a semimartingale. For regions
resulting in H ∈ (0, 1/2] except a line segment resulting in the standard Brownian motion and time-changed
Brownian motion cases, the GFBM is also not a semimartingale.

We next show that the mixed process made up of an independent BM and a GFBM is a semimartingale when
the parameters lie in the two regions aforementioned resulting in H ∈ (1/2, 1) for the GFBM, as well as when
the parameters lie in the line segment resulting in a standard BM or time-changed BM with H ∈ (0, 1/2] for the
GFBM. We derive the associated equivalent Brownian measure in the cases when H ∈ (1/2, 1). This result is
in great contrast with the mixed FBM with H ∈ {1/2} ∪ (3/4, 1] proved by Cheridito (2001) and shows the
significance of the additional parameter introduced in the GFBM.

We then study the semimartingale asset pricing theory with the mixed GFBM, in presence of long range
dependence. Our work extends Cheridito (2001) on the mixed FBM asset pricing model in which the Hurst
parameter of the FBM is H ∈ (3/4, 1), because the Hurst parameter range of the GFBM is enlarged to (1/2, 1).
In addition, when the GFBM is a process of finite variation mentioned above (resulting in H ∈ (1/2, 1)), the
mixed GFBM process as a stock price model is a Brownian motion with a random drift of finite variation. The
implications on option pricing and portfolio optimization using these models are also discussed.

Finally we discuss the implications of using GFBM on arbitrage theory. In particular, when GFBM is a
semimartingale in the region resulting in H ∈ (1/2, 1) and finite variation mentioned above, arbitrage exists.
On the other hand, the mixed GFBM in the same parameter range, arbitrage does not exist. This provides an
example of asset pricing model of long range dependence with no arbitrage, answering the open question by
Rogers (1997).

1. INTRODUCTION

1.1. Semimartingale properties of GFBM and its mixture. Semimartingale and non-semimartingale
properties of the standard fractional Brownian motion (FBM) BH and its mixtures are well understood.
These properties are important in modeling stock price [23, 32], constructing arbitrage strategies and hedging
policies [31, 40, 35, 12], and modeling rough volatility [16, 6, 44]. The standard FBMBH captures short/long-
range dependence, and possesses the self-similar and stationary increment properties, as well as regular
path properties. It may arise as the limit process of scaled random walks with long-range dependence or an
integrated shot noise process [30].
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A generalized fractional Brownian motion (GFBM) X , introduced by Pang and Taqqu [29], is defined via
the following (time-domain) integral representation:

{X(t)}t∈R
d
=

{
c

∫
R

(
(t− u)α+ − (−u)α+

)
|u|−γ/2B(du)

}
t∈R

, (1.1)

where (α, γ) are constants in the region

γ ∈ [0, 1), α ∈
(
− 1

2
+
γ

2
,

1

2
+
γ

2

)
, (1.2)

B(du) is a Gaussian random measure on R with the Lebesgue control measure du, and c = c(α, γ) ∈ R+

is a normalization constant (see (2.1)). It is a H-self-similar Gaussian process, that is, {X(κt) : t ∈ R} d
=

{κHX(t) : t ∈ R} for any κ > 0, with

H := α− γ

2
+

1

2
∈ (0, 1) ,

but does not have stationary increments. The Hurst parameter H is determined by two-parameters (α, γ) in
the range shown in Figure 1. One may regard γ ∈ (0, 1) as a scale/shift parameter. The multiplier |u|−γ/2 in
the stochastic integral in (1.1) renders a higher ( resp., smaller) value of the integrand when u is close to 0 (
resp., goes to ∞ ). On the one hand, it is somewhat surprising that the GFBM X has the Hölder continuity
property with the same parameter H − ε for ε > 0 as the FBM BH , and that the parameter γ does affect the
differentiability of the paths [20].

The GFBM X defined in (1.1) can be also written as

{X(t)}t∈R
d
=

{
c

∫
R

(
(t− u)

H− 1
2
+ γ

2
+ − (−u)

H− 1
2
+ γ

2
+

)
|u|−γ/2B(du)

}
t∈R

. (1.3)

It is clear that when γ = 0, this becomes the standard FBM BH with Hurst parameter H = α+ 1/2 ∈ (0, 1)
(equivalently, α ∈ (−1/2, 1/2)):

{BH(t)}t∈R
d
=

{
c

∫
R

(
(t− u)

H− 1
2

+ − (−u)
H− 1

2
+

)
B(du)

}
t∈R

. (1.4)

In the special case when H = 1/2, BH becomes the standard Brownian motion B(t). For the GFBM,
when γ ∈ [0, 1) and α = 0, that is, H ∈ (0, 1/2], it becomes

{X(t)}t∈R+

d
=

{
c

∫ t

0
u−γ/2B(du)

}
t∈R+

d
=
{
B(t1−γ)

}
t∈R+

(1.5)

with c = (1 − γ)1/2, that is, the GFBM X in (1.1) reduces to a time-changed Brownian motion with a
power-law time change function t1−γ . Furthermore, when γ = 0 and α = 0, X in (1.1) becomes the standard
Brownian motion B with H = 1/2.

The GFBM X is derived as the limit of integrated power-law shot noise processes in [29] (see a brief
review in Section 5.2). We have studied in [20] some important path properties of the GFBM X , including the
Hölder continuity property, the differentiability and non-differentiability properties, and functional/local law
of the iterated logarithm (LIL), see Section 2 for a summary of its fundamental properties. Some additional
path properties such as the exact uniform modulus of continuity and Chung’s LIL are recently studied in
[45, 46].

In this paper we focus on the semimartingale properties associated with the GFBM and its mixture with
an independent BM. For FBM BH , it is shown in [31] that BH is not a semimartingale for H ∈ (0, 1/2) ∪
(1/2, 1). When H = 1/2, BH is a Brownian motion, and is a martingale (thus, also a semimartingale). In
[10], it is shown that the mixture of independent BM and FBM is a semimartingale for H ∈ (3/4, 1). This
important finding is proved using a filtering approach in [9]. These results have significant implications in
financial applications, in particular, arbitrage theory and pricing, see, e.g., [31, 12]. The proofs for these
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FIGURE 1. (a) The GFBM X in (1.1) is semimartingale in the region (I): 0 < γ < 1 ,
1/2 < α < (1 + γ)/2 with H ∈ (1/2, 1) and in the line segment: α = 0, γ ∈ [0, 1) with
H ∈ (0, 1/2]; it is not semimartingale in the region (II): 0 < γ < 1 , α ∈ ((γ−1)/2, 1/2]\
{0} with H ∈ (0, 1/2) ∪ (1/2, 1). The standard fractional Brownian motion corresponds
to the line segment: γ = 0 , −1/2 < α < 1/2 with H = α + 1/2 . The standard
Brownian motion corresponds to the point α = γ = 0 . (b) The mixed GFBM Y in (4.1) is
semimartingale in the region (I) and the region (II)-1: 0 < γ < 1 , γ/2 < α < (1 + γ)/2
with H ∈ (1/2, 1), and the line segment: α = 0, γ ∈ [0, 1) with H ∈ (0, 1/2].

results rely heavily upon the stationary increments property of the FBM. The lack of stationary increments of
the GFBM X requires new approaches to establish similar results.

We identify the regions of the two parameter values (α, γ) in which the GFBM X is a semimartingale (see
Figure 1(a) and Proposition 3.1). To do so, we first establish the necessary and sufficient condition for the
square integrability of the derivative of the kernel of this Gaussian process. We use this to distinguish the
parameter regions for the semimartingale property. We can then apply the characterization of the spectral
representation of Gaussian semimartingales by Basse [3].

Recall that the standard FBM BH is a semimartingale if and only if H = 1/2 while the GFBM X can be
a semimartingale for H ∈ (1/2, 1) in the triangular region (I) of parameters of (α, γ), and for H ∈ (0, 1/2]
in the line segment with α = 0 and γ ∈ [0, 1). Note that there is a quadrilateral shape of (α, γ) that results
in H ∈ (1/2, 1), and there is a line segment of (α, γ) satisfying α = γ/2 over [0, 1] resulting in H = 1/2
but only γ = 0 gives a standard BM. On the other hand, the line segment α = 0 and γ ∈ (0, 1) resulting in
H ∈ (0, 1/2) gives a time-changed BM. However, although X is the semimartingale in region (I), it is a
process of finite variation and has an explicit expression, thanks to the result of spectral representation of
Gaussian semimartingales in Basse [3].

We then study the semimartingale properties of the mixed GFBM process (sum in (4.1) of an independent
BM and GFBM). It is shown in [10, 9, 8] that the mixed FBM BH process is a semimartingale with respect
to its own filtration if and only if H ∈ {1/2} ∪ (3/4, 1]. We show in Proposition 4.1 that the mixed GFBM
process is a semimartingale in the region of the two parameter values (α, γ) that is equivalent to H ∈ (1/2, 1)
(see regions (I) and (II)-1 in Figure 1(b)), as well as in the line segment α = 0 and γ ∈ [0, 1) resulting in
H ∈ (0, 1/2]. That is, there exist parameter values (α, γ) resulting H ∈ (0, 1) that can make the mixed
GFBM a semimartingale. It is worth highlighting the wide range of values of the Hurst index H for which
the mixed GFBM process is a semimartingale when γ > 0. This is one significant consequence of introducing
the parameter γ in the GFBM.

In the two regions (I) and (II)-1, the mixed GFBM process has different behaviors due to the fact that
in region (I) the GFBM X is a process of finite variation. For both regions (I) and (II)-1, we can use the
characterization of the equivalence of Gaussian measures in Shepp [39], and show that the absolute continuity
of the measure of the mixed GFBM with respect to that of the standard BM, and provide an expression of
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the Radon–Nikodym density, using the solutions to the associated Wiener–Hopf integral equations. For
that purpose, we establish that H ∈ (1/2, 1) is the necessary and sufficient condition for the second partial
derivative function for the covariance function of the GFBM X to be square integrable (see Lemma 4.1). For
region (I), thanks to the finite variation property of the GFBM X , the mixed GBFM becomes a Brownian
motion plus a random drift of finite variation, and as a consequence, we provide another expression of the
Radon–Nikodym density, in terms of the conditional expectation, applying the results in [21]. We also
conjecture that the mixed process is not a semimartingale when H ∈ (0, 1/2) except the parameters (α, γ)
taking values in the line segment α = 0 and γ ∈ (0, 1) (see further discussions in Remark 4.2).

