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Abstract We establish many-server heavy-traffic limits for G/M/n + M queueing
models, allowing customer abandonment (the +M), subject to exogenous regener-
ative service interruptions. With unscaled service interruption times, we obtain a
FWLLN for the queue-length process, where the limit is an ordinary differential
equation in a two-state random environment. With asymptotically negligible service
interruptions, we obtain a FCLT for the queue-length process, where the limit is char-
acterized as the pathwise unique solution to a stochastic integral equation with jumps.
When the arrivals are renewal and the interruption cycle time is exponential, the
limit is a Markov process, being a jump-diffusion process in the QED regime and
an O–U process driven by a Levy process in the ED regime (and for infinite-server
queues). A stochastic-decomposition property of the steady-state distribution of the
limit process in the ED regime (and for infinite-server queues) is obtained.
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1 Introduction

The purpose of this paper is to study the impact of service interruptions on the per-
formance of queueing systems. We consider exogenous regenerative service interrup-
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tions in many-server queues. We assume that some proportion of the servers cease
functioning during the interruptions, focusing especially on the case of large pro-
portions. We also assume that the arrivals continue and all customers remain in the
system during the interruption. Customers in service when the interruption begins
complete their remaining service after the interruption ends. However, we assume that
the service times are exponentially distributed, so that the remaining service times are
distributed the same as if the service started over when the interruption ends. Since
customers do not leave in response to the interruption, this is a worst-case scenario
with respect to the congestion impact upon other customers. As elaborated upon in
[25], large scale makes the system more vulnerable to service interruptions when
many servers are unable to function during the interruptions and, surprisingly, even
infrequent short service interruptions can have a dramatic impact on congestion.

We quantify the performance impact of the service interruptions by establish-
ing heavy-traffic stochastic-process limits for the queue-length (number-in-system)
process in the G/M/n + M model, allowing customer abandonment (the +M) and
having general arrivals. We consider the many-server heavy-traffic limiting regime
in which the number of servers, n, and the arrival rate, λn, go to infinity, while the
service rate and abandonment rate remain unchanged. The stochastic-process limits
we establish here are natural extensions of the conventional heavy-traffic stochastic-
process limits for single-server systems with service interruptions in [8, 20] and
Sect. 14.7 in [36]. However, the scalings for single-server systems and many-server
systems are very different. In the conventional heavy-traffic limit, time is scaled so
that both the times between interruptions and the lengths of the interruptions are al-
lowed to grow. In contrast, for many-server systems, we do not scale time. Hence
the times between service interruptions and the lengths of interruptions can remain
unchanged in the heavy-traffic limit. In fact, the interruptions can even have a signif-
icant impact if the durations of the interruptions are asymptotically negligible. Then,
in the many-server heavy-traffic limit, at each time the system is working with prob-
ability one and yet the interruptions have an impact through jumps in the limit of the
scaled queue-length process. As usual with many-server heavy-traffic limits, we will
consider three limiting regimes: quality-driven (QD), quality-and-efficiency-driven
(QED), and efficiency-driven (ED); see [15, 17] and [37]. We have two types of scal-
ings for the service interruption durations: unscaled and asymptotically negligible,
see Sects. 2.2 and 2.3. With unscaled service interruptions, a stochastic fluid approx-
imation for the queue-length process is obtained in Theorem 3.1 in all three regimes,
which is in the same spirit as the previous fluid approximations for single-server
systems in a random environment in [9, 22], and [10]. Conditional on the service-
interruption process and the functioning-server process, the fluid limit is determinis-
tic and satisfies a nonlinear ordinary differential equation (ODE) in each of the two
environment states (interruptions or no interruptions).

With asymptotically negligible service interruptions, we obtain the same determin-
istic fluid limit for the queue-length processes as without service interruptions in all
three regimes (Theorem 3.2), but new refined stochastic limits for the queue-length
processes in the QED and ED regimes (Theorems 3.3 and 3.4). The asymptotically
negligible service interruptions produce unmatched jumps in the refined stochastic
limits, which requires the Skorohod M1 topology; see Chap. 12 of [36]. In order to



Queueing Syst (2009) 61: 167–202 169

apply the continuous mapping theorem, we need the mapping defined by the integral
representation of the queue-length processes to be continuous in the Skorohod M1
topology, which is established in [26]. The continuity of this mapping also allows us
to consider the more general arrival processes, e.g., heavy-tailed interarrival times;
see the FCLT in the modified QED regime with asymptotically negligible service
interruptions in Theorem 4.1.

The refined stochastic limits for the queue-length process are characterized by the
pathwise unique solution to a stochastic integral equation with jumps. If the arrivals
are renewal with interarrival times having a finite second moment and the cycle time
of interruptions is exponential, then the limit processes are special Markov processes,
and so are relatively tractable. The refined stochastic limit in the QED regime is a
jump-diffusion process, while the refined stochastic limit in the ED regime (as a spe-
cial case, for infinite-server queues) is an Ornstein–Uhlenbeck (O–U) process driven
by a Levy process (a Brownian motion with drift plus a compound Poisson process).
The size of jumps in the QED limit process depends on the service rate change,
the proportion of non-functioning servers and the duration of the limit of the scaled
down times, while the size of jumps in the ED limit process also depends on the
customer abandonment rate change. The steady-state distribution of the limit queue-
length process in the ED regime (and for infinite-server queues) is given explicitly
by its characteristic function and can be decomposed into two independent random
variables: one is that without service interruptions and the other represents the effect
of the service interruptions. We refer to [4, 12, 14, 18, 32–34] and references therein
for related work on the stochastic decomposition of the steady-state distribution of
the queue-length process for many-server (infinite-server) queues with service in-
terruptions or vacations. For conventional heavy-traffic limits, decompositions were
discussed by Kella and Whitt [20, 21]. As can be seen from [20], this work con-
tributes to a large body of literature on queues with service interruptions or vacations.
For other related work on this topic, see [1, 6, 7, 23, 24, 32–35] and references
therein.

1.1 Organization of the paper

In Sect. 2, we start by more carefully describing the model, the many-server heavy-
traffic limiting regimes, and the exogenous service interruptions. In Sect. 3, we state
the main results: fluid approximations and their stochastic refinements in all three
regimes for many-server queues and for infinite-server queues, and a stochastic-
decomposition property of the steady-state distributions in the ED regime and for
infinite-server queues. In Sect. 4, we state stochastic refinements for low impact in-
terruptions and for bursty arrivals in the QED regime. We give the proofs in Sect. 5
and conclude in Sect. 6.

2 Preliminaries and assumptions

2.1 The many-server heavy-traffic limiting regimes

We consider a sequence of G/M/n + M queueing models indexed by the number of
servers, n, and let n → ∞. For each n ≥ 1, customers arrivals are general (the G), the
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n parallel homogenous servers have independent exponential service times (the M)
and customers waiting in the queue have independent exponential patience times
(the +M). We assume that arrival processes, service times and customer abandon-
ments are mutually independent and that all the servers are functioning at time 0.

For each model, service interruptions occur exogenously, independent of the sys-
tem described above. When interruptions occur, some or even all of the servers will
stop working while arrivals keep joining the queue. If busy servers stop functioning
because of an interruption, then the customers that were being served will be served
to the extent possible by remaining functioning servers, while any excess customers
remain to complete their service where they left off when the unavailable servers be-
come available again. (We do not focus on the individual customer and server experi-
ence. Hence it suffices to assume that the customers selected to move to functioning
servers are chosen independently at random.)

We assume that the service rate of each server is µ1 > 0 and the customer aban-
donment rate is θ1 ≥ 0 when there is no service interruption, and that the service rate
is µ2 ≥ 0 for functioning servers and the customer abandonment rate is θ2 ≥ 0 during
a service interruption. We assume that µ1 ≥ µ2 and θ1 ≤ θ2. (It is natural, but not re-
ally crucial. Inequalities among these parameters can be used to ensure that the jump
terms in (3.3), (3.6) and (3.9) are all positive, but that is not required. It does not af-
fect the correctness of the mathematical results if these conditions are not assumed.)
For each n ≥ 1, let {ηn,k : k ≥ 1} be a sequence of independent and identically dis-
tributed (i.i.d.) random variables, taking integer values from 0 to n, where for each k,
ηn,k is the number of functioning servers among the n servers when the kth service
interruption occurs. We assume that

ηn,k

n
⇒ ηk for all k as n → ∞, (2.1)

where ⇒ denotes convergence in distribution and {ηk : k ≥ 1} is a sequence
of i.i.d. random variables, taking values in [0,1]. Here ηk = 0 means that all servers
stop functioning when the interruption occurs, referred as total-failure model, while
ηk = 1 means that all servers remain functioning but with a lower service rate
µ2 < µ1. (This randomness assumption on the servers is different from that in [3],
where the number of servers and their service rates are both assumed to be random
with some structure.)

Let D ≡ D([0,∞),R) denote the function space of all right-continuous real-
valued functions on [0,∞) with left-limits everywhere in (0,∞); see [5] and [36]
for background. We will make use of the Skorohod M1 topology as well as the fa-
miliar Skorohod J1 topology. Let (Dk,M1) ≡ (D,M1)× · · ·× (D,M1) be the k-fold
product of (D,M1) with the product topology. In contrast, let (Dk,M1) be the space
of Rk-valued functions D([0,∞),Rk) with the direct M1 topology. Convergence in
Dk implies convergence in Dk with any of the Skorohod topologies, but not con-
versely.

Let An ≡ {An(t) : t ≥ 0} be the arrival counting process in the nth model with
arrival rate λn ≡ limt→∞ An(t)/t ∈ (0,∞) and assume λn/n → λ ∈ (0,∞) as
n → ∞. Let the associated fluid-scaled and diffusion-scaled arrival processes be
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Ān ≡ {Ān(t) : t ≥ 0} and Ân ≡ {Ân(t) : t ≥ 0}, defined by

Ān(t) = An(t)

n
, Ân(t) ≡ An(t) − λnt√

n
, t ≥ 0.

