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Abstract. We study a class of non-stationary shot noise processes which have a general
arrival process of noises with non-stationary arrival rate and a general shot shape function.
Given the arrival times, the shot noises are conditionally independent and each shot noise
has a general (multivariate) cumulative distribution function (c.d.f.) depending on its
arrival time. We prove a functional weak law of large numbers and a functional central
limit theorem for this new class of non-stationary shot noise processes in an asymptotic
regime with a high intensity of shot noises, under some mild regularity conditions on the
shot shape function and the conditional (multivariate) c.d.f. We discuss the applications
to a simple multiplicative model (which includes a class of non-stationary compound
processes and applies to insurance risk theory and physics) and the queueing and work-
input processes in an associated non-stationary infinite-server queueing system. To prove
the weak convergence, we show new maximal inequalities and a new criterion of existence
of a stochastic process in the space D given its consistent finite dimensional distributions,
which involve a finite set function with the superadditive property.

1. Introduction

We consider a class of non-stationary shot noise processes X := {X(t) : t ≥ 0} described
as follows. Let A := {A(t) : t ≥ 0} be a counting process with arrival times {τi : i ∈ N}. Let
{Zi : i ∈ N} be a sequence of conditionally independent Rk-valued (k ≥ 1) random vectors
given the event times {τi : i ∈ N}. For each i ∈ N, the distribution of Zi depends on τi
only. To indicate the dependence of Zi on τi explicitly, we write Zi(τi) for Zi. The regular
conditional probability for Zi(τi) given that τi = t, t ≥ 0, is given by

P (Zi(τi) ≤ x|τi = t) = Ft(x), t ≥ 0, x ∈ Rk, (1.1)

where for two vectors x = (x1, ..., xk), y = (y1, ..., yk) ∈ Rk, x ≤ y means xi ≤ yi for each
i = 1, ..., k and Ft(·) is a joint/multivariate cumulative distribution function (c.d.f.) for each
t ≥ 0. Let H : R+ × Rk → R be a deterministic measurable function representing the shot
shape or the (impulse) response function. See the precise assumptions on Ft(·) and H in
Assumption 2. Define the non-stationary shot noise process X by

X(t) :=

A(t)∑
i=1

H(t− τi, Zi(τi)), t ≥ 0. (1.2)
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In the literature the sequence of random variables {Zi} is often assumed to be i.i.d.,
independent of the arrival processes of shot noises (see, e.g., [9, 12, 13, 18, 27, 28, 29, 31, 40]).
Limited work has studied for the sequence {Zi} with certain dependence structures. For
example, in [33], {Zi} is modulated by a finite-state Markov chain and is conditionally
independent with a distribution depending on the state of the chain at the arrival time
of the shot noise (also modulated by the same chain). In [38], a cluster shot noise model
is studied where {Zi} depends the same ‘cluster mark’ within each cluster. However, the
‘non-stationarity’ of shot noises has been neither explicitly modeled nor adequately studied,
although it often occurs in stochastic systems (see, e.g., [2, 8, 15, 35, 36, 45] and references
therein). In our model, the sequence {Zi} is assumed to be conditionally independent given
the arrival times and the distribution depends upon the arrival times. We have explicitly
modeled “non-stationarity” in the distribution of shot noises. In addition, the arrival process
is also allowed to be a general non-stationary point process.

In this paper, we establish the functional weak law of large numbers (FWLLN) and
functional central limit theorems (FCLTs) for this class of non-stationary shot noise processes
in an asymptotic regime where the arrival rate is large while fixing the shot noise distributions
Ft(x) and shot shape function H (see Assumptions 1 and 2). (It is often referred to as
the “high intensity/density regime” [4, 17, 19, 37].) Here we assume that the arrival
process satisfies an FCLT with a continuous limiting process and a non-stationary arrival
rate function. In the FCLT, we obtain a non-stationary stochastic process limit for the
diffusion-scaled shot noise process (Theorem 2.2). The limit can be written as a sum of two
independent processes, one as an integral functional of the limiting arrival process, and the
other as a continuous Gaussian process. When the arrival limit is Gaussian, the limiting
shot noise process becomes a Gaussian process. We also consider a finite collection of shot
noise processes as defined in (1.2) with a family of shot shape functions but the same arrival
process and noises, and prove their joint convergence in Theorem 2.3.

We discuss the applications of the FCLT to a simple multiplicative model and the queueing
and work-input process for a non-stationary infinite-server queueing model (Gt/Gt/∞) in
Section 3. The simple multiplicative model requires that the shot shape function H(t, x) =

H̃(t)ϕ(x) for a nonnegative and monotone function H̃(t) and a measurable function ϕ :

Rk → R. When H̃(t) ≡ 1 and ϕ(x) = x for each x ∈ R+ (k = 1), the model becomes
a non-stationary compound process, which is new in the literature. As a consequence of
Theorem 2.2, we obtain an FCLT for such non-stationary compound processes; see Theorem
3.1. The multiplicative model has applications in insurance risk theory (setting ϕ(x) = x
for x ∈ R+), in particular, modeling the delay in insurance claim settlement [27]. It also
has applications in physics [41], to study a damped harmonic oscillator subject to a random
force, which has the new feature that the random forces depend on the arrival times.

For the non-stationary infinite-server queueing system, the queueing process requires that
the shot shape function H(t, x) = 1(t < x), while the work-input process has H(t, x) =
x1(t < x), for x ∈ R+. The Gt/Gt/∞ queueing model has been recently studied in [36].
In some sense, the class of non-stationary shot noise processes is a generalization of the
non-stationary infinite-server queueing model studied in [36], where functional limit theorems
are established for the associated two-parameter processes in addition to the total count
process. Work-input processes are studied in [30] using Poisson shot noise processes, where
fractional Brownian motion limits are obtained in the conventional scaling regime. We obtain
an approximation for the joint queueing and work-input processes, which is a continuous
two-dimensional non-stationary Gaussian process when the arrival limit is Gaussian.
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To prove the FCLT, we employ a classical weak convergence criterion in the Skorohod
J1 topology, Theorem 13.3 in Billingsley [5]. It provides a sufficient condition involving
a modulus of continuity (see (5.2)), which requires the maximal inequalities in Theorems
10.3 and 10.4 in [5] to establish. Maximal inequalities are usually very challenging to prove.
In many applications, certain properties of the processes of interest (e.g., the martingale
property) can often lead to useful maximal inequalities. The power of Theorems 10.3 and
10.4 in [5] lies in that sufficient conditions on the probability bounds for the increments of the
process are provided in order to obtain the corresponding probability bounds in the maximal
inequalities. Those conditions require that the probability bound involves a finite measure
(see (5.4)), which can be often induced from the moment bounds for the increment of the
processes. However, for the class of non-stationary shot noise processes, the probability
bounds for the processes of interest do not provide such a convenient finite measure (see
Lemmas 4.4–4.5 and discussions in Remark 4.2).

One main contribution of the paper is to prove new maximal inequalities involving a finite
set function with the superadditive property, which generalize Theorems 10.3 and 10.4 in [5];
see Theorems 5.1 and 5.2. Their proofs in Section 7 are adaptations of the corresponding
ones in [5]. We apply them to verify the sufficient condition with the modulus of continuity
in Theorem 13.3 in [5] for the shot noise process in the proof of the FCLT. We also apply
the maximal inequality in Theorem 5.1 to prove the FWLLN for the shot noise process. In
addition, a criterion to prove that there exists a stochastic process in the space D given its
consistent finite dimensional distributions is provided in Theorem 13.6 in [5]. That criterion
also relies on the maximal inequalities in Theorems 10.3 and 10.4 in [5], and thus requires
that the probability bound for the process increments involves a finite measure. We prove
a new criterion of existence in Theorem 5.3, where the finite measure assumption in the
probability bound for the increments of the process is relaxed to allow a finite set function
with the superadditive property. It is then applied to prove the existence of the Gaussian
limit process in the FCLT in the space D (in fact in C, which requires additional continuity
in mean square for the limit process; see the proof of Lemma 6.3). These generalizations
of the maximal inequalities and the criterion of existence in the space D may be useful in
future research on weak convergence of stochastic processes.

1.1. Literature review. Shot noise processes have been extensively studied, and have
many applications in physics, insurance risk theory, telecommunications, and service systems.
Functional limit theorems have been established in two asymptotic regimes.

In the asymptotic regime where the arrival rate of shot noises (the intensity/density)
becomes large, only limited work has been done for some special classes of shot noise
processes. One class includes the queueing, workload and work-input processes in infinite-
server queueing systems with i.i.d. service times. For these models, the shot noises represent
service times, and the shot shape function becomes an indicator function for the queueing
process; see, e.g., Chapter 10 of [44] for a review. Networks of infinite-server queues with
shot-noise-driven arrival intensities are recently studied in [26], in order to capture the
strong fluctuations in the arrival process. Weak convergence of a certain class of compound
stochastic processes was studied in [19] in this asymptotic regime. That paper includes a
special class of shot noise processes with a renewal arrival process and i.i.d. shot noises in
which the shot shape function H(t, x) satisfies some regularity conditions (see the assumptions
in Theorem 4.3 in [19]). See also the relevant discussions in Section 2.2. Our results are
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established for the most general setting with both non-stationary arrival processes and shot
noises.

Although not proving functional limit theorems, some important asymptotic analysis has
been also done for certain shot noise processes in this regime. Papoulis [37] first proved
the normal approximation and its rate of convergence for the standard shot noise process
with a Poisson arrival process and i.i.d. shot noises. Heinrich and Schmidt [17] studied
multidimensional shot noise processes and proved the normal approximation and its rate
of convergence in that regime. In both papers, the asymptotic behavior of the quantity
(X(t)−E[X(t)])/(V ar(X(t)))1/2 is studied, which is different from the nature of our analysis.
Recently, Biermé and Desolneux [4] studied the expected number of level crossings for the
shot noise processes with a Poisson arrival process and i.i.d. shot noises, which has a shot
shape function H(t, x) = H̃(t)x, for t ≥ 0 and x ∈ R, with a smooth function H̃(·) in this
asymptotic regime.

The conventional scaling regime for shot noise processes is to scale up time and shot
noises simultaneously. There is a vast literature of studies in that regime. Klüppelberg
and Mikosch [27] proved an FCLT for explosive shot noise processes with a Poisson arrival
process, which has a self-similar Gaussian limit. Klüppelberg et al. [28] proved an FCLT for
Poisson shot noise processes which has an infinite-variance stable limit process. In [29], a
fractional Brownian motion limit is proved for Poisson shot noise processes that capture
long-range dependence. Iksanov [20] and Iksanov et al. [23] studied renewal shot noise
processes where the shot shape function takes the form independent of shot noises {Zi}, and
proved FCLTs under various conditions on the shot shape function. Iksanov et al. [24, 25]
recently studied renewal shot noise processes with immigration and proved scaling limits and
convergence to stationarity. We refer to [21] for a thorough review on the subject. In [22],
an infinite-server queueing model with correlated interarrival and service times is studied in
the conventional scaling regime and a limiting Gaussian process is obtained in the FCLT
assuming that the service time distributions are regularly varying. We also refer to the work
in [6, 9, 12, 13, 18, 27, 28, 29, 31, 32, 34, 40] and references therein for relevant asymptotic
properties of Poisson shot noise processes, and in [39, 43, 42, 33, 38] for more general shot
noise processes, as well as their applications.

1.2. Organization of the paper. We summarize the notations used in the paper in the
next subsection. The model and main results (FWLLN and FCLT) are presented in Section
2. We present the applications in Section 3. Preliminary results on the probability and
moment bounds for some prelimit and limit processes are given in Section 4. We state the
new maximal inequalities and criterion of existence in Section 5 and their proofs are given
in Section 7. We prove the FCLT in Section 6. We collect additional proofs in Section 8.

1.3. Notation. Throughout the paper, N denotes the set of natural numbers. Rk (Rk+)
denotes the space of real-valued (nonnegative) k-dimensional vectors, and we write R (R+) for
k = 1. For a, b ∈ R, we write a ∧ b = min{a, b} and a ∨ b = max{a, b}. Let Dk = D(R+,Rk)
denote Rk-valued function space of all cádlág functions on R+. (Dk, J1) denotes space Dk
equipped with Skorohod J1 topology with the metric dJ1 [5, 11, 44]. Note that the space
(Dk, J1) is complete and separable. We write D for Dk when k = 1. Let C be the subset of
D for continuous functions. When considering functions defined on finite intervals, we write
D([0, T ], R) for T > 0. All random variables and processes are defined in a common complete
probability space (Ω,F , P ). Notations → and ⇒ mean convergence of real numbers and
convergence in distribution, respectively. The abbreviation a.s. means almost surely. We
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use lower-case o notation for real-valued function f and non-zero g, we write f(x) = o(g(x))
if limx→∞ |f(x)/g(x)| = 0.

2. Functional Limit Theorems

In this section, we state the FWLLN and FCLT for the shot noise process X defined in
(1.2). We consider a sequence of the non-stationary shot noise processes indexed by n and
let n→∞. In particular, in the nth system, we write An and Xn and the associated {τni }
while the variables Zi and the distributions Ft, t ≥ 0, are fixed. We first make the following
assumptions.

Assumption 1. The sequence of arrival processes An satisfies an FCLT:

Ân :=
√
n
(
Ān − Λ

)
⇒ Â in (D, J1) as n→∞ (2.1)

where Ān := n−1An, Λ := {Λ(t) : t ≥ 0} is a deterministic nondecreasing continuous

function, and Â is a continuous stochastic process.

Note that Assumption 1 implies an FWLLN for the fluid-scaled arrival process Ān:

Ān ⇒ Λ in (D, J1) as n→∞. (2.2)

A large class of models has a continuous Gaussian limit process Â. We provide several
examples of arrival processes with a Gaussian limit that satisfy Assumption 1. A special
case is Â(t) = caB(Λ(t)) for a standard Brownian motion B and a constant ca capturing the
variabilities in the arrival process. When the process An is a renewal process, ca represents
the coefficient of variation for the interarrival times. When the interarrival times are weakly
dependent and satisfying the strong α-mixing condition, by Theorem 4.4.1 and Corollary
13.8.1 in [44], the arrival process Ân satisfies an FCLT with a Brownian motion limit, where
the coefficient ca captures the dependence among the interarrival times. When the arrival
process is a Markov-modulated Poisson process, the limit Â is a Brownian motion with ca
capturing the effect of the random environment (see Example 9.6.2 in [44] and also [1]).
When the arrival process is a stationary Hawkes process (a class of simple point processes
that are self-exciting and have clustering effect), whose intensity is the sum of a baseline
intensity and a term depending upon the entire past history of the point process, the limit
Â is a non-Markov Gaussian process with dependent increments [14]. See also FCLTs with
Brownian motion limits for nonlinear Hawkes processes in [3, 46].

