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Abstract. We study service rate control problems for an M/M/1 queue with server breakdowns in
which the breakdown rate is assumed to be a function of the service rate. Assuming that the queue
has infinite capacity, we first establish the optimality equations for the discounted cost problem and
characterize the optimal rate control policies. Then, we characterize the ergodicity of the controlled
queue and establish the optimality conditions for the average-cost (ergodic) control problem using
the vanishing discounted method. We next study the ergodic control problem when the queue has a
finite capacity and establish a verification theorem by directly involving the stationary distribution
of the controlled Markov process.

For practical applications, we consider the adaptive service rate control problem for the model
with finite capacity. Studying this problem is useful because the relationship between the server
breakdown rate and the service rate is costly to observe in practice. We propose an adaptive (self-
tuning) control algorithm, assuming that the relationship between the server breakdown rate and
the service rate is linear with unknown parameters. We prove that the regret vanishes under the
algorithm and the proposed policies are asymptotically optimal. In addition, numerical experiments
are conducted to validate the algorithm.

1. Introduction

In this paper, we study service rate control problems for a single-server queue with Poisson
arrivals, exponential service times, and server breakdowns. The server availability is modeled by
a random process with ‘up’ and ‘down’ states. The system functions normally in the ‘up’ state,
while the server stop serving customers in the ‘down’ state. The sojourn time that the server stays
in the ‘down’ state follows an exponential distribution with a constant parameter. The time for
the server from ‘up’ to ‘down’ obeys an exponential distribution with a parameter depending on
the service rate. The service rate control problems for the system with infinite or finite capacity
will be addressed in this paper. The controller is allowed to choose a service rate at each state
during the ‘up’ times. The cost function includes an effort cost that increases with the service rate,
a holding/delay cost associated with the system congestion, a maintenance cost that occurs during
the down state, and a rejection cost for the system with finite capacity.

It is well known that any effort to reduce unplanned downtime can create considerable savings
in industries. For example, in manufacturing [31], certain materials will be wasted when machines
suddenly break during the production process, disruptions and delays can be caused to the pro-
duction of the downstream items, and/or unnecessary energy consumptions can be incurred during
these breakdown times. In data centers, certain computing tasks may be lost when servers break
down and will need to be restarted. Many queueing models that have been developed and analyzed
include interruptions, such as the models in [4,7,28,49,50,58]. In many applications, the breakdown
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rate of a system may be closely related to its service rate. In particular, in some manufacturing
facilities, it is often a common practice to adjust service speeds in order to reduce energy costs,
and it is also observed that some machines tend to break down more frequently when they run at
a higher speed due to the resulting overheating/higher temperature. To the best of our knowledge,
the queueing model with a service breakdown rate depending on the service rate has not been
developed previously.

The service rate control problems for a single-server queue with infinite capacity have been
extensively addressed. The closely related papers are [2, 6, 8, 29, 30, 41, 42, 44, 45]. In [29], the
authors study service rate control problem of the long-run average cost in an M/M/1 queue. In
[2], the joint admission and service rate control problem is studied for an M/M/1 queue. In [6],
control of both the arrival and service rates is considered for an M/M/1 queue. In [30], the optimal
buffer size and arrival/service rate control problem is studied using a diffusion approximation for a
single server queue in heavy traffic. The service rate control problem of a single-server queue with a
Markov-modulated Poisson arrival process has been studied in [41]. The control problem in which
the controller is allowed to remove the server and adjust the service rate when the server is turned
on is addressed in [8] for M/M/1 queue under the average cost criterion. We also like to mention
the papers [37,38,43,57] for the admission and service rate control problems in multi-server queues.

We first consider the service rate control problem under the discounted cost and long-run average
cost criteria for the queueing model with infinite capacity. The controlled queueing process is
identified as a Markov decision process. For the discounted cost problem, we show the optimality
equations for the optimal value function and the existence of optimal controls in Theorem 2.1.
Since the breakdown rate for the server depends on the service rate, the characterization equation
(2.4) for optimal controls contains an additional term corresponding to the breakdown rate, and
the dynamic equations for the optimal values have two different forms for ‘up’ and ‘down’ states,
respectively. Furthermore, under the assumptions of the cost functions and assuming the convexity
and monotonicity of the breakdown rate function, we provide a representation of the optimal service
rate control in Theorem 2.2.

For the service rate control problem under the long-run average cost, we apply the vanishing
discount approach in the spirit of [52]. The results for the long-run average cost problem are given
in Theorem 2.3. Its proof relies on the stability condition of the joint Markov process consisting
of the queueing state and server availability processes. A necessary and sufficient condition related
to the effective service rate for the stability of the joint Markov process is given in Proposition 2.3.
The transition rate matrix results for the quasi-birth-and-death process play an important role in
the proof of the stability.

In [29], the optimal value under the long-run average cost criterion for an M/M/1 queue with
infinite capacity is approximated by solving a sequence of problems with the truncated holding cost
function. They show that the optimal policies of the approximating problems converge monotoni-
cally to the optimal policy of the original problem. Their proof crucially relies on the monotonicity
property of the optimal controls, that is, there exists an optimal control policy in which the ser-
vice rate increases as a function of queue length. Another natural approach for the approximation
of the service rate control problem with infinite capacity is to use a sequence of problems with
the truncated state space [2]. It is shown that the limiting policy of the sequence of constructed
approximation policies exists and is optimal for the control problem with infinite capacity. Their
proof for the convergence of approximating problems also relies on the monotonicity of the optimal
controls in the number of jobs in the system. In these works, the monotonicity properties hold
naturally, since in the objective of minimizing the holding cost and effort costs, the controller will
necessarily increase the service rate to reduce the holding cost when the system is more congested.

However, in our model setup, when the service rate is high, the server may tend to break down
more frequently, that is, the breakdown rate is nondecreasing in the service rate. When the system
is highly congested, the controller must take into account both the positive and negative effects
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of increasing the service rate: on one hand, it may reduce the congestion level (hence the holding
cost), and on the other hand, it may cause the server to break down more frequently, which not
only incurs repair costs, but also causes more jobs accumulating in the queue (breakdowns do not
affect the arrival process), consequently increasing the congestion level and incurs more holding
cost. Therefore, the well celebrated monotone property ([29, 45]) no longer holds for our model
in general. In Remark 2.1, we illustrate why the monotone property does not hold when the
breakdown rate is a linear increasing function of the service rate. This is further illustrated in
the numerical examples in Section 5.1. Moreover, in Remark 2.2, we identify a sufficient condition
for the monotone property to hold for our model, which unfortunately would require unrealistic
condition on the parameters (that is, the repair rate is higher than the sum of the maximum
service rate and the increment of the breakdown rate). As a consequence, due to the lack of the
monotonicity property, we must develop new methods in order to prove the results in Theorems
2.1–2.3.

We next consider the service rate control problem under the ergodic cost for the queueing model
with server breakdowns and finite capacity. The relation between the breakdown rate and the
service rate is assumed to be a general continuous function and the action space is assumed to be
a compact set. The results of the characterization for optimal controls are stated in Theorem 3.1.
We consider a joint Markov process associated with the queueing state and the background process
related to ‘up’ and ‘down’ states. Because the joint Markov process has finite states, we prove
Theorem 3.1 by using the properties of the stationary distribution of the process. This approach
was previously used in [2, 5], where the service rate control problem under the ergodic cost was
studied for a single-server queue with finite capacity. However, in this paper, the construction of
the verification equations, which depend on the background process, is different from those in [2,5].
Then, because we assume a compact action space, the existence and uniqueness of the solution
to the system of equations is presented in Lemma 3.2. Its proof, which uses contraction, is much
similar in spirit to the method in [44]. The result in this lemma is used in the study of the adaptive
control problem.

In practice, the relationship between the service rate and the breakdown rate of the system may
not be known and may change over time. In an online learning framework, the aforementioned
optimal control problem with finite capacity and an unknown relationship becomes an adaptive
control problem. The adaptive control problems of Markov chains have been extensively studied
in [12–15, 24, 25, 40, 55, 59]. They consider controlled Markov chains whose transition probabilities
depend on an unknown parameter. For queueing systems, adaptive control of service rates is studied
in [33], adaptive priority assignment in [34], and adaptive scheduling and routing in [54,59].

As the third goal of the paper, we consider the adaptive control problem for an M/M/1 queue
with breakdowns and finite capacity, where the relationship between the service rate and the break-
down rate depends on unknown parameters taking values in a compact set. This implies that the
transition rate matrix of the Markov process is specified up to the unknown parameters. We assume
that the breakdown rate is a linear function of the service rate with two unknown parameters. We
apply a self-tuning approach to the adaptive control problem. The self-tuning scheme is intro-
duced in [47]. Mandl [47] provides several models for controlled Markov processes with unknown
parameters. The self-tuning approach is identified as a procedure in which the controlled policy
is continuously modified based on the estimation of unknown parameters to approach the optimal
policy for the problem with true parameters. We estimate the unknown parameters in the relation
between the server breakdown and service rates based on the historical data at each jump time of
the Markov process, and then the control implemented is characterized by an optimality equation
with the current parameter estimate. The optimality equation used is the same as that in the
aforementioned optimal control problem when the true parameters are known. Since the linear
relation between the service and breakdown rates leads to a nonlinear relation between the mean
service times and mean ‘up’ times of the system, the quasi-maximum likelihood estimates are used
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for the estimation of unknown parameters. This method has been studied in [23,35] and references
therein. Asymptotic optimality under work-conserving Markov rate control policies, which results
in uniform ergodicity for the joint Markov process of the queueing state and background processes,
is established in Theorem 4.1.