We assume that the arrival processes satisfy a functional central limit theorem
(FCLT); i.e.,

Ân ⇒ Â in (D,M1) as n → ∞. (2.2)

Here we assume the weak convergence in the Skorohod M1 topology to allow for
more general arrival processes, as in Sect. 6.3 in [36]. When the arrival processes are
renewal with interarrival times having a finite second moment, the limit process will

be a Brownian motion (with time change), Â
d=

√
λc2

aB , where the constant c2
a is the

squared coefficient of variation (SCV, variance divided by the square of the mean)
of an interarrival time and B is a standard Brownian motion. Since Brownian motion
has continuous paths, the M1 convergence is equivalent to uniform convergence on
bounded subintervals.

The FCLT above implies that an associated functional weak law of large numbers
(FWLLN) holds for the arrival processes; i.e.,

Ān ⇒ λe in D as n → ∞, (2.3)

where e(t) = t for all t ≥ 0.
Let ρn ≡ λn/nµ1 be the traffic intensity and assume that

√
n(1 − ρn) → β, as n → ∞, (2.4)

where β takes values in R ∪ {±∞}. We obtain the quality-driven (QD) regime, the
quality-and-efficiency-driven (QED) regime, and the efficiency-driven (ED) regime,
respectively, when β = +∞, −∞ < β < +∞, and β = −∞. The canonical exam-
ples for the QD and ED regimes are fixed traffic intensities, with ρn = ρ < 1 for all
n with QD, and ρn = ρ > 1 for all n with ED, which is achieved by letting λn = λn

for all n with λ <µ 1 for QD and with λ >µ 1 for ED. The FWLLN and FCLT for
the queue-length processes in the QD and ED regime in Theorems 3.1, 3.2 and 3.4
assume these canonical examples.

For each n ≥ 1, let Qn ≡ {Qn(t) : t ≥ 0} be the queue-length process, where for
each t ≥ 0, Qn(t) represents the number of customers in the nth model at time t .
Assume that the initial conditions Qn(0) are independent of the arrival process
An, service times, customer patience times, service interruptions and {ηn,k : k ≥ 0}.
Define the fluid-scaled and diffusion-scaled processes Q̄n ≡ {Q̄n(t) : t ≥ 0} and
Q̂n ≡ {Q̂n(t) : t ≥ 0} by

Q̄n(t) ≡ Qn(t)

n
, Q̂n(t) ≡ Qn(t) − n√

n
, t ≥ 0. (2.5)
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2.2 Unscaled exogenous service interruptions

We define the exogenous service-interruption process by the regenerative up–down
(or on–off ) cycles of the servers, specified by the sequence of independent random
vectors {(un,k, vn,k) : k ≥ 1}, where un,k and vn,k denote the kth up (on) time and kth
down (off) time of the servers in the nth queueing model, respectively. We assume
that vn,k, k ≥ 1, are i.i.d. and un,k, k ≥ 2, are i.i.d., allowing un,1 to have a different
distribution from un,k, k ≥ 2. For simplicity, we assume that un,i , vn,i > 0 for all i.
The renewal times {Tn,k : k ≥ 0} are defined by

Tn,k ≡
k∑

i=1

(un,i + vn,i), for k ≥ 1, and Tn,0 = 0.

Thus the associated delayed renewal counting process Nn ≡ {Nn(t) : t ≥ 0} is de-
fined by

Nn(t) ≡ max{k ≥ 0 : Tn,k ≤ t}, t ≥ 0. (2.6)

Define the availability process (random environment) of the servers, Un ≡ {Un(t) :
t ≥ 0}, by

Un(t) ≡
{

1, Tn,k ≤ t < Tn,k + un,k+1, for k ≥ 0,

0, Tn,k + un,k+1 ≤ t < Tn,k+1, for k ≥ 0.

The cumulative up-time process CU,n ≡ {CU,n(t) : t ≥ 0} is defined by

CU,n(t) ≡
∫ t

0
Un(s) ds, t ≥ 0.

The cumulative down-time process CD,n ≡ {CD,n(t) : t ≥ 0} is defined by CD,n(t) ≡
t − CU,n(t) for each t ≥ 0.

Define the process counting the number of functioning servers at each time, ηn ≡
{ηn(t) : t ≥ 0}, by

ηn(t) ≡
{
ηn,Nn(t)+1, Tn,k + un,k+1 ≤ t < Tn,k+1, for k = Nn(t),

n, Tn,k ≤ t < Tn,k + un,k+1, for k ,= Nn(t).
(2.7)

In (2.7), ηn,Nn(t)+1 represents the number of functioning servers when a service in-
terruption is occurring at time t , where that service interruption is the (Nn(t) + 1)-th
service interruption, by the definition of Nn in (2.6).

For the unscaled service interruptions, we impose the following assumption on
the down times of the service interruptions

{
(un,k, vn,k) : k ≥ 1

}
⇒

{
(uk, vk) : k ≥ 1

}
in

(
R2)∞ as n → ∞, (2.8)

where uk, vk > 0 for each k with probability 1 (w.p.1). This implies that

{Tn,k : k ≥ 0} ⇒{ Tk : k ≥ 0} > Tk−1 in R∞ as n → ∞, (2.9)
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where

Tk ≡
k∑

i=1

(ui + vi), for k ≥ 1, and T0 ≡ 0. (2.10)

As a consequence, we have the following elementary lemma. We not only have
convergence in (D3, J1), but also in (D3, J1) because the discontinuity points of the
component processes coincide.

Lemma 2.1 For the unscaled service interruptions, satisfying (2.8),

(
Nn,Un,n

−1ηn

)
⇒ (N,U,η) in (D3, J1) as n → ∞,

where the processes N ≡ {N(t) : t ≥ 0}, U ≡ {U(t) : t ≥ 0} and η ≡ {η(t) : t ≥ 0}
are defined by

N(t) ≡ max{k ≥ 0 : Tk ≤ t}, t ≥ 0, (2.11)

U(t) ≡
{

1, Tk ≤ t < Tk + uk+1, for k ≥ 0,

0, Tk + uk+1 ≤ t < Tk+1, for k ≥ 0,

and

η(t) ≡
{
ηN(t)+1, Tk + uk+1 ≤ t < Tk+1, for k = N(t),

1, Tk ≤ t < Tk + uk+1, for k ,= N(t).

2.3 Asymptotically negligible service interruptions

We now introduce an alternative limiting regime in which the down times decrease to
0. Instead of assumption (2.8), we assume that

{
(un,k,

√
nvn,k) : k ≥ 1

}
⇒

{
(uk, vk) : k ≥ 1

}
in

(
R2)∞ as n → ∞, (2.12)

where again uk, vk > 0 for each k w.p.1. We refer to this assumption as asymptotic
negligible service interruptions. This implies that (2.9) holds with

Tk ≡
k∑

i=1

ui > Tk−1, for k ≥ 1, and T0 ≡ 0. (2.13)

Let the distribution function of v1 be G and assume that E[v1] = mv < ∞. Under
this assumption, if in addition the random variables uk , k ≥ 1, are nonlattice, then
(Un(t), n

−1ηn(t)) ⇒ (1,1) in R2 as n → ∞ for each t ≥ 0, as if there were no inter-
ruptions at all. However, under this assumption, the processes (Un,n

−1ηn) will not
converge to the deterministic processes (ω,ω) in D2 with ω(t) = 1 for all t ≥ 0 in
any of the Skorohod topologies; see Example 11.6.1 on p. 388 in [36]. Note that this
is very different from the convergence of (Un,n

−1ηn) in Lemma 2.1.
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Define the scaled cumulative down-time process of servers Vn ≡ {Vn(t) : t ≥ 0}
by

Vn(t) ≡ √
nCD,n(t) = √

n

∫ t

0

(
1 − Un(s)

)
ds, t ≥ 0, (2.14)

and the associated “lost service” process Rn ≡ {Rn(t) : t ≥ 0} by

Rn(t) ≡ √
n

∫ t

0

(
1 − ηn(s)

n

)(
1 − Un(s)

)
ds, t ≥ 0.

Lemma 2.2 For the asymptotically negligible service interruptions,
(
Nn,Vn,Rn,CU,n

)
⇒ (N,V,R, e) in (D,J1) × (D3,M1) as n → ∞, (2.15)

where V ≡ {V (t) : t ≥ 0} and R ≡ {R(t) : t ≥ 0} are defined by

V (t) ≡
N(t)∑

k=1

vk, R(t) ≡
N(t)∑

k=1

vk(1 − ηk), t ≥ 0,

N is defined in (2.11) with Tk in (2.13) and e(t) ≡ t for all t ≥ 0.

Remark Convergence in (2.15) cannot be strengthened to (D4,M1) because the limit
processes N , V and R all have common discontinuities, but the converging processes
Nn increase in jumps, whereas Vn and Rn have continuous sample paths. The con-
vergence in (D4,M1) requires a single parametric representation of (Nn,Vn), but the
requirements for the single time component are incompatible. There is no difficulty
with the product topology because then Nn and Vn can have separate parametric rep-
resentations.

We remark that the Tk’s in (2.10) and (2.13) are defined differently, but in the con-
text it is easy to see which definition is used. We will not use the convergence of ηn/n
for asymptotically negligible service interruptions in the proofs, but the convergence
Rn ⇒ R will play a key role. Note that the converging processes Vn and Rn have con-
tinuous sample paths, but their limit processes V and R have discontinuous sample
paths. Thus, the weak convergence will not hold in the usual Skorohod J1 topology
because of the unmatched jumps, as discussed in Chap. 6 of [36]. However, since the
processes CU,n and the limit process e are all continuous, the convergence of CU,n

to e in the M1 topology is actually equivalent to uniform convergence on compact
intervals. We prove Lemma 2.2 in Sect. 5.4.