To simplify notations, we define the following functions: for each 0 ≤ u ≤ s ≤ t,

Gk(t, u) :=

∫
Rk

H(t− u, x)kdFu(x), k ∈ N,

G̃(t, u) := G2(t, u)−G1(t, u)2 =

∫
Rk

(H(t− u, x)−G1(t, u))2dFu(x),

Ǧ1(t, s, u) :=

∫
Rk

(
H(t− u, x)−H(s− u, x)

)
dFu(x),

Ǧ2(t, s, u) :=

∫
Rk

(
H(t− u, x)−H(s− u, x)

)2
dFu(x),

G̃(t, s, u) := Ǧ2(t, s, u)− Ǧ1(t, s, u)2,

Ğ(t, u) :=

∫
Rk

(H(t− u, x)−G1(t, u))4dFu(x),
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and

Ğ(t, s, u) :=

∫
Rk

(H(t− u, x)−H(s− u, x)−G1(t, u) +G1(s, u))4dFu(x).

We now state the following regularity conditions on the shot shape function H and the c.d.f.
Ft(·). Note that conditions (i) and (ii) in Assumption 2 imply that all functions defined
above are finite for 0 ≤ s ≤ t. We use the convention that H(t, x) ≡ 0 for t < 0.

Assumption 2. For each t ≥ 0, the c.d.f. Ft(·) is continuous and has finite marginal mean.
The shot shape function H(·, x) ∈ D is monotone for each x ∈ Rk. In addition, the following
regularity conditions are satisfied:

(i)

sup
0≤t≤T

V T
0 (G1(t, ·)) <∞, (2.3)

where V T
0 (G1(t, ·)) is the total variation of the function G1(t, ·) in the interval [0, T ],

for each 0 ≤ t ≤ T ;
(ii) for each t ≥ 0,

sup
0≤u≤t

G̃(t, u) <∞ and sup
0≤u≤t

Ğ(t, u) <∞; (2.4)

(iii) for each T ≥ t ≥ 0,

lim
δ↓0

∫
[0,T ]

Ǧ2(t, t− δ, u)dΛ(u) = 0. (2.5)

Remark 2.1. We remark that the convergence in (2.5) always holds as δ ↑ 0 from the left
given that H(·, x) ∈ D for each x ∈ Rk. Indeed, if δ ↑ 0, then (t− δ) ↓ t for each t ≥ 0. Since
H(·, x) ∈ D for each x ∈ Rk, we have H(t − u, x) −H(t − δ − u, x) → 0 as δ ↑ 0 for each
0 ≤ u ≤ t and x ∈ Rk. By the bounded convergence theorem we have Ǧ2(t, t− δ, u)→ 0 as
δ ↑ 0 from the left for each u ≥ 0. Using the bounded convergence theorem again, we obtain
the convergence in (2.5) as δ ↑ 0 from the left. Therefore, in condition (iii) we only require
δ converges to 0 from the right.

Note that the condition (2.5) implies that

lim
δ→0

∫
[0,T ]

Ǧ1(t, t− δ, u)dΛ(u) = 0. (2.6)

Define the process X̄n := {X̄n(t) : t ≥ 0} by X̄n(t) := n−1Xn(t) for t ≥ 0.

Theorem 2.1. (FWLLN) Under Assumptions 1–2,

X̄n ⇒ X̄ in (D, J1) as n→∞, (2.7)

where X̄ := {X̄(t) : t ≥ 0} is a continuous deterministic function, defined by

X̄(t) :=

∫
[0,t]

G1(t, u)dΛ(u), t ≥ 0. (2.8)

Define the process X̂n := {X̂n(t) : t ≥ 0} by

X̂n(t) :=
√
n(X̄n(t)− X̄(t)), t ≥ 0, (2.9)

where X̄(t) is given in (2.8).
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Theorem 2.2. (FCLT) Under Assumptions 1–2,

X̂n ⇒ X̂ in (D, J1) as n→∞, (2.10)

where X̂ := {X̂(t) : t ≥ 0} can be written as a sum of two independent stochastic processes

X̂1 := {X̂1(t) : t ≥ 0} and X̂2 := {X̂2(t) : t ≥ 0}, with

X̂1(t) := Â(t)G1(t, t)−
∫

(0,t]
Â(u)dG1(t, u), t ≥ 0, (2.11)

and X̂2 being a continuous Gaussian process of mean zero and covariance function

R̂2(t, s) := Cov
(
X̂2(t), X̂2(s)

)
=

∫
[0,t∧s]

(
G2(t, s, u)−G1(t, u)G1(s, u)

)
dΛ(u), (2.12)

with

G2(t, s, u) :=

∫
Rk

H(t− u, x)H(s− u, x)dFu(x), t ≥ u ≥ 0, s ≥ u ≥ 0. (2.13)

Remark 2.2. We remark that the limit process X̂1 has sample paths in D under Assumptions
1–2. See Lemma 6.1 and its proof. If, in addition, G1(·, u) ∈ C for each u ≥ 0, then X̂1 is
continuous.

Remark 2.3. If Â is a continuous Gaussian process with mean 0 and covariance function
R̂a(t, s), then X̂1 is a Gaussian process with mean 0 and covariance function

R̂1(t, s) := Cov(X̂1(t), X̂1(s)) =

∫
[0,t]

∫
[0,s]

G1(t, u)G1(s, v)dR̂a(u, v), t, s ≥ 0.

In the special case that Â(t) = caB(Λ(t)) is a time-changed Brownian motion, the covariance

function R̂1(t, s) becomes

R̂1(t, s) = c2
a

∫
[0,t∧s]

G1(t, u)G1(s, u)dΛ(u), t, s ≥ 0.

It is worth noting that the limit X̂2 in the FCLT only involves the fluid arrival limit Λ.

2.1. Joint convergence with a family of shot shape functions. Consider a family
of shot shape (impulse response) functions, {H(k) : k ∈ {1, . . . ,K}} for some K ∈ N+.

For each k, we denote the corresponding processes X̄n,(k) and X̄(k), X̂n,(k) and X̂(k), and

the functions G
(k)
i (t, u), Ǧ

(k)
i (t, s, u), i = 1, 2, G̃(k)(t, u) and G̃(k)(t, s, u). Suppose that the

conditions in Assumption 2 hold for the associated functions with each k, which we refer to
as Assumption 2′.

Theorem 2.3. Suppose that Assumptions 1 and 2′ hold.
(i)

(
X̄n,(1), . . . , X̄n,(K)

)
⇒
(
X̄(1), . . . , X̄(K)

)
in (DK , J1) as n → ∞, where X̄(k) :=

{X̄(k)(t) : t ≥ 0} is a continuous deterministic function, defined by

X̄(k)(t) :=

∫
[0,t]

G
(k)
1 (t, u)dΛ(u), t ≥ 0,

for k = 1, . . . ,K.
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(ii)
(
X̂n,(1), . . . , X̂n,(K)

)
⇒
(
X̂(1), . . . , X̂(K)

)
in (DK , J1) as n → ∞, where X̂(k) :=

{X̂(k)(t) : t ≥ 0} can be written as a sum of two independent processes X̂
(k)
1 := {X̂(k)

1 (t) :

t ≥ 0} and X̂
(k)
2 := {X̂(k)

2 (t) : t ≥ 0}. For k = 1, . . . ,K, X̂
(k)
1 is defined by

X̂
(k)
1 (t) := Â(t)G

(k)
1 (t, t)−

∫
(0,t]

Â(u)dG
(k)
1 (t, u), t ≥ 0.(

X̂
(1)
2 , . . . , X̂

(K)
2

)
is a continuous multidimensional Gaussian processes with mean 0 and the

covariance function

Cov
(
X̂

(k)
2 (t), X̂

(j)
2 (s)

)
=

∫
[0,t∧s]

(
G

(k,j)
2 (t, s, u)−G(k)

1 (t, u)G
(j)
1 (s, u)

)
dΛ(u)

where

G
(k,j)
2 (t, s, u) :=

∫
Rk

H(k)(t− u, x)H(j)(s− u, x)dFu(x)

for each k, j = 1, . . . ,K, and t ≥ u ≥ 0, s ≥ u ≥ 0.

Note that the statements in Remark 2.2 apply to each X̂(k), k = 1, . . . ,K. If Â is a contin-

uous Gaussian process with mean 0 and covariance function R̂a(t, s), then
(
X̂

(1)
1 , . . . , X̂

(K)
1

)
is a multidimensional Gaussian process with mean 0 and covariance function

Cov
(
X̂

(k)
1 (t), X̂

(j)
1 (s)

)
=

∫
[0,t]

∫
[0,s]

G
(k)
1 (t, u)G

(j)
1 (s, v)dR̂a(u, v)

for each k, j = 1, . . . ,K, and t, s ≥ 0. In the special case that Â(t) = caB(Λ(t)) is a
time-changed Brownian motion, the covariance function above becomes

c2
a

∫
[0,t∧s]

G
(k)
1 (t, u)G

(j)
1 (s, u)dΛ(u),

for each k, j = 1, . . . ,K and t, s ≥ 0.

2.2. Discussions on the model with i.i.d. shot noises. When the shot noises are i.i.d.
with the same distribution as a random vector Z having joint c.d.f F , the regularity conditions
(i) and (iii) in Assumption 2 are not required. Indeed, the condition (i) is always satisfied
given the monotonicity of H(t, x) in t. As for condition (iii), first by Fubini’s theorem, the
left hand side of (2.5) becomes

lim
δ→0

∫
Rk

∫
[0,T ]

(
H(t− u, x)−H(t− δ − u, x)

)2
dΛ(u)dF (x).

Next, since |H(t − u, x) − H(t − δ − u, x)| ≤ |H(T, x)| ∨ |H(0, x)| for t, u ∈ [0, T ], δ > 0
and x ∈ Rk, by the bounded convergence theorem, to show the limit above is equal to 0, it
suffices to show that for each x ∈ Rk,

lim
δ→0

∫
[0,T ]

(
H(t− u, x)−H(t− δ − u, x)

)2
dΛ(u) = 0.

This equation holds since Λ ∈ C and H(·, x) ∈ D has at most countably many discontinuous
points for each x ∈ Rk. However, in the i.i.d. case, we still require condition (ii), which
holds if and only if

E[H(t, Z)2] <∞, for each t ≥ 0.

We remark that in the i.i.d. case, with renewal arrivals, the model becomes a special
case of the compound stochastic processes studied in [19] (by setting ξ(t) = H(t, Z)). Our
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assumptions on the function H satisfy the conditions (iii) and (iv) in Theorem 4.3 in [19],

where we can change (t− s) to (Ṽ (t)− Ṽ (s)) in the upper bounds, for Ṽ (t) defined in (4.13)
with a constant arrival rate λ, i.e., Λ(t) = λt; see also the discussion in the last paragraph
on page 24 of [19]. It is worth noting that the assumptions on the increments of the process
ξ in [19] are made so that the maximal inequality involving a finite measure can be applied
(see more discussions on the weak convergence and maximal inequalities in Section 5).

3. Applications

3.1. A simple multiplicative model. We consider a simple multiplicative model in which
the shot shape function

H(t, x) := H̃(t)ϕ(x), t ≥ 0, x ∈ Rk,
where ϕ : Rk → R is a measurable function.

We discuss what the regularity conditions on the function H in Assumption 2 imply
for this simple multiplicative model. First, we require that H̃ is in D, nonnegative and
monotone. Note that

G1(t, u) = H̃(t− u)G̃1(u), G̃(t, u) = H̃(t− u)2G̃(u),

and

Ǧ1(t, s, u) =
(
H̃(t− u)− H̃(s− u)

)
G̃1(u), Ǧ2(t, s, u) =

(
H̃(t− u)− H̃(s− u)

)2
G̃2(u),

where

G̃1(u) :=

∫
Rk

ϕ(x)dFu(x), G̃2(u) :=

∫
Rk

ϕ(x)2dFu(x),

G̃(u) := G̃2(u)− G̃1(u)2, u ≥ 0.

The condition in (2.3) requires that

sup
0≤t≤T

V T
0

(
H̃(t− ·)G̃1(·)

)
<∞, (3.1)

while the condition in (2.4) requires that for each t ≥ 0,

sup
0≤u≤t

H̃(t− u)G̃(u) <∞. (3.2)

The condition in (2.5) requires that for each T ≥ t ≥ 0,∫
[0,T ]

(
H̃(t− u)− H̃(t− δ − u)

)2
G̃2(u)dΛ(u)→ 0 as δ → 0,

which is satisfied under the condition that H̃ is monotone and Λ ∈ C. Thus, the regularity
condition (iii) in Assumption 2 is not needed for the simple multiplicative model.

The limit process X̂1 in Theorem 2.2 becomes

X̂1(t) := Â(t)H̃(0)G̃1(t)−
∫

(0,t]
Â(u)d

(
H̃(t− u)G̃1(u)

)
, t ≥ 0. (3.3)

Note that X̂1 is continuous if H̃(·) ∈ C. (See Lemma 6.1 and its proof.) If Â is a Gaussian

process with mean 0 and covariance function R̂a(t, s), then the covariance function of X̂1 is

R̂1(t, s) =

∫
[0,t]

∫
[0,s]

H̃(t− u)H̃(s− v)G̃1(u)G̃1(v)dR̂a(u, v), t, s ≥ 0. (3.4)
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If Â(t) = caB(Λ(t)) is a time-changed Brownian motion, then the covariance function R̂1(t, s)
becomes

R̂1(t, s) = c2
a

∫
[0,t∧s]

H̃(t− u)H̃(s− u)G̃1(u)2dΛ(u), t, s ≥ 0.

The limit process X̂2 has the covariance function

R̂2(t, s) =

∫
[0,t∧s]

H̃(t− u)H̃(s− u)G̃(u)dΛ(u), t, s ≥ 0. (3.5)

There is one special case which is worth mentioning. Suppose that x ∈ R, and ϕ(x) = x

for all x ∈ R. In addition, if the conditional mean of shot noises is zero, that is, G̃1(u) =∫
R xdFu(x) = 0 for each u ≥ 0, then the fluid limit X̄(t) in (2.8) and the limit process X̂1

in Theorem 2.2 (see also equation (2.11)) both vanish. Thus, the limit for X̂n only has

one component X̂2, which is a continuous Gaussian process and has mean 0 and covariance
function

R̂2(t, s) =

∫
[0,t∧s]

H̃(t− u)H̃(s− u)G̃2(u)dΛ(u), t, s ≥ 0,

with G̃2(u) =
∫
R x

2dFu(x). It is somewhat surprising that in this special case, the stochastic

variability in the arrival process vanishes, and the variability in the limit for the process X̂
is only affected by the cumulative arrival rate function Λ(t) from the arrival process.

We next discuss several special models.

3.1.1. Non-stationary compound process. Consider the following special case of the multi-
plicative model:

X(t) =

A(t)∑
i=1

Zi(τi), t ≥ 0, (3.6)

where Zi’s are nonnegative as described above. Here H̃(t) ≡ 1, t ∈ R+ and ϕ(x) = x for each
x ∈ R+. This process can be regarded as a general non-stationary compound process with
both non-stationarity in the arrival process and the sequence of random variables {Zi(τi)}.
As a consequence of Theorem 2.2, we obtain the following theorem for the non-stationary
compound processes.