We also evaluate the performance of the method by conducting numerical experiments. For
the system dynamics, we consider three scenarios, in which the proportions of up times and the
rejection probabilities in the long run are different. We plot the functions for optimal service
rates of congestion levels in these scenarios. Cost parameters are chosen to cover different cases in
practice. We observe that the optimal service rates may not be monotone in the number of jobs in
the system. This is different from the monotonicity of optimal service rates for an M/M/1 queue
in [2, 29]. For the adaptive service rate control problem, we conduct simulation experiments and
show that the proposed policies converge to the optimal service rate control policy.

It is worth mentioning that online learning problems are also related to adaptive control problems,
since estimation methods for unknown parameters are used in both types of problems. When the
unknown parameters are fitted statistically, the regret of the algorithm is commonly used to measure
its performance [56]. In this paper, we show that the regret of the proposed algorithm vanishes
and the proposed policies are asymptotically optimal. Blackwell’s Approachability Theorem [11]
provides conditions to analyze the regret of online learning algorithms [1, 16]. Online problems
for demand models have been addressed extensively; see, for example, [9, 10, 22, 36]. In [36], the
authors consider the unknown demand model, where the demand for products is assumed to be
linear with unknown parameters. They provide modified greedy iterated least-squares policies to
achieve asymptotic optimality. However, studies on online learning problems for queueing systems
are scarce. Recently, Chen et al. [20] study the dynamic pricing and capacity sizing problem
in a GI/GI/1 queue. They develop an online stochastic gradient descent method and show the
regret bound for the convergence. Applications of reinforcement learning to queueing systems are
not new; see, for example, [21, 46, 51]. In a recent work, Liu et al. [46] propose a model-based
learning algorithm to a server allocation and routing problem in a queueing system. They show
that the proposed algorithm can obtain the optimal policy using a Lyapunov analysis. However,
the convergence of reinforcement learning is not well understood [56] and there are limited studies
on service rate control with an unreliable server. In this paper, we consider adaptive service rate
control problems for an M/M/1 queue with breakdowns, where the optimal controls do not have
closed-form representations and are characterized by a system of Bellman equations.

1.1. Organization of the paper. The paper is organized as follows. Section 2.1 contains a
detailed description of the M/M/1 queueing model with service breakdowns. After defining control
policies considered in this study, we state the assumptions and describe the system dynamics. In
Section 2.2, we establish optimality equations for the discounted cost problem. The characteristics
of the value function and cost functions are then presented. The optimality equations of the ergodic
problems are stated in Section 2.3, followed by the properties of the optimal controls. In Section 3,
we define an ergodic control problem when the queue has a finite capacity and show the optimality
of the controls. In Section 4, we present the results of the adaptive control problem for a system
with finite capacity when the relationship between the server breakdown rate and the service rate
is a linear function and the parameters for the function are unknown. Finally, numerical examples
of the adaptive control problem are presented in Section 5.

2. M/M/1 queue with infinite capacity and server breakdowns

2.1. The model description. We consider an M/M/1 queue with adjustable service rate and
server breakdowns. Let {A(t)}t≥0 denote the Poisson arrival process with arrival rate λ > 0. The
queueing system is in an up-down environment. In the ‘up’ state, the system functions normally and
the controller chooses a dynamic service rate µ from the compact set U := [0, µ̄] with 0 < µ̄ <∞.
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In the ‘down’ state, the server stops, while jobs keep joining the queue and any job in service will
wait for the system to resume.

Let {X(t)}t≥0 and {K(t)}t≥0 denote the number of jobs in the system (including those in queue
and in service, either interrupted or not) and the server availability process, respectively. At time
t ≥ 0, K(t) = 1 if the system is in the “up” state, and K(t) = 0 otherwise. We say that a rate
control policy U is admissible if it is non-anticipative, takes values in U, and satisfies that U(t) = 0
if K(t) = 0 for t ≥ 0, such that the system is work-conserving (no idling when there are jobs
waiting in queue in the ‘up’ state). The set of admissible rate control policies is denoted by U. Let
Z+ denote the set of nonnegative integers. An admissible rate control policy U is called stationary
Markov if

U(t) = ν(X(t),K(t)) t ≥ 0 ,

for some ν : Z+×{0, 1} 7→ U satisfying ν(0, 1) ≡ 0 and ν(x, 0) ≡ 0 for x ∈ Z+. The work-conserving
condition means that ν(x, 1) > 0 for x ≥ 1. The set of stationary Markov control policies is denoted
by Usm.

We assume that given U ∈ U, {K(t)}t≥0 is a continuous-time Markov process with state space
{0, 1}, and its transition rate matrix is given by[

−βd βd
βu(U(t)) −βu(U(t))

]
for t ≥ 0, where βu : U 7→ R+ is a measurable function (R+ denotes the set of nonnegative real
numbers), and βd is a positive constant. βu(·) and βd represent the breakdown (from “up” to
“down”) and repair (from “down” to “up”) rates, respectively. This implies that the repair of
the server is started immediately when the server stops. The repair rate is usually assumed to be
a constant, see, for example, Section 2 of [26]. In practice, the functioning time of a server, for
example, a machine, depends on its effort. Thus, the breakdown rate is assumed to be a function of
service rate. In addition, we assume that βu(·) is strictly positive and continuously differentiable.
Given ν ∈ Usm and X(0), the state process {X(t)}t≥0 evolves as the following

X(t) = X(0) +A(t)− S
(∫ t

0
ν
(
X(s),K(s)

)
(X(s) ∧ 1) ds

)
∀ t ≥ 0 , (2.1)

where {S(t)}t≥0 is a unit rate Poisson process, independent of the arrival process {A(t)}t≥0. Note
that provided ν ∈ Usm, {(X(t),K(t))}t≥0 is a well-defined Markov process.

The costs of our optimization problems consist of the effort, holding/delay and repair costs. The
effort cost function is denoted by R(·), that is, the cost rate is R(µ) per unit time when a service
rate µ ∈ U is selected. We assume that R(·) is strictly increasing, continuously differentiable, and
such that R(0) = 0. The holding cost function is defined by H(x) for x ∈ Z+, which is assumed
to be convex and nondecreasing. We also assume that during the down times, the system incurs a
cost at a positive constant rate Cm. The total cost function is defined by

f(x, k, µ) := R(µ) +H(x) + Cm(1− k) (2.2)

for (x, k, µ) ∈ Z+×{0, 1}×U. In the next two subsections, we consider the discounted and long-run
average (ergodic) cost minimization problems.

2.2. The discounted cost problem. In this subsection, we present the results for the service
rate control problem under the discounted cost criterion. We study the optimality equations and
show the properties of the optimal controls.

For U ∈ U, the α-discounted cost criterion is given by

JUα (x, k) := EUx,k
[∫ ∞

0
e−αsf

(
X(s),K(s), U(s)

)
ds

]
∀α > 0 .
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The optimal α-discounted value function is denoted by

Vα(x, k) := min
U∈U

JUα (x, k) ∀α > 0 . (2.3)

We say that a control U∗ ∈ U is optimal if JU
∗

α = Vα.
In the next theorem, we show that a stationary optimal control for the α-discounted problem

exists, and that Vα is the solution of optimality equations. We first define

φ(w, y) := max
µ∈U

{
wµ− βu(µ)y − R(µ)

}
∀ (w, y) ∈ R×R . (2.4)

Theorem 2.1. There exists an optimal control policy ν∗α ∈ Usm for the α-discounted problem (2.3).
The value function Vα satisfies the following discounted cost optimality equations

Vα(0, 1) =
1

α+M

(
H(0) + λVα(1, 1) + βu(0)Vα(0, 0) +

(
M − λ− βu(0)

)
Vα(0, 1)

)
,

Vα(x, 1) =
1

α+M

(
H(x)− φ

(
Wα(x, 1), Yα(x)

)
+ λVα(x+ 1, 1) +

(
M − λ

)
Vα(x, 1)

)
(2.5)

for x ∈ N, and

Vα(x, 0) =
1

α+M

(
H(x) + Cm + λVα(x+ 1, 0) + βdVα(x, 1) + (M − λ− βd)Vα(x, 0)

)
for x ∈ Z+, where N denotes the set of natural numbers, M := µ̄+ λ+ βd + βu(µ̄),

Wα(x, 1) := Vα(x, 1)− Vα(x− 1, 1) and Yα(x) := Vα(x, 0)− Vα(x, 1) . (2.6)

Proof. We use the uniformization technique to prove this theorem (see, for example, [41, 45]). Let
Vn,α(x, k) be the optimal α-discounted expected value obtained during the last n transitions starting
from the state (x, k). We assume that V0,α(x, 0) = V0,α(x, 1) = 0 for all x ∈ Z+.