1.2. Asset pricing with GFBM and its mixture. We next discuss the GFBM and its mixtures in the study
of financial asset models, in the aspects of modeling long range dependence, non-stationary increments,
semimartingale asset pricing theory and arbitrage.

The study of the long range dependence (LRD) in stock market prices has a long history. Cont [13]
discussed the financial modeling of stock prices with the notions of self-similarity, scaling, fractional process
and LRD. In the literature, shot noise process and FBMs have been used to model LRD in financial markets
(see, e.g., [23, 2, 36, 42]). It is well known that the FBM BH has stationary increments that have slowly
decaying autocovariance functions, if H > 1/2 . See, for example, [10, 12, 27, 31] for the modeling with the
FBM and its mixed processes in the financial markets, and also [17, 18] for the high frequency trading and
the optimization under the transaction costs. Willinger et al. [47] discuss the question of whether the actual
stock market prices have LRD from the empirical investigation, where the Hurst parameter is estimated as
slightly above 0.5 for different financial time series. The relatively recent empirical studies also indicate that
the stock price process has the Hurst index greater than 0.5 (see e.g., [14]). In addition, it is also observed in
empirical studies that some financial time series exhibits non-stationary increments (see, e.g., [4]).

Since GFBM does not have stationary increments, the usual definition of LRD cannot be applied. Here,
using Lamperti transform which results in a stationary process, we introduce a definition of LRD for self-
similar processes, Definition 5.1. We show that the GFBM has LRD if and only if α > 0 (Proposition 5.1)
in the sense of Definition 5.1. (For the standard FBM with γ = 0, α > 0 is equivalent to H > 1/2.) For
GFBM, in both regions in (I) and (II)-1, with H ∈ (1/2, 1), the LRD property holds, however, in the region
γ ∈ (0, 1) and 0 < α < γ/2 (the triangle area above zero in region (II)-2, resulting in H ∈ (0, 1/2)), the
LRD property also holds, which differs from the standard FBM with γ = 0. We focus on only the regions in
(I) and (II)-1 because of the associated semimartingale properties. (It is worth noting that the self-similarity
does not necessarily imply LRD of the stationary increments in general, see further discussions in [13].)

Semimartingale property is one of the most fundamental tools to modern asset pricing theory, because of
the equivalent martingale measures and many other associated probabilistic techniques [22]. Using FBM
BH itself in this theory has a drawback since it is martingale if and only if H = 1/2, the BM case. The
mixed FBM then draws attention since it is shown to be a semimartingale when the Hurst index of the FBM
H ∈ (3/4, 1), see [10, 9]. However, as observed from financial data [13, 14], the Hurst index can be less
than 0.75 and even close to 0.5. Therefore, the mixed GFBM will become very useful since we have shown it
is a semimartingale when the Hurst index of the GFBM H ∈ (1/2, 1). We note that although GFBM itself is
also a semimartingale in region (I) with Hurst parameter H ∈ (1/2, 1), it is ‘unfortunately’ of finite variation,
so we must resort to the mixed GFBM as an asset pricing model.

To facilitate the use of the mixed GFBM as a semimartingale asset pricing model, we derive the Radon–
Nikodym derivative for the equivalent martingale measure (Proposition 5.2) and semimartingale decomposi-
tions. These representations will turn out to be useful for the price dynamics of various options and portfolio
optimization (Sections 5.4 and 5.5). In Section 5.5, we consider the portfolio optimization of the mixed
GFBM asset with the GFBM Hurst parameter H ∈ (1/2, 1) (regions (I) and (II)-1), under the log utility
function. It is interesting to highlight that the optimal portfolio remains constant as the mixed FBM case with
H ∈ (3/4, 1), which shows the robustness of the semimartingale asset pricing theory (in the wider range
of Hurst parameter H ∈ (1/2, 1) with the GFBM). While the mean and variance of the optimal portfolio
value at each time depend on H only, the covariance function of the optimal portfolio value at different
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times is dependent explicitly on the two parameters α and γ. In our framework, the larger range of the Hurst
index thus provides greater flexibility in modeling and for further theoretical analysis through the use of Itô’s
formula and the properties of semimartingales.

Motivated by Cheridito [10], we also discuss the semimartingale asset price models with small ε-
perturbation of the driving GFBM perturbed by the independent BM. In the case of standard FBM with
H ∈ (3/4, 1), as ε ↓ 0, the price model becomes non-semimartingale under which arbitrage exist. For the
mixed GFBM with H ∈ (1/2, 1), as as ε ↓ 0, the price model remains a semimartingale if the parameters
(α, γ) are in region (I), and becomes non-semimartingale if they are in region (II)-1, while it is interesting to
observe that in both cases, arbitrage exists (for different reasons).

Finally, we discuss the implications on arbitrage in asset pricing for stock price processes using the GFBM
and its mixtures. With FBM BH , arbitrage in fractional Bachelier and Black-Scholes models has been well
studied in [31, 40, 35, 12]. If one uses the GFBM as a stock price process, we find that the only non-arbitrage
scenario is the case of standard BM and time-changed BM (with both α = 0 and γ ∈ (0, 1) resulting in
H ∈ (0, 1/2]). Although the GFBM is a semimartingale in parameter region (I), since it is a process of finite
variation, arbitrage exists as shown in [19]. On the other hand, if one uses the mixed GFBM as a stock price
process, in the parameter region (I), the process becomes a semimartingale as a BM with a finite-variation
drift, and thus, no arbitrage exists. This price process with the mixed GFBM is of particular interest, since it
also exhibits the long range dependence, similar to that with the mixed FBM. Rogers [31] pointed out that it is
possible to construct a process similar to the FBM to model LRD of returns while avoiding arbitrage. Hence,
we have provided an example of a price model with these desirable properties. We identify self-financing
arbitrage strategies in the Bachelier and Black-Scholes models with the GFBM for the region of parameters
that results in H ∈ (1/2, 1) in which the GFBM is not a semimartingale, taking the approach in Shirayaev
[40]. See more discussions in Section 5.6.

1.3. Organization of the paper. The paper is organized as follows. In Section 2, we give the precise
definition of the GFBM and summarize some of its properties. In Sections 3 we study the semimartingale
properties of the GFBM. In Section 4, the semimartingale property of the mixed BM and GFBM process
is investigated. We present the applications in financial models in Sections 5, including the LRD property
(Section 5.1), shot-noise process and its scaling limit as GFBM (Section 5.3), option pricing (Section 5.4),
portfolio optimization (Section 5.5) and arbitrage (Section 5.6). The details of some of the proofs of the main
results are given in Section 6.

2. A GENERALIZED FRACTIONAL BROWNIAN MOTION

The GFBM process X defined in (1.1) has the following properties:
(i) X(0) = 0 and E[X(t)] = 0 for all t ≥ 0;

(ii) X is a Gaussian process and E[X(t)2] = t2H for t ≥ 0;
(iii) X has continuous sample paths almost surely;
(iv) X is self-similar with Hurst parameter H ∈ (0, 1);
(v) the paths of X are Hölder continuous with parameter H − ε for ε > 0 almost surely;

(vi) the paths of X is non-differentiable if α ∈ (−1/2 + γ/2, 1/2] and γ ∈ (0, 1), and differentiable
if α ∈ (1/2, 1/2 + γ/2) and γ ∈ (0, 1) almost surely (see non-differentiable region (II) and
differentiable region (I) in Figure 1).

These properties are established in [29, 20]. See Proposition 5.1 [29] for properties (iii) and (iv), and
Theorems 3.1 and 4.1 in [20] for (v) and (vi). Note that the class of continuously differentiable function is a
subset of the class of α-Hölder continuous functions with 0 < α ≤ 1 .
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Also recall that the normalization constant c = c(α, γ) ∈ R+ is given by

c(α, γ) :=
(∫ 1

0
(1− v)2αv−γdv +

∫ ∞
0

[(1 + v)α − vα]2v−γduv
)−1/2

=
(

Beta(1− γ, 2α+ 1)

+
( Γ(1− γ)

Γ(−2α)
− 2Γ(1 + α− γ)

Γ(−α)

)
Γ(−1− 2α+ γ)

))−1/2
,

(2.1)

as shown in Lemma 2.1 of [20]. Here, Γ(a) :=
∫∞
0 xa−1e−xdx , a > 0 and Beta(a, b) :=

∫ 1
0 x

a−1(1−
x)b−1dx , a, b > 0 are the Gamma and Beta functions, respectively, and Γ(−a) := (−a)−1Γ(−a+ 1) for
positive non-integer a . When α = 0 and γ ∈ [0, 1), we have c(0, γ) = (1− γ)1/2.

Recall that in the case γ = 0, the FBM BH has stationary increments. Namely, the second moment of its
increment:

E
[
(BH(s)−BH(t))2

]
= c2|t− s|2H ,

and the covariance function

E
[
BH(s)BH(t)

]
=

1

2
c2
(
t2H + s2H − |t− s|2H

)
, (2.2)

where c = c(α, 0) = c(H − 1/2, 0) in (2.1).
When γ ∈ (0, 1), in comparison with the FBM BH , the process X loses the stationary increment property.

In particular, the second moment of its increment is

Φ(s, t) := E
[
(X(t)−X(s))2

]
= c2

∫
R

(
(t− u)α+ − (s− u)α+

)2
|u|−γdu

= c2
∫ t

s
(t− u)2αu−γdu+ c2

∫ s

0
((t− u)α − (s− u)α)2u−γdu

+ c2
∫ ∞
0

((t+ u)α − (s+ u)α)2u−γdu , (2.3)

and the covariance function is

Ψ(s, t) = Cov(X(t), X(s)) = E[X(s)X(t)]

= c2
∫
R

( (
(t− u)α+ − (−u)α+

) (
(s− u)α+ − (−u)α+

) )
|u|−γdu

= c2
∫ s

0
(t− u)α(s− u)αu−γdu

+ c2
∫ ∞
0

((t+ u)α − uα)((s+ u)α − uα)u−γdu , (2.4)

for 0 ≤ s ≤ t.
We also remark that generalized FBMs are stated in a more general form with the additional terms involving

(t−u)α−− (−u)α− in the integrands in [29, Sections 5.1 and 5.2]. In this paper we focus on the representations
of X in (1.1) since the other forms with additional terms can be treated similarly.
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3. WHEN IS THE GFBM A SEMIMARTINGALE?