Theorem 3.1. Under Assumption 1 and assuming that for each t ≥ 0, the c.d.f. Ft(·) is
continuous and has finite variance, (2.7) in the FWLLN holds with the limit X̄ given by

X̄(t) :=

∫
[0,t]

G̃1(u)dΛ(u), t ≥ 0, (3.7)

and (2.10) in the FCLT holds with the limit X̂ = X̂1 + X̂2 where X̂1 and X̂2 are independent,

X̂1 is defined in (3.3) with H̃(·) ≡ 1 and has continuous sample paths, and

X̂2(t) = B2

(∫
[0,t]

G̃(u)dΛ(u)

)
, t ≥ 0, (3.8)

for a standard Brownian motion B2, with G̃1(u) and G̃(u) being the conditional mean and
variance of {Zi(τi)}:

G̃1(u) =

∫
[0,∞)

xdFu(x), G̃2(u) =

∫
[0,∞)

x2dFu(x), G̃(u) = G̃2(u)− G̃1(u)2, u ≥ 0.
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If Â is a Gaussian process with mean 0 and covariance function R̂a(s, t), then X̂1 is a
continuous Gaussian process with mean 0 and covariance function

R̂1(t, s) =

∫
[0,t]

∫
[0,s]

G̃1(u)G̃1(v)dR̂a(u, v), t, s ≥ 0. (3.9)

In the special case that Â(t) = caB(Λ(t)) is a time-changed Brownian motion, the covariance
function becomes

R̂1(t, s) = c2
a

∫
[0,t∧s]

G̃1(u)2dΛ(u), t, s ≥ 0. (3.10)

Observe that with i.i.d. random variables {Zi}, under Assumption 1, we obtain the FCLT

with X̂2 being a time-changed Brownian motion, that is, X̂2(t) = σZB2(Λ(t)) for each t ≥ 0,

where B2 is a standard Brownian motion, independent of X̂1, and σ2
Z = V ar(Z1). The

covariance function for X̂2 in (3.8)

R̂2(t, s) =

∫
[0,t∧s]

G̃(u)dΛ(u), (3.11)

is a natural generalization of that in the i.i.d. case.

3.1.2. Application in insurance risk theory. The simple multiplicative model has been used
in insurance risk theory (see, e.g., [27]). Here x ∈ R+ since Zi represents the pay-offs of

insurance claims, and ϕ(x) = x for all x ∈ R+. Specific examples for the function H̃ include:

(i) H̃(t) = 1− e−γt for some γ > 0. When x ∈ R+, this function is used to model delays
in insurance claim settlement, referring to situations in which the pay-off of each claim
decreases exponentially fast.

(ii) H̃(t) = tγ for some γ > 0. When x ∈ R+, the function H̃ is used to model the pay-off
of each claim that decreases polynomially fast.

When the arrival process has a Gaussian limit, the FCLT provides a Gaussian approxima-
tion for the shot noise process, which can be then used to approximate the corresponding
ruin probability. Recall that the ruin probability can be represented as the first-passage-
time (hitting time) of a simple functional of the shot noise process; see Section 4.2 in [27].
Although the first-passage-time (hitting time) of Gaussian processes is difficult to explicitly
characterize [7], numerical solutions can be easily obtained for the ruin probability by using
the Gaussian approximations. It is worth noting that in the conventional regime, functional
limit theorems are proved in [27, 28, 29] for Poisson shot noise processes, where the limit
processes are Brownian motion, α-stable process and fractional Brownian motion under the
appropriate assumptions upon the shot noises, respectively. See also Section 1.1 for relevant
discussions.

3.1.3. Application in physics. In [41], the multiplicative model is applied to study a damped
harmonic oscillator subject to a random force, where the random forces are given by i.i.d.
symmetric α-stable random variables (α ∈ (0, 2]). In the conventional scaling regime as
reviewed in Section 1.1, the diffusion-scaled shot noise process is shown to converge to a
stochastic integral with respect to a Lévy process. Here in the asymptotic regime with
high intensity, our results provide a new limit under the assumptions that the random
forces are conditionally independent with Gaussian distributions, having mean zero but the
variance depending on the time when the forces occur. In addition, the random forces can
be multidimensional.
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Specifically, suppose that the random forces have a conditional Gaussian distribution with
mean zero and covariance matrix Σt such that the density of Ft(x) is

ft(x) =
1√

(2π)k|Σt|
exp

(
− 1

2
xTΣ−1

t x

)
, x ∈ Rk (3.12)

for each t ≥ 0, where xT is the transpose of x ∈ Rk and |Σt| is the determinant of Σt. Then

the limit process X̂ in Theorem 2.2 has the covariance functions R̂1(t, s) and R̂2(t, s) in
(3.4) and (3.5), respectively, where

G̃1(u) =

∫
Rk

ϕ(x)fu(x)dx, G̃2(u) =

∫
Rk

ϕ(x)2fu(x)dx,

for each u ≥ 0, with ft(u) given in (3.12).

3.2. Queueing and work-input processes in non-stationary infinite-server queues.
Consider a non-stationary infinite-server queue with a time-varying arrival process An

as in Assumption 1 and service times {Zi} as described above, denoted as “Gt/Gt/∞”
[36]. The total queue length process Qn := {Qn(t) : t ≥ 0} and the work-input process
Wn := {Wn(t) : t ≥ 0} can be written as

Qn(t) =

An(t)∑
i=1

1(τni + Zi(τ
n
i ) > t), t ≥ 0, (3.13)

and

Wn(t) =

An(t)∑
i=1

Zi(τ
n
i )1(τni + Zi(τ

n
i ) > t), t ≥ 0. (3.14)

The work-input processes are studied in [30], as a general class of Poisson shot noise processes.
Functional limit theorems are proved under certain conditions, where the limit processes are
fractional Brownian motions. Our results are distinct in two aspects: first, the model itself
is new since the arrival process is more general, and non-stationarity lies in both arrival
and service processes, and second, the scaling is different, since we let the arrival rate or
intensity get large.

It is worth noting that the work-input process Wn is different from the remaining workload
process in the system at each time. The latter can be obtained from the two-parameter
process limits for the non-stationary infinite-server queueing model studied in [36]. The
remaining workload process is the integral of the two-parameter queueing process tracking
the residual service times with respect to the second time parameter.

For the queueing process Qn, the shot shape function

H(1)(t, x) = 1(t < x), x ∈ R+,

and for the work-input process Wn,

H(2)(t, x) = x1(t < x), x ∈ R+.

Since the queueing process Qn has been studied in [36], we focus on the work-input process
and its joint convergence with the queueing process. It is also worth noting that the queueing
process is recently studied in [22] under the conventional scaling regime. Assuming that the
interarrival and service times form a sequence of i.i.d. two-dimensional random vectors with
a general bivariate distribution and that the service time distributions are regularly varying,
they have proved the weak convergence of the queueing processes to a Gaussian process.



Non-Stationary Shot Noise Processes 13

We discuss the regularity conditions in Assumption 2. It is easy to see that for each
x ∈ R+, H(1)(t, x) and H(2)(t, x) are in D as a function of t, and they are nonnegative and

nonincreasing in t. For H(1)(t, x), we have

G
(1)
1 (t, u) = F cu(t− u), G

(1)
2 (t, u) = F cu(t− u), G̃(1)(t, u) = Fu(t− u)F cu(t− u),

and

Ǧ
(1)
1 (t, s, u) = Fu(s− u)− Fu(t− u), Ǧ

(1)
2 (t, s, u) = Fu(t− u)− Fu(s− u).

Thus, conditions (i) and (ii) in Assumption 2 are always satisfied without additional
assumptions on the distribution function Fu(·), and the condition in (2.5) becomes∫

[0,T ]
(Fu(t− u)− Fu(t− δ − u))dΛ(u)→ 0 as δ → 0,

for each T ≥ t ≥ 0. Since for each u ≥ 0, Fu(·) is continuous (see Assumption 2), the
integrand above converges to 0 as δ → 0. Thus, by the bounded convergence theorem,
condition (2.5) holds. Therefore, for the queueing process, we impose the same assumptions
on the arrival process and service times as those in [36]. In particular, we do not require
additional moment conditions on the service times, which is distinct from the work-input
process as shown below in (3.17).

For H(2)(t, x), we have

G
(2)
1 (t, u) =

∫
(t−u,∞)

xdFu(x), G
(2)
2 (t, u) =

∫
(t−u,∞)

x2dFu(x), (3.15)

G̃(2)(t, u) =

∫
(t−u,∞)

x2dFu(x)−
(∫

(t−u,∞)
xdFu(x)

)2
,

and

Ǧ
(2)
1 (t, s, u) = −

∫
(s−u,t−u]

xdFu(x), Ǧ
(2)
2 (t, s, u) =

∫
(s−u,t−u]

x2dFu(x).

The condition in (2.3) requires that

sup
0≤t≤T

V T
0

(∫
(t−·,∞)

xdF·(x)

)
<∞, (3.16)

while the condition in (2.4) requires that for each t ≥ 0,

sup
0≤u≤t

∫
(t−u,∞)

x2dFu(x) <∞. (3.17)

The condition in (2.5) requires that for each T ≥ t ≥ 0,∫
[0,T ]

∫
(t−δ−u,t−u]

x2dFu(x)dΛ(u)→ 0 as δ → 0, (3.18)

which always holds since Fu(·) is continuous for each u ≥ 0.

Let the fluid-scaled processes Q̄n := {Q̄n(t) : t ≥ 0} and W̄n := {W̄n(t) : t ≥ 0} be
defined by Q̄n(t) := n−1Qn(t) and W̄n(t) := n−1Wn(t) for t ≥ 0, respectively. Define the
deterministic functions

Q̄(t) :=

∫
[0,t]

F cu(t− u)dΛ(u), (3.19)

W̄ (t) :=

∫
[0,t]

G
(2)
1 (t, u)dΛ(u) =

∫
[0,t]

∫
(t−u,∞)

xdFu(x)dΛ(u), (3.20)
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for t ≥ 0 and G
(2)
1 (t, u) is given in (3.15). It is easy to check that Q̄(t) and W̄ (t) are

continuous functions. Let the diffusion-scaled processes Q̂n := {Q̂n(t) : t ≥ 0} and Ŵn :=

{Ŵn(t) : t ≥ 0} be defined by Q̂n(t) :=
√
n(Q̄n(t)− Q̄(t)) and Ŵn(t) :=

√
n(W̄n(t)− W̄ (t))

for t ≥ 0, respectively. By Theorem 2.3, we obtain the following theorem for the queueing
and work-input processes.

Theorem 3.2. Under Assumptions 1 and conditions in (3.16)–(3.18),

(Q̄n, W̄n)⇒ (Q̄, W̄ ) in (D2, J1) as n→∞,
where Q̄ and W̄ are defined in (3.19)–(3.20), and

(Q̂n, Ŵn)⇒ (Q̂, Ŵ ) in (D2, J1) as n→∞,

where the limits Q̂ = {Q̂(t) : t ≥ 0} and Ŵ = {Ŵ (t) : t ≥ 0} are continuous and can be

written as Q̂ = Q̂1 + Q̂2 and Ŵ = Ŵ1 + Ŵ2, Q̂1 and Q̂2 are independent, Ŵ1 and Ŵ2 are
independent, Q̂1 and Ŵ1 are defined by

Q̂1(t) = Â(t) +

∫
(0,t]

Â(u)dFu(t− u), t ≥ 0,

Ŵ1(t) = Â(t)G
(2)
1 (t, t)−

∫
(0,t]

Â(u)dG
(2)
1 (t, u), t ≥ 0,

and
(
Q̂2, Ŵ2

)
is a two-dimensional Gaussian process with mean 0 and covariance functions:

Cov(Q̂2(t), Q̂2(s)) =

∫
[0,t∧s]

(
F cu(t ∧ s− u)− F cu(t− u)F cu(s− u)

)
dΛ(u),

Cov(Ŵ2(t), Ŵ2(s)) =

∫
[0,t∧s]

(
G

(2)
2 (t ∨ s, u)−G(2)

1 (t, u)G
(2)
1 (s, u)

)
dΛ(u),

Cov(Q̂2(t), Ŵ2(s)) =

∫
[0,t∧s]

(
G

(2)
1 (t ∨ s, u)− F cu(t− u)G

(2)
1 (s, u)

)
dΛ(u),

for t, s ≥ 0, where G
(2)
1 and G

(2)
2 are defined in (3.15).

It is evident that G
(1)
1 (·, u) ∈ C and G

(2)
1 (·, u) ∈ C, and thus, by Lemma 6.1, Q̂1 and Ŵ1

are continuous. If Â is a Gaussian process with mean 0 and covariance function R̂a(s, t),

then
(
Q̂1, Ŵ1

)
is a two-dimensional continuous Gaussian process with mean 0 and covariance

functions: for t, s ≥ 0,

Cov(Q̂1(t), Q̂1(s)) =

∫
[0,t]

∫
[0,s]

F cu(t− u)F cv (s− v)dR̂a(u, v)

Cov(Ŵ1(t), Ŵ1(s)) =

∫
[0,t]

∫
[0,s]

(
G

(2)
1 (t, u)G

(2)
1 (s, v)

)
dR̂a(u, v)

Cov(Q̂1(t), Ŵ1(s)) =

∫
[0,t]

∫
[0,s]

(
F cu(t− u)G

(2)
1 (s, v)

)
dR̂a(u, v).

In the special case that Â(t) = caB(Λ(t)) is a time-changed Brownian motion, these
covariance functions become

Cov(Q̂1(t), Q̂1(s)) = c2
a

∫
[0,t∧s]

F cu(t− u)F cu(s− u)dΛ(u),



Non-Stationary Shot Noise Processes 15

Cov(Ŵ1(t), Ŵ1(s)) = c2
a

∫
[0,t∧s]

(
G

(2)
1 (t, u)G

(2)
1 (s, u)

)
dΛ(u),

Cov(Q̂1(t), Ŵ1(s)) = c2
a

∫
[0,t∧s]

(
F cu(t− u)G

(2)
1 (s, u)

)
dΛ(u),

for each t, s ≥ 0.

4. Preliminaries

In this section we provide some preliminaries for the proof of Theorem 2.2. We first give
a representation for the process X̂n, which follows from simple calculations.

Lemma 4.1. The process X̂n defined in (2.9) can be written as X̂n = X̂n
1 + X̂n

2 , where the

processes X̂n
1 and X̂n

2 are given by

X̂n
1 (t) :=

∫
(0,t]

G1(t, u)dÂn(u)

= Ân(t)G1(t, t)−
∫

(0,t]
Ân(u−)dG1(t, u), t ≥ 0, (4.1)

where Ân(u−) denotes the left limit of Ân at time u, and

X̂n
2 (t) :=

1√
n

An(t)∑
i=1

(
H(t− τni , Zi(τni ))−G1(t, τni )

)
, t ≥ 0. (4.2)

By the covariance function R̂2(t, s) of X̂2 in (2.12), we obtain the following moment

properties for the increments of the limit process X̂2 (their proofs can be found in Appendix).

Lemma 4.2. For each 0 ≤ s ≤ t,

E
[∣∣X̂2(s)− X̂2(t)

∣∣2] =

∫
(s,t]

G̃(t, u)dΛ(u) +

∫
[0,s]

G̃(t, s, u)dΛ(u), (4.3)

and

E
[∣∣X̂2(s)− X̂2(t)

∣∣4] = 3

(∫
(s,t]

G̃(t, u)dΛ(u) +

∫
[0,s]

G̃(t, s, u)dΛ(u)

)2

. (4.4)

Similarly, for the prelimit process X̂n
2 , we have the following moment properties for its

increments. The proof is given in the Appendix.