3 Main results

3.1 Unscaled service interruptions

With the framework in Sect. 2.2, we can establish a fluid limit that is valid in all
three limiting regimes. The proof is in Sect. 5.3. We use the conventional notations:
x+ = max{x,0}, x ∨ y = max{x, y} and x ∧ y = min{x, y} for any x, y ∈ R.
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Theorem 3.1 (FWLLN with unscaled service interruptions) Consider the G/M/n+
M model with unscaled service interruptions, in the QD, QED or ED regime. If there
exists a random variable Q̄(0) such that Q̄n(0) ⇒ Q̄(0) as n → ∞, then

Q̄n ⇒ Q̄ in (D,J1) as n → ∞,

where Q̄n is defined in (2.5) and Q̄ ≡ {Q̄(t) : t ≥ 0} is defined by the integral equation

Q̄(t) = Q̄(0) + λt −
∫ t

0

[
µ1

(
Q̄(s) ∧ 1

)
U(s) + µ2

(
Q̄(s) ∧ η(s)

)(
1 − U(s)

)

+ θ1
(
Q̄(s) − 1

)+
U(s) + θ2

(
Q̄(s) − η(s)

)+(
1 − U(s)

)]
ds, t ≥ 0. (3.1)

Conditional on the availability process U and the functioning-server process η,
the process Q̄ evolves deterministically with two different dynamics on the two al-
ternating states of the servers. For k ≥ 0, on the interval [Tk + uk+1, Tk+1), when
the service interruption happens, Q̄(t) evolves according to the nonlinear ordinary
differential equation (ODE)

d

dt
Q̄(t) = λ− µ2

(
Q̄(t) ∧ η(t)

)
− θ2

(
Q̄(t) − η(t)

)+
,

starting from the point Q̄(Tk + uk+1) = Q̄((Tk + uk+1)−) and on the interval
[Tk,Tk + uk+1), when the servers are functioning, Q̄(t) evolves according to the
nonlinear ODE

d

dt
Q̄(t) = λ− µ1

(
Q̄(t) ∧ 1

)
− θ1

(
Q̄(t) − 1

)+
,

starting from the point Q̄(Tk) = Q̄(Tk−).
As a consequence, the limit process is nondecreasing w.p.1 for the G/M/n total-

failure model, without customer abandonment, in both the QED and ED regimes.
Evidently, the queue length in the original G/M/n system diverges to infinity as
t → ∞ if n is large enough with QED scaling. We verified that for the M/M/n
model in Theorem 3 in [25].

3.2 Asymptotically negligible service interruptions

In this section, we state the FWLLN for the fluid-scaled queue-length processes in all
three regimes and FCLTs for the diffusion-scaled queue-length processes in the QED
and ED regimes with asymptotically negligible service interruptions. With asymp-
totically negligible service interruptions, the fluid limits in all three regimes are the
same as if there were no interruptions at all. However, the proof requires some extra
work since we cannot directly apply the continuous mapping theorem to the integral
representation of the queue-length processes with the process Un in it.

Theorem 3.2 (FWLLN with asymptotically negligible service interruptions) Con-
sider the G/M/n + M model in the QD, QED or ED regime and assume asymptot-
ically negligible service interruptions. If there exists some constant Q̄(0) < ∞ such
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that Q̄n(0) ⇒ Q̄(0) as n → ∞, then

Q̄n ⇒ Q̄ in (D,J1) as n → ∞,

where Q̄(t) is deterministic and differentiable, and satisfies the integral equation

Q̄(t) = Q̄(0) + λt −
∫ t

0

(
µ1

(
Q̄(s) ∧ 1

)
+ θ1

(
Q̄(s) − 1

)+)
ds, t ≥ 0. (3.2)

Moreover, as t → ∞, Q̄(t) → q , where q = λ/µ1 < 1 in the QD regime, q = 1 in
the QED regime and q = 1 + (λ − µ1)/θ1 > 1 in the ED regime. If Q̄(0) = q , then
Q̄(t) = q for all t ≥ 0.

Since the steady-state limits as t → ∞ in the fluid limits above (the q in Theo-
rem 3.2) are the same as without service interruptions, the centering for the FCLTs
will remain the same as without service interruptions. We remark that the fluid
dynamics in Theorem 3.2 depends on the assumption on the initial conditions:
Q̄n(0) ⇒ Q̄(0). If the assumption is changed to Q̂n(0) ⇒ Q̂(0) as n → ∞, as in
the following FCLT in the QED regime, the fluid dynamics will become Q̄n ⇒ ω as
n → ∞ where ω(t) = 1 for all t ≥ 0.

Theorem 3.3 (FCLT in the QED regime with asymptotically negligible service inter-
ruptions) Consider the G/M/n + M model in the QED regime, where λ = µ1, and
assume asymptotically negligible service interruptions. If there is a random variable
Q̂(0) such that Q̂n(0) ⇒ Q̂(0) as n → ∞, the processes Â, V and R are independent
of Q̂(0), and Â and V have no simultaneous jumps w.p.1, then

Q̂n ⇒ Q̂ in (D,M1) as n → ∞,

where Q̂ ≡ {Q̂(t) : t ≥ 0} is defined as the pathwise unique solution to the following
stochastic integral equation with jumps:

Q̂(t) = Q̂(0) − µ1βt + Â(t) − √
µ1B(t)

−
∫ t

0

(
µ1

(
Q̂(s) ∧ 0

)
+ θ1

(
Q̂(s) ∨ 0

))
ds + J (t), (3.3)

for each t ≥ 0, where

J (t) ≡
N(t)∑

k=1

[(
(µ1 − µ2) + (µ2 − θ2)(1 − ηk)

)
vk

]
, t ≥ 0, (3.4)

and B is a standard Brownian motion, independent of Q̂(0), Â and J .

Moreover, if Â
d=

√
µ1c2

aB , as occurs if the arrival processes are time-scaled ver-
sions of a common renewal process with interarrival times having a finite second mo-
ment, and the process N is Poisson, then the limiting process Q̂ is a jump-diffusion
(Markov) process, given by the pathwise unique solution to the following stochastic
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differential equation (SDE) with jumps:

Q̂(t) = Q̂(0) − µ1βt +
√

µ1
(
1 + c2

a

)
B(t)

−
∫ t

0

(
µ1

(
Q̂(s) ∧ 0

)
+ θ1

(
Q̂(s) ∨ 0

))
ds + J (t), (3.5)

for each t ≥ 0, where J (t) is defined in (3.4) and B is a standard Brownian motion,
independent of Q̂(0) and J .

Define the scaled queueing length process in the ED regime, Q̂ED
n ≡ {Q̂ED

n (t) :
t ≥ 0}, by

Q̂ED
n (t) ≡ √

n

(
Q̄n(t) −

(
1 + λ− µ1

θ1

))
, t ≥ 0.

In the ED regime, servers are always busy asymptotically. Service interruptions will
not change that fact but will add jumps in the limit.

Theorem 3.4 (FCLT in the ED regime with asymptotically negligible service in-
terruptions) Consider the G/M/n + M model in ED regime and assume asymptot-
ically negligible service interruptions. If there is a random variable Q̂ED(0) such
that Q̂ED

n (0) ⇒ Q̂ED(0) as n → ∞, the processes Â, V and R are independent of
Q̂ED(0), and Â and V have no simultaneous jumps w.p.1, then

Q̂ED
n ⇒ Q̂ED in (D,M1) as n → ∞,

where Q̂ED ≡ {Q̂ED(t) : t ≥ 0} is defined as the pathwise unique solution to the fol-
lowing stochastic integral equation with jumps,

Q̂ED(t) = Q̂ED(0) + Â(t) −
√
λB(t) − θ1

∫ t

0
Q̂ED(s) ds + J ED(t), t ≥ 0, (3.6)

where

J ED(t) ≡
N(t)∑

k=1

[
λ

(
1 − θ2

θ1

)
+

(
θ2

θ1
µ1 − µ2

)
+ (µ2 − θ2)(1−ηk)

]
vk, t ≥ 0, (3.7)

and B is a standard Brownian motion, independent of Q̂ED(0), Â and J ED.

Moreover, if Â
d=

√
λc2

aB , as occurs if the arrival processes are time-scaled ver-
sions of a common renewal process with interarrival times having a finite second mo-
ment, and the process N is Poisson, then the limiting process Q̂ED is a non-Gaussian
O–U process driven by a Levy process (and thus a Markov process), given by the
pathwise unique solution to the following SDE with jumps,

Q̂ED(t) = Q̂ED(0) +
√
λ
(
1 + c2

a

)
B(t) − θ1

∫ t

0
Q̂ED(s) ds + J ED(t), t ≥ 0, (3.8)

where J ED(t) is defined in (3.7), and B is a standard Brownian motion, independent
of Q̂ED(0) and J ED.
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We refer to [11, 28] and [30] for jump-diffusion processes and O–U processes
driven by a Levy process.