Any centered Gaussian process X with right-continuous sample paths has a spectral representation in
distribution [25], that is,

X(t)
d
=

∫ t

−∞
Kt(s)dN(s), t ≥ 0 ,

where N is an independently scattered centered Gaussian random measure and (t, s)→ Kt(s) is a square-
integrable deterministic function. Basse [3, Theorem 4.6] characterizes the spectral representation of Gaussian
semimartingales, identifying the family of kernels Kt(s) for which the representation

{ ∫ t
−∞Kt(s)dN(s) :

t ≥ 0
}

is a semimartingale with respect to the natural filtration {FNt : t ≥ 0}. Specifically for one-
dimensional case N(·) ≡ B(·) being the Brownian Gaussian random measure, it says that {X(t) : t ≥ 0} is
an {FNt : t ≥ 0} semimartingale if and only if for t ≥ 0, the kernel can be represented as

Kt(s) = g(s) +

∫ t

0
Ψr(s)µ(dr) , (3.1)

where g : R+ → R is locally square integrable with respect to the Lebesgue measure, µ(·) is a Radon measure
on R+ and a measurable mapping Ψr(s) : (r, s) → R is square integrable with respect to the Lebesgue
measure,

∫∞
−∞|Ψr(s)|2ds = 1, and Ψr(s) = 0, r < s.

In the case of FBM BH , we have the kernel function

Kt(s) = (t− s)H−1/2+ − (−s)H−1/2+ ,

and N(·) = B(·). Since it is a {FBt : t ≥ 0} semimartingale if and only if H = 1/2, i.e., a Brownian motion,
applying [3, Theorem 4.6], we have g ≡ 0, and Ψr(s) ≡ 1.

For the GFBM X , we have the kernel function

Kt(s) = [((t− s)+)α − ((−s)+)α] |s|−γ/2 , s ∈ R, t ≥ 0, (3.2)

and N(·) = B(·) for α 6= 0. When α = 0, X is the time-changed Brownian motion, and the kernel function
becomes Kt(s) = s−γ/2 for s ≥ 0 and Kt(s) ≡ 0 for s < 0.

Thus, for γ ∈ [0, 1) and α ∈
(
− 1

2 + γ
2 ,

1
2 + γ

2

)
\ {0}, define the function Ψt(·) by

Ψt(s) := C−1t
[
α(t− s)α−1s−γ/2 · 1{0<s<t} + α(t− s)α−1(−s)−γ/2 · 1{s<0}

]
,

where Ct is a time-dependent, normalizing constant defined by

Ct := α tH (Beta(1− γ, 2α− 1) + Beta(1− γ, 1− 2α+ γ))1/2 , t > 0 .

Lemma 3.1. The function Ψt(·) is square integrable with respect to the Lebesgue measure if 1/2 < α <
(1+γ)/2 and γ ∈ (0, 1) (region (I) in Figure 1(a)). In this case,

∫∞
−∞|Ψt(s)|2ds = 1. The function Ψt(·) is

not square integrable with respect to the Lebesgue measure if α ∈ (−1/2 + γ/2, 1/2) \ {0} and γ ∈ (0, 1) .

Proof. If 1/2 < α < (1 + γ)/2 and γ ∈ (0, 1) , it follows from the definition that

α−2C2
r

∫ ∞
−∞
|Ψr(s)|2ds =

∫ r

0
(r − s)2(α−1)s−γds+

∫ 0

−∞
(r − s)2(α−1)(−s)−γds ,

where the first and the second terms are rewritten by the change of variables as∫ r

0
(r − s)2(α−1)s−γds = r2H

∫ 1

0
(1− u)2(α−1)u−γdu

= r2HBeta(1− γ, 2α− 1) ,∫ 0

−∞
(r − s)2(α−1)(−s)−γds = r2H

∫ ∞
0

(1 + u)2(α−1)u−γdu

= r2HBeta(1− γ, 1 + γ − 2α) .

(3.3)
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Thus, in this case,
∫∞
−∞|Ψt(s)|2ds = 1.

On the other hand, if the parameters are α ∈ (−1/2+γ/2, 1/2)\{0} and γ ∈ (0, 1) , then these integrals
over the interval (0, 1) are not integrable. Thus we conclude the proof. �

Proposition 3.1. The following properties hold:
(i) If γ ∈ (0, 1) and 1/2 < α < (1 + γ)/2 (region (I) in Figure 1(a)), then {X(t), t ≥ 0} in (1.1) is

a semimartingale with respect to FB(·) , more specifically, a process of finite variation:

dX(t)

dt
= c

∫ t

−∞
Ψt(s)dB(s) , t ≥ 0 , (3.4)

where Ψt(·) is defined by

Ψt(s) := α(t− s)α−1|s|−γ/2 (3.5)

for s < t , and Ψt(s) := 0 for s > t .
(ii) If γ ∈ (0, 1) and α ∈

(
− 1

2 + γ
2 ,

1
2

)
\{0} , then {X(t), t ≥ 0} in (1.1) is not a semimartingale with

respect to FB(·) . In particular, if γ = 2α ∈ (0, 1) with H = 1/2, then it is not a semimartingale
with respect to FB(·) .

(iii) If γ ∈ [0, 1) and α = 0, X(t), as given in (1.5), is a square-integrable martingale (hence a
semimartingale) with respect to FB(·) .

(iv) If γ = 0 and α ∈ (−1/2, 0)∪(0, 1/2) , {X(t), t ≥ 0} in (1.1) is reduced to a fractional Brownian
motion and is not semimartingale.

Remark 3.1. In the range (region (I) of Figure 1(a)) of parameters (α, γ): γ ∈ (0, 1) and 1/2 < α <
(1 + γ)/2 , the Hurst parameter H = α− γ

2 + 1
2 ∈

(
1
2 , 1
)
. Note that when α is close to 1/2, and γ is close

to 1, the Hurst parameter H is also close to 1/2, which differs from the standard FBM case with γ = 0 and
α = 0 resulting in H = 1/2. In the line segment γ ∈ [0, 1) and α = 0, the Hurst parameter H ∈ (0, 1/2].

Therefore, the range of values of Hurst parameter H possessing the semimartingale property is expanded
from a single value 1/2 for the standard FBM, to the entire interval (0, 1/2) for the process X(t). It is
important to highlight that the process X(t) is a process of finite variation in region (I) with H ∈ (1/2, 1),
and in the line segment γ ∈ (0, 1) and α = 0, X(t) becomes a time-changed Brownian motion (as given in
(1.5)), with self-similar parameter H ∈ (0, 1/2).

Moreover, note that H = 1/2 here only corresponds to the singular point α = 0, γ = 0. The GFBM X
can have H = 1/2 on the line segment α = γ/2, which is a BM if and only if α = 0.

Remark 3.2 (Differentiability). It is shown in [20] that the regions (I) and (II) of Figure 1(a) correspond to
the regions of almost sure differentiable and non-differentiable paths, respectively, that is, in the region (I) the
sample path of GFBM is differentiable, while in region (II) the sample path of GFBM is not differentiable.
This is not just a coincidence but it turns out that when α > 1/2 , it is a semimartingale and its (local)
martingale part in the semimartingale decomposition is zero, and its finite variation part is the integral of a
Gaussian process. When α = γ = 0 , it is a standard Brownian motion with non-differentiable sample path.
When γ ∈ (0, 1) and α = 0, X is a time-changed Brownian motion, also with non-differentiable sample path.

Proof. (i) Let us consider the case 1/2 < α < (1 +γ)/2 and γ ∈ (0, 1) . Thanks to the integrability of (3.3)
in this parameter set, the square integrability of Ψt(·) is assured, by Lemma 3.1, and hence, by Theorem 4.6
of Basse (2009), we have the representation

X(t) = c

∫ t

0

(∫ r

−∞
Ψr(s)dB(s)

)
dr , t ≥ 0 , (3.6)

where Ψt(·) is defined in (3.5). Thus it is a process of finite variation with the first derivative (3.4), in
particular, it is a semimartingale. See also section 4 of [20].

(ii) We show the claim by contradiction. Suppose that X(·) in (1.1) is a semimartingale with respect
to FB(·) . We know E[X2(t)] = t2α−γ+1 for t ≥ 0 . Then by Theorem 4.6 of [3] with N· = B(·) ,
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g(s) := 0 , Ct = (−∞, t] , there is a canonical decomposition

X(t) =

∫ t

−∞
Kt(s)dB(s) =

∫ t

−∞
[((t− s)+)α − ((−s)+)α] |u|−γ/2dB(s) (3.7)

for t ≥ 0 , where the integrand Kt(s) has the form:

Kt(s) := g(s) +

∫ t

0
Ψr(s)µ(dr) , 0 ≤ s ≤ t . (3.8)

Here g(·) is square integrable with respect to the Lebesgue measure, µ(·) is a Radon measure on R+ , and
Ψt(s) is a measurable mapping satisfying∫ ∞

−∞
|Ψt(s)|2ds = 1 , and Ψt(s) ≡ 0 (s > t) . (3.9)

Taking derivatives with respect to t in (3.8), we have
dKt(s)

dt
= Ψt(s) ·

µ(dt)

dt
,

while the integrand Kt(s) in (3.2) has the derivative with respect to t :

dKt(s)

dt
= α(t− s)α−1|s|−γ/2 .

Thus by comparing these two expressions and by setting µ(dr) = dr as the Lebesgue measure, we
identify Ψt(s) as in (3.5). However, as in Lemma 3.1, if α ≤ 1/2 and γ ∈ (0, 1) , Ψt(·) is not square
integrable for every t > 0 . This yields a contradiction to (3.9). Thus, we claim that X(·) in (1.1) is not
semimartingale with respect to FB(·) , if γ ∈ (0, 1) and α ≤ 1/2 . The second statement on the parameter
sets γ = 2α ∈ (0, 1) with H = 1/2 is proved as a special case.