The recursive formula for Vn,α is given by

Vn+1,α(0, 1) =
1

α+M

(
H(x) + λVn,α(1, 1) + βu(0)Vn,α(0, 0)

+
(
M − λ− βu(0)

)
Vn,α(0, 1)

)
,

(2.7)

Vn+1,α(x, 1) =
1

α+M
min
µ∈U

{
R(u) +H(x) + µVn,α(x− 1, 1) + λVn,α(x+ 1, 1)

+ βu(µ)Vn,α(x, 0) +
(
M − λ− µ− βu(µ)

)
Vn,α(x, 1)

} (2.8)

for x ∈ N, and

Vn+1,α(x, 0) =
1

α+M

(
H(x)+Cm+λVn,α(x+1, 0)+βdVn,α(x, 1)+(M−λ−βd)Vn,α(x, 0)

)
(2.9)

for x ∈ Z+. Let

Wn,α(·, k) := Vn,α(·, k)− Vn,α(· − 1, k) and Yn,α(·) := Vn,α(·, 0)− Vn,α(·, 1) (2.10)

for k ∈ {0, 1}. Then, (2.9) takes the form

Vn+1,α(x, 1) =
(
H(x)− φ

(
Wn,α(x, 1), Yn,α(x)

)
+ λVn,α(x+ 1, 1) +

(
M − λ

)
Vn,α(x, 1)

)
. (2.11)

Applying [27, Proposition 3.1 (iii)], taking n → ∞ in (2.7), (2.9), and (2.11) yields the equations
in the statement. By part (ii) of Proposition 3.1 of [27], there exists an optimal control ν∗α ∈ Usm.
This completes the proof. �

The next two propositions are used to derive the characterization of the optimal controls. In
the following proposition, we show that the α-discounted value functions are nondecreasing in the
number of jobs in the system.

Proposition 2.1. For k ∈ {0, 1}, the value function Vα(·, k) is a nondecreasing function.
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Proof. We prove this result by induction. Recall Vn(x, 1) and Vn(x, 0) given in (2.8) and (2.9),
respectively. This result trivially holds when n = 0. Suppose that for k ∈ {0, 1}, Vn,α(·, k) is a
nondecreasing function. We let νn+1

α be an optimal stationary Markov control of (n + 1)-stage
problem in (2.8). For the notational convenience, we denote

µx := νn+1
α (x, 1) . (2.12)

Without loss of generality, we assume µ0 = 0. It follows by the inductive hypotheses and equations
(2.7)–(2.9) that for x ∈ N,

Vn+1,α(x− 1, 1) ≤ 1

α+M

(
H(x− 1) + R(µx) + µxVn,α((x− 2)+, 1) + λVn,α(x, 1)

+ βu(µx)Vn,α(x− 1, 0) +
(
M − λ− µx − βu(µx)

)
Vn,α(x− 1, 1)

)
≤ Vn+1,α(x, 1) ,

(2.13)

and

Vn+1,α(x− 1, 0) ≤ 1

α+M

(
Cm +H(x− 1) + λVn,α(x, 0)

+ βdVn,α(x− 1, 1) + (M − λ− βd)Vn,α(x− 1, 0)
)

≤ Vn+1,α(x, 0) .

The result follows by taking n→∞. �

In the next proposition, we show that if the repair cost is higher than the effort cost, then the
α-discounted cost starting from ‘down’ state is higher than that starting from ‘up’ state.

Proposition 2.2. Assume Cm ≥ R(µ̄). Then, Vα(x, 0) ≥ Vα(x, 1), for x ∈ Z+.

Proof. We use induction. It is evident that the result holds for V0,α. Suppose Vn,α(·, 0) ≥ Vn,α(·, 1).
By taking the difference of (2.7) and (2.9), and using the inductive hypothesis, the result trivially
holds when x = 0 for (n+ 1)-stage problem. Recall µx in (2.12), and Wn,α and Yn,α in (2.10). By
using (2.8) and (2.9), we obtain

(α+M)Yn+1,α(x+ 1) = Cm − R(µx+1) + µx+1Wn,α(x+ 1, 1)

+ λYn,α(x+ 2) +
(
M − λ− βu(µx+1)− βd

)
Yn,α(x+ 1)

≥ 0 ,

(2.14)

where the inequality follows by (2.13), the inductive hypothesis, and Cm ≥ R(µ̄). By taking n→∞,
the result follows. �

Assumption 2.1. In addition to the assumptions stated in Section 2.1, we assume that the function
βu(·) is nondecreasing and convex, R(·) is strictly convex, and Cm ≥ R(µ̄).

The assumption of βu(·) in Assumption 2.1 implies that the system is more likely to breakdown
when the service rate is at high level.

Theorem 2.2. Grant Assumption 2.1. Then, the results in Theorem 2.1 hold, and there exists an
optimal control ν∗α ∈ Usm for the α-discounted problem such that

ν∗α(x, 1) = ψ
(
Wα(x, 1), Yα(x)

)
, (2.15)

where the function ψ is the maximizer of φ in (2.4) and satisfies

ψ(w, y) =


0 , for w ≤ R′(0) + β′u(0)y ,

(yβ′u + R′)−1(w) for R′(0) + β′u(0)y < w ≤ R′(µ̄) + β′u(µ̄)y ,

µ̄ for w > R′(µ̄) + β′u(µ̄)y .

(2.16)
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Proof. Since R(·) is a strictly convex function, then by the assumption that βu(·) is convex, the set
of maximizers of φ becomes a singleton if y ≥ 0 . But it follows by Proposition 2.2 that Yα(x) ≥ 0
for any x ∈ Z+. Using Assumption 2.1, (yβ′u + R′)−1 is continuous and strictly increasing. Thus,
(2.15) holds, and the rest of the proof is the same as that of Theorem 2.1. �

Remark 2.1. The following special case is frequently used in the rest of paper. If

βu(µ) = κ1 + κ2µ (2.17)

for some positive constants κ1 and κ2, then

ψ(w, y) =


0 , for w − κ2y ≤ R′(0) ,

(R′)−1(w − κ2y) for R′(0) < w − κ2y ≤ R′(µ̄) ,

µ̄ for w − κ2y > R′(µ̄) .

(2.18)

In this special case, it can be easily seen that the optimal control policy may not be monotone
in the queue length (recalling the expressions of Wα(x, 1) and Yα(x) in (2.6)). This is also very
intuitive: since the breakdown rate is increasing in the service rate, even if the system is at a high
congestion level, the controller may not risk to increase the speed since a breakdown can possibly
increase congestion more severely and thus induce more delay costs (and lost jobs in the case of
finite capacity). See also the numerical examples for illustration in Section 5.1.

Remark 2.2. One may ask under what conditions a monotonically optimal control exists. We
provide a sufficient condition for this to hold: (2.17) holds, R(·) is strictly convex, Cm ≥ R(µ̄) and

βd ≥ (κ2 + 1)µ̄ . (2.19)

The inequality (2.19) implies that the repair rate is higher than the sum of the maximum service
rate and the increment of the breakdown rate. It is clear that this condition may be unrealistic. So
for practical problems, there is a lack of monotonicity property as in the existing literature on rate
control of single server queues [6, 29]. Nevertheless, it can be shown that under these conditions,
the following structural properties of the optimal policies hold:

(i) For k ∈ {0, 1}, Vα(·, k) is a convex function.
(ii) Yα is a nondecreasing function.
(iii) There exists an optimal Markov control policy ν∗α ∈ Usm such that ν∗α(·, 1) is a nondecreasing

function.

We omit the details to prove these properties for brevity.

2.3. The long-run average cost problem. In this subsection, we first establish a necessary and
sufficient condition for the stability of the joint Markov process. Under the stability condition, we
show the existence and characterization of optimal controls for the long-run average expected cost
problem by utilizing the vanishing discounted method.

Recall f in (2.2). Under U ∈ U, the expected long-run average cost criterion is given by

%U (x, k) := lim sup
T→∞

1

T
EUx,k

[∫ T

0
f
(
X(s),K(s), U(s)

)
ds

]
.

The optimal expected long-run average cost is defined by

%∗(x, k) := inf
U∈U

%U (x, k) . (2.20)

We say that a policy ν∗ is optimal for long-run average cost if %∗(x, k) = %ν∗(x, k). In Proposi-
tion 2.3, we show that %∗ is finite and independent of (x, k) under the following assumption on the
holding cost function (recall that we have assumed that H(·) is convex, and note that the subgeo-
metric condition below holds in the linear case). The finiteness of %∗ implies that the average cost
problem is well-posed. Similar assumptions on the holding cost function were also used in [29,41].



ADAPTIVE SERVICE RATE CONTROL OF AN M/M/1 QUEUE WITH BREAKDOWNS 9

Assumption 2.2. The holding cost function H(·) is subgeometric, that is,
∞∑
n=0

H(n)γn <∞ , ∀ γ ∈ [0, 1) . (2.21)

In the next proposition, we provide a necessary and sufficient condition for the long-run average
cost to be finite. We say that a policy ν ∈ Ussm is stable if (X,K) is positive recurrent under ν.
Here the set of stationary and stable Markov control policies is denoted by Ussm.

Proposition 2.3. There exists a stable policy ν ∈ Ussm if and only if

min
µ∈U

{
λ
(
βu(µ) + βd

)
βdµ

}
< 1 . (2.22)

Moreover, under Assumption 2.2, there exists a stable policy ν ∈ Ussm such that %ν is finite and
independent of (x, k).