Lemma 4.3. For each 0 ≤ s ≤ t and all n,

E
[∣∣X̂n

2 (s)− X̂n
2 (t)

∣∣2] = E

[ ∫
(s,t]

G̃(t, u)dĀn(u) +

∫
(0,s]

G̃(t, s, u)dĀn(u)

]
, (4.5)

and

E
[∣∣X̂n

2 (s)− X̂n
2 (t)

∣∣4] = 3E

[(∫
(s,t]

G̃(t, u)dĀn(u) +

∫
(0,s]

G̃(t, s, u)dĀn(u)

)2]

+
1

n2
E

[ An(s)∑
i=An(r)+1

Ğ(s, τni )

]
− 3

n2
E

[ An(s)∑
i=An(r)+1

G̃(s, τni )2

]
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+
1

n2
E

[An(r)∑
i=1

Ğ(s, r, τni )

]
− 3

n2
E

[An(s)∑
i=1

G̃(s, r, τni )2

]
. (4.6)

Fix T > 0. For any 0 ≤ s ≤ t ≤ T , define a nonnegative function V : R+ × R+ → R+ by

V (s, t) := C̃
(
Λ(t)− Λ(s)

)
+

∫
[0,T ]

Ǧ2(t, s, u)dΛ(u)

= C̃
(
Λ(t)− Λ(s)

)
+

∫
[0,T ]

∫
Rk

(
H(t− u, x)−H(s− u, x)

)2
dFu(x)dΛ(u), (4.7)

where C̃ = sup0≤t,u≤T G̃(t, u) < ∞. To see that C̃ is indeed finite, recall that G̃(t, u) =

G2(t, u)−G2
1(t, u) and H(t, x) is assumed monotone in t for each x. Then,

sup
0≤t,u≤T

G̃(t, u) ≤ sup
0≤t,u≤T

G2(t, u) ≤ sup
0≤u≤T

{G2(T, u) ∨G2(0, u)}. (4.8)

Consider sup0≤u≤T G2(T, u) first. We have

sup
0≤u≤T

G2(T, u) = sup
0≤u≤T

{G̃(T, u) +G2
1(T, u)} ≤ sup

0≤u≤T
G̃(T, u) + sup

0≤u≤T
G2

1(T, u).

The first term is finite by Assumption 2 (ii). By Assumption 2 (i), we have sup0≤t,u≤T |G1(t, u)| <
∞, which implies sup0≤t,u≤T G

2
1(t, u) < ∞, and thus, sup0≤u≤T G2(T, u) < ∞. A similar

argument applies to sup0≤u≤T G2(0, u). Thus, we have shown that C̃ is finite.

Remark 4.1. Note that the function V (s, t) has the following properties:

(i) V (t, t) = 0 for each t ∈ [0, T ];
(ii) V (s, t) is nondecreasing in t for each s and nonincreasing in s for each t, and thus

it is evident that V (s, t) ≤ V (s, T ) ≤ V (0, T ) for each s, t ≥ 0;
(iii) V (s, t) is continuous in both s and t. To see this, for any δ1, δ2 ∈ R,

V (s, t)− V (s− δ1, t− δ2)

= C̃
(
Λ(t)− Λ(t− δ2)− (Λ(s)− Λ(s− δ1))

)
+

∫
[0,T ]

∫
Rk

(
H(t− u, x)−H(s− u, x)

)2
dFu(x)dΛ(u)

−
∫

[0,T ]

∫
Rk

(
H(t− δ2 − u, x)−H(s− δ1 − u, x)

)2
dFu(x)dΛ(u)

= C̃
(
Λ(t)− Λ(t− δ2)− (Λ(s)− Λ(s− δ1))

)
+

∫
[0,T ]

Ǧ2(t, t− δ2, u)dΛ(u) +

∫
[0,T ]

Ǧ2(s, s− δ1, u)dΛ(u)

+ 2

∫
[0,T ]

∫
Rk

[H(t− u, x)−H(t− δ2 − u, x)]

× [H(t− δ2 − u, x)−H(s− u, x)]dFu(x)dΛ(u)

− 2

∫
[0,T ]

∫
Rk

[H(s− u, x)−H(s− δ1 − u, x)]

× [H(t− u, x)−H(s− δ1 − u, x)]dFu(x)dΛ(u). (4.9)
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Note that the last two terms in (4.9) are bounded by

2

(∫
[0,T ]

Ǧ2(t, t− δ2, u)dΛ(u)

)1/2(∫
[0,T ]

Ǧ2(t− δ2, s, u)dΛ(u)

)1/2

,

and

2

(∫
[0,T ]

Ǧ2(s, s− δ1, u)dΛ(u)

)1/2(∫
[0,T ]

Ǧ2(t, s− δ1, u)dΛ(u)

)1/2

,

respectively, due to Cauchy-Schwarz inequality. By the continuity of Λ and As-
sumption 2 (iii) that for each T ≥ t ≥ 0, limδ→0

∫
[0,T ] Ǧ2(t, t− δ, u)dΛ(u) = 0, it is

easy to verify that each term in (4.9) converges to 0 as |δ1| + |δ2| → 0. Now the
continuity of V has been proved.

However, the function V (s, t) cannot be regarded as a measure defined on [0, T ] due to

the nonlinear integrand in (4.7), and cannot be written as the difference Ṽ (t) − Ṽ (s) for

some nondecreasing and continuous function Ṽ on R+. Thus, the standard approach to
prove weak convergence in D (e.g., Theorem 13.5 in [5]) and the existence of a stochastic
process in the space D given its consistent finite-dimensional distributions (e.g., Theorem

13.6 in [5]) cannot be applied directly to the proof of the weak convergence X̂n
2 ⇒ X̂2 in

(D, J1) as n→∞. This motivates us to prove new maximal inequalities that are necessary
to prove the weak convergence in the next section. 2

We now state the probability bound for the increments of the limit process X̂2.

Lemma 4.4. For 0 ≤ r ≤ s ≤ t ≤ T and any ε > 0,

P
(∣∣X̂2(r)− X̂2(s)

∣∣ ∧ ∣∣X̂2(s)− X̂2(t)
∣∣ ≥ ε) ≤ 3

ε4
V (r, s)V (s, t). (4.10)

Proof. We have

P
(∣∣X̂2(r)− X̂2(s)

∣∣ ∧ ∣∣X̂2(s)− X̂2(t)
∣∣ ≥ ε)

≤ 1

ε4
E
[∣∣X̂2(r)− X̂2(s)

∣∣2 ∣∣X̂2(s)− X̂2(t)
∣∣2]

≤ 1

ε4

(
E
[∣∣X̂2(r)− X̂2(s)

∣∣4])1/2(
E
[∣∣X̂2(s)− X̂2(t)

∣∣4])1/2

=
3

ε4

(∫
(r,s]

G̃(s, u)dΛ(u) +

∫
[0,r]

G̃(s, r, u)dΛ(u)

)
×
(∫

(s,t]
G̃(t, u)dΛ(u) +

∫
[0,s]

G̃(t, s, u)dΛ(u)

)
≤ 3

ε4
V (r, s)V (s, t),

where the equality follows from Lemma 4.2. �

Similarly, we obtain the following probability bound for the increments of the prelimit
process X̂n

2 , whose proof is given in the Appendix.

Lemma 4.5. For 0 ≤ r ≤ s ≤ t ≤ T , all n ≥ 1, and any ε > 0,

P
(∣∣X̂n

2 (r)− X̂n
2 (s)

∣∣ ∧ ∣∣X̂n
2 (s)− X̂n

2 (t)
∣∣ > ε

)
≤ C

ε4
V (r, s)V (s, t), (4.11)
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where C > 0 is a constant.

Remark 4.2. Note that even when the sequence {Zi} is i.i.d., the function V (s, t) cannot
be regarded as a measure defined on [0, T ], unless certain regularity conditions are imposed
on the function H (see, e.g., Theorem 4.3 in [19]). For the exposition convenience in this
remark, let us assume that H(t, x) is nondecreasing in t for each x ∈ Rk. It is possible to

bound the function V (s, t) by another function V̆ which can be regarded as a measure on
[0, T ], where

V̆ (s, t) := C̃
(
Λ(t)− Λ(s)

)
(4.12)

+

∫
[0,T ]

∫
Rk

(
H(T, x)−H(0, x)

)(
H(t− u, x)−H(s− u, x)

)
dF (x)dΛ(u).

This function V̆ (s, t) can be written as the difference Ṽ (t)− Ṽ (s) for the nondecreasing and

continuous function Ṽ on R+, where

Ṽ (t) := C̃Λ(t) +

∫
[0,T ]

∫
Rk

(
H(T, x)−H(0, x)

)
H(t− u, x)dF (x)dΛ(u) (4.13)

= C̃Λ(t) +

∫
Rk

(
H(T, x)−H(0, x)

)(∫
[0,T ]

H(t− u, x)dΛ(u)

)
dF (x), t ≥ 0.

It is easy to check that the function Ṽ (t) is continuous without imposing any regularity
conditions as remarked in Section 2.2. Thus, in this case, the weak convergence criterion in
Theorem 13.5 of [5] can be applied with this bounding function V̆ (s, t). See more discussions
on this approach in Section 5.

Similarly, in the special case of the simple multiplicative model in Section 3.1, we also
observe that the function V (s, t) cannot be regarded as a measure defined on [0, T ], but we
can bound the function V (s, t) by a function V̌ (s, t) which can be regarded as measure on
[0, T ], where

V̌ (s, t) := C̃
(
Λ(t)− Λ(s)

)
+
(
H̃(T )− H̃(0)

) ∫
[0,T ]

(
H̃(t− u)− H̃(s− u)

)
G̃2(u)dΛ(u),

where G̃2(u) is given in (3.1). Here we assume H̃ is nondecreasing for the convenience of
exposition. As above, we can also apply Theorem 13.5 of [5] directly without imposing
additional regularity conditions other than those in (3.1) and (3.2).

However, for our general non-stationary model, this bounding approach will give us
the corresponding functions V̆ (s, t) and Ṽ (t) in (4.12) and (4.13), respectively, where F is

replaced by Fu. The continuity of Ṽ (t) is key in applying Theorem 13.5 of [5], which will
require that

lim
δ↓0

∫
[0,T ]

∫
Rk

(
H(T, x)−H(0, x)

)(
H(t− u, x)−H(t− δ − u, x)

)
dFu(x)dΛ(u) = 0.

Instead of making this assumption, we choose to work with the function V (s, t) in (4.7)
directly, while assuming the regularity condition (iii) in Assumption 2 (the continuity
condition only requires (2.5)). Although under Assumption 2 we cannot apply Theorem
13.5 of [5], we are able to prove the weak convergence by providing new maximal inequalities
in the next section. 2
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5. A General Maximal Inequality and Criterion of Existence

A standard approach to prove weak convergence of stochastic processes Xn ⇒ X in
(D([0, T ],R), J1) is stated as Theorem 13.5 in [5], which requires three conditions:

(i) convergence of finite-dimensional distributions, that is, (Xn(t1), . . . , Xn(tk)) ⇒
(X(t1), . . . , X(tk)) for continuity points {ti : 1 ≤ i ≤ k} of X;

(ii) X(T )−X(T − δ)⇒ 0 in R as δ → 0;
(iii) for 0 ≤ r ≤ s ≤ t ≤ T , n ≥ 1 and ε > 0,

P
(
|Xn(s)−Xn(r)| ∧ |Xn(t)−Xn(s)| ≥ ε

)
≤ 1

ε4β
(F (t)− F (r))2α, (5.1)

where β ≥ 0 and α > 1/2, and F is a nondecreasing and continuous function on
[0, T ].

The proof of this criterion relies on the maximal inequalities in Theorems 10.3 and 10.4
in [5]. Specifically, the proof requires verifying the third condition in Theorem 13.3 in [5],
that is, for ε > 0 and η > 0, there exists a δ ∈ (0, 1) and n0 such that

P (w′′(Xn, δ) ≥ ε) ≤ η, n ≥ n0, (5.2)

where w′′(x, δ) is a modulus of continuity of a function x ∈ D defined by

w′′(x, δ) := sup
t1≤t≤t2, t2−t1≤δ

{|x(t)− x(t1)| ∧ |x(t2)− x(t)|}, (5.3)

with the supremum over all triples t1, t, t2 in [0, T ] satisfying the constraints. To verify the
condition in (5.2), the maximal inequalities in Theorems 10.3 and 10.4 of [5] play a key role.
They provide conditions under which the probability bound on the increments as in (5.1)
will imply the probability bound on the modulus of continuity as in (5.2).

We first review Theorem 10.3 of [5]. If T is a Borel subset of [0, T ] and µ is a finite
measure on [0, T ] such that

P
(
|X(s)−X(r)| ∧ |X(t)−X(s)| ≥ ε

)
≤ 1

ε4β
(
µ(T ∩ (r, t])

)2α
, (5.4)

for 0 ≤ r ≤ s ≤ t ≤ T , and for ε > 0, α > 1/2, and β ≥ 0, then

P

(
sup

r≤s≤t, r,s,t∈T
|X(s)−X(r)| ∧ |X(t)−X(s)| ≥ ε

)
≤ K

ε4β
(µ(T ))2α, (5.5)

for ε > 0 and K being a constant depending only on α and β. Theorem 10.4 in [5] provides
a further inequality which restricts the time intervals to be within δ distance. That is,

P

(
sup

r≤s≤t,t−r≤δ, r,s,t∈T
|X(s)−X(r)| ∧ |X(t)−X(s)| ≥ ε

)
≤ K

ε4β
µ(T ) sup

0≤t≤T−2δ

(
µ(T ∩ [t, t+ 2δ])

)2α−1
, (5.6)

for ε > 0 and K being a constant depending only on α and β.

A critical condition in these maximal inequalities requires that µ be a finite measure
on [0, T ], and as a consequence, that results in the probability bound in (5.1) involving a
nondecreasing and continuous function F (by simply taking µ(s, t] = F (t)−F (s)). However,

as we have observed in Lemmas 4.4–4.5, the probability bounds for X̂2 and X̂n
2 do not

provide us a finite measure to work with. We will next prove new maximal inequalities by
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relaxing the finite measure condition. We give a definition of a set function below that will
be used to replace the finite measure.

Definition 5.1. Let µ be a set function from the Borel subset of R+ into R+ ∪ {∞} such
that

(i) µ is nonnegative and µ(∅) = 0;
(ii) µ is monotone, that is, if A ⊆ B ⊂ R+, then µ(A) ≤ µ(B);
(iii) µ is superadditive, that is, for any disjoint Borel sets A and B, µ(A) + µ(B) ≤

µ(A ∪B).

By definition, the monotonicity implies that µ(s, t] ≤ µ(0, T ] for any 0 ≤ s ≤ t ≤ T , and
the superadditivity implies that µ(s, t] ≤ µ(0, t]−µ(0, s], for any 0 ≤ s ≤ t ≤ T . It is evident
that if µ is a measure, then the conditions (i)–(iii) are always satisfied.