(iii) The claim follows from the expression of X(t) in (1.5).
(iv) When γ = 0 , X(·) in (1.1) is a FBM with Hurst index α+ 1/2 , and it is not a semimartingale if

α ∈ (−1/2, 0) ∪ (0, 1/2) . �

3.1. Alternative proof of the non-semimartingale property by quadratic variations of the GFBM. For
the standard FBM BH , it is shown in [34, Proposition 3.14] that BH has a 1/H-variation, that is,

lim
ε↓0

∫ t

0

1

ε
|BH(s+ ε)−BH(s)|1/Hds = %Ht

in the sense of convergence uniformly in compact sets, where %H = E[|Z|1/H ] for Z ∼ N(0, 1). Here, the
limit is in the sense of convergence in probability uniformly on every compact interval (ucp). It can be also
shown that the classical variation

n−1∑
i=0

|BH
ti+1
−BH

ti |
1/H L1

−−−→
n→∞

%Ht ,

where 0 = t0 < · · · < tn = t is a partition of [0, t], see Proposition 3.14 in [34] and Remark 1 in [33].
Then by Propositions 1.9 and 1.11 of [11] one can conclude that BH is not a semimartingale with respect
to FB(·) , if H < 1/2. Note that the results in [11] involve the notion of the weak semimartingales (see
Definition 1.5 of [11]).

This approach of evaluating the variations is also used in [33] to show that the bifractional Brownian
motion BH,K with parameters (H,K) , H ∈ (0, 1) , K ∈ (0, 1] is not a semimartingale, if HK 6= 1/2, see
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Propositions 1–3 and Remark 1 there. Recall that the bifractional Brownian motion BH,K is a centered
Gaussian process with BH,K(0) = 0 and covariance function

E[BH,K(s)BH,K(t)] =
1

2K
((t2H + s2H)K − |t− s|2HK) , s, t ≥ 0 .

The bifractional Brownian motion BH,K is a FBM with Hurst index H ∈ (0, 1) if K = 1 .
We next use this variation approach to provide an alternative proof for the non-semimartingale property in

Proposition 3.1 (ii) but only restricting to the parameter range γ ∈ (0, 1) and α ∈ (−1/2 + γ/2, 0), under
which the Hurst parameter H takes values in (0, 1/2) (see also Remark 3.3).

Proposition 3.2. The process X in (1.1) is not a semimartingale with respect to its own filtration FX(·) if
γ ∈ (0, 1) and α ∈ (−1/2 + γ/2, 0). Moreover, since FX ⊂ FB , it is not a semimartingale with respect to
FB(·) if γ ∈ (0, 1) and α ∈ (−1/2 + γ/2, 0).

Proof. We write
X(t) = X−(t) +X+(t),

where

X−(t) =

∫ 0

−∞
((t− u)α − (−u)α) (−u)−γ/2B(du) ,

and

X+(t) =

∫ t

0
(t− u)αu−γ/2B(du) .

Recall that we focus on the parameter range: γ ∈ (0, 1) and α ∈ (−1/2 + γ/2, 0). In this parameter range,
by Lemma 2.1 (valid for all parameter ranges) in [45] for 0 < s < t,

c2,1
(t− s)2

t2−2H
≤ E[(X−(t)−X−(s))2] ≤ c2,2

(t− s)2

s2−2H
,

and by Lemma 3.1 (valid for α ≤ 1/2) in [45] , for s ≤ 2(t− s),

c3,1
(t− s)2α+1

tγ
≤ E[(X+(t)−X+(s))2] ≤ c3,2

(t− s)2α+1

sγ
,

and for t > s > 2(t− s),

E[(X+(t)−X+(s))2] � (t− s)2α+1

sγ
,

where if f, g are real-valued function on a set I , the notation f � g means that c ≤ f(x)/g(x) ≤ c′ for all
x ∈ I and some positive and finite constants c, c′ (which may depend on f, g and I).

Then we have the lower bound

E[(X+(u+ ε)−X+(u))2] ≥ c · ε2α+1

(u+ ε)γ

with some constant c , and hence,∫ T

0
E[(X+(u+ ε)−X+(u))2]du ≥ cε2α+1 · [(T + ε)1−γ − ε1−γ ]

1− γ
.

This implies that

lim
ε↓0

1

ε

∫ T

0
E[(X+(u+ ε)−X+(u))2]du = ∞, if α < 0 .

Thus, if α < 0 , the quadratic variation of X in (1.1) does not converge and not well-defined. Therefore, it
is not semimartingale.

�



11

Remark 3.3. When γ ∈ (0, 1) and α ∈ (0, 1/2) , which is part of the parameter range of Proposition 3.1
(ii) for the non-semimartingale property, it is not clear if this power variation approach in Proposition 3.2
works. Note that in this parameter range, the Hurst parameter H can take value in (0, 1), in particular,
H ∈ (0, 1/2) if α ∈ (0, γ/2) and H ∈ [1/2, 1) if α ∈ [γ/2, 1/2). A careful study of the power variations of
the GFBM is worth studying in a future work.

4. MIXED BM AND GFBM

In this section we consider the semimartingale properties of the following process

Y (t) = B̃(t) +X(t), t ≥ 0, (4.1)

where B̃(t) is a standard Brownian motion and X(t) is the GFBM defined in (1.1), independent of B̃(t). Let
us call Y the mixed GFBM. In the special case when γ ∈ [0, 1) and α = 0, X(t) is given in (1.5), and hence

Y (t) = B̃(t) + c

∫ t

0
u−γ/2B(du), (4.2)

where B(t) is a standard Brownian motion, independent of B̃(t). Recall the corresponding Hurst parameter
H ∈ (0, 1/2]. In this special case, the mixed process Y (t) is clearly a martingale. In the rest of the section,
we focus on the other parameter ranges that make the mixed GFBM a semimartingale. We will show below
that in Proposition 4.1, when γ/2 < α < 1/2 + γ/2 and 0 < γ < 1 , i.e., regions (I) and (II)-1 in Figure 1(b)
(both resulting H ∈ (1/2, 1)), the mixed GFBM a semimartingale. In summary, combining with the case in
(4.2), our results show that the mixed GFBM can be a semimartingale for any value H ∈ (0, 1) (given the
parameters (α, γ) in the two ranges).

In the case of FBM BH , we denote

Y H(t) = B̃(t) +BH(t) , H ∈ (0, 1) , t ≥ 0 .

It is shown in [10, Theorem 1.7] and [9, Theorem 2.7] (see also [8]) that Y H(t) is a semimartingale with
respect to its own filtration if and only if H ∈

{
1
2

}
∪
(
3
4 , 1
]
. On the other hand, the mixed GFBM extends the

Hurst parameter values to the full interval H ∈ (0, 1), which further indicates the flexibility by introducing
the parameter γ in the generalization.

To prove the results for the midxed FBM, in [10], the concept of weak semimartingale and a theorem on
Gaussian processes in [41] is used. On the other hand, in [9], the filtering approach is used. In particular, the
mixed FBM Y H is innovated by a martingale in its natural filtration for all H ∈ (0, 1]. Then the equivalence
property with respect to the Wiener measure is established for H ∈ (3/4, 1] and the equivalence property
with respect to the Wiener measure is established for H ∈ (0, 1/4). The associated Radon-Nikodym density
formulas are then derived in these ranges of the parameter H . The method in Section 3 is not directly
applicable for the mixed GFBM in the region (II)-1 (in particular, Lemma 1 only applicable to region
(I)). We will use a different approach using Shepp’s result for general Gaussian processes [39] since the
Randon-Nikodym derivative of the GFBM exists in the region (II)-1 (see further discussions in Remark 4.1).

Let µY,H be the probability measure induced by Y H on the space of its paths in C(R+;R), and µB be the
Wiener measure. For H > 1/2, the covariance function of BH(t) in (2.2) is written as

ΨH(t, s) = E
[
BH(t)BH(s)

]
=

∫ t

0

∫ s

0
KH(u, v)dudv, (4.3)

where

KH(t, s) =
∂2

∂t∂s
E
[
BH(s)BH(t)

]
= cH |t− s|2H−2. (4.4)
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with cH := c2H(2H − 1). If H > 3/4, KH(·, ·) ∈ L2([0, T ]2), and µY,H ∼ µB (equivalence) by the
general criterion in Shepp [39], and in addition, Shepp’s Radon–Nikodym derivative can be written in the
form

dµY,H

dµB
(Y H) = exp

(
−
∫ T

0
ϕt(Y

H)dY H(t)− 1

2

∫ T

0
ϕ2
t (Y

H)dt

)
,

where

ϕt(Y
H) :=

∫ t

0
LH(s, t)dY H(s) , 0 ≤ t ≤ T (4.5)

and LH ∈ L2([0, T ]2) is the unique solution of the Wiener–Hopf integral equation

LH(s, t) + cH

∫ t

0
LH(r, t)|r − s|2H−2dr = −cH |s− t|2H , 0 ≤ s ≤ t ≤ T .

The second partial derivative K(u, v) of the covariance function Ψ in (2.4) is given by

K(u, v) =
∂2Ψ

∂u∂v
(u, v) = c2(f1(u ∧ v, u ∨ v) + f2(u ∧ v, u ∨ v)) , (4.6)

where

f1(u, v) :=

∫ u

0
(v − θ)α−1(u− θ)α−1θ−γdθ ,

f2(u, v) :=

∫ ∞
0

(v + θ)α−1(u+ θ)α−1θ−γdθ .

We then obtain the following square–integrability property of K(u, v). Its proof is given in Section 6.1.

Lemma 4.1. Assume 0 < γ < 1 and (γ − 1)/2 < α < (γ + 1)/2 . The function K(·, ·) in (4.6) is
square integrable with respect to the Lebesgue measure in (0, T )× (0, T ) for every T > 0 , if and only if
0 < γ < 1 and γ/2 < α < 1/2 + γ/2 (equivalently, H ∈ (1/2, 1), regions (I) and (II)-1 in Figure 1(b)).

Remark 4.1. We remark that both regions (I) and (II)-1 lead to Hurst parameter H ∈ (1/2, 1). The previous
lemma shows the integrability of the function K(·, ·) in (4.6), from which we can conclude the absolute
continuity of the Y with respect to the Brownian motion B̃(·) and obtain an expression of the Radon-Nikodym
density as a direct consequence of Shepp’s result for general Gaussian processes in [39]. That will involve
the Wiener–Hopf integral equation.

However, the two regions (I) and (II)-1 also have distinct behaviors, despite the same Hurst parameter
range. In particular, in region (I), we have shown in Proposition 3.1 that the process X is of finite variation,
with the representation in (3.6), which makes Y a Brownian with a random drift of finite variation. As
a consequence, we are able to provide a more explicit expression of the Radon-Nikodym density using
conditional expectations.

We will next state these results in two propositions. It is an open problem to show that the explicit
Radon-Nikodym density in region (I) is equivalent to the density given by the Wiener–Hopf integral equation.