Proof. Under ν ∈ Usm, the infinitesimal generator of (X,K) is given by

Q :=


Q0 A
B1 Q1 A

B2 Q2 A
B3 Q3 A

. . .
. . .

. . .

 ,
where

A :=

[
λ 0
0 λ

]
, Q0 :=

[
−
(
βd + λ

)
βd

βu(0) −
(
βu(0) + λ

)] ,
Bx :=

[
0 0
0 ν(x, 1)

]
, and Qx :=

[
−
(
βd + λ

)
βd

βu(ν(x, 1)) −
(
βu(ν(x, 1)) + ν(x, 1) + λ

)] ,
with x ∈ N. We first prove the sufficiency. It is evident that under ν ∈ Usm, (X,K) is irreducible
when infx∈N ν(x, 1) > 0. Let µ◦ be a minimizer of (2.22), and ν(x, 1) ≡ µ◦ for x ∈ N. Then,
the embedded Markov chain of the joint process (X,K) becomes a discrete time level-independent
quasi-birth-and-death process, see [32] for the detailed definition. We define

Q := A+B1 +Q1 .

For x ∈ Rd, xT denotes the transpose of x. It is straightforward to verify that

η :=

(
βu(µ◦)

βu(µ◦) + βd
,

βd
βu(µ◦) + βd

)T

solves the system of equations ηTQ = 0 and eTη = 1. Then, it follows by [32, Theorem 3.2.1] that
under ν ∈ Usm, (X,K) is recurrent if

ηTAe < ηTB1e . (2.23)

It is evident that (2.23) is equivalent to λ
(
βu
(
µ◦) + βd

)
< βu(µ◦)µ◦. Since the spectral radius of Q

is bounded, the stationary distribution of (X,K) exists and thus ν ∈ Ussm.
For the necessity, it follows by Theorem 3.1.1 of [48] that (X,K) is positive recurrent under µ◦

only if ηTAe < ηTB1e.
Similarly as above, we choose ν(x, 1) ≡ µ◦. We use Rν to denote the rate matrix that satisfies

(πν(n− 1, 0), πν(n− 1, 1))Rν = (πν(n, 0), πν(n, 1)) for n ≥ 1 ,

where πν denotes the stationary distribution of (X,K) governed by ν. Applying Theorem 3.1.1 of
[48] again, Rν is the minimal nonnegative solution of the quadratic matrix equation

(Rν)2Bx +Rν Qx +A = 0 , (2.24)
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and the spectral radius of Rν is less than 1. We refer the reader to Lemma 3.1 for an explicit
representation of Rν . Thus, the spectral radius of (Rν)m converges to 0 at a geometric decay as
m→∞. Therefore, by Assumption 2.2, we have that %ν is finite. This completes the proof. �

Remark 2.3. We rewrite (2.22) as

λ < max
µ∈U

{
µβd

βu(µ) + βd

}
. (2.25)

Note that βd
βd+βu(µ) can be viewed as the fraction of time that the server functions normally, and

thus, the expression in the maximum on the right-hand side of (2.25) represents the effective service
rate. Therefore, (2.25) means that there exists a service rate such that the arrival rate is less than
the effective service rate, that is, the stability condition for (X,K).

In the next theorem, we present the existence of the solution to the average cost optimality
inequalities (ACOI) and the optimal policy for the long-run average expected cost. To prove this
theorem, we apply the vanishing discounted method.

Theorem 2.3. Suppose that Cm ≥ R(µ̄), and Assumption 2.2 and (2.22) hold. Then, the following
items hold:

(i) As α↘ 0, Vα(·, k)− Vα(0, 1) converges, along a subsequence, to a function V (·, k), for k ∈
{0, 1}, and %∗ = limα→0 αVα(x, k) for every (x, k) ∈ Z+ × {0, 1}. Moreover, {V (·, k) : k ∈
{0, 1}} and %∗ satisfy the ACOI:{
V (x, 1) ≥ 1

M

(
H(x) + λV (x+ 1, 1)− φ(W (x, 1), Y (x))− %∗ + (M − λ)V (x, 1)

)
,

V (x, 0) ≥ 1
M

(
H(x) + λV (x+ 1, 0) + Cm − βdY (x)− %∗ + (M − λ)V (x, 0)

)
,

(2.26)

for x ∈ N, and

0 ≥ 1

M

(
H(0) + R(0) + λV (1, 1) + βu(0)Y (0)− %∗

)
, (2.27)

where W (x, 1) := V (x+ 1, 1)− V (x, 1) and Y (x) := V (x, 0)− V (x, 1) for x ∈ Z+.
(ii) There exists a long-run average cost optimal control ν∗ ∈ Ussm, which is a limit of a sequence

of optimal controls for the discounted cost problem.

Proof. To prove this theorem, we verify Assumptions 1-8 in [52]. Since the uniformization rate
M is positive and finite, then Assumptions 1 and 2 of [52] are satisfied. To verify Assumptions
3 and 4 of [52], it suffices to show that Lemma 2.1 (i) of [52] holds. But it follows directly by
Proposition 2.3, which implies that there exists a stable policy such that the long-run average
cost is finite and (X,K) is an ergodic Markov process. Let Vα(0, 1) be the distinguishing point.
Applying Propositions 2.1 and 2.2, we obtain

Vα(x, k)− Vα(0, 1) ≥ 0 ∀ (x, k) ∈ Z+ × {0, 1} .

Thus, Assumption 5 of [52] is satisfied. Let

Cx,0(α, 0) :=
Cm +H(x)

α+M
and Cx,1(α, µ) :=

R(µ) +H(x)

α+M
.

It is evident that for each (x, k) ∈ Z+×{0, 1}, Cx,0 and Cx,1 are continuous functions on [0,∞)×U.
Hence, Assumption 6 of [52] is verified. To verify Assumption 7 of [52], we define

L(x,0),(x′,k′)(α, µ) =


λ

α+M if x′ = x+ 1 and k′ = 0 ,
βd

α+M if x′ = x and k′ = 1 ,

0 otherwise ,
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for x ∈ Z+,

L(0,1),(x′,k′)(α, µ) =


λ

α+M if x′ = 1 and k′ = 1 ,
βu(0)
α+M if x′ = 0 and k′ = 0 ,

0 otherwise ,

and

L(x,1),(x′,k′)(α, µ) =


λ

α+M if x′ = x+ 1 and k′ = 1 ,
µ

α+M if x′ = x− 1 and k′ = 1 ,
β(µ)
α+M if x′ = x and k′ = 0 ,

0 otherwise .

for x ∈ N. Then, it is evident that for all (x, k) ∈ Z+×U, L(x,k),(x′,k′)(α, µ) is a continuous function
on [0,∞) × U, and Assumption 7 of [52] is satisfied. Since the expected sojourn times for (X,K)
under any ν are equal to 1/M , then Assumption 8 of [52] holds. Thus, by Theorem 12 of [52], we
have shown (i) and (ii). �

Remark 2.4. It can be also proved that under the hypotheses in Theorem 2.3 and the sufficient
conditions as stated in Remark 2.2, there exists an optimal policy ν∗ ∈ Ussm such that ν∗(·, 1) is
nondecreasing. However, the sufficient condition (2.19) may be unrealistic, and the optimal policy
in Theorem 2.3 does not have monotone property in general.

Remark 2.5. In practice, to obtain the optimal policies, people usually study the approximation
of the original problem, since (2.26) is almost impossible to solve directly for the infinite state
space. In the literature, there are two approaches for the approximation. One approach is to use a
sequence of control problems with truncated holding cost functions to produce the approximations.
In [29], an asymptotic method that uses a truncated holding cost function to compute the optimal
policy is developed for the average-cost problem of the M/M/1 queue. They show that the optimal
policies of the approximating problems converge monotonically to the optimal policy of the original
problem, and the optimal controls are nondecreasing functions in the congestion level of the system.
The other approach is to use a sequence of optimal objective values for the finite state space to
approximate the original optimal value. This approach has been studied in [2, 5] for the M/M/1
queue with rejection cost (see also [38] in a multi-server setting). For the approximation with the
truncated holding cost function, it is crucial to first obtain a monotone sequence of approximation
for optimal policies. However, for the M/M/1 queue with server breakdowns, since the breakdown
rate depends on the service rate, the optimal controls may not be monotone in the number of jobs.
Therefore, we consider an M/M/1 queue with finite capacity for practical problems and establish
the results for the system in next section.

3. M/M/1 queue with finite capacity and server breakdowns

In this section, we consider the same queueing system in the previous section except that the
capacity is finite, denoted as N , and focus on the ergodic control problem. When the system is full,
new arrivals are rejected. We let p > 0 denote a fixed penalty to reject a customer. For notation
convenience, we let νx ≡ ν(x, 1) for x ∈ Z+. The ergodic cost criterion is given by

%ν :=

N∑
x=0

(
πν(x, 1)

(
H(x) + R(νx)

)
+ πν(x, 0)

(
H(x) + Cm

))
+ λp

(
πν(N, 1) + πν(N, 0)

)
. (3.1)

Here {πν(x, k) : 0 ≤ x ≤ N, k ∈ {0, 1}} denotes the stationary distribution of the irreducible joint
Markov process (X,K) under a policy ν ∈ Usm (for this model Usm = Ussm). The optimal ergodic
cost is defined by

%∗ := inf
ν∈Usm

%ν . (3.2)
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We replace the assumptions on the action space, the cost functions and the server breakdown
rate function βu(·) in the previous section with the following relaxed assumptions.