Remark 5.1. The function V (s, t) defined in (4.7) naturally induces a set function ν
satisfying the conditions in Definition 5.1. More precisely, for any Borel set A ⊂ [0, T ],
define

ν(A) := sup {V (s, t) : (s, t] ⊂ A} . (5.7)

It is easy to check that ν satisfies all the conditions in Definition 5.1 and ν((s, t]) = V (s, t)
for 0 ≤ s ≤ t ≤ T . In particular, the condition (iii) is satisfied because of the inequality that∑n

i=1 x
2
i ≤

(∑n
i=1 xi

)2
for each n ≥ 1 if all elements of {xi : 1 ≤ i ≤ n} have the same sign.

Note that V (s, t) is continuous in both s and t, while the continuity condition for the set
function µ is not required in Theorems 5.1 and 5.2.

Let T ⊂ [0, T ] be a Borel set and {X(t) : t ∈ T } is a stochastic process on T . We assume
that X(t) is right-continuous in the sense that if for k ≥ 1, tk ∈ T such that tk ↓ t ∈ T
as k →∞, we have X(tk)→ X(t) a.s. as k →∞. The following two theorems generalize
Theorems 10.3 and 10.4 of [5], respectively. The proofs of Theorems 5.1–5.3 are given in
Section 7, which are adapted from those in [5].

Theorem 5.1. Suppose that α > 1/2 and β ≥ 0 and that µ is a finite set function in
Definition 5.1 such that for any r, s, t ∈ T with r ≤ s ≤ t and ε > 0,

P
(
|X(r)−X(s)| ∧ |X(s)−X(t)| ≥ ε

)
≤ C0

ε4β
(
µ
(
T ∩ (r, t]

))2α
, (5.8)

where C0 is a positive constant. Then

P

(
sup

r≤s≤t, r,s,t∈T
|X(r)−X(s)| ∧ |X(s)−X(t)| ≥ ε

)
≤ C1

ε4β
(
µ(T )

)2α
, (5.9)

where C1 is a positive constant that depends only on α, β and C0.

Theorem 5.2. Suppose that α > 1/2 and β ≥ 0, and for any r ≤ s ≤ t with t − r < 2δ,
δ > 0, r, s, t ∈ T and ε > 0,

P
(
|X(r)−X(s)| ∧ |X(s)−X(t)| ≥ ε

)
≤ C0

ε4β
(
µ
(
T ∩ (r, t]

))2α
, (5.10)

where µ is a finite set function in Definition 5.1. Then

P

(
sup

r<s<t, r,s,t∈T
t−r≤2δ

|X(r)−X(s)| ∧ |X(s)−X(t)| ≥ ε
)
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≤ 2C1

ε4β
µ(T ) sup

0≤t≤T−2δ

(
µ
(
T ∩ (t, t+ 2δ]

))2α−1
. (5.11)

Similarly, a standard criterion to prove the existence of a stochastic process with sample
paths in D given its finite dimensional distributions is given in Theorem 13.6 in [5]. That
criterion also requires a probability bound in the same flavor as (5.1), and its proof relies
on the same maximal inequalities in Theorems 10.3 and 10.4 of [5]. For our purpose, to

prove the existence of the Gaussian process X̂2 in the space D (in fact in C, see Lemma
6.3) given its finite dimensional distributions, the probability bound for the increments of

X̂2 in Lemma 4.4 does not satisfy the condition in Theorem 13.6 in [5]. Therefore, we also
generalize Theorem 13.6 in [5] by relaxing the condition on the probability bound for the
increments of the process. We now state the new criterion of existence in the following
theorem.

Theorem 5.3. There exists a random element X in D([0, T ],R) with finite-dimensional
distributions πt1,··· ,tk for any 0 ≤ t1 < · · · < tk ≤ T , that is, πt1,··· ,tk(x1, . . . , xk) = P (X(t1) ≤
x1, . . . , X(tk) ≤ xk) for xi ∈ R, i = 1, ..., k, if the following conditions are satisfied:

(i) the finite dimensional distributions πt1,··· ,tk are consistent, satisfying the conditions
of Kolmogorov’s existence theorem;

(ii) for any 0 ≤ r ≤ s ≤ t ≤ T , β ≥ 0, α > 1/2 and ε > 0,

P
(
|X(r)−X(s)| ∧ |X(s)−X(t)| ≥ ε

)
≤ C2

ε4β
(
µ(r, t]

)2α
, (5.12)

where C2 is a positive constant, µ is a finite set function in Definition 5.1 and
µ(0, t] is continuous in t;

(iii) for any ε > 0 and t ∈ [0, T ),

lim
δ↓0

P
(
|X(t)−X(t+ δ)| > ε

)
= 0. (5.13)

6. Proof of Theorems 2.1 and 2.2

In this section we prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1. We first prove the continuity of X̄. For each t ≥ 0, let tk ≥ 0 be a
sequence such that limk→∞ tk = t. We have

X̄(tk)− X̄(t) =

∫
[0,tk]

G1(tk, u)dΛ(u)−
∫

[0,t]
G1(t, u)dΛ(u)

=

∫
[0,t]

[G1(tk, u)−G1(t, u)]dΛ(u) +

∫
(t,tk]

G1(tk, u)dΛ(u)

=

∫
[0,t]

∫
Rk

[H(tk − u, x)−H(t− u, x)]dFu(x)dΛ(u)

+

∫
(t,tk]

∫
Rk

H(tk − u, x)dFu(x)dΛ(u). (6.1)

By applying Cauchy-Schwarz inequality twice, the first term on the right hand side of (6.1)
is bounded by (

Λ(t)

∫
[0,t]

Ǧ2(t, tk, u)dΛ(u)

)1/2

. (6.2)
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Under condition (2.5), it is easy to see that the quantity in (6.2) vanishes as k →∞ (see
also Remark 2.1). For the second term in (6.1), Assumption 2 (i) implies that

∫
Rk H(tk −

u, x)dFu(x) has the same upper bound (and is thus integrable) for all k. By the continuity
of Λ and the absolute continuity of Lebesgue-Stieltjes integration, the second term also
converges to 0 as k →∞. Therefore, we conclude that X̄ is continuous.

Since X̄ is deterministic and continuous, to show that X̄n ⇒ X̄ in (D, J1) as n→∞, it
suffices to show that for each T > 0 and ε > 0,

lim
n→∞

P

(
sup
t∈[0,T ]

|X̄n(t)− X̄(t)| > ε

)
= 0. (6.3)

By the definitions of X̄n and X̄, we have

|X̄n(t)− X̄(t)|

=

∣∣∣∣ 1n
An(t)∑
i=1

H(t− τni , Zi(τni ))−
∫

[0,t]
G1(t, u)dΛ(u)

∣∣∣∣
=

∣∣∣∣ 1n
An(t)∑
i=1

(H(t− τni , Zi(τni ))−G1(t, τni )) +

∫
(0,t]

G1(t, u)d(An(u)− Λ(u))

∣∣∣∣
≤

∣∣X̄n
2 (t)

∣∣+
∣∣Ān(t)− Λ(t)

∣∣|G1(t, t)|+
∣∣∣∣ ∫

(0,t]
(Ān(u)− Λ(u))dG1(t, u)

∣∣∣∣, (6.4)

where X̄n
2 := 1√

n
X̂n

2 for X̂n
2 defined in (4.2).

Recall that Ān ⇒ Λ in (D, J1) in (2.2) and Λ ∈ C, we have that for each T > 0 and ε > 0,

lim
n→∞

P

(
sup
t∈[0,T ]

∣∣Ān(t)− Λ(t)
∣∣ > ε

)
= 0. (6.5)

For the second and third terms in (6.4), equation (6.5) together with the facts that
supt∈[0,T ]G1(t, t) and supt∈[0,T ] V

T
0 (G1(t, ·)) are finite (recall (2.3)) implies that for ε > 0

lim
n→∞

P

(
sup
t∈[0,T ]

∣∣Ān(t)− Λ(t)
∣∣|G1(t, t)| > ε

)
= 0,

and

lim
n→∞

P

(
sup
t∈[0,T ]

∣∣∣∣ ∫
(0,t]

(Ān(u)− Λ(u))dG1(t, u)

∣∣∣∣ > ε

)
= 0.

The proof now reduces to show that for ε > 0

lim
n→∞

P

(
sup
t∈[0,T ]

∣∣X̄n
2 (t)

∣∣ > ε

)
= 0, (6.6)

Since for any 0 ≤ t ≤ T , |X̄n
2 (t)| ≤ |X̄n

2 (T ) − X̄n
2 (t)| + |X̄n

2 (T )| and |X̄n
2 (t)| ≤ |X̄n

2 (t)| +
|X̄n

2 (T )|, we have

|X̄n
2 (t)| ≤ |X̄n

2 (t)| ∧ |X̄n
2 (T )− X̄n

2 (t)|+ |X̄n
2 (T )|.

Thus, to show (6.6), it suffices to prove that

lim
n→∞

P

(
sup
t∈[0,T ]

∣∣X̄n
2 (t)

∣∣ ∧ ∣∣X̄n
2 (T )− X̄n

2 (t)
∣∣ > ε

)
= 0, (6.7)
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and
lim
n→∞

P
(∣∣X̄n

2 (T )
∣∣ > ε

)
= 0. (6.8)

To show (6.7), recall Remark 5.1 that the function V in (4.7) induces a finite set function ν

such that ν((s, t]) = V (s, t). By Lemma 4.5, condition (5.8) holds for X̂n
2 (with α = β = 1,

T = [0, T ] and ε being replaced by
√
nε), that is,

P
(∣∣X̂n

2 (r)− X̂n
2 (s)

∣∣ ∧ ∣∣X̂n
2 (s)− X̂n

2 (t)
∣∣ > √nε) ≤ Ĉ0

n2ε4
V (r, s)V (s, t),

for some constant Ĉ0 > 0. Thus, by Theorem 5.1, we obtain that as n→∞,

P

(
sup

0≤r<s<t≤T

∣∣X̂n
2 (r)− X̂n

2 (s)
∣∣ ∧ ∣∣X̂n

2 (s)− X̂n
2 (t)

∣∣ ≥ √nε) ≤ Ĉ ′0
n2ε4

V 2(0, T )→ 0,

for some constant Ĉ ′0 > 0, which further implies (6.7) (by taking r = 0, s = t and t = T ).
To prove (6.8), first note that by (6.5), there exists a large constant K > 2Λ(T ) such that

P
(
Ān(T ) > K

)
→ 0 as n→∞. We then write

P
(∣∣X̄n

2 (T )
∣∣ > ε

)
≤ P

(
Ān(T ) > K

)
+ P

(
1(Ān(T ) ≤ K)

∣∣X̄n
2 (T )

∣∣ > ε
)
.

The second term on the right hand side is upper bounded by

1

nε2
E
[
1(Ān(T ) ≤ K)

∣∣X̂n
2 (T )

∣∣2]
=

1

nε2
E

[
1(Ān(T ) ≤ K)

∫
(0,T ]

G̃(T, u)dĀn(u)

]
≤ K

nε2
sup

0≤u≤T
G̃(T, u)→ 0 as n→∞,

where the equality follows from (4.5). Note that sup0≤u≤T G̃(T, u) < +∞ (see (2.4)). Thus,
we have shown that (6.8) holds, which completes the proof of the theorem. �

For the convergence of X̂n
1 , we need the following lemma, whose proof is in the Appendix.

Lemma 6.1. Define the mapping ψ on D: for z ∈ D,

ψ(z)(t) := z(t)G1(t, t)−
∫

(0,t]
z(u−)dG1(t, u), t ≥ 0. (6.9)

Then the following hold:

(i) For any z ∈ D, ψ(z) ∈ D;
(ii) If z ∈ C and G1(·, u) ∈ C for each u ≥ 0, then ψ(z) ∈ C;
(iii) If zn ∈ D for each n ∈ N and z ∈ C satisfy zn → z in (D, J1) as n → ∞, then

ψ(zn)→ ψ(z) in (D, J1) as n→∞.

Remark 6.1. The integral in (6.9) is understood as a Lebesgue-Stieltjes integral, since for
each t ≥ 0, G1(t, ·) is of bounded variation under Assumption 2 (i) and z ∈ D. Thus, the
mapping ψ is well-defined.

Lemma 6.2. Under Assumptions 1–2, X̂n
1 ⇒ X̂1 in (D, J1) as n → ∞, where X̂1 is as

given in Theorem 2.2.

Proof. The claim follows from (4.1) and Lemma 6.1, and applying the continuous mapping
theorem. �
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We next prove the convergence of the processes X̂n
2 . This proceeds in the following steps:

Step 1: The existence of the limit Gaussian process X̂2 with sample paths in C (Lemma
6.3).

Step 2: The convergence of finite dimensional distributions of X̂n
2 to those of X̂2 (Lemma

6.6).
Step 3: Verifying the convergence criterion with the modulus of continuity as in Theorem

13.3 of [5] and completing the proof (Lemma 6.7).

Lemma 6.3. The Gaussian process X̂2 with mean zero and covariance function in (2.12)
has continuous sample paths.

Proof. We first show that X̂2 ∈ D by verifying the conditions in Theorem 5.3. The finite-
dimensional distributions of X̂2 are Gaussian with the covariance function R̂2 in (2.12).
The consistency condition (i) is satisfied because of the Gaussian distributional property.
Condition (ii) is satisfied by Lemma 4.4. To check condition (iii), it suffices to show that for
all t ∈ [0, T ),

lim
δ↓0

E
[∣∣X̂2(t+ δ)− X̂2(t)

∣∣2] = 0.

By (4.3) in Lemma 4.2, this holds since H(·, x) ∈ D for all x ∈ Rk. Thus we have shown

that X̂2 ∈ D.
Finally, to show that the Gaussian process X̂2 ∈ C, given that X̂2 ∈ D, it suffices to show

that it is stochastically continuous (Theorem 1 in [16]). It is well known that a real-valued
Gaussian process is continuous in quadratic mean if and only if it is stochastically continuous.
Continuity in quadratic mean holds by (4.3) and (2.6) under Assumption 2 (iii). The proof
is now complete. �

To prove the convergence of the finite-dimensional distributions of X̂n
2 to those of X̂2, we

quote the following two lemmas in [10].

Lemma 6.4. Let z1, ..., zn and w1, ..., wn be complex numbers of modulus less than 1. Then∣∣∣∣ n∏
i=1

zi −
n∏
i=1

wi

∣∣∣∣ ≤ n∑
i=1

|zi − wi|.

Lemma 6.5. For x ∈ R,∣∣∣∣∣eix −
n∑

m=0

(ix)m

m!

∣∣∣∣∣ ≤ min

{
|x|n+1

(n+ 1)!
,
2|x|n

n!

}
.

In particular, if b is a complex number with |b| ≤ 1, then |eb − (1 + b)| ≤ |b|2.

Lemma 6.6. The finite-dimensional distributions of the processes X̂n
2 converge to those of

X̂2.

Proof. We need to show that the l-dimensional random variables(
X̂n

2 (tj), 1 ≤ j ≤ l
)
⇒
(
X̂2(tj), 1 ≤ j ≤ l

)
in Rl as n→∞, (6.10)

for any 0 ≤ t1 ≤ ... ≤ tl ≤ T and l ≥ 1. We first consider the case when l = 1 (removing
subscript 1 in t1 for brevity below).