We remark that if the abandonment rates θ1 = θ2, J (t) in (3.4) and J ED(t) in (3.7)
are the same. In other words, the limit process Q̂ in the QED regime is insensitive
to the abandonment rate change when a service interruption occurs, while the limit
process Q̂ED in the ED regime is sensitive to that. If µ1 = µ2 and µ2 = θ2, then
J (t) = 0 for all t ≥ 0 and the process Q̂ in (3.5) becomes a diffusion process, just
as if there were no interruptions. Similarly for the limit process in the ED regime,
if µ1 = µ2, θ1 = θ2 and µ2 = θ2. If ηk = 1 for all k ≥ 1 w.p.1, i.e., all servers re-
main functioning when a service interruption occurs, then there is still a jump term,
J (t) = (µ1 − µ2)V (t), in the limit process Q̂ provided that µ1 ,= µ2 and a jump
term, J ED(t) = ∑N(t)

k=1 [λ(1 − θ2
θ1

) + ( θ2
θ1

µ1 − µ2)]vk , in the limit process Q̂ED pro-
vided that θ1 ,= θ2 or µ1 ,= µ2. The jump size in the jump process {J (t) : t ≥ 0} in
(3.4) depends on the service rate change, the proportion of non-functioning servers
when an interruption occurs and the duration of the limit of the scaled down times.
The jump size in the jump process {J ED(t) : t ≥ 0} in (3.7) also depends on customer
abandonment rate change.

3.3 Infinite-server queues

If we assume that θ1 = µ1 and θ2 = µ2 in the many-server queuing setting, which
is often reasonable in applications, then the many-server queue with interruptions
behaves as an infinite-server queue in a random environment. As special cases of the
results above, we obtain the following limits for infinite-server queues. The regimes
QD, QED and ED are no longer relevant.

We consider a sequence of infinite-server queueing models indexed by n and
let n → ∞. Let the arrival processes, service times and service interruptions be the
same for many-server queues, but now there is no customer waiting or abandon-
ment.

Corollary 3.1 (Infinite-server queues) Consider a sequence of G/M/∞ models.
Theorems 3.1–3.4 hold with the limits taking a simple form:

(i) For unscaled service interruptions, the deterministic fluid limit in a random en-
vironment Q̄ in (3.1) becomes

Q̄(t) = Q̄(0) + λt −
∫ t

0

(
µ1Q̄(s)U(s) + µ2Q̄(s)

(
1 − U(s)

))
ds, t ≥ 0.

(ii) For asymptotically negligible service interruptions, the deterministic fluid limit
Q̄ in (3.2) becomes

Q̄(t) = Q̄(0) + µ1t − µ1

∫ t

0
Q̄(s) ds, t ≥ 0.
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(iii) For asymptotically negligible service interruptions, the limit process Q̂ in (3.3)
and (3.6) of the scaled queue-length processes Q̂n becomes

Q̂(t) = Q̂(0) + Â(t) − √
µ1B(t) − µ1

∫ t

0
Q̂(s) ds + (µ1 − µ2)V (t), t ≥ 0.

(3.9)
If Â

d=
√
λc2

aB and the process N is Poisson, the limit process Q̂ is a non-
Gaussian O–U process driven by a Levy process.

3.4 Stochastic-decomposition property of steady-state distributions

The steady-state distribution of O–U processes driven by a Levy process is well stud-
ied, for which we refer to Theorem 2 of [39] and Proposition 15.4 in [11]. For the gen-
eral theory of jump-diffusion processes and O–U processes driven by a Levy process,
we refer to [28, 29] and [30]. By a direct application, we are able to establish the lim-
iting steady-state distributions of the limit queue-length processes in the ED regime
in Theorem 3.4 and for infinite server queues in Corollary 3.1. (The proof is omit-
ted.) As will be seen, the limiting steady-state distribution can be decomposed into
two independent random variables; one is the same as without any interruptions and
the other represents the effect of interruptions. The form of such a decomposition is
consistent with the stochastic-decomposition properties of the number of customers
in M/M/∞ queues in light traffic established in [4, 12, 18] and [14]. However, the
variable representing the effect of interruptions in [14] is different from the others
in light traffic. In heavy traffic, we obtain another different variable representing the
effect of interruptions.

Theorem 3.5 (Stochastic-decomposition property of the steady-state distributions
in the ED regime and for infinite-server queues) Assume that the process N is
Poisson with rate δ and the service-interruption down-time distribution satis-
fies

∫
|x|≥1 G(dx) < ∞,

∫
|x|≤1 |x|2G(dx) < ∞ and

∫ ∞
0 log (|x| + 1)G(dx) < ∞.

When the arrival processes are renewal, the process Q̂ED(t) in (3.8) converges to

Q̂ED(∞)
d= Z1 + Z2 in distribution as t → ∞, and Q̂ED(∞) is self-decomposable,

where Z1 is independent of Z2, Z1
d= Normal(0,λ(1 + c2

a)/2θ1), the steady-state
distribution without any interruptions, and the distribution of Z2 is given by its char-
acteristic function

ψZ2(s) ≡ E
[
exp(isZ2)

]
= exp

(∫

R

(
eisy − 1 − isy1|y|<1

)∫ ∞

1
δH(udy)

1
θ1u

du

)
,

where H(·) is the distribution function of the random variable [(µ2 − θ2)(1 − η1) +
λ(1 − θ2

θ1
) + ( θ2

θ1
µ1 − µ2)]v1. Moreover, if the service interruption time v1 is expo-

nentially distributed with rate m−1
v , and θ1 > δe

− 2
µ1mv , then the mean and variance

of Z2 are given by

E[Z2] = δµ1mv

θ1
e
− 1

µ1mv , Var[Z2] = δµ2
1m

2
v

θ1
−

(
δµ1mv

θ1

)2

e
− 2

µ1mv .



180 Queueing Syst (2009) 61: 167–202

When the arrival processes are renewal, the limit queue-length process Q̂(t) for

infinite-server queues in (3.9) converges to Q̂(∞)
d= Q̂ED(∞) in distribution as

t → ∞ with λ= µ1 = θ1 = θ2 and η1 = 1 w.p.1.

The steady-state distribution for jump-diffusion process Q̂ in (3.5) can be charac-
terized by its generator since it is a special Markov process, but here we conjecture
that it also has a stochastic-decomposition property, which is left for future work.
Moreover, the steady-state distribution of the number of customers in many-server
queues with vacations in light traffic has a conditional stochastic-decomposition
property as in [32–34] and references therein. We conjecture such a decomposition
property also holds in heavy traffic.

4 Other scalings

4.1 Low-impact interruptions

The interruptions will have less impact when relatively few servers are affected. In
this section we establish a limit for the case in which the number of non-functioning
servers during an interruption is of order O(

√
n) with n servers, and so constitutes

only an asymptotically negligible proportion. We do that by considering another scal-
ing of the random variables {ηn,k : k ≥ 1}. In particular, assume that

ηn,k − n√
n

⇒ η̂k for all k as n → ∞, (4.1)

where {η̂k : k ≥ 1} is a sequence of i.i.d. random variables. As a consequence, for the
continuous-time process in (2.7), we have

ηn(t) − n√
n

⇒ 0 in R as n → ∞,

for each t ≥ 0, but the process (ηn − n)/
√

n will not converge in D, just as with
(Un,n

−1ηn) in the setting of (2.12).
Under the assumptions in (4.1) and Theorem 3.3, the limit process Q̂ in (3.3)

becomes

Q̂(t) = Q̂(0) − µ1βt + Â(t) − √
µ1B(t) − µ1

∫ t

0

(
Q̂(s) ∧ 0

)
ds

− θ1

∫ t

0

(
Q̂(s) ∨ 0

)
ds + (µ1 − µ2)V (t), t ≥ 0. (4.2)

This limit process is actually the same as Q̂ in (3.3) when ηk = 1 for all k w.p.1.
This is reasonable since under the assumption in (4.1) almost all servers will remain
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functioning when a service interruption occurs. The jump size in the limit process
depends only on the service rate change and the duration of the limit of the scaled
down times. Therefore, if µ1 = µ2, it is not surprising that the limit process Q̂ will
have no jumps caused by service interruptions, as revealed in (4.2).

4.2 Bursty arrival processes

We now establish a heavy-traffic limit with stronger scaling to cover bursty arrival
processes, paralleling the result without service interruptions, Theorem 2.1 in [26].
In particular, we establish the heavy-traffic limits for the queue-length process with
a nonstandard scaling of the space in the FCLT. Let {cn : n ≥ 1} be a sequence of
positive numbers such that cn → ∞, n/cn → ∞ and

√
n/cn → 0 as n → ∞. For

example, one can choose cn = n1/α for 1/2 < α < 1.
Define the scaled arrival processes Ân ≡ {Ân(t) : t ≥ 0} by

Ân(t) ≡ c−1
n

(
An(t) − λnt

)
, t ≥ 0,

and assume that Ân satisfy the FCLT:

Ân ⇒ Â in (D,M1) as n → ∞.

When An is a renewal process for each n, the limit process Â will be a Levy process.
Indeed, if An is a time-scaled version of a single renewal process, then Â must be a
stable (α-stable) process; i.e., the increments have stable laws

Â(t + s) − Â(s)
d= Sα

(
t1/α,β,0

) d= t1/αSα(1,β,0)

for any s, t ≥ 0 and for some α and β with 0 < α ≤ 2 and −1 ≤ β ≤ 1; see Sect. 4.5.3
in [36].

The usual definition of the QED regime needs to be modified. Now we assume
that

c−1
n n(1 − ρn) → β, −∞ < β < ∞.

The asymptotically negligible service interruptions are assumed to satisfy
{(

un,k, c
−1
n nvn,k

)
: k ≥ 1

}
⇒

{
(uk, vk) : k ≥ 1

}
in

(
R2)∞ as n → ∞,

where uk, vk > 0 for all k ≥ 1 w.p.1.
Define the scaled cumulative down-time process of services Vn and the associated

“lost service” process Rn by

Vn(t) ≡ c−1
n nCD,n = c−1

n n

∫ t

0

(
1 − Un(s)

)
ds, t ≥ 0,

and

Rn(t) ≡ c−1
n n

∫ t

0

(
1 − ηn(s)

n

)(
1 − Un(s)

)
ds, t ≥ 0.
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As in Lemma 2.2, we can show that

(Nn,Vn,Rn,CU,n) ⇒ (N,V,R, e) in (D,J1) × (D3,M1) as n → ∞,

where N,V,R, e are as defined in Lemma 2.2.
Now define the scaled queue-length processes Q̄n and Q̂n by

Q̄n(t) ≡ n−1Qn(t), Q̂n(t) ≡ c−1
n

(
Qn(t) − n

)
, t ≥ 0.