Assumption 3.1. The following conditions hold.

(i) The action space U is a compact subset of [0,∞) satisfying 0 ∈ U.
(ii) The holding cost function H(·) is nondecreasing.

(iii) The effort cost function R(·) is nondecreasing and continuous satisfying R(0) = 0.
(iv) The function βu(·) is strictly positive and continuous.

Recall µ̄ := max{µ : µ ∈ U} and M := µ̄ + λ + βu(µ̄) + βd. By applying the uniformization
technique, the optimality equations for the ergodic control problem are given by

V (0, 1) =
1

M

(
R(0) +H(0) + λV (1, 1) + βu(0)V (0, 0)− %+ (M − λ− βu(0))V (0, 1)

)
, (3.3)

and

V (x, 1) =
1

M
min
µ∈U

{
R(µ) +H(x) + λV (x+ 1, 1) + µV (x− 1, 1)

+ βu(µ)V (x, 0)− %+ (M − λ− µ− βu(µ))V (x, 1)
} (3.4)

for 1 ≤ x ≤ N − 1, and

V (x, 0) =
1

M

(
H(x) + Cm + λV (x+ 1, 0) + βdV (x, 1)− %+ (M − λ− βd)V (x, 0)

)
(3.5)

for 0 ≤ x ≤ N − 1, and

V (N, 1) =
1

M
min
µ∈U

{
R(µ) +H(N) + λp+ µV (N − 1, 1)

+ βu(µ)V (N, 0)− %+ (M − µ− βu(µ))V (N, 1)
}
,

(3.6)

and

V (N, 0) =
1

M

(
H(N) + Cm + λp+ βdV (N, 1)− %+ (M − βd)V (N, 0)

)
. (3.7)

To simplify the notation, we define the relative cost differences

W1 := V (0, 1), Wx := V (x, 1)− V (x− 1, 1), for 1 ≤ x ≤ N,
Yx := V (x, 0)− V (x, 1), for 0 ≤ x ≤ N.

By using the relative cost differences, the optimality equations take the form{
λW1 = −βu(0)Y0 −H(0) + % ,

λ(W1 + Y1) = (λ+ βd)Y0 − Cm −H(0) + % ,
(3.8)

{
λWx+1 = φ

(
Wx, Yx

)
−H(x) + % ,

λ(Wx+1 + Yx+1) = (λ+ βd)Yx − Cm −H(x) + % ,
(3.9)

for 1 ≤ x ≤ N − 1, and {
λp = φ

(
WN , YN

)
−H(N) + % ,

λp = βdYN − Cm −H(N) + % ,
(3.10)

where φ is defined in (2.4). Note that the system of equations (3.3)–(3.7) is equivalent to that of
equations (3.8)–(3.10).

In the following lemma, we provide the recursive formula for the stationary distribution of (X,K)
when the system is not full.
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Lemma 3.1. Let ν ∈ Usm be such that the stationary distribution of (X,K) exists under ν. Then,
for 1 ≤ x ≤ N − 1,

(πν(x− 1, 0), πν(x− 1, 1))Rν(x) = (πν(x, 0), πν(x, 1)) , (3.11)

where

Rν(x) =

(
λ(βu(νx)+νx)
νx(λ+βd)

λ
νx

λβu(νx)
νx(λ+βd)

λ
νx

)
, and

(
Rν(x)

)−1
=

(
λ+βd
λ −βu(νx)

λ

−λ+βd
λ

νx+βu(νx)
λ

)
.

Proof. It is evident that the balance equations for (X,K) take the form{(
λ+ βu(0)

)
πν(0, 1) = βdπν(0, 0) + ν1π(1, 1) ,(

λ+ βd
)
πν(0, 0) = βu(0)πν(0, 1) ,

(3.12)

and {(
λ+ βu(νx) + νx

)
πν(x, 1) = βdπν(x, 0) + νx+1πν(x+ 1, 1) + λπν(x− 1, 1) ,(

λ+ βd
)
πν(x, 0) = βu(νx)πν(x, 1) + λπν(x− 1, 0) ,

(3.13)

for 1 ≤ x ≤ N − 1. We sum the equations in (3.12) and get

λ
(
πν(0, 0) + πν(0, 1)

)
= ν1π(1, 1) . (3.14)

By applying (3.14) and adding the equations in (3.13), we have that for 1 ≤ x ≤ N − 1,

λ
(
πν(x, 1) + πν(x, 0)

)
= νx+1πν(x+ 1, 1) . (3.15)

Thus, by (3.13) and (3.15), we obtain{
λπν(x− 1, 0) =

(
λ+ βd

)
πν(x, 0)− βu(νx)πν(x, 1) ,

λπν(x− 1, 1) = −(λ+ βd)πν(x, 0) +
(
βu(νx) + νx

)
πν(x, 1) ,

for 1 ≤ x ≤ N − 1. Thus, equation (3.11) holds, and this completes the proof. �

By Lemma 3.1, it follows that πν(x, k) is continuous with respect to ν (in the total variation
norm) for each 1 ≤ x ≤ N and k ∈ {0, 1}. It is evident that πν , for each ν ∈ Usm, takes values in a
compact set. Then the minimum of (3.2) exists.

In the following verification theorem, we characterize the optimal controls. Its proof relies on
the results of Lemma 3.1. Recall that the function ψ represents the minimizer of (2.4).

Theorem 3.1. Let % < ∞ and (W1,W2, . . . ,WN , Y0, Y1, . . . , YN ) be a solution to (3.8)–(3.10).
Under Assumption 3.1, if Yx ≥ 0 for 0 ≤ x ≤ N , Wx ≥ 0 and ν∗x := ψ(Wx, Yx) > 0 for 1 ≤ x ≤ N ,
then {ν∗x : 1 ≤ x ≤ N} is optimal and %ν

∗
= % = %∗.

Proof. Let ν be an optimal rate control policy of (3.2). Multiplying both sides of the first equation
in (3.9) by πν(x, 1) and both sides of the second equation in (3.9) by πν(x, 0), we obtain{(

H(x) + R(νx)− %
)
πν(x, 1) ≥ Wxνxπν(x, 1)− Yxβu(νx)πν(x, 1)− λWx+1πν(x, 1) ,(

H(x) + Cm − %
)
πν(x, 0) = (λ+ βd)Yxπν(x, 0)− λ

(
Wx+1 + Yx+1

)
πν(x, 0) ,

(3.16)

for 1 ≤ x ≤ N − 1. It follows by (3.11) and (3.15) that

Wxνxπν(x, 1) + Yx
(
(λ+ βd)πν(x, 0)− βu(νx)πν(x, 1)

)
= Wxλ

(
πν(x− 1, 1) + πν(x− 1, 0)

)
+ Yxλπν(x− 1, 0) .

(3.17)

Then, summing the equations in (3.16) and applying (3.17), we obtain that for 1 ≤ x ≤ N − 1,

H(x)
(
πν(x, 1) + πν(x, 0)

)
+ R(νx)πν(x, 1) + Cmπν(x, 0)− %

(
πν(x, 1) + πν(x, 0)

)
≥Wxλ

(
πν(x− 1, 1) + πν(x− 1, 0)

)
+ Yxλπν(x− 1, 0)

−
(
Wx+1λ(πν(x, 1) + πν(x, 0)) + Yx+1λπν(x, 0)

)
.

(3.18)
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It follows by the balance equation{(
λ+ βu(νN ) + νN

)
πν(N, 1) = βdπν(N, 0) + λπν(N − 1, 1) ,(

λ+ βd
)
πν(N, 0) = βu(νN )πν(N, 1) + λπν(N − 1, 0) ,

that

βdπν(N, 0)− βu(νN )πν(N, 1) = λπν(N − 1, 0) . (3.19)

In analogy to (3.18), applying (3.10), (3.15), and (3.19), we obtain

(λp+H(N)− %)
(
πν(N, 1) + πν(N, 0)

)
+ R(νN )πν(N, 1) + Cmπν(N, 0)

≥ WNλ(πν(N − 1, 1) + πν(N − 1, 0)) + YNλπν(N − 1, 0) .
(3.20)

Adding all the equations in (3.18) for 1 ≤ x ≤ N − 1 together with (3.20), and applying (3.1), we
have

%∗ − %−
(
H(0)− %

)(
πν(0, 0) + πν(0, 1)

)
− Cmπν(0, 0)

≥ W1λ(πν(0, 1) + πν(0, 0)) + Y1λπν(0, 0) .
(3.21)

It follows by (3.12) that

(λ+ βd)πν(0, 0)− βu(0)πν(0, 1) = 0 . (3.22)

Then, by (3.8) and (3.22), we have

λW1πν(0, 1) + λ(W1 + Y1)πν(0, 0) = −Cmπν(0, 0)−
(
H(0)− %

)(
πν(0, 0) + πν(0, 1)

)
. (3.23)

Thus, applying (3.21) and (3.23), we obtain %∗ ≥ %. It implies %∗ = %, and then the proof is
completed. �

In the next lemma, we show the existence and uniqueness of the value functions. The result of
the lemma is also used in the study of the adaptive control problem in the next section.