Before proceeding to the proof, for each n ≥ 1, let the set Υn be the collection of
the trajectories of {An(t) : t ≥ 0} such that for each T ≥ 0, sup0≤t≤T |Ân(t)| ≤ n1/4
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and max1≤i≤An(T ) |τni+1 − τni | → 0 as n → ∞. It is evident that under Assumption 1,
P (Υn) = P (An ∈ Υn)→ 1 as n→∞ and An(t) increases without limit and is of order O(n)
on Υn.

Decompose X̂n
2 (t) as X̂n

2 (t) = X̂n
2 (t)1(An ∈ Υn) + X̂n

2 (t)1(An /∈ Υn) and observe that for
each ε > 0

P
(
|X̂n

2 (t)|1(An /∈ Υn) > ε
)
≤ P (An /∈ Υn) = 1− P (Υn)→ 0 as n→∞.

Thus, we obtain that X̂n
2 (t)1(An /∈ Υn) ⇒ 0 as n → ∞. It then suffices to show that

X̂n
2 (t)1(An ∈ Υn)⇒ X̂2(t) in R as n→∞.
By the continuity theorem (see, e.g., [10]), it suffices to show that the characteristic

function of X̂n
2 (t)1(An ∈ Υn), denoted by ϕnt (θ), converges pointwise to that of X̂2(t),

denoted by ϕt(θ), and ϕt(θ) is continuous at θ = 0. Recall the covariance function of X̂2

in (2.12). For each t ≥ 0, X̂2(t) is a normal random variable with mean zero and variance∫
[0,t] G̃(t, u)dΛ(u). Thus we have

ϕt(θ) = E
[

exp
(
iθX̂2(t)

)]
= exp

(
− θ2

2

∫
[0,t]

G̃(t, u)dΛ(u)

)
, (6.11)

and ϕt(θ) is continuous at θ = 0. For ϕnt (θ), let An(t) := σ(An(s) : 0 ≤ s ≤ t) ∨ N
where N is the collection of P -null sets. Recall the definition of X̂n

2 in (4.2) and denote
Ȟn
i (t) := H(t − τni , Zi(τni )) −

∫
Rk H(t − τni , x)dFτni (x) and Ǎn(t) := An(t)1(An ∈ Υn) for

brevity in the calculations below,

ϕnt (θ) = E
[

exp
(
iθX̂n

2 (t)1(An ∈ Υn)
)]

= E
[
E
[

exp
(
iθX̂n

2 (t)1(An ∈ Υn)
) ∣∣ An(t)

]]
= E

[
E

[
exp

(
iθ

1√
n

An(t)∑
i=1

Ȟn
i (t)1(An ∈ Υn)

)∣∣∣∣An(t)

]]

= E

[
E

[
exp

(
iθ

1√
n

Ǎn(t)∑
i=1

Ȟn
i (t)

)∣∣∣∣An(t)

]]

= E

[
E

[ Ǎn(t)∏
i=1

exp

(
iθ

1√
n
Ȟn
i (t)

)∣∣∣∣An(t)

]]

= E

[ Ǎn(t)∏
i=1

E

[
exp

(
iθ

1√
n
Ȟn
i (t)

)∣∣∣∣An(t)

]]

≤ E

[ Ǎn(t)∏
i=1

[
1− θ2

2n
G̃(t, τni ) +

θ2

3!n
min

{
θE[(Ȟn

i (t))3|An(t)]√
n

, 6G̃(t, τni )

}]]
,

where
∏0
i=1 xi := 1 for all xi ∈ R whenever Ǎn(t) = 0 and the last inequality follows from

the first part of Lemma 6.5. Notice that the minimum term above is smaller than 6G̃(t, τni )

and converges to 0 as n→∞, and thus it is of order o(1/n) when being multiplied by θ2

3n .
Therefore we can write

ϕnt (θ) = E

[ Ǎn(t)∏
i=1

[
1− θ2

2n
G̃(t, τni ) + o(n−1)

]]
.
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Thus, for large enough n (specified below), we have

|ϕnt (θ)− ϕt(θ)|

=

∣∣∣∣E[ Ǎ
n(t)∏
i=1

[
1− θ2

2n
G̃(t, τni ) + o(n−1)

]]
− exp

(
− θ2

2

∫
[0,t]

G̃(t, u)dΛ(u)

)∣∣∣∣
≤ E

[∣∣∣∣ Ǎ
n(t)∏
i=1

[
1− θ2

2n
G̃(t, τni ) + o(n−1)

]
−
Ǎn(t)∏
i=1

exp

(
− θ2

2n
G̃(t, τni )

)∣∣∣∣]

+

∣∣∣∣E
[

exp

(
−θ

2

2
1(An ∈ Υn)

∫
[0,t]

G̃(t, u)dĀn(u)

)]
− exp

(
−θ

2

2

∫
[0,t]

G̃(t, u)dΛ(u)

)∣∣∣∣
≤ E

[ Ǎn(t)∑
i=1

∣∣∣∣exp

(
− θ

2

2n
G̃(t, τni )

)
−
(

1− θ2

2n
G̃(t, τni )

)∣∣∣∣ ]+ E[o(1/n)Ǎn(t)]

+

∣∣∣∣∣E
[

exp

(
−θ

2

2
1(An ∈ Υn)

∫
[0,t]

G̃(t, u)dĀn(u)

)]
− exp

(
−θ

2

2

∫
[0,t]

G̃(t, u)dΛ(u)

)∣∣∣∣∣
≤ θ4

4n
E

[
1(An ∈ Υn)

∫
[0,t]

G̃2(t, u)dĀn(u)

]
+ o(1)

+

∣∣∣∣∣E
[

exp

(
−θ

2

2
1(An ∈ Υn)

∫
[0,t]

G̃(t, u)dĀn(u)

)]
− exp

(
−θ

2

2

∫
[0,t]

G̃(t, u)dΛ(u)

)∣∣∣∣∣
→ 0, as n→∞. (6.12)

Here the first inequality is by subtracting and adding the same term and the triangle
inequality. The second inequality follows from Lemma 6.4. The third inequality follows from
the definition of Ǎn(actually Υn) and the second part of Lemma 6.5 for large n such that

θ2

2n
max

1≤i≤An(t)
G̃(t, τni ) ≤ θ2

2n
sup

0≤u≤t
G̃(t, u) < 1.

Under Assumption 2 (ii), such a large n can always be found.
The final convergence to zero is implied by the facts that Ān ⇒ Λ in D, P (Υn)→ 1, the

continuous mapping theorem and the uniform integrability of the two sequences for each
t ≥ 0: {

1(An ∈ Υn)

∫
[0,t]

G̃(t, u)dĀn(u) : n ≥ 1

}
,

and {
exp

(
−θ

2

2
1(An ∈ Υn)

∫
[0,t]

G̃(t, u)dĀn(u)

)
: n ≥ 1

}
,

since

sup
n
E

[
1(An ∈ Υn)

(∫
[0,t]

G̃(t, u)dĀn(u)
)2
]
<∞

by the definition of Υn and Assumption 2 (ii).
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Therefore, we have shown that for each fixed t ≥ 0,

X̂n
2 (t)⇒ X̂2(t) in R as n→∞.

To generalize to the case l > 1, we prove that for any (θ1, ..., θl) ∈ Rl and 0 ≤ t1 < · · · <
tl ≤ T ′,

E

[
exp

(
i

l∑
i=1

θiX̂
n
2 (ti)

)]
→ E

[
exp

(
i

l∑
i=1

θiX̂2(ti)

)]
as n→∞,

and the limit is continuous at (0, ..., 0) ∈ Rl. By definition,
∑l

i=1 θiX̂2(ti) is a normal random
variable with mean zero and variance

l∑
i=1

l∑
j=1

θiθjR̂2(ti, tj),

for the covariance function R̂2 defined in (2.12). Thus we have

E

[
exp

(
i

l∑
i=1

θiX̂2(ti)

)]
= exp

(
− 1

2

l∑
i=1

l∑
j=1

θiθjR̂2(ti, tj)

)
, (6.13)

and it is continuous at (0, ..., 0) ∈ Rl.
By definition,

l∑
i=1

θiX̂
n
2 (ti) =

l∑
i=1

θi

(
1√
n

An(ti)∑
k=1

(
H(ti − τnk , Zk(τnk ))−

∫
Rk

H(ti − τnk , x)dFτnk (x)

))
.

Thus, a direct calculation as in (6.12) shows that

E

[
exp

(
i

l∑
i=1

θiX̂
n
2 (ti)1(Ân ∈ Υn)

)]

= E

[
1− 1

2
1(Ân ∈ Υn)

l∑
i=1

l∑
j=1

θiθj

∫ ti∧tj

0
(G2(ti, tj , u)−G1(ti, u)G1(tj , u))dĀn(u)

]
+ o(n−1).

(6.14)

The convergence of (6.14) to (6.13) can be shown in a similar way as in (6.12) by Lemmas 6.4–
6.5. This completes the proof of the convergence of the finite-dimensional distributions. �

Lemma 6.7. Under Assumptions 1–2, X̂n
2 ⇒ X̂2 in (D, J1) as n → ∞, where X̂2 is as

given in Theorem 2.2.

Proof. Given the convergence of finite-dimensional distributions of X̂n
2 in Lemma 6.6, by

Theorem 13.3 in [5], it suffices to show that for each ε > 0

lim
δ→0

P
(∣∣X̂2(T )− X̂2(T − δ)

∣∣ ≥ ε) = 0, (6.15)

and

lim
δ→0

lim sup
n

P

(
sup

0≤r<s<t≤T
t−r≤δ

∣∣X̂n
2 (r)− X̂n

2 (s)
∣∣ ∧ ∣∣X̂n

2 (s)− X̂n
2 (t)

∣∣ ≥ ε) = 0. (6.16)
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(6.15) is implied by

lim
δ→0

E
[∣∣X̂2(T )− X̂2(T − δ)

∣∣2] = 0. (6.17)

By Lemma 4.2,

E
[∣∣X̂2(T )− X̂2(T − δ)

∣∣2]
=

∫
(T−δ,T ]

G̃(T, u)dΛ(u) +

∫
[0,T−δ]

G̃(T, T − δ, u)dΛ(u). (6.18)

Recall that Λ(·) ∈ C. The first term in the summation above vanishes as δ goes to zero due
to absolute continuity of the Lebesgue–Stieltjes integral. The second term vanishes as δ → 0
by Assumption 2 (iii).

Finally, (6.16) is easily implied by Lemma 4.5 and Theorem 5.2. Specifically, recall Remark
5.1 that the function V induces a set function ν such that ν((s, t]) = V (s, t). By Lemma

4.5, condition (5.10) holds for all X̂n
2 (with α = β = 1 and T = [0, T ]). Then by Theorem

5.2, we obtain that

P

(
sup

0≤r<s<t≤T
t−r≤δ

∣∣X̂n
2 (r)− X̂n

2 (s)
∣∣ ∧ ∣∣X̂n

2 (s)− X̂n
2 (t)

∣∣ ≥ ε)

≤ C ′2
ε4
V (0, T ) sup

0≤t≤T−2δ
V (t, t+ 2δ). (6.19)

By the uniform continuity of V , we obtain (6.16) holds. The proof is now complete. �

Proof of Theorem 2.2. We begin by defining an auxiliary process X̃n
2 = {X̃n

2 (t) : t ≥ 0} by

X̃n
2 (t) :=

1√
n

[nΛ(t)]∑
i=1

(
H(t− uni , Zi(uni ))−

∫
Rk

H(t− uni , x)dFuni (x)

)
, t ≥ 0, (6.20)

where [x] denotes the largest integer less than or equal to x, uni = Λ−1( in) for i = 1, ..., [nΛ(t)],

and Λ−1 is the inverse function of Λ defined by Λ−1(t) := inf{u ≥ 0 : Λ(u) ≥ t} for t ≥ 0.

Note that, comparing with the definition of X̂n
2 (t) in (4.2), we replace An(t) by [nΛ(t)] and

τni by uni in the definition of X̃n
2 . Thus, the only source of randomness in X̃n

2 comes from
the sequence {Zi(uni ), i ≥ 1}. All the arguments in Lemmas 6.6 and 6.7 hold true with An

replaced by [nΛ] and associated τni replaced by uni , since the only requirement on An in
those lemmas is Assumption 1, which is obviously satisfied by taking An = [nΛ]. Thus, we
have

X̃n
2 ⇒ X̂2 in D as n→∞. (6.21)

Moreover, since {Zi(uni ), i ≥ 1} and An are assumed to be mutually independent for each n,

X̃n
2 and X̂n

1 are independent. Thus, we obtain the joint convergence(
X̂n

1 , X̃
n
2

)
⇒
(
X̂1, X̂2

)
in D2 as n→∞, (6.22)

and the limits X̂1 and X̂2 are also independent.
Then, by Lemma 6.7 and (6.21), we obtain that for any ζ > 0 and T > 0,

lim
n→∞

P

(
sup
t∈[0,T ]

∣∣X̂n
2 (t)− X̃n

2 (t)
∣∣ > ζ

)
= 0.
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Thus, we have proved the joint convergence(
X̂n

1 , X̂
n
2

)
⇒
(
X̂1, X̂2

)
in D2 as n→∞.

By continuity of addition in D (e.g., Corollary 12.7.1 in [44]) and the continuous mapping

theorem, we obtain that X̂n = X̂n
1 + X̂n

2 ⇒ X̂1 + X̂2 in D as n→∞. This completes the
proof. �

6.1. Proof of Theorem 2.3. In this subsection, we sketch the proof of Theorem 2.3. For

each j = 1, ...,K, X̂n,(j) is first decomposed into a summation of X̂
n,(j)
1 and X̂

n,(j)
2 , defined

similarly as in Lemma 4.1. The weak convergence of X̂
n,(j)
1 to X̂

(j)
1 in D follows from similar

arguments as that of X̂n
1 to X̂1 in Lemma 6.1–6.2, with the mapping ψ modified accordingly

to ψ(j). Thus, the joint weak convergence of
(
X̂
n,(1)
1 , ..., X̂

n,(K)
1

)
follows from the continuity

of the joint mapping
(
ψ(1), ..., ψ(K)

)
from DK to DK since each component is continuous.

For each j = 1, ...,K, by similar arguments in Lemmas 6.6–6.7, X̂
n,(j)
2 converges weakly

to X̂
(j)
2 in D. Thus, the tightness of the joint process

(
X̂
n,(1)
2 , ..., X̂

n,(K)
2

)
follows from the

tightness of each component. It remains to show the convergence of finite dimensional

distributions of
(
X̂
n,(1)
2 , ..., X̂

n,(K)
2

)
, that is, for any l ∈ N, we need to show that as n→∞,(

X̂
n,(j)
2 (tm), 1 ≤ j ≤ K, 1 ≤ m ≤ l

)
⇒
(
X̂

(j)
2 (tm), 1 ≤ j ≤ K, 1 ≤ m ≤ l

)
in RlK .