The following theorem can be proved by similar arguments as in the proof of
Theorem 3.3 and hence its proof is omitted. Given the independence of A and V , the
simultaneous jumps will be avoided w.p.1 if the processes A and V have no common
fixed discontinuity points, e.g., if one of them is continuous in probability.

Theorem 4.1 (FCLT in the modified QED regime with asymptotically negligible ser-
vice interruptions) Consider the G/M/n+M model in the modified QED regime and
assume asymptotically negligible service interruptions with the nonstandard scal-
ing above. If there is a random variable Q̂(0) such that Q̂n(0) ⇒ Q̂(0) as n → ∞,
the processes Â, V and R are independent of Q̂(0), and Â and V have no simulta-
neous jumps w.p.1, then

Q̂n ⇒ Q̂ in (D,M1) as n → ∞,

where Q̂ ≡ {Q̂(t) : t ≥ 0} is defined by the following stochastic integral equation with
jumps:

Q̂(t) = Q̂(0) − µ1βt + Â(t)

−
∫ t

0

(
µ1

(
Q̂(s) ∧ 0

)
+ θ1

(
Q̂(s) ∨ 0

))
ds + J (t), t ≥ 0,

where J (t) is defined in (3.4).

5 Proofs

5.1 Martingale representation of the queue-length processes

The proofs follow the martingale argument reviewed in [27]. By a simple conser-
vation of flow, the queue length at any time t equals the initial content plus flow-in
minus flow-out; i.e.,

Qn(t) = Qn(0) + An(t) − S1

(
µ1

∫ t

0

(
Qn(s) ∧ n

)
Un(s) ds

)

− S2

(
µ2

∫ t

0

(
Qn(s) ∧ ηn(s)

)(
1 − Un(s)

)
ds

)

− L1

(
θ1

∫ t

0

(
Qn(s) − n

)+
Un(s) ds

)

− L2

(
θ2

∫ t

0

(
Qn(s) − ηn(s)

)+(
1 − Un(s)

)
ds

)
, t ≥ 0, (5.1)
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where the processes Si ≡ {Si(t) : t ≥ 0} and Li ≡ {Li(t) : t ≥ 0}, i = 1,2, are inde-
pendent Poisson processes with unit rate.

Applying the argument in Lemma 2.1 in [27] and the scaling in (2.5), we obtain
the following representations.

Theorem 5.1 The queueing process Qn in (5.1) is well defined as a random element
of the space D. The scaled queueing processes Q̄n and Q̂n can be represented as

Q̄n(t)

= Q̄n(0) + Ān(t) − S̄n,1(t) − S̄n,2(t) − L̄n,1(t) − L̄n,2(t)

− µ1

∫ t

0

(
Q̄n(s) ∧ 1

)
Un(s) ds − µ2

∫ t

0

(
Q̄n(s) ∧ ηn(s)

n

)(
1 − Un(s)

)
ds

− θ1

∫ t

0

(
Q̄n(s) − 1

)+
Un(s) ds − θ2

∫ t

0

(
Q̄n(s) − ηn(s)

n

)+(
1 − Un(s)

)
ds,

(5.2)

and

Q̂n(t) = Q̂n(0) + Ân(t) − Ŝn,1(t) − Ŝn,2(t) − L̂n,1(t) − L̂n,2(t) + λn − nµ1√
n

t

− µ1

∫ t

0

(
Q̂n(s) ∧ 0

)
Un(s) ds − θ1

∫ t

0
Q̂n(s)

+Un(s) ds

− µ2Rn,1(t) − θ2Rn,2(t) + (µ1 − µ2)Vn(t), (5.3)

where

Ŝn,1(t) = 1√
n

(
S1

(
µ1

∫ t

0

(
Qn(s) ∧ n

)
Un(s) ds

)

− µ1

∫ t

0

(
Qn(s) ∧ n

)
Un(s) ds

)
,

Ŝn,2(t) = 1√
n

(
S2

(
µ2

∫ t

0

(
Qn(s) ∧ ηn(s)

)(
1 − Un(s)

)
ds

)

− µ2

∫ t

0

(
Qn(s) ∧ ηn(s)

)(
1 − Un(s)

)
ds

)
,

L̂n,1(t) = 1√
n

(
L1

(
θ1

∫ t

0

(
Qn(s) − n

)+
Un(s) ds

)

− θ1

∫ t

0

(
Qn(s) − n

)+
Un(s) ds

)
,

L̂n,2(t) = 1√
n

(
L2

(
θ2

∫ t

0

(
Qn(s) − ηn(s)

)+(
1 − Un(s)

)
ds

)

− θ2

∫ t

0

(
Qn(s) − ηn(s)

)+(
1 − Un(s)

)
ds

)
,
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Rn,1(t) = √
n

∫ t

0

((
Q̄n(s) − 1

)
∧

(
ηn(s)

n
− 1

))(
1 − Un(s)

)
ds,

Rn,2(t) = √
n

∫ t

0

(
Q̄n(s) − ηn(s)

n

)+(
1 − Un(s)

)
ds,

and

S̄n,i(t) = 1√
n
Ŝn,i(t), L̄n,i(t) = 1√

n
L̂n,i(t), i = 1,2, t ≥ 0,

and Vn is defined in (2.14).

The following is established just as Theorem 7.2 in [27].

Lemma 5.1 The processes (Ŝn,1, Ŝn,2, L̂n,1, L̂n,2) defined in Theorem 5.1 are square
integrable martingales with respect to the filtration Fn ≡ {Fn(t) : t ≥ 0} where

Fn(t) ≡ σ

{
Qn(0), S1

(
µ1

∫ s

0

(
Qn(u) ∧ n

)
Un(u)du

)
,

S2

(
µ2

∫ t

0

(
Qn(s) ∧ ηn(s)

)(
1 − Un(s)

)
ds

)
,

L1

(
θ1

∫ t

0

(
Qn(s) − n

)+
Un(s) ds

)
,

L2

(
θ2

∫ t

0

(
Qn(s) − ηn(s)

)+(
1 − Un(s)

)
ds

)
:

0 ≤ s ≤ t

}
∨ σ

(
An(s),Un(s),ηn(s) : s ≥ 0

)
∨ N ,

and N is the collection of all null sets. The predictable quadratic variation processes
〈Ŝn,i〉 ≡ {〈Ŝn,i〉(t) : t ≥ 0} and 〈L̂n,i〉 ≡ {〈L̂n,i〉(t) : t ≥ 0}, i = 1,2, are

〈Ŝn,1〉(t) = µ1

n

∫ t

0

(
Qn(s) ∧ n

)
Un(s) ds,

〈Ŝn,2〉(t) = µ2

n

∫ t

0

(
Qn(s) ∧ ηn(s)

)(
1 − Un(s)

)
ds,

〈L̂n,1〉(t) = θ1

n

∫ t

0

(
Qn(s) − n

)+
ds,

〈L̂n,2〉(t) = θ2

n

∫ t

0

(
Qn(s) − ηn(s)

)+(
1 − Un(s)

)
ds.

Proof It is known that for i = 1,2, the processes MSi ≡ {MSi (t) : t ≥ 0} and MLi ≡
{MLi (t) : t ≥ 0} defined by MSi (t) = Si(t) − t and MLi (t) = Li(t) − t for t ≥ 0 are
square integrable martingales with respect to the filtration generated by the processes
Si and Li , with predictable quadratic variation processes 〈MSi 〉 ≡ {〈MSi 〉(t) : t ≥ 0}
and 〈MLi 〉 ≡ {〈MLi 〉(t) : t ≥ 0} defined by 〈MSi 〉(t) = t and 〈MLi 〉(t) = t .
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As for the case without service interruptions in Sect. 7.1 in [27], we will need
to apply the optional stopping theorem for multiparameter random time change (see
Sects. 2.8 and 6.2 in [13]).

Define the processes τn,i ≡ {τn,i(t) : t ≥ 0} (i = 1,2,3,4) by

τn,1(t) = µ1

∫ t

0

(
Qn(s) ∧ n

)
Un(s) ds,

τn,2(t) = µ2

∫ t

0

(
Qn(s) ∧ ηn(s)

)+(
1 − Un(s)

)
ds,

τn,3(t) = θ1

∫ t

0

(
Qn(s) − n

)+
Un(s) ds,

τn,4(t) = θ2

∫ t

0

(
Qn(s) − ηn(s)

)+(
1 − Un(s)

)
ds.

All the τn,i ’s have continuous nondecreasing nonnegative sample paths and
(τn,1(t), τn,2(t), τn,3(t), τn,4(t)) are stopping times with respect to the filtration
Hn ≡ {Hn(t1, t2, t3, t4) : ti ≥ 0, i = 1,2,3,4} for each t ≥ 0; i.e., for all ui ≥ 0
(i = 1,2,3,4),

{
τn,1(t) ≤ u1, τn,2(t) ≤ u2, τn,3(t) ≤ u3, τn,4(t) ≤ u4

}
∈ Hn(u1, u2, u3, u4),

where

Hn(t1, t2, t3, t4) ≡ σ
{
Qn(0), S1(s1), S2(s2),L1(s3),L2(s4) : 0 ≤ si ≤ ti ,

i = 1,2,3,4
}

∨ σ
{
An(s),Un(s),ηn(s) : s ≥ 0

}
∨ N .

We need to check the moment conditions for τn,i ’s to be satisfied; i.e., E[τn,i(t)] <

∞ for all i and

E
[
Si

(
τn,i(t)

)]
< ∞, for i = 1,2,

E
[
L1

(
τn,3(t)

)]
< ∞, and E

[
L2

(
τn,4(t)

)]
< ∞, t ≥ 0.