Lemma 3.2. There exists a unique solution {V (x, k)}(x,k)∈S to the set of the optimality equations
(3.3)–(3.7).

Proof. We prove this lemma by contraction. It follows by Theorem 3.1 that % = %∗ for any solutions
to (3.3)–(3.7). Let S denote the state space of (X,K). We define the operator TV : S 7→ R by

TV (0, 1) :=
1

M

(
R(0) +H(0) + λV (1, 1) + βu(0)V (0, 0)− %∗ + (M − λ− βu(0))V (0, 1)

)
, (3.24)

TV (x, 1) :=
1

M

(
H(x)− %∗ − φ

(
V (x, 1)− V (x− 1, 1), V (x, 0)− V (x, 1)

)
+ λV (x+ 1, 1) + (M − λ)V (x, 1)

) (3.25)

for 1 ≤ x ≤ N − 1,

TV (N, 1) :=
1

M

(
H(N)− %∗ − φ

(
V (N, 1)− V (N − 1, 1), V (N, 0)− V (N, 1)

)
+ λp

)
, (3.26)

TV (x, 0) :=
1

M

(
H(x) + Cm + λV (x+ 1, 0) + βdV (x, 1)− %∗ + (M − λ− βd)V (x, 0)

)
(3.27)

for 0 ≤ x ≤ N − 1, and

TV (N, 0) :=
1

M

(
H(N) + Cm + λp+ βdV (N, 1)− %∗ + (M − βd)V (N, 0)

)
. (3.28)

Let V1 and V2 be any functions satisfying (3.3)–(3.7). It suffices to show that there exists some
positive constant C < 1 such that

max
(x,k)∈S

|TV1(x, k)− TV2(x, k)| ≤ C max
(x,k)∈S

|V1(x, k)− V2(x, k)| . (3.29)
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We show that (3.25) satisfies (3.29). Note that for any functions g and f ,

|max
x

g(x)−max
x

f(x)| ≤ max
x
|g(x)− f(x)| .

Thus, for any 0 ≤ x ≤ N − 1,

|TV1(x, 1)− TV2(x, 1)|

≤ 1

M

(
µ̄
(
|V1(x, 1)− V2(x, 1)|+ |V1(x− 1, 1)− V2(x− 1, 1)|

)
+ β(µ̄)

(
|V1(x, 1)− V2(x, 1)|+ |V1(x, 0)− V2(x, 0)|

)
+ λ|V1(x+ 1, 1)− V2(x+ 1, 1)|

+ (M − λ)|V1(x, 1)− V2(x, 1)|
)

≤ C max
(x,k)∈S

|V1(x, k)− V2(x, k)| ,

where C is some constant such that

max

{
µ̄

M
,
βu(µ̄)

M
,
λ

M
,
M − λ
M

}
≤ C < 1 .

By repeating the procedure described above and applying (3.24) and (3.26)–(3.28), we obtain (3.28).
It follows that TV is a contraction, and it has a unique fixed point. This completes the proof. �

Remark 3.1. For the service rate control problem of an M/M/1 queue with server breakdowns
and finite capacity under the discounted cost criterion, one may apply the same approach, which
uses the uniformization technique, as in Section 2.2 to obtain the existence and characterization of
optimal controls. The properties in Propositions 2.1 and 2.2 also hold for the discounted problem in
the model with finite capacity. In this section, we have focused on the service rate control problem
under the ergodic cost criterion. We apply the approach by involving the stationary distribution of
the joint Markov process (X,K). This approach is different from the vanishing discounted method
used for the problem with infinite capacity as described in Section 2.3. Since we consider a queue
with finite capacity, that is, the state process has finite states, the stationary distribution for the
joint process (X,K) can be expressed as a finite-dimensional vector. Therefore, it is natural to
consider the approach with a stationary distribution as shown in the proof of Theorem 3.1.

4. The adaptive control problem

In practice, the function βu(·) in (3.3)–(3.7) may be unobservable from data. At each state xi,
i = 1, 2, · · · , of the state process X, the controller must choose the service rate νi(xi) for the server.
The function βu(·) can be inferred from the history of {νi(xi)}i∈N and the sojourn times when the
system is in the up state.

To simplify the notation, throughout this section, we assume that (2.17) holds with κ1 and κ2

taking values in compact sets K1 and K2, respectively. We define κ := (κ1, κ2)T, and assume that
κ is initially unknown and K1,K2 ⊂ R+. We consider a queueing system with finite capacity and
the objective function as in Section 3. Note that in Remark 4.1, we provide some approaches to
relax the assumption in (2.17).

We let the sequence {νi(xi)}i∈N with νi ∈ Usm denote the design variables corresponding to
the service rates during the “up” times, that is, when the process K = 1. We use T (νi(xi)) to
denote the sojourn time of the joint Markov process governed by νi ∈ Usm when the processes
X = xi and K = 1. Given {νi(xi)}i∈N, it is evident that each T (νi(xi)) is exponentially distributed
with the parameter λ + κ1 + (κ2 + 1)νi(xi). Let {ti}i∈N be a sequence of realizations of random
variables {T (νi(xi))}i∈N. Then, given a sample of design variables and responses with size n, we
let κ̂n := (κ̂n1 , κ̂

n
2 )T = (κn1 + λ, κn2 + 1)T denote a solution of the quasi-likelihood equations taking
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the form 
∑n

i=1 νi(xi)
(
ti −

(
κ̂n1 + κ̂n2νi(xi)

)−1
)

= 0 ,∑n
i=1

(
ti −

(
κ̂n1 + κ̂n2νi(xi)

)−1
)

= 0 .
(4.1)

The solution of (4.1) may not be unique. However, we may choose the “correct” root with the
lowest mean least square error, see, for example, [35, Chapter 13.3]. Such a root of (4.1) is a quasi
maximum likelihood estimate of κ̂ := (κ1 + λ, κ2 + 1)T. Given the true parameter κ = (κ1, κ2)T,
we define the error terms {εi}i∈N by

εi := ti −
(
λ+ κ1 + (κ2 + 1)νi(xi)

)−1
.

Note that there is no decision to make during the down times, and if decisions are made based on
current parameter estimations during the up times, then {εi}i∈N forms a martingale with respect
to its natural filtration. Therefore, we consider the adaptive design case in this section.

It is well known that the estimations from (4.1) may not be consistent (convergence in prob-
ability of the estimators to the true parameter values). Therefore, we provide a family of rate
control policies under which the estimations from (4.1) are consistent. First, we present a sufficient
condition for the strong consistency of κ̂n, that is, the almost sure convergence of the estimators
to the true parameter values.

Let ζn and ζ̄n be the smallest and the largest eigenvalues of the design matrix

n∑
i=1

(1, νi(xi))
T(1, νi(xi)) =

[
n

∑n
i=1 νi(xi)∑n

i=1 νi(xi)
∑n

i=1

(
νi(xi)

)2] ,
respectively. The following lemma directly follows by Theorem 2.1 of [23].

Lemma 4.1. Assume that ζn →∞ as n→∞ a.s., and

lim inf
n→∞

ζn

(ζ̄n log ζ̄n)1/2(log log ζ̄n)1/2+δ
> 0 a.s.

for some δ > 0. Then, (4.1) has a solution κ̂n such that

|κ̂n − κ̂| = o

(
(ζ̄n log ζ̄n)1/2(log log ζ̄n)1/2+δ

ζn

)
a.s. (4.2)

In the following lemma, we verify the conditions in Lemma 4.1 for a class of rate control policies,
and then show that there exists a sequence of estimators from (4.1) that are strongly consistent.

Lemma 4.2. Under any sequence of work-conserving Markov rate control policies, the conditions
in Lemma 4.1 are satisfied. Moreover, (4.1) has a solution κ̂n such that

|κ̂n − κ̂| = o

(
(log n)1/2(log log n)1/2+δ√

n

)
a.s. (4.3)

for any δ > 0.