We first consider l = 1 and write t1 = t for brevity. By Cramér-Wold theorem, it is equivalent
to prove that for any (θj , j = 1, ...,K) ∈ RK ,

K∑
j=1

θjX̂
n,(j)
2 (t)⇒

K∑
j=1

θjX̂
(j)
2 (t) in R as n→∞. (6.23)

A simple algebra shows that (6.23) follows from the arguments in Lemma 6.6 with slight
changes. It is also evident that the case when l > 1 can be proved in the same way as
its counterpart in Lemma 6.6 with slight changes. That completes the proof of the finite
dimensional distributions.

By constructing auxiliary processes
(
X̃
n,(1)
2 , ..., X̃

n,(K)
2

)
as in (6.20), we first obtain that(

X̃
n,(1)
2 , ..., X̃

n,(K)
2

)
converges to the same limit process as

(
X̂
n,(1)
2 , ..., X̂

n,(K)
2

)
. We can then

conclude the independence and continuity statements in the theorem similarly as in the
proof of Theorem 2.2, which completes the proof.

7. Proofs of Theorems 5.1–5.3

Proof of Theorem 5.1. We adapt the proof of Theorem 10.3 in [5] and modify some arguments
for the relaxed condition on µ being a finite set function with the superadditive property as
given in Definition 5.1. We consider three cases.

Case 1 : Suppose that T = [0, T ] and µ(0, t] is continuous in t.
Suppose further that µ(0, t] is strictly increasing in t. For each k ∈ N, let Dk ⊂ [0, T ] be

the set of {z(k)
i : i ≥ 0} such that z

(k)
0 = 0 and

µ
(
0, z

(k)
i

]
=

i

2k
µ(0, T ]. (7.1)

It is easy to see that for each k, the set Dk ⊂ Dk+1. Let Bk be the maximum of
|X(s)−X(r)| ∧ |X(t)−X(s)| over triples in Dk satisfying 0 ≤ r ≤ s ≤ t ≤ T . Let Ak be
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the same maximum but with further constraint that r, s, t are adjacent: ∃i ∈ N such that

(r, s, t) = (z
(k)
i−1, z

(k)
i , z

(k)
i+1). For any t = z

(k)
j ∈ Dk, define a point t′ ∈ Dk−1 by

t′ =


t if t ∈ Dk−1,

z
(k−1)
j−1
2

if t /∈ Dk−1 and |X(t)−X(z
(k)
j−1)| ≤ |X(t)−X(z

(k)
j+1)|,

z
(k−1)
j+1
2

if t /∈ Dk−1 and |X(t)−X(z
(k)
j−1)| > |X(t)−X(z

(k)
j+1)|.

(7.2)

Then |X(t)−X(t′)| ≤ Ak for t ∈ Dk. As in the proof of Case 1 for Theorem 10.3 in [5], we
obtain that

sup
0≤r≤s≤t≤T

|X(r)−X(s)| ∧ |X(s)−X(t)| ≤ 2

∞∑
k=1

Ak.

Now we need to control
∑∞

k=1Ak. Suppose that 0 < θ < 1 and choose c such that

c ·
∑∞

k=1 θ
k = 1/2. Then

P

(
sup

0≤r≤s≤t≤T
|X(r)−X(s)| ∧ |X(s)−X(t)| ≥ ε

)

≤ P

(
2
∞∑
k=1

Ak ≥ ε

)
≤
∞∑
k=1

P
(
Ak ≥ cεθk

)
≤

∞∑
k=1

2k∑
i=1

P
(∣∣X(z

(k)
i−1)−X(z

(k)
i )
∣∣ ∧ ∣∣X(z

(k)
i )−X(z

(k)
i+1)

∣∣ ≥ cεθk) . (7.3)

By assumptions and (7.1),

P
(∣∣X(z

(k)
i−1)−X(z

(k)
i )
∣∣ ∧ ∣∣X(z

(k)
i )−X(z

(k)
i+1)

∣∣ ≥ cεθk)
≤ C0

(cεθk)4β

(
µ(z

(k)
i−1, z

(k)
i+1]
)2α

≤ C0

(cεθk)4β

(
µ(0, z

(k)
i+1]− µ(0, z

(k)
i−1]
)2α

=
C0

(
2µ(0, T ]

)2α
(cε)4

(
1

θ4β22α

)k
, (7.4)

where in the second inequality the superadditive property of the set function µ in Definition
5.1 (iii) is used. Therefore, (7.3) becomes

P

(
sup

0≤r≤s≤t≤T
|X(r)−X(s)| ∧ |X(s)−X(t)| ≥ ε

)

≤
∞∑
k=1

2k
C0

(
2µ(0, T ]

)2α
(cε)4

(
1

θ4β22α

)k
=

C0

(
2µ(0, T ]

)2α
(cε)4

∞∑
k=1

(
1

θ4β22α−1

)k
.

Since 4β ≥ 0 and 2α− 1 > 0, there exists a θ ∈ (0, 1) for which the series above converges,
and this shows how to define the constant C1.
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If µ(0, t] is not strictly increasing in t. Consider first the set function µκ(s, t] := µ(s, t] +
κ(t− s) for all 0 ≤ s ≤ t ≤ T where κ is a positive constant and then let κ go to 0.

Case 2 : Suppose that T is finite. Without loss of generality, we may assume that
T = {ti : 0 ≤ i ≤ v} such that

0 = t0 < t1 < ... < tv = T.

Define the processes X ′ := {X ′(t) : t ∈ T } by

X ′(t) :=

{
X(ti) if ti ≤ t < ti+1, 0 ≤ i < v,

X(T ) if t = T .
(7.5)

It is easy to see that |X ′(r)−X ′(s)| ∧ |X ′(s)−X ′(t)| > 0 only if r, s and t fall into different
subintervals of [ti, ti+1). Suppose that

r ∈ [ti, ti+1), s ∈ [tj , tj+1), t ∈ [tk, tk+1), i < j < k.

Then by the definition of X ′ in (7.5) and the assumption in (5.8),

P
(
|X ′(r)−X ′(s)| ∧ |X ′(s)−X ′(t)| > ε

)
= P

(
|X(ti)−X(tj)| ∧ |X(tj)−X(tk)| > ε

)
≤ C0

ε4β
(
µ
(
T ∩ (ti, tk]

))2α
. (7.6)

Now define an measure ν on [0, T ] such that for each 1 ≤ i ≤ v − 1, over the interval
[ti, ti+1], ν has a uniform distribution of mass µ

(
T ∩ (0, ti+1]

)
−µ
(
T ∩ (0, ti−1]

)
, and over the

interval [0, t1], ν has a uniform distribution of mass µ
(
T ∩ [0, t1]

)
. Note that by definition,

ν(0, T ] ≤ µ
(
T ∩ (0, tv]

)
+ µ

(
T ∩ (0, tv−1]

)
≤ 2µ(T ). (7.7)

Then by the property (iii) of the set function µ in Definition 5.1,

µ
(
T ∩ (ti, tk]

)
≤ µ

(
T ∩ (0, tk]

)
− µ

(
T ∩ (0, ti]

)
≤ ν(ti+1, tk] ≤ ν(r, t].

Then (7.6) implies that

P
(
|X ′(r)−X ′(s)| ∧ |X ′(s)−X ′(t)| > ε

)
≤ C0

ε4β
(
ν(r, t]

)2α
. (7.8)

Even though the assumption t ∈ [tk, tk+1) requires that t < T , the inequality above also
holds for t = T by similar arguments.

By Theorem 10.3 in [5], (7.7) and the definition of X ′, we obtain that

P

(
sup

0≤r<s<t≤T
|X(r)−X(s)| ∧ |X(s)−X(t)| ≥ ε

)
= P

(
sup

0≤r<s<t≤T
|X ′(r)−X ′(s)| ∧ |X ′(s)−X ′(t)| ≥ ε

)
≤ C3

ε4
(
ν(0, T )

)2α ≤ 22αC3

ε4β
(
µ(T )

)2α
, (7.9)

where C3 > 0 is a constant depending only on C0.

Case 3 : Consider the general T and set function µ. Let {Tn} be finite sets

Tn := {0 = tn,0 < tn,1 < ... < tn,vn = T}, n ∈ N,
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such that Tn ⊂ Tn+1 and ∪∞n=1Tn is dense in T . Let µn be a measure having a mass
µ
(
T ∩(0, tn,i]

)
−µ
(
T ∩(0, tn,i−1]

)
at points tn,i. Define the processes Xn,′ := {Xn,′(t) : t ∈ T }

similarly as X ′ above, that is,

Xn,′(t) :=

{
X(tn,i) if tn,i ≤ t < tn,i+1, 0 ≤ i < vn,

X(T ) if t = T .
(7.10)

Denote the event

Enε :=

{
sup

0≤r<s<t≤T
|Xn,′(r)−Xn,′(s)| ∧ |Xn,′(s)−Xn,′(t)| ≥ ε

}
for each n and ε > 0. Then by Case 2,

P (Enε ) ≤ 22αC3

ε4β
(
µn(Tn)

)2α
=

22αC3

ε4β
(
µ(T )

)2α
. (7.11)

Since Xn,′ and X are right continuous, by the construction of Xn,′ from X above, we have
that

sup
0≤r<s<t≤T

|Xn,′(r)−Xn,′(s)| ∧ |Xn,′(s)−Xn,′(t)|

−→ sup
0≤r<s<t≤T

|X(r)−X(s)| ∧ |X(s)−X(t)| a.s. as n→∞. (7.12)

Thus, by (7.12) and Fatou’s lemma, for each ε > κ > 0,

P

(
sup

0≤r<s<t≤T
|X(r)−X(s)| ∧ |X(s)−X(t)| ≥ ε

)
≤ P

(
lim inf

n
Enε−κ

)
≤ lim inf

n
P (Enε−κ) ≤ 22αC3

(ε− κ)4β

(
µ(T )

)2α
.

where the last inequality follows (7.11) . The proof is complete by letting κ go to 0. This
completes the proof. �

Proof of Theorem 5.2. Take v = [T/δ], ti = iδ for 0 ≤ i < v and tv = T . Then, by Theorem
5.1, we obtain that for ε ≥ 0, and for each 1 ≤ i ≤ v − 1,

P

(
sup

ti−1≤r≤s≤t≤ti
|X(r)−X(s)| ∧ |X(s)−X(t)| ≥ ε

)
≤ C1

ε4β
(
µ
(
T ∩ (ti−1, ti+1]

))2α
. (7.13)

For the upper bound, we have

v−1∑
i=1

(
µ
(
T ∩ (ti−1, ti+1]

))2α
≤

v−1∑
i=1

µ
(
T ∩ (ti−1, ti+1]

)
× max

0≤i≤v−1

(
µ
(
T ∩ (ti−1, ti+1]

))2α−1

≤ 2µ(T )× max
0≤i≤v−1

(
µ
(
T ∩ (ti−1, ti+1]

))2α−1
, (7.14)

where the second inequality follows from the superadditive property of the set function µ in
Definition 5.1 (iii). We can then conclude the probability bound in (5.11). �
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Proof of Theorem 5.3. We modify the proof of Theorem 13.6 in [5] by relaxing the condition
(13.15) with our condition (ii).

For each n ∈ N, consider the points tni = iT/2n for i = 0, ..., 2n, and let X̃n be a random

function that is constant over each [tni−1, t
n
i ) and for which (X̃n(tn0 ), ..., X̃n(tn2n)) has the

same distribution of (X(tn0 ), ..., X(tn2n)). Thus, X̃n are elements of D. We need to show that

the distributions of {X̃n} are tight and X is the limit in distribution of some subsequence

of {X̃n}. To prove tightness of X̃n, we apply Theorem 13.2 of [5] with the condition (13.5)
replaced by (13.8) using the modulus of continuity w′′ in (5.3).

We first provide a proof for the first condition in (13.8) of [5], that is, for each ε > 0 and
η > 0, there exists a δ ∈ (0, 1) and an integer n0 such that

P
(
w′′(X̃n, δ) ≥ ε

)
≤ η, for n ≥ n0. (7.15)

Now let Ỹ n be the process X̃n with the time-set cut back to Tn = {tni }. Let µ̃n be
a finite measure having mass µ(0, tni ] − µ(0, tni−1] at tni for i = 0, ..., 2n. By (5.10), for
0 ≤ r ≤ s ≤ t ≤ T ,

P
(∣∣Ỹ n(s)− Ỹ n(r)

∣∣ ∧ ∣∣Ỹ n(t)− Ỹ n(s)
∣∣ ≥ ε) ≤ C0

ε4β
(
µ̃n(r, t]

)2α
.

It follows by Theorem 10.4 in [5] that

P

(
sup

0≤r<s<t≤T
t−r≤δ

∣∣Ỹ n(r)− Ỹ n(s)
∣∣ ∧ ∣∣Ỹ n(s)− Ỹ n(t)

∣∣ ≥ ε)

≤ C4

ε4β
µ̃n(0, T ] sup

0≤t≤T−2δ

(
µ̃n(t, t+ 2δ]

)2α−1
, (7.16)

for some constant C4 > 0.
By the definition of µ̃n, we have that

µ̃n(0, T ] = µ̃n({tni }) =
2n∑
i=0

(
µ(0, tni ]− µ(0, tni−1]

)
≤ µ(0, T ], (7.17)

which follows from the superadditive property of the set function µ in Definition 5.1 (iii).

By the construction of Ỹ n from X̃n, we obtain that when T/2n ≤ δ,

w′′(X̃n, δ) ≤ sup
0≤r<s<t≤T
t−r≤2δ

{∣∣Ỹ n(r)− Ỹ n(s)
∣∣ ∧ ∣∣Ỹ n(s)− Ỹ n(t)

∣∣}. (7.18)

Now by the definition of µn, we have that when T/2n ≤ δ,

µn(t, t+ 4δ] = µn
(
{tni : t < tni ≤ t+ 4δ}

)
=

∑
tni :t<tni ≤t+4δ

(
µ(0, tni ]− µ(0, tni−1]

)
≤ µ(0, t+ 4δ]− µ(0, t− T/2n]

≤ sup
0<t−s≤5δ

(
µ(0, t]− µ(0, s]

)
, (7.19)

where the two inequalities follows from the superadditive property of the set function µ in
Definition 5.1 (iii).

Inequalities (7.16)–(7.19) together with the uniform continuity of µ(0, t] imply (7.15)
holds.
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Then, the verifications of the condition (13.4) in Theorem 13.2 of [5], and the second
and third conditions in (13.8) of [5] follow exactly the same arguments as in the proof of
Theorem 13.6 of [5]. The proof is complete. �

8. Appendix: Proofs of Lemmas 4.2, 4.3, 4.5 and 6.1

Proof of Lemma 4.2. Recall the covariance function R̂2 of the Gaussian process X̂2 defined
in (2.12). We obtain that for 0 ≤ s ≤ t,

E
[∣∣X̂2(s)− X̂2(t)

∣∣2]
= R̂2(s, s) + R̂2(t, t)− 2R̂2(s, t)

=

∫
[0,s]

(
G2(s, s, u)−G2

1(s, u)
)
dΛ(u) +

∫
[0,t]

(
G2(t, t, u)−G2

1(t, u)
)
dΛ(u)

−2

∫
[0,s]

(
G2(t, s, u)−G1(t, u)G1(s, u)

)
dΛ(u)

=

∫
(s,t]

G̃(t, u)dΛ(u) +

∫
[0,s]

G̃(t, s, u)dΛ(u).