Suppose that γ/2 < α < 1/2 + γ/2 and 0 < γ < 1 . Let L(s, t) ∈ L2([0, T ]2) be the unique solution to
the Wiener–Hopf integral equation

L(s, t) +

∫ t

0
L(r, t)K(r, s)dr = −K(s, t) , 0 ≤ s ≤ t ≤ T , (4.7)

and define

ϕt(Y ) :=

∫ t

0
L(s, t)dY (s) , 0 ≤ t ≤ T . (4.8)

Also, let `(s, t) ∈ L2([0, T ]2) be the unique solution to the Volterra equation

`(s, t) +

∫ t

s
`(r, t)L(s, r)dr = L(s, t) , 0 ≤ s ≤ t ≤ T . (4.9)
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Thus, by [39] and Lemma 4.1, we obtain the following proposition.

Proposition 4.1. Suppose that γ/2 < α < 1/2 + γ/2 and 0 < γ < 1 , i.e., regions (I) and (II)-1 in
Figure 1(b) (both resulting H ∈ (1/2, 1)). The probability measure µY induced by Y in (4.1) is absolutely
continuous with respect to the Wiener measure µB̃ over [0, T ] with the Radon–Nikodym density

dµY

dµB̃
(Y ) = exp

(
−
∫ T

0
ϕt(Y )dY (t)− 1

2

∫ T

0
[ϕt(Y )]2dt

)
. (4.10)

By the Girsanov theorem

W (t) := Y (t) +

∫ t

0
ϕs(Y )ds

= Y (t) +

∫ t

0

∫ s

0
L(r, s)dY (r)ds , 0 ≤ t ≤ T (4.11)

is a Brownian motion with respect to its own filtration. Moreover, Y (t) can be written as

Y (t) = W (t)−
∫ t

0

∫ s

0
`(r, s)dW (r)ds , 0 ≤ t ≤ T . (4.12)

Particularly, the filtration FY (·) generated by Y and the filtration FW (·) satisfy the identities FY (t) =

FW (t) for 0 ≤ t ≤ T .
Therefore, Y (t) is a semimartingale for the pair (α, γ) values in this region.

In region (I) of Figure 1(b), since the process X has a finite variation, as expressed in (3.6), then the mixed
process Y is written as

Y (t) = B̃(t) +

∫ t

0

(∫ r

−∞
Ψr(s)dB(s)

)
dr = B̃(t) +

∫ t

0
λ̃(r)dr ,

with λ̃(t) :=

∫ t

−∞
Ψt(s)dB(s) , t ≥ 0 ,

(4.13)

where Ψt(s) given in (3.5). Thus Y is, in fact, a Brownian motion with a random drift of finite variation,
particularly, it is a semimartingale. By Theorem 2 and Lemma 4 of [21] we obtain the Radon-Nikodym
density dµY

dµB̃
(Y ) in (4.10), which is stated in the following proposition.

Proposition 4.2. Suppose that 1/2 < α < 1/2 + γ/2 and 0 < γ < 1 , i.e., region (I) in Figure 1(b)
(resulting in H ∈ (1/2, 1)). The Radon–Nikodym density (4.10) over the time interval [0, T ] in Proposition
4.1 is given by

dµY

dµB̃
(Y ) = exp

(∫ T

0
E[λ̃(s)|FY (s)]dY (s)− 1

2

∫ T

0

(
E[λ̃(s)|FY (s)]

)2
ds

)
.

Here, ϕt(Y ) in (4.8) is identified as ϕt(Y ) ≡ −E[λ̃(t)|FY (t)] for t ≥ 0 , and

W (·) = Y (·)−
∫ ·
0
E[λ̃(s)|FY (s)]ds = B̃(·) +

∫ ·
0

(
λ̃(s)− E[λ̃(s)|FY (s)]

)
ds

is a Brownian motion with respect to its own filtration.

Remark 4.2. We conjecture that the mixture process Y is not a semimartingale with respect to its own
filtration in the parameter region α ∈ (γ/2− 1/2, γ/2] \ {0} and γ ∈ (0, 1) (region (II)-2 including the
boundary line segment α = γ/2 , γ ∈ (0, 1) in Figure 1(b)) and excluding the line segment α = 0 and
γ ∈ (0, 1). For standard FBM BH , in Cai et al. [9], representations of the FBM with the Riemann-Liouville
fractional integrals and derivatives are used to prove the innovation representations in Theorem 2.4 for
H < 1/2, and equivalence of the measures for B̃ +BH and BH for H < 1/4. However, for the GFBM X ,
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it still remains open to establish the Riemann-Liouville fractional integrals and derivatives. Therefore, we
leave it as future work to prove the non-semimartingale property of the mixture process Y for the parameter
pair (α, γ) in region (II)-2 of Figure 1(b) excluding the line segment α = 0 and γ ∈ (0, 1) .

Remark 4.3. In this remark, we comment on the generalized Riemann–Liouville (R-L) FBM introduced in
Remark 5.1 in [29] and its mixtures. It is defined by

X(t) = c

∫ t

0
(t− u)αu−γ/2B(du) , t ≥ 0 , (4.14)

whereB(du) is a Gaussian random measure on R with the Lebesgue control measure du and c ∈ R, γ ∈ [0, 1)
and α ∈ (γ/2 − 1/2, γ/2 + 1/2). It is a continuous self-similar Gaussian process with Hurst parameter
H = α− γ/2 + 1/2 ∈ (0, 1). When γ = 0, it reduces to the standard R-L FBM

BH(t) = c

∫ t

0
(t− u)αB(du), t ≥ 0 .

And when α = 0 and γ ∈ (0, 1), it has the expression in (1.5).
It is clear that the semimartingale properties in Proposition 3.1 hold for the process X in (4.14). In

particular, by letting the natural kernel Kt(s) := (t − s)αs−γ/2, we have the spectral representation

X(t)
d
=
∫ t
0 Kt(s)N(ds) , for a Gaussian measure N(·). Define Ψt(s) = C−1t α(t − s)α−1s−γ/2 , for a

time-dependent normalization constant Ct. As shown in the proof of Lemma 3.1, the function Ψ1(·) is square
integrable with respect to the Lebesgue measure if and only if 1/2 < α < 1/2 +γ/2 and γ ∈ (0, 1), and thus
by Basse’s characterization of the spectral representation of Gaussian semimartingales ([3, Theorem 4.6]),
we can conclude the the semimartingale property in part (ii) of Proposition 3.1. The non-semimartingale
property in part (i) of Proposition 3.1 also follows from a similar argument as in the proof of the proposition.

Similarly, for the mixed process Y = B̃ +X with X in (4.14) and an independent BM B̃, the properties
in Propositions 4.1 and 4.2 hold. Here one can let L(s, t) ∈ L2([0, T ]2) be the unique solution to the Wiener–
Hopf integral equation (4.7) with K(u, v) = c2

∫ u
0 (v − θ)α−1(u − θ)α−1θ−γdθ , `(s, t) ∈ L2([0, T ]2) be

the unique solution to the Volterra equation (4.9), and λ̃(t) =
∫ t
0 Ψt(s)dB(s) in (4.13).

5. ASSET PRICING WITH GFBM AND ITS MIXTURE

5.1. On the long-range dependence of GFBM. The GFBM X in (1.1) is a self-similar process but it does
not have the stationary increments, while the FBM BH is a self-similar process and it has the stationary
increments. In order to compare the covariance decays between the FBM and the GFBM, we introduce the
concept of long range dependence (LRD) of self-similar processes below. For it, recall from [28] [43] that
for a self-similar process ξ(t) , t ≥ 0 with the Hurst index H ≥ 0 and ξ(0) = 0 , its Lamperti transform
{η(t), t ∈ R} is defined by

η(t) := e−Htξ(et) , t ∈ R . (5.1)
The Lamperti transform η of the self-similar Gaussian process with the Hurst index H is strictly sta-
tionary with the covariance function Cη(t) := E[η(t + s)η(s)] , s, t ∈ R . Note that E[ξ(t)ξ(s)] =
(ts)HCη(log(t/s)) , s, t ≥ 0 .

Definition 5.1 (Long range dependence of self-similar processes). We say a self-similar process {ξ(t) ,
t ≥ 0} with the Hurst index H is long-range dependent, if its Lamperti transform η is long-range dependent
in the sense that

lim
t→∞

1

t
log|Cη(t)|+H > 0 . (5.2)

This means that the covariance function Cη(t) decays slower than e−Ht , as t goes to infinity. Recall
that the Lamperti transform η(·) of a standard BM ξ(·) := B(·) with H = 1/2 is the Ornstein-Uhlenbeck
process η(t) = e−t/2B(et/2) , t ∈ R with the covariance function Cη(t) = e−t/2 , t ∈ R . Thus,
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(1/t) log(Cη(t)) +H = 0 , t ∈ R , and hence, the standard BM is not long-range dependent in the sense
of Definition 5.1. Moreover, the Lamperti transform η(t) := e−HtBH(et) , t ∈ R of the FBM BH(·) is
strictly stationary and it has the covariance function

Cη(t) = cosh(Ht)− 22H−1(sinh(t/2))2H , t ∈ R . (5.3)

In this case the limit (5.2) is given by

lim
t→∞

1

t
log(Cη(t)) +H = 2H − 1 (5.4)

and hence, the FBM is long-range dependent in the sense of Definition 5.1 if and only if H > 1/2 . This
range H > 1/2 corresponds to the LRD of the stationary increment of the FBM in the usual sense. The proof
of (5.4) follows from (6.8) in Appendix. The following result (Proposition 5.1) generalizes this observation.
Its proof is given in Section 6.2 in Appendix.

Proposition 5.1 (Long-range dependence). The GFBM X in (1.1) is long-range dependent in the sense of
Definition 5.1, if and only if α > 0 . Particularly, when γ = 0 , the FBM BH is long-range dependent if
H = α+ (1/2) > 1/2 .

Remark 5.1. Definition 5.1 describes the LRD of the stationary generator η(·) of the self-similar processes
ξ(·) . Self-similar processes are not necessarily stationary and the self-similarity does not necessarily imply
the LRD of the stationary increments (cf. [13] [31]). It follows from Proposition 5.1 that if 0 < γ < 1
and 0 < α < γ/2 , the GFBM X in (1.1) is self-similar process with the Hurst index H ∈ (0, 1/2) and is
long-range dependent in the sense of Definition 5.1. This is different from the understanding of the Hurst
index of the FBM (when γ = 0 ).