Proof. Since {νi(xi)}i∈N is uniformly bounded, it is evident that ζ̄n = O(n). We show the lower
bound of ζn for all large n. Recall that for any constant rate policy ν ≡ µ ∈ U, the Markov process
(X,K) is ergodic. Since the service rate for work-conserving Markov policy is bounded away from
0 by assumption, it follows that the mean return time of the embedded Markov chain of (X,K)
to the state (0, 1) is uniformly bounded under any sequence of work-conserving Markov policies.
Recall that {νi(xi)}i∈N denote the design variables during the up times. Let ν̄n := n−1

∑n
i=1 νi(xi)

and ν denote the policy satisfying ν(0, 1) = 0 and

ν(x, 1) ≡ ν = arg min
µ∈U

{
µ2
(
1− πµ(0, 1)

)2
πµ(0, 1)(∑N

j=0 πµ(j, 1)
)3 }

∀x ∈ N . (4.4)
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The minimum of (4.4) can be attained because {πµ(x, k) : (x, k) ∈ Z+ × {0, 1}} are continuous
functions of µ on U by Lemma 3.1, (3.12) and (3.19). Let 1(·) denote the indicator function. Thus,
based on the ergodic theory,

lim inf
n→∞

1

n

n∑
i=1

(
νi(xi)− ν̄n

)2 ≥ lim inf
n→∞

1

n

n∑
i=1

(
νi(xi)− ν̄n

)2
1(xi = 0)

= lim inf
n→∞

(ν̄n)2 1

n

n∑
i=1

1(xi = 0) ≥
ν2
(
1− πν(0, 1)

)2
πν(0, 1)(∑N

j=0 πν(j, 1)
)3

(4.5)

a.s., where the last inequality follows by (4.4) and the fact νi(0) = 0 for any i. Applying Lemma 2
of [36], we have

ζn ≥ C1

n∑
i=1

(
νi(xi)− ν̄n

)2
(4.6)

where C1 = 2/(1+2µ−µ̄)2. Then, by (4.5) and (4.6), it follows that

ζn ≥ C2(1 + n)

for some positive constant C2. Therefore, both ζn and ζ̄n are at the order of n, and we have verified
the conditions in Lemma 4.1. It follows by (4.2) that (4.3) holds, and this completes the proof. �

Let %̂n be the optimal value of (3.2) with the parameters κ1 and κ2 replaced by κ̂n1 − λ and
κ̂n2 − 1, respectively. Recall that %∗ denotes the true optimal ergodic cost in (3.2). In the following
lemma, we show the convergence of optimal values.

Lemma 4.3. If κ̂n → κ̂ as n→∞ a.s., then %̂n → %∗ as n→∞ a.s.

The result of Lemma 4.3 directly follows by the expression in (3.1) together with the Lemma 3.1,
and applying Theorem 2.3 of [3], and we omit its proof.

Lemma 4.4. Assume that (2.17) holds and R(·) is strongly convex and continuously differentiable.
Let νi be the optimal control obtained by solving (3.8)–(3.10) under the estimator κ̂i. Then, it
follows that

νi(x, 1) → ν∗(x, 1) a.s. (4.7)

as i→∞, for 1 ≤ x ≤ N .

Proof. It is evident that φ(w, y) is a continuous function of w and y. For any (w, y), φ(w, y) is also
continuous with respect to the parameter κ. Let {W i

x, Y
i
x : 1 ≤ i ≤ N} be the solution of equations

(3.8)–(3.10) under the estimate κ̂i. Let %̂i denote the optimal value in (3.2) under the estimate κ̂i.
Note that {Wx, Yx : 0 ≤ x ≤ N} are continuous functions of κ and %. Since κ̂i → κ̂ and %̂i → %∗
a.s. as i→∞ by Lemma 4.3, then it follows by the continuous mapping theorem that

W i
x →W ∗x , and Y i

x → Y ∗x a.s.

as i→∞ for 1 ≤ x ≤ N . By the strong convexity and continuity of φ, the convergence of optimal
values φ(W i

x, Y
i
x), i ∈ N, implies the convergence of maximizers of {φ(W i

x, Y
i
x) : i ∈ N}. We refer

the readers to (2.18) for the representation of maximizers. We have shown (4.7). �

For the queue with a finite capacity, the dynamics in (2.1) becomes

X(t) =

(
X(0) +A(t)− S

(∫ t

0
ν
(
X(s),K(s)

)
(X(s) ∧ 1) ds

))
∧N ∀ t ≥ 0 .
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Recall the cost function f(x, k, µ) in (2.2). To simplify the notation, we let fν(x, k) = f(x, k, ν(x, k))
for ν ∈ Usm. Let mt denote the number of jumps for the process (X,K) before time t, τ0 = 0, and
τi, 1 ≤ i ≤ mt, denote the i-th jump time of (X,K). We define the cumulative cost function F by

F (t) :=

mt∑
i=1

∫ τi

τi−1

fνi−1

(
X(s),K(s)

)
ds+

∫ t

τmt

fνmt
(
X(s),K(s)

)
ds

+ p

mt∑
i=1

(
A(τi)−A(τi−1)

) ∫ τi

τi−1

1(X(s) = N) ds

+ p
(
A(t)−A(τmt)

) ∫ t

τmt

1(X(s) = N) ds

(4.8)

for t ≥ 0, where νi denotes the policy updated by solving (3.8)–(3.10) under the estimator κ̂i, and
third and fourth terms on the left hand side (LHS) correspond to the penalty of rejections.

In the next theorem, we present the main result of this section. The theorem implies that if we
estimate the unknown parameters κ1 and κ2 under work-conserving rate controls at each state and
update the rate controls by solving (3.8)–(3.10) and under estimated parameters, then the long-run
average cost converges to the optimal cost. Because the transition rate matrix is updated over time
due to the change of parameters, the joint Markov process is time-varying, and the proof of the
theorem relies on Kruglov strong law of large numbers; see Theorem 2 in [39].

Theorem 4.1. Assume that (4.7) holds. Then,

lim
t→∞

1

t
E
[
F (t)

]
= %∗. (4.9)

Proof. It is evident that

1

t

∫ t

0
fµ(s)(X(s),K(s)) ds =

N∑
x=0

1∑
k=0

1

t

∫ t

0
1(X(s) = x,K(s) = k)fµ(s)(x, k) ds , (4.10)

where µ(s) = νi(X(s),K(s)) for τi ≤ s < τi+1. For (x, k) ∈ S, let τn(x, k) denote the n-th time
at which the Markov process jumps into state (x, k) with τ0(x, k) = 0, and let hn(x, k) denote the
n-th holding time in the state (x, k). Define Tn(x, k) := τn(x, k) − τn−1(x, k) for n ≥ 1. We use
Nx,k(t) to denote the number of transitions of the Markov process into state (x, k) before time t.
Then, we have∫ t

0
1(X(s) = x,K(s) = k)fµ(s)(x, k) ds

=

Nx,k(t)−1∑
i=1

hi(x, k)fµi(x, k) +
(
(t− τNx,k(t)) ∧ hNx,k(t)(x, k)

)
fµNx,k(t)

(x, k) ,

(4.11)

where µi, for i ∈ N, denotes the service rate during the i-th holding time in the state (x, k).
Applying the strong Markov property, given {νi : i ∈ N}, {hi(x, k) : i ∈ N} are independent. Let
h∗(x, k) denote the holding time in the state (x, k) of the Markov process under the optimal service
rate control ν∗. For k = 0, we have µi ≡ 0 for i ∈ N, and then hi(x, 0) are i.i.d., distributed as
h∗(x, 0). For k = 1, applying (4.7), it follows that

lim
i→∞

E[hi(x, 1)fµi(x, k)] = E[h∗(x, 1)fν∗(x, k)] . (4.12)

Since the service rate is bounded, it is straightforward to check that

sup
i∈N

E|hi(x, k)fµi(x, k)| < ∞ ,
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and

sup
n∈N

1

n

n∑
i=1

P(|hi(x, k)fµi(x, k)| > y) ≤ P(|f0(1, 0)Ψ| > y)

for all y ≥ 0, where Ψ denotes a random variable having exponential distribution with parameter
λ. Thus, by Kruglov strong law of large numbers, conditioning on {νi : i ∈ N}, we have

1

n

n∑
i=1

hi(x, k)fµi(x, k) → Eν∗ [h∗(x, k)fν∗(x, k)] a.s. (4.13)

as n→∞. For the rejection cost in (4.8), given the state process X = N , the holding time hi(N, k)
is independent of the arrival process A, and then

lim
i→∞

E[A(hi(N, k))] = lim
i→∞

λE[hi(N, k)] = λE[h∗(N, k)] . (4.14)

The similar result in (4.13) holds for the rejection cost. By repeating the procedure as above, we
have that {Ti(x, k) : i ∈ N} are independent conditioning on {νi : i ∈ N}, and

lim
i→∞

E[Ti(x, k)] = E[T∗(x, k)] ,

where T∗(x, k) denotes the return time to the state (x, k) of the Markov process under the optimal
service rate control policy ν∗. By applying Kruglov strong law of large numbers and repeating the
proof for the elementary renewal theory, it follows that given {νi : i ∈ N},

Nx,k(t)

t
→ 1

Eν∗ [T∗(x, k)]
a.s. (4.15)

as t→∞. Thus, it follows by (4.13) and (4.15) that given {νi : i ∈ N},

1

t

Nx,k(t)−1∑
i=1

hi(x, k)fµi(x, k) =
Nx,k(t)− 1

t
· 1

Nx,k(t)− 1

Nx,k(t)−1∑
i=1

hi(x, k)fµi(x, k)

→ Eν∗ [h∗(x, k)]fν∗(x, k)

Eν∗ [T∗(x, k)]
a.s.