Since X̂2(s)− X̂2(t) is normal and the kurtosis of a normal random variable is 3, we obtain

E
[∣∣X̂2(s)− X̂2(t)

∣∣4] = 3
(
E
[∣∣X̂2(s)− X̂2(t)

∣∣2])2
= 3

(∫
(s,t]

G̃(t, u)dΛ(u) +

∫
[0,s]

G̃(t, s, u)dΛ(u)

)2

.

�

Proof of Lemma 4.3. Let

Ȟi(s) := H(s− τni , Zi(τni ))−
∫
Rk

H(s− τni , x)dFτni (x), i ∈ N, s ≥ 0.

(Note that we omit the dependence of Ȟi on n for brevity.) By definition, for each 0 ≤ r ≤ s,
we have

X̂n
2 (s)− X̂n

2 (r) =
1√
n

An(s)∑
i=An(r)+1

Ȟi(s) +
1√
n

An(r)∑
i=1

(
Ȟi(s)− Ȟi(r)

)
. (8.1)

RecallAn defined in the proof of Lemma 6.6, the two summation terms in (8.1) are conditional
independent given An, and the conditional expectations of both terms equal to zero a.s. By
conditioning and direct calculations, we obtain that

E

[(
1√
n

An(s)∑
i=An(r)+1

Ȟi(s)

)2]
= E

[∫
(r,s]

G̃(s, u)dĀn(u)

]
,

and

E

[(
1√
n

An(r)∑
i=1

(
Ȟi(s)− Ȟi(r)

))2]
= E

[∫
[0,r]

G̃(s, r, u)dĀn(u)

]
.

For the fourth moment, by conditioning and direct calculations, we have

E
[∣∣X̂n

2 (s)− X̂n
2 (r)

∣∣4]
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=
1

n2
E

[( An(s)∑
i=An(r)+1

Ȟi(s)

)4]
+

1

n2
E

[(An(r)∑
i=1

[
Ȟi(s)− Ȟi(r)

])4]

+
6

n2
E

[(An(s)∑
i=1

Ȟi(s)

)2(An(r)∑
i=1

[
Ȟi(s)− Ȟi(r)

])2]

=
1

n2
E

[ An(s)∑
i=An(r)+1

Ȟi(s)
4

]
+

6

n2
E

[ An(s)∑
i,j=An(r)+1, i 6=j

Ȟi(s)
2Ȟj(s)

2

]

+
1

n2
E

[An(r)∑
i=1

(
Ȟi(s)− Ȟi(r)

)4]
+

6

n2
E

[ An(s)∑
i,j=1, i 6=j

(
Ȟi(s)− Ȟ(r)

)2(
Ȟj(s)− Ȟj(r)

)2]

+
6

n2
E

[( An(s)∑
i=An(r)+1

Ȟi(s)

)2(An(r)∑
i=1

[
Ȟi(s)− Ȟi(r)

])2]

=
1

n2
E

[ An(s)∑
i=An(r)+1

Ȟi(s)
4

]
+

6

n2
E

[ An(s)∑
i,j=An(r)+1, i 6=j

G̃(s, τni )G̃(s, τnj )

]

+
1

n2
E

[An(r)∑
i=1

(
Ȟi(s)− Ȟi(r)

)4]
+

6

n2
E

[ An(s)∑
i,j=1, i 6=j

G̃(s, r, τni )G̃(s, r, τnj )

]

+
6

n2
E

[( An(s)∑
i=An(r)+1

Ȟi(s)

)2(An(r)∑
i=1

[
Ȟi(s)− Ȟi(r)

])2]

=
1

n2
E

[ An(s)∑
i=An(r)+1

Ȟi(s)
4

]
+

3

n2
E

[( An(s)∑
i=An(r)+1

G̃(s, τni )

)2]
− 3

n2
E

[ An(s)∑
i=An(r)+1

G̃(s, τni )2

]

+
1

n2
E

[An(r)∑
i=1

(
Ȟi(s)− Ȟi(r)

)4]
+

3

n2
E

[(An(s)∑
i=1

G̃(s, r, τni )

)2]
− 3

n2
E

[An(s)∑
i=1

G̃(s, r, τni )2

]

+
6

n2
E

[( An(s)∑
i=An(r)+1

G̃(s, τni )

)(An(r)∑
i=1

G̃(s, r, τni )

)]

=
3

n2
E

[( An(s)∑
i=An(r)+1

G̃(s, τni ) +

An(r)∑
i=1

G̃(s, r, τni )

)2]

+
1

n2
E

[ An(s)∑
i=An(r)+1

Ğ(s, τni )

]
− 3

n2
E

[ An(s)∑
i=An(r)+1

G̃(s, τni )2

]

+
1

n2
E

[An(r)∑
i=1

Ğ(t, s, τni )

]
− 3

n2
E

[An(s)∑
i=1

G̃(s, r, τni )2

]
. (8.2)
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We further obtain that the first term in (8.2) is equal to

3E

[(∫
(r,s]

G̃(s, u)dĀn(u) +

∫
[0,r]

G̃(s, r, u)dĀn(u)

)2]
. (8.3)

This completes the proof. �

Proof of Lemma 4.5. First we observe that for any K ∈ N, nK = An(τnnK). On {An(T ) ≤
nK = An(τnnK)}, we have t = t ∧ τnnK for t ≤ T . Thus, An(t) = An(t ∧ τnnK) and

X̂n
2 (t) = X̂n

2 (t ∧ τnnK) on {An(T ) ≤ nK}.
Now, for K ∈ N such that K > Λ(T ) and ε > 0,

P
(∣∣X̂n

2 (r)− X̂n
2 (s)

∣∣ ∧ ∣∣X̂n
2 (s)− X̂n

2 (t)
∣∣ ≥ ε)

≤ P (An(T ) ≥ nK)

+P
(
An(T ) < nK,

∣∣X̂n
2 (r)− X̂n

2 (s)
∣∣ ∧ ∣∣X̂n

2 (s)− X̂n
2 (t)

∣∣ ≥ ε)
≤ P (Ān(T ) ≥ K)

+
1

ε4
E
[
1(Ān(T ) ≤ K) ·

∣∣X̂n
2 (r)− X̂n

2 (s)
∣∣2 · ∣∣X̂n

2 (s)− X̂n
2 (t)

∣∣2]
≤ P (Ān(T ) ≥ K)

+
1

ε4

(
E
[∣∣X̂n

2 (r ∧ τnnK)− X̂n
2 (s ∧ τnnK)

∣∣4])1/2

×
(
E
[∣∣X̂n

2 (s ∧ τnnK)− X̂n
2 (t ∧ τnnK)

∣∣4])1/2
, (8.4)

where the last inequality is from Cauchy-Schwarz inequality and from the observation that
X̂n

2 (t) = X̂n
2 (t ∧ τnnK) for t ≤ T on {Ān(T ) ≤ K}. Since Ān(T ) ⇒ Λ(T ) as n → ∞ by

Assumption 1, we have

P (Ān(T ) ≥ K)→ P (Λ(T ) ≥ K) = 0 as n→∞

for the chosen K > Λ(T ). Therefore, due to (8.4), Lemma 4.5 is implied by

E
[∣∣X̂n

2 (r ∧ τnnK)− X̂n
2 (s ∧ τnnK)

∣∣4] ≤ C5V (r, s)2, (8.5)

for n ∈ N, 0 ≤ r ≤ s ≤ T and some positive constant C5. By similar calculations in Lemma
4.3, we obtain

E
[∣∣X̂n

2 (r ∧ τnnK)− X̂n
2 (s ∧ τnnK)

∣∣4]
= 3E

[
1(Ān(T ) ≤ K)

(∫
(r,s]

G̃(s, u)dĀn(u) +

∫
[0,r]

G̃(s, r, u)dĀn(u)

)2]

+
1

n2
E

[
1(Ān(T ) ≤ K)

An(s)∑
i=An(r)+1

Ğ(s, τni )

]
− 3

n2
E

[
1(Ān(T ) ≤ K)

An(s)∑
i=An(r)+1

G̃(s, τni )2

]

+
1

n2
E

[
1(Ān(T ) ≤ K)

An(r)∑
i=1

Ğ(t, s, τni )

]
− 3

n2
E

[
1(Ān(T ) ≤ K)

An(s)∑
i=1

G̃(s, r, τni )2

]
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On {Ān(T ) ≤ K},

E

[(∫
(r,s]

G̃(s, u)dĀn(u) +

∫
[0,r]

G̃(s, r, u)dĀn(u)

)2]

n→∞−−−−→

(∫
(r,s]

G̃(s, u)dΛ(u) +

∫
[0,r]

G̃(s, r, u)dΛ(u)

)2

≤

(∫
(r,s]

G̃(s, u)dΛ(u) +

∫
[0,T ]

G̃(s, r, u)dΛ(u)

)2

≤

(∫
(r,s]

G2(s, u)dΛ(u) +

∫
[0,T ]

Ǧ2(s, r, u)dΛ(u)

)2

= V 2(r, s). (8.6)

Here the convergence is implied by the uniform integrability (see, e.g., Theorem 3.5 in [5])
of the sequence for each r ≤ s:

(∫
(r,s]

G̃(s, u)dĀn(u) +

∫
[0,r]

G̃(s, r, u)dĀn(u)

)2

: n ≥ 1


under Assumptions 1 and 2 (ii). (8.6) implies (8.5), which further implies Lemma 4.5. �

Proof of Lemma 6.1. We first prove (i). Fix 0 ≤ t ≤ T . To show that ψ(z)(t) is right
continuous at t, let {tk : k ≥ 1} converge to t from the right (i.e., tk ≥ t for each k) as
k →∞ and we prove that ψ(z)(tk)→ ψ(z)(t) as k →∞.

By the definition of ψ,

ψ(z)(tk)− ψ(z)(t)

= z(tk)G1(tk, tk)−
∫

(0,tk]
z(u−)dG1(tk, u)

−z(t)G1(t, t) +

∫
(0,t]

z(u−)dG1(t, u)

= z(t)[G1(tk, t)−G1(t, t)]−
∫

(0,t]
z(u−)d(G1(tk, u)−G1(t, u))

+z(tk)G1(tk, tk)− z(t)G1(tk, t)−
∫

(t,tk]
z(u−)dG1(tk, u). (8.7)

Recall the definition of G1(t, u) =
∫
Rk H(t−u, x)dFu(x) and the assumption that H(·, x) ∈ D

for each x ∈ Rk. It is easy (by the bounded convergence theorem) to see that G1(·, u) ∈ D
for each u ≥ 0. Thus, the first term z(t)[G1(tk, t)−G1(t, t)] converges to 0 as k →∞.

By Theorem 12.2.2 in [44], any function in D can be approximated by piecewise-constant
functions. In particular, for any ε > 0, there exists finitely many points t̄i such that
0 ≡ t̄0 < t̄1 < · · · < t̄m−1 ≤ t̄m ≡ t < t̄m+1 < · · · < t̄M ≡ T and zc is constant on the
intervals [t̄i−1, t̄i), 1 ≤ i ≤M − 1, and [t̄M−1, T ] such that ‖z − zc‖T ≤ ε.

For the second term in (8.7), we can write∫
(0,t])

z(u−)d(G1(tk, u)−G1(t, u))
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=

∫
(0,t]

zc(u−)d(G1(tk, u)−G1(t, u)) +

∫
(0,t]

(z(u−)− zc(u−))d(G1(tk, u)−G1(t, u)).

By the definition of zc, the first integral on the right hand side is equal to

m∑
i=0

zc(t̄i+1)
[
G1(tk, t̄i+1)−G1(t, t̄i+1)− (G1(tk, t̄i)−G1(t, t̄i))

]
. (8.8)

Each summand above converges to 0 as k →∞ by the fact that G1(·, u) ∈ D for each u ≥ 0.
Thus the summation also vanishes when k →∞. For the second integral, it is bounded by

ε · 2 sup
0≤t≤T

V T
0 (G1(t, ·)),

where the coefficient of ε is finite under Assumption 2 (i). Since ε is arbitrary, we have
shown that the second term in (8.7) converges to 0 as k →∞.

When k is large enough, we have (t, tk] ⊂ [t̄m(≡ t), t̄m+1). In that case, zc is constant on
[t, tk], yielding 0 if we replace z by zc in the last line in (8.7). Observe that

(z(tk)− zc(tk))G1(tk, tk)− (z(t)− zc(t))G1(tk, t)−
∫

(t,tk]
(z(u−)− zc(u−))dG1(tk, u)

≤
(

2 sup
0≤t,u≤T

G1(t, u) + sup
0≤t≤T

V T
0 (G1(t, ·)

)
· ε.

The coefficient of ε is finite under Assumption 2. Since ε is arbitrary, this completes the
proof of right continuity.

The existence of a left limit for ψ(t) at each 0 < t ≤ T follows the similar argument above.
In particular, if tk converges to t from left, then the first term z(t)[G1(tk, t)−G1(t, t)] in
(8.7) has a limit since G1(·, u) ∈ D for each u ≥ 0. Similarly, each summand in (8.8) also
has a limit, so does the summation. The last line in (8.7) in this case still converges to 0
(and also has a limit). Thus, ψ(z) has left limit at 0 < t ≤ T . The proof for ψ(z) ∈ D is
complete.

The claim in (ii) follows directly from the above argument while imposing the conditions
z ∈ C and G1(·, u) ∈ C for each u ≥ 0.

For (iii), we need to show that for zn ∈ D and z ∈ C and for T > 0, if ‖zn − z‖T → 0
as n → ∞, then dJ1(ψ(zn), ψ(z)) → 0 as n → ∞. Since the J1 metric is bounded by the
uniform norm (see, e.g., Section 3.3 in [44]), it suffices to prove that ‖ψ(zn)− ψ(z)‖T → 0
as n→∞. Recalling that H(·, x) is monotone for each x ∈ Rk, we obtain

‖ψ(zn)− ψ(z)‖T
≤ ‖zn − z‖T sup

0≤t≤T
|G1(t, t)|+ ‖zn − z‖T sup

0≤t≤T
V T

0 (G1(t, ·)). (8.9)

Therefore, by the assumptions, the two terms in (8.9) converge to zero as n→∞. �
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noise and its effect on the sensitivity of interferometers. Phys. Rev. A. 43(9), 5022–5029.

[36] G. Pang and Y. Zhou. (2017) Two-parameter process limits for an infinite-server queue with arrival
dependent service times. Stochastic Processes and their Applications. 127(5), 1375–1416.

[37] A. Papoulis. (1971) High density shot noise and Gaussianity. J. Appl. Probab. 18(1), 118–127.
[38] F. Ramirez-Perez and R. Serfling. (2001) Shot noise on cluster processes with cluster marks, and studies

of long range dependence. Adv. Appl. Prob. 33(3), 631–651.
[39] J. Rice. (1977) On generalized shot noises. Adv. Appl. Prob. 9(3), 553–565.
[40] G. Samorodnitsky. (1998) Tail behavior of some shot noise processes. In A Practical Guide to Heavy

Tails: Statistical Techniques and Applications. Editors: R. J. Adler, R. E. Feldman and M. S. Taqqu.
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