In the following sections we shall discuss the use of the GFBM with H ∈ (1/2, 1) and its mixed processes
for modeling the financial assets with long range dependence, by taking advantage of the semimartingale
properties.

5.2. Shot noise process with non-stationary noise and integrated shot noise. In modeling of financial
markets, Brownian motion and compound Poisson processes or more generally, Lévy processes are widely
utilized to capture effects of various noises. Recently, Pang and Taqqu [29] studied a non-stationary, power-law
shot noise process Z∗ = {Z∗(y) : y ∈ R} on the whole real line defined by

Z∗(y) :=
∞∑

j=−∞
g∗(y − τj)Rj , y ∈ R , (5.5)

where {τj : j ∈ Z} is a sequence of Poisson arrival times of shots with rate λ on the whole real line, and each
Rj is the noise associated with shot j at time τj for j ∈ Z . It is a generalization of the compound Poisson
process on the positive half line. The variables {Rj , j ∈ Z} are conditionally independent, given {τj}, and
the marginal distribution of Rj depends on the shot arrival time τj , that is, P(Rj ≤ r | τj = u) =: Fu(r),
r ∈ R , u ∈ R for every j ∈ Z . Assume that

(i) (the power-law property) the function g∗ satisfies g∗(y) = y−(1−α)L∗(y) for y ≥ 0 and g∗(y) = 0
for y < 0 and α ∈ (0, 1/2), where L∗ is a positive slowly varying function at +∞, and

(ii) (the moment conditions) the common conditional distribution Ft of the noises R·, given τ· = t ,
satisfies the zero mean K1(t) :=

∫
R rdFt(r) = 0 for every u ∈ R and finite variance K2(t) =∫

R r
2dFt(r) = t−γL̃+(t) for t > 0 and K2(t) = |t|−γL̃−(t) for t < 0, where γ ∈ (0, 1), and L̃±

are some positive slowly varying functions.
The shot noise process Z∗ in (5.5) is a generalization of the compound Poisson process, because if

g∗(y) := 1{y>0} , y ∈ R , then Z∗ is a compound process. The integrated shot noise process Z = {Z(t) :
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t ∈ R+} is defined by

Z(t) :=

∫ t

0
Z∗(y)dy =

∞∑
j=−∞

(g(t− τj)− g(−τj))Rj , t ≥ 0 , (5.6)

where the shot shape function g(·) is differentiable with its derivative g∗ , i.e., g(t) :=
∫ t
0 g
∗(y)dy for t ≥ 0 .

Pang and Taqqu [29] have shown that the scaled process Ẑε(t) := εHZ(t/ε) converge weakly to the
GFBM X , as ε→ 0 .

5.3. Stock price models driven by the shot-noise with non-stationary noise. Stock pricing models with
a shot-noice component have been developed to study credit and insurance risks [2, 36, 42]. In particular, the
stock price P (t) is modeled as

P (t) := P (0) exp

(µ− σ2

2

)
t+ σB̃(t) + σ

∫ t

0

∑
τi≤s

f(s− τi, Ri)ds

 , (5.7)

for t ≥ 0, where {(τi, Ri) : i ∈ N} is a marked point process, independent of the Brownian motion B̃, with
arrival times τi and marks (noises) Ui ∈ Rd, and the function f : R+ × Rd → R is the deterministic shot
shape function. µ ∈ R and σ > 0 are some real constants. Equivalent martingale measures for this price
process are studied in [36, 37]. In [36], it is also discussed when the shot-noise component is Markovian or a
semimartingale. This is usually when the function f takes a particular form (exponential function for the
Markovian property). In these studies, the noises {Ri} are assumed to be i.i.d. with finite variance. Since it is
usually more difficult to work with the shot noise process directly, one may use the diffusion approximations.
For example, Klüppelberg and Kühn [23] showed that under regular variation conditions, a Poisson shot
noise process can be approximated by an FBM (under proper scaling and validated by a functional central
limit theorem), and then used the limiting FBM as a stock pricing model.

Here, as a pre-limit, we consider the usual random walk noise and the shock noises on the stock price. We
evaluate the effects of these noises, when the frequency of arrival of shot noises is very high with appropriate
scaling. Given a scaling parameter ε > 0 , we model a pre-limit of price process by

Pε(t) :=P (0) exp

(µ− σ2

2

)
t+ σε1/2

bt/εc∑
j=1

ξj + σ

∫ t

0

1

ε1−H
Z∗
( u
ε

)
du


=P (0) exp

(µ− σ2

2

)
t+ σε1/2

bt/εc∑
j=1

ξj + σεH
∫ t/ε

0
Z∗(u )du


=P (0) exp

(µ− σ2

2

)
t+ σε1/2

bt/εc∑
j=1

ξj + σεHZ
( t
ε

) , (5.8)

for t ≥ 0, where {ξj , j ∈ N} are i.i.d. random variables with zero mean and unit variance, independent of
the shot noise Z∗ in (5.5), and Z is the integrated shot noise process in (5.6). Here, µ and σ > 0 are some
real constants. (One may also choose a model without the random walk component, in which case the model
in (5.9) will have only the process X instead of the mixed GFBM.)

Recall that Ẑε := εHZ(·/ε)⇒ X and the random walk term ε1/2
∑bt/εc

j=1 ξj , t ≥ 0 converges weakly to
the standard BM, independent of X . As a scaling limit of (5.8), we propose a stock price model using the
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mixed GFBM as follows:

P (t) =P (0) exp

((
µ− σ2

2

)
t+ σ(B̃(t) +X(t))

)
=P (0) exp

((
µ− σ2

2

)
t+ σY (t)

)
, t ≥ 0 ,

(5.9)

where Y (·) = B̃ + X is the mixed GFBM in (4.1) with X in (4.14) (For a recent account of weak
convergence in financial models, we refer to Kreps [24].)

Suppose that the parameters (α, γ) are in the semimartingale region: γ/2 < α < 1/2 + γ/2 and
0 < γ < 1 (i.e., H ∈ (1/2, 1) for the GFBM X ), as in the assumption of Proposition 4.1. Within this
parameter range, Y is a semimartingale. When the parameters satisfy γ ∈ [0, 1) and α = 0, Y (t) is a
martingale as given in (4.2). In that case, the standard asset pricing theory can be applied, so we do not
consider it in this section.

The price dynamics is determined as the unique strong solution of the linear stochastic differential equation

dP (t) = P (t)(µdt+ σdY (t)) , t ≥ 0 , (5.10)

driven by the semimartingale Y , where µ is a drift and σ is volatility of stock price under a filtered
probability space (Ω,F , (Ft),P). Thus, we take the filtration F := (Ft, t ≥ 0) = (FY (t), t ≥ 0) .

As important applications with this stock price model (5.9), we consider an investor who trades this
stock with price (5.9) and money market account with an instantaneous interest rate r(> 0) in the following
sections 5.4-5.5. Propositions 5.2-5.3 below generalize the previous results in [8], [10] and [48] from the
mixed FBM for the Hurst index H ∈ (3/4, 1) to the mixed GFBM for the wider range of the Hurst index
with H ∈ (1/2, 1). In particular, for a stock price model with a FBM BH , Cheridito [12] shows that it admits
arbitrage for H ∈ (0, 1/2)∪ (1/2, 1) and Chridito [10] shows that for a stock price model with a mixed FBM
(B̃ +BH ), the arbitrage can be excluded if H ∈ (3/4, 1). In [7] and [38], no arbitrage condition for smooth
strategies is considered under the non-semimartingale stock models (e.g., mixed FBM for H ∈ (1/2, 3/4) )
via the path-wise stochastic calculus. Our results show that for a semimartingale stock price model with a
mixed GFBM, (excluding the special case in (4.2)), all arbitrage strategies can be excluded for a wider range
of H ∈ (1/2, 1). That is a significant consequence of the parameter γ.

5.4. Option pricing with the mixed GFBM. We first recall what is known in the case of standard FBM
BH , as shown in [31, 10, 9], the mixed process Y H = B̃ +BH is a semimartingale if and only if H = 1/2
(the Brownian case) and H ∈ (3/4, 1). Of course, with a BM, i.e., H = 1/2 , the standard results of stock
pricing and equivalence of martingale measure can be applied. On the other hand, with H ∈ (3/4, 1), one
also obtain the Radon–Nikodym derivative in (5.11) where Y is replaced by Y H , and the function ϕt(Y ) is
replaced by ϕt(Y H) in (4.5).

Also, recall that for the GFBMX withH = 1/2, the parameters (α, γ) lies on the line segment α = γ/2 in
Figure 1. In this parameter set, the GFBM is a semimartingale, only when γ = 0, which becomes the special
case of Black-Scholes pricing model. On the other hand, in the line segment γ ∈ (0, 1) and α = 0, the GFBM
is also a semimartingale as given in (1.5), so that Black-Scholes pricing model can also applied with some
modification although it is a time-changed Brownian motion with Hurst parameter H ∈ (0, 1/2). Otherwise,
there does not exist an equivalent martingale measure. Moreover, although GBM X is a semimartingale in
region (I), it is of finite variation, so it cannot be used in the arbitrage-free asset pricing framework. Therefore
we use consider asset pricing using the mixed GFBM Y in the parameter range γ/2 < α < 1/2 + γ/2 and
0 < γ < 1 .

In the following proposition, we give the expressions of the equivalent martingale measures for the
discounted stock price process modeled with the mixed process Y .
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Proposition 5.2. Assume γ/2 < α < 1/2 + γ/2 and 0 < γ < 1 (regions (I) and (II)-1 in Figure 1(b)).
Under the stock price process dynamics (5.10), the discounted stock price process e−rtP (t) , 0 ≤ t ≤ T is
a martingale under the new measure Q defined by

dQ
dP

∣∣∣∣
FT

:= exp

(
−
∫ T

0
(θ − ϕt(Y ))dY (t)− 1

2

∫ T

0
(θ2 − |ϕt(Y )|2)dt

)
, (5.11)

where θ := (µ− r)/σ is the market price of risk and ϕ·(Y ) is defined in (4.8). Particularly, if 1/2 < α <

1/2 + γ/2 and 0 < γ < 1 , i.e., region (I) in Figure 1(b), then ϕ·(Y ) = −E[λ̃(·) | FY (·)] = −E[λ̃(·) | F·] ,
where λ̃(t) =

∫ t
0 Ψt(s)dB(s) for t ≥ 0.