The moment conditions for τn,1 and τn,2 are obviously satisfied and we apply
the crude inequality Qn(t) ≤ Qn(0) + An(t) for each t ≥ 0 to obtain the moment
conditions for τn,3 and τn,4. For each t ≥ 0,

E

[
θ1

∫ t

0

(
Qn(s) − n

)+
Un(s) ds

]
≤ θ1t

(
E

[
Qn(0)

]
+ E

[
An(t)

]
+ n

)
< ∞, t ≥ 0,

and

E

[
L1

(
θ1

∫ t

0

(
Qn(s) − n

)+
Un(s) ds

)]
≤ E

[
L1

(
θ1t

(
E

[
Qn(0)

]
+ E

[
An(t)

]
+ n

))]

= θ1t
(
E

[
Qn(0)

]
+ E

[
An(t)

]
+ n

)
< ∞.
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This implies that the moment conditions for τn,3 hold if E[Qn(0)] < ∞. Similar
arguments hold for τn,4.

Recall that E[Qn(0)] < ∞ is not assumed in the statement of Theorem 3.1.
As elaborated upon in Sect. 6.3 in [27], we first consider bounded initial conditions
that converge to the same limit and establish the limit under the modified initial condi-
tion, which is asymptotically equivalent to the original limit in probability. So without
loss of generality, we could have assumed that E[Qn(0)] < ∞ at the very beginning.

Therefore, by applying a variation of Lemma 3.2 in [27] for multiparameter mar-
tingales together with the optional stopping theorem for multiparameter random time
change, we obtain the desired result. !

5.2 Continuity of an integral representation

The following integral representation plays a key role in the proof of the heavy-traffic
limit theorems in this paper. To apply the continuous mapping theorem, we establish
the continuity of the mapping, based on a new characterization of the M1 conver-
gence, Theorem 1.2 in [26].

Lemma 5.2 Consider the integral equation

y(t) = x(t) +
∫ t

0
h
(
y(s), z(s)

)
q(s) ds +

∫ t

0
g
(
y(s)

)
b(s) ds, t ≥ 0, (5.4)

where the function h : R × R → R is Lipstchitz continuous in each coordinate, the
function g : R → R is Lipstchitz continuous and the functions q, b ∈ D. The integral
equation in (5.4) has a unique solution y ∈ D so that it gives a function ψ : D4 → D
mapping (x, z, q, b) into y ≡ ψ(x, z, q, b). Moreover, the function ψ is continuous if
the spaces D4 and D are both endowed with either the Skorohod J1 or M1 topology.

Proof Let Υn ≡ (xn, zn, qn, bn) and Υ ≡ (x, z, q, b). Fix T > 0. This proof is a mi-
nor modification of Theorem 4.1 in [27] and Theorem 1.1 in [26]. Since q and b
are elements of D, they are bounded on [0, T ] for each T > 0. Let K be such
that ‖q‖T ∨ ‖b‖T ≤ K , where for any function f ∈ D, ‖f ‖T ≡ sup0≤t≤T |f (t)|,
and for simplicity we write ‖f ‖ if T = 1. Suppose that |h(w1, l1) − h(w2, l2)| ≤
c1(|w1 − w2| + |l1 − l2|) and |g(w1) − g(w2)| ≤ c2|w1 − w2| for all wi, li ∈ R and
some c1, c2 ∈ (0,∞). We will only prove continuity property in the M1 topology
since the proof in the J1 topology is similar and easier. Given that dM1(Υ,Υ ) → 0,
by Theorem 1.2 in [26], let (un, rn) and (u, r) be parametric representations of Υn and
Υ , constructed such that r and rn are absolutely continuous with respect to Lebesgue
measure on [0,1] with derivatives r ′ and r ′

n for all n satisfying

‖r ′
n − r ′‖L1

≡
∫ 1

0

∣∣r ′
n(s) − r ′(s)

∣∣ds → 0 as n → ∞,

‖r ′‖ < ∞ and supn≥1
{
‖r ′

n‖
}

< ∞.

(5.5)

We will construct the associated parametric representations (uyn, ryn) and (uy, ry)
for yn and y. Since the jumps of yn necessarily coincide with the jumps of xn for
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each n and so do the jumps of y and x, we can let ry = r and ryn = rn for all n.
So the time components ry and ryn satisfy (5.5) and ‖ryn − ry‖ → 0 as n → ∞.
We define the spatial components uy(s) = y(r(s)) for r(s) ∈ Disc(y)c and uyn(s) =
yn(rn(s)) ∈ Disc(yn)

c for all n ≥ 0, where Disc(y) is the set of the discontinuity
points and Disc(y)c is its complements and define the remaining values by linear
interpolation. Now we can write

uyn(s) = u(1)
n (s) +

∫ s

0
h
(
uyn(w),u(2)

n (w)
)
u(3)

n (w)r ′
n(w)dw

+
∫ s

0
g
(
uyn(w)

)
u(4)

n (w)r ′
n(w)dw,

uy(s) = u(1)(s) +
∫ s

0
h
(
uy(w),u(2)(w)

)
u(3)(w)r ′(w)dw

+
∫ s

0
g
(
uy(w)

)
u(4)(w)r ′(w)dw,

for s ∈ [0,1], where u(i) is the ith component of u, and similarly for u
(i)
n . Now we

have
∣∣uyn(s) − uy(s)

∣∣ ≤
∣∣u(1)

n (s) − u(1)(s)
∣∣ +∆n,1 +∆n,2,

where

∆n,1 ≡
∣∣∣∣

∫ s

0
h
(
uyn(w),u(2)

n (w)
)
u(3)

n (w)r ′
n(w)dw

−
∫ s

0
h
(
uy(w),u(2)(w)

)
u(3)(w)r ′(w)dw

∣∣∣∣,

and

∆n,2 ≡
∣∣∣∣

∫ s

0
g
(
uyn(w)

)
u(4)

n (w)r ′
n(w)dw −

∫ s

0
g
(
uy(w)

)
u(4)(w)r ′(w)dw

∣∣∣∣.

Then

∆n,1 ≤
∣∣∣∣

∫ s

0
h
(
uyn(w),u(2)

n (w)
)
u(3)

n (w)r ′
n(w)dw

−
∫ s

0
h
(
uy(w),u(2)(w)

)
u(3)

n (w)r ′
n(w)dw

∣∣∣∣

+
∣∣∣∣

∫ s

0
h
(
uy(w),u(2)(w)

)
u(3)

n (w)r ′
n(w)dw

−
∫ s

0
h
(
uy(w),u(2)(w)

)
u(3)

n (w)r ′(w)dw

∣∣∣∣

+
∣∣∣∣

∫ s

0
h
(
uy(w),u(2)(w)

)
u(3)

n (w)r ′(w)dw
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−
∫ s

0
h
(
uy(w),u(2)(w)

)
u(3)(w)r ′(w)dw

∣∣∣∣

≤ Kc1‖r ′
n‖

∫ s

0

(∣∣uyn(w) − uy(w)
∣∣ +

∣∣u(2)
n (w) − u(2)(w)

∣∣)dw

+
∥∥h(y, z)

∥∥
T

(
K

∫ s

0

∣∣r ′
n(w) − r ′(w)

∣∣dw + ‖r ′‖ ·
∥∥u(3)

n − u(3)
∥∥
)

,

and

∆n,2 ≤
∣∣∣∣

∫ s

0
g
(
uyn(w)

)
u(4)

n (w)r ′
n(w)dw −

∫ s

0
g
(
uy(w)

)
u(4)

n (w)r ′
n(w)dw

∣∣∣∣

+
∣∣∣∣

∫ s

0
g
(
uy(w)

)
u(4)

n (w)r ′
n(w)dw −

∫ s

0
g
(
uy(w)

)
u(4)

n (w)r ′(w)dw

∣∣∣∣

+
∣∣∣∣

∫ s

0
g
(
uy(w)

)
u(4)

n (w)r ′(w)dw −
∫ s

0
g
(
uy(w)

)
u(4)(w)r ′(w)dw

∣∣∣∣

≤ Kc2‖r ′
n‖

∫ s

0

∣∣uyn(w) − uy(w)
∣∣dw

+
∥∥g(y)

∥∥
T

(
K

∫ s

0

∣∣r ′
n(w) − r ′(w)

∣∣dw + ‖r ′‖ ·
∥∥u(3)

n − u(3)
∥∥
)

.

Hence,

∣∣uyn(s) − uy(s)
∣∣

≤
∥∥u(1)

n − u(1)
∥∥ +

(∥∥h(y, z)
∥∥

T
+

∥∥g(y)
∥∥

T

)(
K‖r ′

n − r ′‖L1 + ‖r ′‖ ·
∥∥u(3)

n − u(3)
∥∥)

+ Kc1‖r ′
n‖ ·

∥∥u(2)
n − u(2)

∥∥ + K(c1 + c2)‖r ′
n‖

∫ s

0

∣∣uyn(w) − uy(w)
∣∣dw.

Now by Gronwall’s inequality and (5.5), we obtain

‖uyn − uy‖
≤

(∥∥u(1)
n − u(1)

∥∥ +
(∥∥h(y, z)

∥∥
T

+
∥∥g(y)

∥∥
T

)(
K‖r ′

n − r ′‖L1 + ‖r ′‖ ·
∥∥u(3)

n − u(3)
∥∥)

+ Kc1‖r ′
n‖ ·

∥∥u(2)
n − u(2)

∥∥)
· e‖r ′

n‖K(c1+c2) → 0, as n → ∞.

Therefore we have proved that dM1(yn, y) → 0 as n → ∞. !