(4.16)

as t→∞. Note that πν∗(x, k) = Eν∗ [h∗(x,k)]
Eν∗ [T∗(x,k)] . Since the service rate is bounded, we have

sup
i∈N

E[hi(x, k)fµi(x, k)]

t
→ 0 . (4.17)

Then, by (4.11), (4.16), and (4.17), and applying the dominated convergence theorem, we have

lim
t→∞

1

t
E
[
E
[∫ t

0
1(X(s) = x,K(s) = k)fµ(s)(x, k) ds

∣∣∣∣ {νi : i ∈ N}]] = πν∗(x, k)fν∗(x, k) . (4.18)

Similarly, for the rejection cost in (4.8), by using (4.14), we obtain

lim
t→∞

1

t
E
[
p

mt∑
i=1

(
A(τi)−A(τi−1)

) ∫ τi

τi−1

1(X(s) = N) ds

]
= pλ

(
πν∗(N, 1) + πν∗(N, 0)

)
. (4.19)

Note that the expectation of the fourth term on the LHS of (4.8) is bounded. Therefore, by using
(4.8), (4.10), (4.18), and (4.19), we have shown (4.9). This completes the proof. �

Remark 4.1. To extend the results to the problem with a nonlinear relationship between the break-
down rate and service rate, one may apply the same analysis by replacing (2.17) with a polynomial
function, where the coefficients may be initially unknown. One may change the likelihood equations
in (4.1) accordingly and use the generalized least square estimation in [23]. On the other hand,
instead of assuming the functional form of the relationship between the breakdown and service
rates, one may treat the breakdown rate as a general function of the service rate. In this case, some
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non-parametetric approaches in the study of online problems for inventory models may be adopted
to study the service rate control problem; see, for example, [18, 19,53] and references therein.

5. Numerical examples

In this section, we show the numerical results for the queueing system with finite capacity as in
Section 3 and the adaptive control problem as in Section 4. In Section 5.1, we provide the results
for the optimal service rate controls under different parameters of the system dynamics and the
cost functions. In Section 5.2, we present the simulation study for the convergence of regret under
adaptive controls.

We first determine the cost functions and the queueing system for the numerical study. The
holding/delay cost function in all examples satisfies H(x) = Chx

2 for x ≥ 0, where Ch is a positive
constant. We set the effort cost function R(µ) = Crµ

2 for µ ∈ {0} ∪ U, where Cr is a positive
constant and U = [µ, µ̄] with µ, µ̄ > 0. We consider the cases in which the number of jobs in the
system is truncated at N . When there are N jobs in the system, new arrivals are rejected with
the cost p for a single job. Recall that the arrival rate is denoted by λ and the breakdown rate is
assumed to be a linear function of the service rate satisfying βu(µ) = κ1 + κ2µ for µ ∈ {0} ∪U. βd
is used to represent the maintenance rate and is a positive constant. The maintenance cost is Cm
per unit of time.

5.1. The optimal service rate controls. The parameters for the system dynamics are listed
in Table 1. We consider a scenario under different cost settings and compare the results of the
optimal service rate controls. As mentioned in Remark 2.3, the ratio βd/(βd + βu(µ)) represents
the proportion of up times on average for the system under the service rate µ. The proportion of
up times approximately ranges from 73.37% to 89.05% on average. As a result, the range of the
effective service rate becomes [3.56, 8.80].

In this scenario, we use days as the time unit for the parameters. Then, the server is likely to
break down every 12 days on average if the server runs at its lowest rate, while the server is likely
to break down every 4 days on average if the server runs at its highest rate. It takes about 1.5 days
to repair the server on average. The setting of breakdown and maintenance rates is very close to
the real data from [17], where the server corresponds to a coal unloader and the jobs correspond to
trainloads waiting to be unloaded. Here we assume that the unloading rate is adjustable and the
breakdown rate depends on the unloading rate.

Table 1. Parameter combinations for the system dynamics.

λ µ µ̄ βd κ1 κ2 N

8 4 12 2/3 1/500 1/50 25

In Table 2, we provide the parameters of the cost functions in the scenario. In total, there are
15 parameter combinations for the numerical study of the optimal service rate controls. As shown
in Table 2, the cost parameters taking values in the set {1, 10} are permuted to show the impact
of costs on the optimal policy.

Table 2. Cost parameter settings.

Settings 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cr (dollar/hour) 1 10 1 1 1 10 10 10 1 1 1 10 10 10 1

Ch (dollar/hour) 1 1 10 1 1 10 1 1 10 10 1 10 10 1 10

Cm (dollar/hour) 1 1 1 10 1 1 10 1 10 1 10 10 1 10 10

p (dollar/hour) 1 1 1 1 10 1 1 10 1 10 10 1 10 10 10
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Table 3. System performances.

Settings 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Service

Utilization(%)
67.5 89.3 60.8 66.8 66.6 66.6 88.5 89.5 61.0 60.8 67.2 66.7 67.3 88.4 60.6

Rejection

Rate(%)
8.0 55.6 8.5 9.3 8.4 8.7 55.7 54.6 9.2 8.3 8.4 9.0 7.6 54.8 8.3

The rejection rate is the ratio between number of rejected jobs and the total number of arrivals.
The rejection rate and the service utilization from implementing the optimal policy are listed in
the Table 3, which are obtained via simulating 500,000 events.

For every set of parameters, we compute the optimal service rate policy by solving (3.8)–(3.10)
Figure 1 shows the optimal policies for the scenario, where the x-axis represents the number of
jobs in the system and the y-axis corresponds to the service rate under the optimal policy. We find
that the optimal policies may not be monotone in the number of jobs in the system. Specifically,
under the cost settings 2, 7, 8 and 14, the holding cost parameters are relatively low whereas the
effort cost parameter is relatively high. In these cost parameter settings, Figure 1 shows that the
optimal service rate policies are non-monotone. For all the scenarios under the cost settings 3, 9
and 15, since the effort cost parameters are set as “low ”while the holding cost parameters are set
as “high”, the optimal service rates are chosen at the highest value when the number of jobs in the
system is large.

In addition, the rejection rates in Table 3 indicate that when the effort cost is high, the system
tends to have a high rejection rate (see, for example, cost settings 2, 7, 8, and 14). This is reasonable
because the optimal control tends to run the server at a lower service rate when the effort cost is
high (see, for example, controls under cost settings 2, 7, 8, and 14 in Figure 1), and the system
is likely to be at a high congestion level. Therefore, it is more likely to observe rejections. When
the holding cost increases, the rejection rate decreases even when the effort cost is high (see, for
example, cost settings 6, 12, and 13). This is justifiable as an increased holding cost could result
in optimal control policies that prevent the system from entering a high congestion level.

However, increasing the rejection cost when the effort cost is high does not have a significant
impact on the rejection rate (see, for instance, cost settings 8 and 14). From the optimal controls
under cost settings 2 and 8 in Figure 1, we can see that an increased rejection penalty does not
change the policy significantly when the effort cost is high. Therefore, the system has a high
likelihood of entering a high congestion level. Hence, the rejection rate remains high.

In summary, when the effort cost is high, the system controller may choose a lower service rate
to decrease the likelihood of unplanned downtime even when the system is near its capacity limit,
which results in a non-monotone control policy. When the holding cost is high, the controller may
run the server at a relatively high service rate to avoid congestion despite the risk of encountering
breakdowns.

5.2. The adaptive service rate control problem. We first introduce the procedure used to
solve the adaptive service rate control problem. Recall that the parameters κ1 and κ2 are initially
unknown and take values in compact sets. At the beginning of the implementation, we randomly
choose the initial parameters κ̂0

1 and κ̂0
2 from the sets K1 and K2, respectively. In the numerical

study, we assume βu(µ) ≤ βd for µ ≤ µ ≤ µ̄, and K1 and K2 are constructed to ensure that the
inequality to hold.

We estimate the parameters for every 50 jumps of the process (X,K). The cycle of each estima-
tion is identified as an iteration. At each iteration, we simulate the system under the control policy
which is obtained by solving equations (3.8)–(3.10). During the calculation, we use the estimation
of parameters κ1 and κ2 in the equations. The estimation of parameters is updated based on the
solution of (4.1) in which we use the data collected from simulations. We project the estimated
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Figure 1. Optimal control policies under different cost settings.

parameters to the boundaries of K1 × K2 if the estimation lies outside the domain K1 × K2. We
simulate the process (X,K) under the adaptive service rate controls in a finite time horizon. The
performance of the algorithm is measured by the average regret

R(n) :=
1

tn
E
[
F (tn)

]
− ρ∗ (5.1)

for positive integer n ≤ L, where the cost F (t) is defined in (4.8) and L denotes the number of
timestamps in the simulation study.

We set L as 1000. The parameter tL and the sets K1 and K2 for each setting are shown in Table
4. In each setting, tL is chosen to be sufficiently large such that the average regret is near zero
when n is large. In Figure 2, the x-axis represents the timestamps in the simulations with the
difference between the timestamps equal to tL/L, and the y-axis corresponds to the average regret
at each timestamp. In each case, the expectation is approximated by the average over the values
of 300 trajectories. We conduct experiments for the adaptive service rate control problem under
the cost parameter settings 13 and 14 for the scenario shown in Table 1. As shown in Table 3, the
rejection rate under cost setting 14 is significantly larger than the one under cost setting 13. The
experiments under the other cost parameter settings are similar. Here we focus on two sets of cost
parameters for simplicity. As shown in Figure 2, the average regrets converge to 0. This verifies
the theoretical results in Theorem 4.1.

Table 4. The sets K1 and K2 and the parameter tL.

Cost Setting K1 K2 tL
13 [10−5, 0.665] [10−5, 0.055] 2011
14 [10−5, 0.665] [10−5, 0.055] 2357
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