Proof. It follows from Proposition 4.1 and the Girsanov theorem that the process W (·) = Y (·) +∫ ·
0 ϕs(Y )ds in (4.11) is a Brownian motion for 0 ≤ t ≤ T under P .

By the simple application of the product rule to (5.10), we have the discounted stock price process

e−rtP (t) = P (0) +

∫ t

0
σe−rsP (s)d

(
Y (s) +

µ− r
σ

s
)

= P (0) +

∫ t

0
σe−rsP (s)d

(
W (s)−

∫ s

0
ϕu(Y )du+ θs

)
,

for t ≥ 0, with θ := (µ − r) / σ . By another application of the Girsanov theorem, Y (t) + θt =

W (t) +
∫ t
0 (θ − ϕs(Y ))ds , 0 ≤ t ≤ T is a Brownian motion under the new measure Q defined by (5.11),

namely,

dQ
dP

∣∣∣
FT

:= exp
(
−
∫ T

0
(θ − ϕt(Y ))dW (u)− 1

2

∫ T

0
(θ − ϕu(Y ))2du

)
= exp

(
−
∫ T

0
(θ − ϕt(Y ))dY (t)− 1

2

∫ T

0
(θ2 − |ϕt(Y )|2)dt

)
.

(5.12)

In particular, the discounted price process e−rtP (t) , 0 ≤ t ≤ T is a martingale under Q .
If 1/2 < α < 1/2+γ/2 and 0 < γ < 1 , i.e., region (I) in Figure 1(b), then ϕ·(Y ) = −E[λ̃(·) | FY (·)] =

−E[λ̃(·) | F·] , because FY ≡ FP = F . �

Consequently, the time- t price of European option on this stock with payoff function g and with maturity
T is given by

EQ[e−r(T−t) g(P (T )) | Ft] = EP
[
e−r(T−t) g(P (T )) · dQ

dP

∣∣∣
FT

∣∣∣∣Ft] ,
where the conditional expectations EQ and EP are calculated under Q and P , respectively, given the
filtration {Ft}t≥0 . Under the semimartingale stock price model (5.10) with the mixed GFBM Y in the
regions (I) and (II)-1 of the parameter sets { γ/2 < α < 1/2 + γ/2 , 0 < γ < 1 }, the pricing and hedging
problems of various options (such as American and Asian options) are solved under the measure Q in the same
way as in the standard Black-Scholes model. Thus, the Black-Scholes pricing formula is still valid under the
long range dependence property of the driving mixed GFBM Y . This semimartingale stock model generalizes
the financial applications [8] [10] [48] with the Hurst index H ∈ (3/4, 1) to the case of H ∈ (1/2, 1) .

Following [10], we next consider a slightly modified version Yε of the mixed FBM Y and replace Y by
Yε in the stock price model (5.10): for a small constant ε > 0 ,

Yε(t) := εB̃(t) +X(t) , t ≥ 0 . (5.13)

One can check that the semimartingale property of Yε holds the same as Y . Indeed, since Yε(·) :=

εB̃(·) +X(·) = ε(B̃(·) + (1/ε)X(·)) = ε(B̃(·) +Xε(·)) with (1/ε)X(·) =: Xε(·) , arguing that Yε(·) is a
semimartingale is very similar to the argument in Section 4. We can replace X(·) by Xε(·) , Ψ(u, v) in (2.4)
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by Ψε(u, v) := ε−2Ψ(u, v) , K(u, v) in (4.6) by ε−2K(u, v) , L(s, t) in (4.7) by the solution Lε(s, t) to
the Wiener-Hopf integral equation

Lε(s, t) +

∫ t

0
Lε(r, t)Kε(r, s)dr = −Kε(s, t) , 0 ≤ s ≤ t ≤ T ,

and `(s, t) by the solution `ε(s, t) to the Volterra equation

`ε(s, t) +

∫ t

s
`ε(r, t)Lε(s, r)dr = Lε(s, t) , 0 ≤ s ≤ T .

Then the rest of the arguments for Yε in (5.13) will follow in the same way as for Y . Thus, the pricing
and hedging problems are solved in a similar way under the semimartingale stock model (5.10) modified by
replacing Y by Yε .

We make the following observations on the process Yε in (5.13). As ε ↓ 0, for the parameters (α, γ) in
region (I) in Fig. 1, the limit process X = limε↓0 Yε remains to be a semimartingale, while in region (II)-1,
the limit process is no longer a semimartingale. The limit in both regions allows an arbitrage (see section 5.6
below). However, in both regions, the Hurst parameter H for X takes value in (1/2, 1). This is in contrast
with the standard FBM mixture as studied in Cheridito [10] where if X = BH for H ∈ (3/4, 1), then as
ε ↓ 0, the limit remains to be a non-semimartingale.

5.5. Portfolio optimization with the mixed GFBM under logarithmic utility. Continuing from the previ-
ous section, we discuss the portfolio optimization under the stock price model (5.10) with the mixed GFBM
Y in the regions (I) and (II)-1 of the parameter sets { γ/2 < α < 1/2 + γ/2 , 0 < γ < 1 } (see Fig. 1(b))
with the logarithmic utility function U(x) = log(x) , x > 0 . For simplicity, we fix the instantaneous
interest rate r of the risk free asset and we set Y0(t) := Y (t) /

√
2 = (B̃(t) +X(t))/

√
2 , σ0 :=

√
2σ ,

so that the variance of Y0(·) and the variance of the log stock price process logP (·) are standardized

Var(Y0(t)) =
1

2
(t+ t2H) , Var(logP (t)) = σ20(t+ t2H) , t ≥ 0 .

Note that Var(X(t)) = t2H and Var(B̃(t)) = t , t ≥ 0 .
The investor invests the proportion u0t into the risk free asset and the proportion u1t into the stock

with price P (t) at time t . Here, we assume that u1· is an FY -adapted, square integrable process with
u0· + u1· = 1 . Then with the initial portfolio value v0 , the portfolio value process V (t) , t ≥ 0 satisfies the
dynamic

dV (t) = V (t)(u0t r + u1tµ)dt+ u1tV (t)σ0dY0(t) , t ≥ 0 . (5.14)
The objective of the investor with the log utility function U(·) is to maximize the expected utility

E[U(V (T ))] = E[log(V (T ))] (5.15)

at the end time T of the investment horizon.

Proposition 5.3. The solution to this maximization problem of the expected log utility (5.15) of the portfolio
value (5.14) is given by the constant portfolio

u0∗t := 1− u1∗t , u1∗t :=
µ− r
σ20

, t ≥ 0 (5.16)

with the resulting optimal portfolio value process

V ∗(t) = v0 exp
((
r +

θ20
2

)
t+ θ0Y0(t)

)
, t ≥ 0 (5.17)

in the regions (I) and (II)-1 of the parameter sets { γ/2 < α < 1/2 + γ/2 , 0 < γ < 1 } and the line segment
α = 0, γ ∈ [0, 1) (see Fig. 1). Here, we use Y0(·) = Y (·)/

√
2 , σ0 =

√
2σ and θ0 := (µ− r) / σ0 .
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Proof. The proof follows from the semimartingale decomposition (4.12) of Y (·) in Proposition 4.1. With
Y0(·) and σ0 , the portfolio value is given by

V (t) = v0 exp
(∫ t

0

[
u0sr + u10µ−

σ20
2

(u1s)
2
]
ds+

∫ t

0
u1sσ0dY0(s)

)
,

and hence, maximizing the expected log utility E[log(V (T ))] is equivalent to maximizing the expectation

E
[ ∫ T

0

[
u0sr + u10µ−

σ20
2

(u1s)
2
]
ds+

∫ T

0
u1sσ0dY0(s)

]
= E

[ ∫ T

0

[
(u0sr + u10µ−

σ20
2

(u1s)
2
]
ds
]
.

(5.18)

Here, when { γ/2 < α < 1/2 + γ/2 , 0 < γ < 1 }, we have used the semimartingale decomposition (4.12)
of Y , that is, ∫ T

0
u1sσ0dY0(s) =

∫ T

0
u1sσd

(
W (s)−

∫ s

0

∫ θ

0
L(r, θ)dW (r)dθ

)
,

where the square integrable function L(r, θ) is the solution to the Wiener-Hopf integral equation (4.7) and
W (·) is another standard Brownian motion, and thus, the expectation E[

∫ T
0 u1sσ0dY0(s)] = 0 . When

α = 0 , γ ∈ [0, 1) , Y0 is a martingale, and hence, we have the expectation E[
∫ T
0 u1sσ0dY0(s)] = 0 .

The maximization of (5.18) with the constraint u0· + u1· = 1 is straightforward. The solution is given by
(5.16) and the resulting optimal portfolio value is given by (5.17). �

Remark 5.2. This resulting optimal constant portfolio (5.16) from Proposition 5.3 indicates the stability of
the portfolio optimization under the price process model (5.10) with the mixed fractional Brownian motion
and log utility function for different parameter values in the regions (I) and (II)-1 (Fig. 1(b)) with the Hurst
index H ∈ (1/2, 1) . The expectation E[V ∗(t)] and variance Var(V ∗(t)) of the optimal portfolio V ∗(t) in
(5.17) depend on H : for 0 ≤ t ≤ T ,

E[V ∗(t)] = v0 exp
(
rt+ θ20

( 3

4
t+

1

4
t2H
))

,

Var(V ∗(t)) = v20 exp
(
rt+ θ20

( 3

4
t+

1

4
t2H
))[

exp
(
rt+ θ20

( 3

4
t+

1

4
t2H
))
− 1
]
.

The parameters (α, γ) appear in the covariances between different times, for example,

Cov(log V ∗(t), log V ∗(s)) = θ20Cov(Y0(t), Y0(s)) =
θ20
2

((s ∧ t) + Ψ(s, t)) (5.19)

for s, t ≥ 0 , where the covariance function Ψ in (2.4) depends on (α, γ) .
It is worth mentioning that this stability holds specifically under the log utility (5.15) and the portfolio

value process (5.14) driven by the mixed GFBM. See the recent work on the portfolio optimization under
stochastic volatility models of Volterra-type for the power utility function [1, 5] and for more general utility
function [15]. The optimal portfolio choice under the general utility function and fractional stochastic
environment is out of the scope of the current paper.