5.3 Proof of Theorem 3.1

There are two possible scenarios for the random environment. In the first scenario, the
random environment Un is common and equal to U for all n. In the second scenario,
the random environments are different for the models, but Un ⇒ U in the Skorohod



Queueing Syst (2009) 61: 167–202 189

J1 topology as n → ∞. In the first scenario, the proof is done in Theorem 5 of [25]
and is basically the same as without service interruptions except that conditioning on
the process U , we need to apply the continuous mapping theorem to the mapping de-
fined by the integral representation in Lemma 5.2. Here we only consider the second
scenario.

The following lemma can be proved by applying Lemmas 5.5, 5.8, 5.9 in [27],
with minor modifications. We state the result without proof.

Lemma 5.3 Under the assumptions of Theorem 3.1, the sequence of processes
{(Ŝn,1, Ŝn,2, L̂n,1, L̂n,2) : n ≥ 1} defined in Theorem 5.1 is stochastically bounded in
the space D4, i.e., for all ε > 0 and T > 0, there exists a positive real number K such
that

P
(∥∥(Ŝn,1, Ŝn,2, L̂n,1, L̂n,2)

∥∥
T

≤ K
)
> 1 − ε, for n ≥ 1.

The sequence of processes {Q̄n : n ≥ 1} in Theorem 5.1 is stochastically bounded
in D and we have the joint convergence

(
Q̄n(0), Ān, S̄n,1, S̄n,2, L̄n,1, L̄n,2

)

⇒
(
Q̄(0),λe, ζ, ζ, ζ, ζ

)
in R × (D5, J1) as n → ∞,

where e(t) = t and ζ(t) = 0 for all t ≥ 0.

Proof of Theorem 3.1 We observe that the continuous mapping theorem cannot be
applied directly to the integral representation of Q̄n in (5.2), due to the process Un in
the integral, so we will prove the weak convergence of the processes Q̄n conditional
on the processes Un to the process Q̄ conditional on the process U . We notice that
the process Q̄ conditional on the process U is differentiable.

As a first step, given Un ⇒ U in (D,J1) as n → ∞, we apply the Skoro-
hod representation theorem to get versions of Un converging to U w.p.1. We can
then restrict our attention to these and focus on a single sample point ω for which
‖Un(ω) − U(ω)‖T → 0 as n → ∞. Fix T large as a continuity point of U .
Since the random environment is independent of the queueing system, by fixing such
an ω, we will consider the stochastic queue-length processes and partition the time
domain into the time intervals [Tn,k, Tn,k + un,k+1) and [Tn,k + un,k+1, Tn,k+1) for
k ≥ 0.

By the representation of Q̄n in Theorem 5.1, conditional on the processes Un, for
all k ≥ 0, on the time intervals [Tn,k, Tn,k + un,k+1),

Q̄n(t) = Q̄n(Tn,k−) + Ān(t) − Ān(Tn,k−) −
(
S̄n,1(t) − S̄n,1(Tn,k−)

)

−
(
L̄n,1(t) − L̄n,1(Tn,k−)

)
− µ1

∫ t

Tn,k

(
Q̄n(s) ∧ 1

)
ds

− θ1

∫ t

Tn,k

(
Q̄n(s) − 1

)+
ds,
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and on the time intervals [Tn,k + un,k+1, Tn,k+1),

Q̄n(t) = Q̄n

(
(Tn,k + un,k+1)−

)
+ Ān(t) − Ān

(
(Tn,k + un,k+1)−

)

−
(
S̄n,2(t) − S̄n,2

(
(Tn,k + un,k+1)−

))

−
(
L̄n,2(t) − L̄n,2

(
(Tn,k + un,k+1)−

))

− µ2

∫ t

Tn,k+un,k+1

(
Q̄n(s) ∧ ηn(s)

n

)
ds

− θ2

∫ t

Tn,k+un,k+1

(
Q̄n(s) − ηn(s)

n

)+
ds.

We proceed with the proof by induction on k. For k = 0, conditional on Un, on the
time interval [0, un,1),

Q̄n(t) = Q̄n(0) + Ān(t) − S̄n,1(t) − L̄n,1(t)

−
∫ t

0

[
µ1

(
Q̄n(s) ∧ 1

)
+ θ1

(
Q̄n(s) − 1

)+]
ds.

This representation of the processes Q̄n corresponds to the mapping defined in
Lemma 5.2 with the function g defined by g(x) = −µ1(x ∧ 1) − θ1(x − 1)+ for
all x ∈ R, b = 1 and h = q = 0. By the continuous mapping theorem together with
Lemma 5.3, applying to the addition mapping and the mapping defined in Lemma 5.2,
and the assumptions on the unscaled service interruptions, we obtain the weak con-
vergence of the processes Q̄n conditional on the processes Un restricted to the time
interval [0, un,1) to the process Q̄ conditional on the process U restricted to the time
interval [0, u1) in D as n → ∞, where

Q̄(t) = Q̄(0) + λt −
∫ t

0

[
µ1

(
Q̄(s) ∧ 1

)
+ θ1

(
Q̄(s) − 1

)+]
ds, t ∈ [0, u1).

On the time interval [un,1, Tn,1),

Q̄n(t) = Q̄n(un,1−) + Ān(t) − Ān(un,1−) −
(
S̄n,2(t) − S̄n,2(un,1−)

)

−
(
L̄n,2(t) − L̄n,2(un,1−)

)
− µ2

∫ t

un,1

(
Q̄n(s) ∧ ηn(s)

n

)
ds

− θ2

∫ t

un,k+1

(
Q̄n(s) − ηn(s)

n

)+
ds.

By the continuous mapping theorem together with Lemma 5.3, applied to the ad-
dition mapping and the integral mapping defined in Lemma 5.2, with the function h

defined by h(x, z) = −µ2(x ∧ z) − θ2(x − z)+ for all x, z ∈ R, q = 1 and g = b = 0,
we obtain the weak convergence of the processes Q̄n conditional on the processes Un

restricted to the time interval [un,1, Tn,1) to the process Q̄ conditional on the process
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U restricted to the time interval [u1, T1) in D, where

Q̄(t) = Q̄(u1−) + λt − λu1 −
∫ t

u1

[
µ2

(
Q̄(s) ∧ η(s)

)
− θ2

(
Q̄(s) − η(s)

)+]
ds

= Q̄(0) + λt −
∫ t

0

[
µ1

(
Q̄(s) ∧ 1

)
+ θ1

(
Q̄(s) − 1

)+]
ds

−
∫ t

u1

[
µ2

(
Q̄(s) ∧ η(s)

)
− θ2

(
Q̄(s) − η(s)

)+]
ds.

Now the weak convergence for k = 0 is obtained. Suppose we have obtained the
weak convergence for some k > 0. We want to show the weak convergence for k + 1.

On the time interval [Tn,k+1, Tn,k+1 + un,k+2),

Q̄n(t) = Q̄n(Tn,k+1−) + Ān(t) − Ān(Tn,k+1−) −
(
S̄n,1(t) − S̄n,1(Tn,k+1−)

)

−
(
L̄n,1(t) − L̄n,1(Tn,k+1−)

)
− µ1

∫ t

Tn,k+1

(
Q̄n(s) ∧ 1

)
ds

− θ1

∫ t

Tn,k+1

(
Q̄n(s) − 1

)+
ds.

This representation of the processes Q̄n corresponds to the mapping defined in
Lemma 5.2 with the function g defined by g(x) = −µ1(x ∧ 1) − θ1(x − 1)+ for
all x ∈ R, b = 1 and h = q = 0. By the continuous mapping theorem together with
Lemma 5.3, applying to the addition mapping and the mapping defined in Lemma 5.2,
and the assumptions on the unscaled service interruptions, we obtain the weak con-
vergence of the processes Q̄n conditional on the processes Un restricted to the time
interval [Tn,k+1, Tn,k+1 + un,k+2) to the process Q̄ conditional on the process U re-
stricted to the time interval [Tk+1, Tk+1 + uk+2) in D as n → ∞, where

Q̄(t) = Q̄(Tk+1−) + λt − λTk+1 −
∫ t

Tk+1

[
µ1

(
Q̄(s) ∧ 1

)
+ θ1

(
Q̄(s) − 1

)+]
ds

= Q̄(0) + λTk+1 −
k∑

j=0

∫ Tj +uj+1

Tj

[
µ1

(
Q̄(s) ∧ 1

)
+ θ1

(
Q̄(s) − 1

)+]
ds

−
k∑

j=0

∫ Tj+1

Tj +uj+1

[
µ2

(
Q̄(s) ∧ η(s)

)
+ θ2

(
Q̄(s) − η(s)

)+]
ds

+ λt − λTk+1 −
∫ t

Tk+1

[
µ1

(
Q̄(s) ∧ 1

)
+ θ1

(
Q̄(s) − 1

)+]
ds

= Q̄(0) + λt −
k∑

j=0

∫ Tj +uj+1

Tj

[
µ1

(
Q̄(s) ∧ 1

)
+ θ1

(
Q̄(s) − 1

)+]
ds
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−
∫ t

Tk+1

[
µ1

(
Q̄(s) ∧ 1

)
+ θ1

(
Q̄(s) − 1

)+]
ds

−
k∑

j=0

∫ Tj+1

Tj +uj+1

[
µ2

(
Q̄(s) ∧ η(s)

)
+ θ2

(
Q̄(s) − η(s)

)+]
ds.

On the time interval [Tn,k+1 + un,k+2, Tn,k+2),

Q̄n(t) = Q̄n

(
(Tn,k+1 + un,k+2)−

)
+ Ān(t) − Ān

(
(Tn,k+1 + un,k+2)−

)

−
(
S̄n,2(t) − S̄n,2

(
(Tn,k+1 + un,k+2)−

))

−
(
L̄n,2(t) − L̄n,2

(
(Tn,k+1 + un,k+2)−

))

− µ2

∫ t

Tn,k+1+un,k+2

(
Q̄n(s) ∧ ηn(s)

n

)
ds

− θ2

∫ t

Tn,k+1+un,k+2

(
Q̄n(s) − ηn(s)

n

)+
ds.