5.6. Comments on Arbitrage. In the theory of asset pricing, the “First Fundamental Asset Pricing Theorem”
requires the existence of an equivalent martingale measure for no arbitrage, and works in the framework of
semimartingales for pricing models. For stock price models with FBM BH , since BH is a semimartingale
if and only if H = 1/2 [26, 31], arbitrage strategies have been discussed in both fractional Bachelier and
Black-Scholes models [31, 40, 35, 12]. In particular, Rogers [31] constructed arbitrage for the fractional
Bachelier model: a market with a money account ξt = 1 with zero interest rate and a risky stock (no dividends
or transaction costs) with price P̃ (t) = P̃ (0) + νt+ σBH(t), for H ∈ (0, 1/2) ∪ (1/2, 1) for t ≥ 0 .

For the GFBM X in (1.1), the parameter set that guarantees no-arbitrage is α = 0 and γ ∈ [0, 1) (resulting
in H ∈ (0, 1/2]), in which case X is given in (1.5) (either a standard Brownian motion when γ = 0 or a
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time-changed Brownian motion when γ ∈ (0, 1)). Recall Remark 3.1, H = 1/2 corresponds to the line
α = γ/2 in Figure 1, but if γ 6= 0, it is a “fake” Brownian motion and it may lead to an arbitrage, because
of the non-semimartingale property. Although we have shown that X is a semimartingale with respect to
the filtration FB(·) for α ∈ (1/2, 1/2 + γ/2) and γ ∈ (0, 1) (resulting in H ∈ (1/2, 1) in region (I)), it is a
process of finite variation. As it is shown in [19], in a frictionless market with continuous trading, arbitrage
opportunities are present without unbounded variation of the stock price process. Thus, the differentiable
sample path in Proposition 3.1 leads an arbitrage opportunity in this parameter range. On the other hand, for
the mixed BM and GFBM Y in (4.1), because in the parameter range α ∈ (1/2, 1/2 + γ/2) and γ ∈ (0, 1)
(resulting in H ∈ (1/2, 1) for X in region (I)), the process Y becomes a Brownian motion with a random
drift of finite variation, there exists an equivalent martingale measure and hence, it forbids arbitrage. One
can possibly construct arbitrage using the GFBM similar as in [40], but that involves the well definedness of
stochastic integrals with respect to the GFBM, which we investigate in a future work.
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6. APPENDIX

6.1. Proof of Lemma 4.1.

Proof of Lemma 4.1. (i) Suppose that γ/2 < α < 1/2 + γ/2 and 0 < γ < 1 . Using the inequality
(x+ y)2 ≤ 2(x2 + y2) for x, y > 0 and the symmetry of integral region, we obtain∫ T

0

∫ T

0

[
∂2Ψ

∂u∂v
(u, v)

]2
dudv ≤ 4c4

∫ T

0

(∫ v

0
(f1(u, v))2 + (f2(u, v))2du

)
dv . (6.1)

Here, the first term f1(u, v) is bounded by

f1(u, v) ≤
∫ u

0
vα−1(u− θ)α−1θ−γdθ = Beta(α, 1− γ)uα−γvα−1,

for u < v. Since 0 < α < 1 and (uw)α−1(vw)α−1 ≥ (1 + uw)α−1(1 + vw)α−1 for u, v > 0, we have a
bound for the second term f2(u, v),

f2(u, v) =

∫ ∞
0

(uv)α−γ+1(1 + uw)α−1(1 + vw)α−1w−γdw

≤ (uv)2α−γ
∫ ∞
1

w2α−2−γdw

+ (uv)α−γ+1

∫ 1

0
(1 + uw)α−1(1 + vw)α−1w−γdw

≤ (uv)2H−1

2− 2H
+

(uv)α−γ+1

1− γ
.
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Substituting these upper bounds of both terms and using again the inequality (x + y)2 ≤ 2(x2 + y2) ,
x, y > 0 for the second term, we obtain the estimates∫ T

0

∫ v

0
(f1(u, v))2dudv ≤ [Beta(α, 1− γ)]2

∫ T

0

(∫ v

0
u2α−2γv2α−2du

)
dv

=
[Beta(α, 1− γ)]2 T 4α−2γ

2(2α− γ)(2α− 2γ + 1)
<∞ ,

and ∫ T

0

∫ v

0
(f2(u, v))2dudv

≤
∫ T

0

[ ∫ v

0

(
(uv)2H−1

2− 2H
+

(uv)α−γ+1

1− γ

)2

du

]
dv

≤ 2

∫ T

0

∫ v

0

(
(uv)4H−2

(2− 2H)2
+

(uv)2α−2γ+2

(1− γ)2

)
dudv

=
T 8H+1

(2− 2H)2(4H − 1)(4H + 1)
+

T 4H−2γ+4

(1− γ)2(4H − 2γ + 3)(2H − γ + 2)

<∞ .

The right hand sides are finite when 2α > γ and 0 < γ < 1 .
Therefore, combining these estimates with (6.1), we conclude the second derivative K(u, v) is square

integrable in (0, T )× (0, T ) .
(ii) Suppose that −1/2 + γ/2 < α ≤ γ/2 and 0 < γ < 1 . Since (x + y)2 ≥ x2 for x, y > 0 , we shall
show ∫ T

0

∫ T

0
[K(u, v)]2dudv ≥ 2

∫ T

0

∫ v

0
[f1(u, v)]2dudv = ∞ .

To do so, by the change-of-variable and by Jensen’s inequality, we observe that if u ≤ v ,

f1(u, v) =uα−γ
∫ 1

0
(v − uw)α−1w−γ(1− w)α−1dw

=uα−γBeta(α, 1− γ)

∫ 1

0
(v − uw)α−1

w−γ(1− w)α−1

Beta(α, 1− γ)
dw

≥Beta(α, 1− γ)uα−γ
(
v − u · α

α+ 1− γ

)α−1
,

because w 7→ (v − uw)α−1 , 0 < w < 1 is a convex function and the expectation of Beta distribution with
parameters (α, 1− γ) is α/(α+ 1− γ) . Thus, we have a lower bound for

∫ v
0 [f1(u, v)]2du , that is,∫ v

0
[f1(u, v)]2du

≥
∫ v

0
[Beta(α, 1− γ)]2 u2(α−γ)

(
v − u · α

α+ 1− γ

)2(α−1)
du

= [Beta(α, 1− γ)]2v4α−2γ−1
∫ 1

0

(
1− θ · α

α+ 1− γ

)2α−2
θ2α−2γdθ

= [Beta(α, 1− γ)]2 ·
(

1− γ
α+ 1− γ

)2α−2 v4α−2γ−1

2α− 2γ + 1

for 0 < v < T . However, if 2α ≤ γ , this lower bound is not integrable over (0, T ) , and hence, K(·, ·) is
not square integrable over (0, T )× (0, T ) . �
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6.2. Proof of Proposition 5.1. The Lamperti transform η(t) := e−HtX(et) , t ∈ R of the GFBM X is
stationary with the covariance function Cη(t) = E[η(t+ s)η(s)] , s, t ∈ R :

Cη(t) = c2e−Ht
[ ∫ 1

0
(1− s)α(et − s)αs−γds

+

∫ ∞
0

[(1 + s)α − sα][(et + s)α − sα]s−γds

]
, t > 0 .

(6.2)

To show that α > 0 implies the inequality (5.2), it suffices to show that

lim
t→∞

1

t
log

∫ 1

0
(1− s)α(et − s)αs−γds ≥ α

2
> 0 , (6.3)

since the second integral term in (6.2) is positive. Using the inequality (et − s)α ≥ (et − 1)α ≥ eαt/2 for
0 ≤ s ≤ 1 , α > 0 , t > 0 , we obtain∫ 1

0
(1− s)α(et − s)αs−γds ≥

∫ 1

0
(1− s)αs−γds · eαt/2 .

Thus, taking the logarithm first, dividing by t > 0 , and then taking the limit of both sides as t→∞ , we
obtain the desired result (6.3). Hence, if α > 0 , then X in (1.1) is long range dependence in the sense of
Definition 5.1.

For necessity, assume −1/2 < α ≤ 0 . From the first integral term in (6.2), we have

lim
t→∞

1

t
log

∫ 1

0
(1− s)α(et − s)αs−γds

≤ lim
t→∞

1

t
log
(

(et − 1)α ·
∫ 1

0
(1− s)αs−γds

)
= α ≤ 0 .

(6.4)

For the second integral term in (6.2), we observe that if α ≤ 0 , t > 0 ,∫ 1

0
[(1 + s)α − sα][(et + s)α − sα]s−γds

=

∫ 1

0
[sα − (1 + s)α][sα − (et + s)α]s−γds

≤
∫ 1

0
[sα − (1 + s)α]sα−γds ≤ 1

2α− γ + 1
− 2α

α− γ + 1
<∞

(6.5)

and also, defining α̃ := −α > 0 , we obtain that∫ ∞
1

[(1 + s)α − sα][(et + s)α − sα]s−γds

=

∫ ∞
1

[sα − (1 + s)α][sα − (et + s)α]s−γds

=

∫ ∞
1

(
1−

( s

1 + s

)α̃)(
1−

( s

et + s

)α̃)
s2α−γds

≤
∫ ∞
1

s2α−γds =
1

2α− γ + 1
<∞ .

(6.6)

Combining (6.2) with (6.4)–(6.6), we conclude that limt→∞(1/t) logCη(t)+H ≤ 0 when −1/2 < α ≤ 0 .
Finally, if γ = 0 , it is the case of the FBM BH , and the covariance function Cη(·) of η(t) := e−HtBH(et) ,
t ∈ R is given by (5.3) (see [28] for the related computations). Then by direct calculations, we obtain (5.4).
Indeed, the limit for the FBM in (5.4) is rewritten as

lim
t→∞

1

t
log(eHt + e−Ht − (et/2 − e−t/2)2H) +H . (6.7)
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Applying L’Hôpital’s rule to this limit, we reduce it to

lim
t→∞

H · e
Ht − e−Ht − (et/2 − e−t/2)2H−1(et/2 + e−t/2)

eHt + e−Ht − (et/2 − e−t/2)2H
+H

= lim
t→∞

H · 1− e−2Ht − (1− e−t)2H−1(1 + e−t)

1 + e−2Ht − (1− e−t)2H
+H

= lim
ε→0

H · 1− ε2H − (1− ε)2H−1(1 + ε)

1 + ε2H − (1− ε)2H
+H = 2H − 1 ,

(6.8)

where we changed the variable with ε := e−t and applied L’Hôpital’s rule in the last equality.
This concludes the proof of Proposition 5.1. 2
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