By the continuous mapping theorem together with Lemma 5.3, applied to the ad-
dition mapping and the integral mapping defined in Lemma 5.2, with the function h

defined by h(x, z) = −µ2(x ∧ z) − θ2(x − z)+ for all x, z ∈ R, q = 1 and g = b = 0,
we obtain the weak convergence of the processes Q̄n conditional on the processes Un

restricted to the time interval [Tn,k+1 + un,k+2, Tn,k+2) to the process Q̄ conditional
on the process U restricted to the time interval [Tk+1 + uk+2, Tk+2) in D as n → ∞,
where

Q̄(t) = Q̄
(
(Tk+1 + uk+2)−

)
+ λt − λ(Tk+1 + uk+2)

−
∫ t

Tk+1+uk+2

[
µ2

(
Q̄(s) ∧ η(s)

)
+ θ2

(
Q̄(s) − η(s)

)+]
ds

= Q̄(0) + λt −
k+1∑

j=0

∫ Tj +uj+1

Tj

[
µ1

(
Q̄(s) ∧ 1

)
+ θ1

(
Q̄(s) − 1

)+]
ds

−
k∑

j=0

∫ Tj+1

Tj +uj+1

[
µ2

(
Q̄(s) ∧ η(s)

)
+ θ2

(
Q̄(s) − η(s)

)+]
ds

−
∫ t

Tk+1+uk+2

[
µ2

(
Q̄(s) ∧ η(s)

)
+ θ2

(
Q̄(s) − η(s)

)+]
ds.

So the induction steps are valid and the weak convergence of the processes Q̄n

conditional on Un to the process Q̄ conditional on the process U holds for the inter-
vals [Tj , Tj+1), 0 ≤ j ≤ k+1 in D. Therefore, the weak convergence of the processes
Q̄n conditional on Un to the process Q̄ conditional on the process U holds in D and
without conditioning the processes Q̄n converge weakly to the process Q̄ in D. !
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5.4 Proof of Lemma 2.2

We apply Skorohod representation theorem to obtain random variables {(un,k, vn,k) :
k ≥ 1} such that (2.12) holds w.p.1. Fix k ≥ 1 such that Tk < T < Tk+1 for some
continuity point T of V . Consider the interval [0, T ].

Let Γ and Γn be the complete graphs of V and Vn defined by

Γ =
{
(z, t) : z = αV (t) + (1 − α)V (t−) ≥ 0, t ∈ [0, T ], α ∈ [0,1]

}
,

and

Γn =
{
(z, t) : z = Vn(t) ≥ 0, t ∈ [0, T ]

}
.

Let (ai, bi) be a pair of positive numbers such that 0 < ai < bi < ai+1 < bi+1 < 1.
Define the parametric representations of V and Vn by (u, r) : [0,1] → Γ and
(un, rn) : [0,1] → Γn, respectively, where

r(0) = rn(0) = 0, r(1) = rn(1) = T ,

r(ai) = r(bi) = Ti, rn(ai) = Tn,i−1 + un,i , rn(bi) = Tn,i ,

u(ai) = v0 + · · · + vi−1, u(bi) = v1 + · · · + vi,

un(ai) = √
n(vn,0 + · · · + vn,i−1), un(bi) = √

n(vn,1 + · · · + vn,i),

for each i ≥ 1 with v0 = vn,0 = 0, and the values of u, r, un, rn at the remaining points
are determined by linear interpolation.

Thus we have

‖rn − r‖T = max
i≤k

|Tn,i−1 + un,i − Ti |,

‖un − u‖T = max
i≤k

{∣∣√n(vn,0 + · · · + vn,i−1) − (v0 + · · · + vi−1)
∣∣

∨
∣∣√n(vn,1 + · · · + vn,i) − (v1 + · · · + vi)

∣∣}.

By the assumptions in (2.12) and λn,λ< ∞, we obtain

‖un − u‖T ∨ ‖rn − r‖T → 0, as n → ∞.

So by Theorem 12.5.1(i) in [36], the weak convergence of Vn to V in (D,M1) is
proved.

For the convergence of Rn to R, we can follow the same argument as above by
replacing vn,i by (1 − ηn,i/n)vn,i and vi by (1 − ηi )vi . Since ηn,i and vn,i are inde-
pendent for all i, and so are ηi and vi , the convergence follows from the assumptions
on ηn,i in (2.1) and vn,i in (2.12). Since we can use the same time components in
their parametric representations, we obtain the joint convergence (Vn,Rn) ⇒ (V ,R)

in (D2,M1).
For the convergence of CU,n to e, it suffices to prove the uniform convergence

on compact time intervals. Since Vn ⇒ V as n → ∞, we have Vn(T ) ⇒ V (T ) as
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n → ∞, and

sup
0≤t≤T

∣∣CU,n(t) − t
∣∣ = sup

0≤t≤T

∫ t

0
1{Un(s)=0} ds = 1√

n
Vn(T ) ⇒ 0 as n → ∞.

Hence, CU,n ⇒ e in D is proved and thus we have the joint convergence
(Vn,Rn,CU,n) ⇒ (V ,R, e) in (D3,M1).

The convergence Nn ⇒ N in (D,J1) and (D,M1) is straightforward, but for M1,
the time component of the parametric representation of Nn must be different from
that of Vn and Rn. Therefore, as noted in the remark after Lemma 2.2, we need to use
the weaker M1 product topology for the joint convergence of Nn and the others; i.e.,
(Nn,Vn,Rn,CU,n) ⇒ (N,V,R, e) in (D,J1)×(D3,M1) as n → ∞. That completes
the proof of Lemma 2.2.

5.5 Proofs of Theorems 3.2 and 3.3

In this section, we will prove Theorems 3.2 and 3.3. Since their proofs are similar,
we will prove Theorem 3.3 by proving Theorems 5.2 and 5.3 first and then sketch
the proof of Theorem 3.2. We observe that the continuous mapping theorem can-
not be applied directly to the integral representation of the fluid-scaled queue-length
processes Q̄n and the diffusion-scaled queue-length processes Q̂n in Theorem 5.1,
since the mapping defined by the integral to obtain the processes Q̄n and Q̂n is not
continuous in the Skorohod topologies due to the process Un in the integral. We
instead consider the queue-length processes Q0

n ≡ {Q0
n(t) : t ≥ 0} without interrup-

tions, represented by

Q0
n(t) ≡ Qn(0) + An(t) − S1

(
µ1

∫ t

0

(
Q0

n(s) ∧ n
)
ds

)

− L1

(
θ1

∫ t

0

(
Q0

n(s) − n
)+

ds

)
, t ≥ 0, (5.6)

and the associated scaled processes Q̄0
n ≡ {Q̄0

n(t) : t ≥ 0} and Q̂0
n ≡ {Q̂0

n(t) : t ≥ 0},
defined by Q̄0

n ≡ n−1Q0
n(t), and

Q̂0
n(t) ≡ √

n
(
Q̄0

n(t) − 1
)
+ (µ1 − µ2)Vn(t)

− µ2R
0
n,1(t) − θ2R

0
n,2(t), t ≥ 0, (5.7)

where

R0
n,1(t) ≡ √

n

∫ t

0

((
Q̄0

n(s) − 1
)
∧

(
ηn(s)

n
− 1

))(
1 − Un(s)

)
ds, t ≥ 0,

and

R0
n,2(t) ≡ √

n

∫ t

0

(
Q̄0

n(s) − ηn(s)

n

)+(
1 − Un(s)

)
ds, t ≥ 0.
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Note that Q0
n(0) = Qn(0), Q̄0

n(0) = Q̄n(0) and Q̂0
n(0) = Q̂n(0). Now the

processes Q̄0
n and Q̂0

n can be represented as

Q̄0
n(t) = Q̄n(0) + Ān(t) − S̄0

n,1(t) − L̄0
n,1(t)

−
∫ t

0

[
µ1

(
Q̄0

n(s) ∧ 1
)
+ θ1

(
Q̄0

n(s) − 1
)+]

ds, (5.8)

and

Q̂0
n(t) = Q̂n(0) + Ân(t) − Ŝ0

n,1(t) − L̂0
n,1(t) − nµ1 − λn√

n
t − µ2R

0
n,1(t) − θ2R

0
n,2(t)

+ (µ1 − µ2)Vn(t) −
∫ t

0

[
µ1

(
Q̂0

n(s) ∧ 0
)
+ θ1

(
Q̂0

n(s) ∨ 0
)]

ds, (5.9)

where

Ŝ0
n,1(t) ≡ 1√

n

(
S1

(
nµ1

∫ t

0

(
Q̄0

n(s) ∧ 1
)
ds

)
− nµ1

∫ t

0

(
Q̄0

n(s) ∧ 1
)
ds

)
,

L̂0
n,1(t) ≡ 1√

n

(
L1

(
nθ1

∫ t

0

(
Q̄0

n(s) − 1
)+

ds

)
− nθ1

∫ t

0

(
Q̄0

n(s) − 1
)+

ds

)
,

and

S̄0
n,1(t) ≡ 1√

n
Ŝ0

n,1(t), L̄0
n,1(t) ≡ 1√

n
L̂0

n,1(t), t ≥ 0,

and Vn is defined in (2.14).
We will sketch the proof of the processes Q̂0

n converging weakly to the limit
process Q̂ defined in Theorem 3.3 in (D,M1) since it is essentially the same as The-
orem 7.1 in [27]. Then we prove that the processes Q̂0

n and Q̂n are asymptotically
equivalent in D.

Theorem 5.2 Under the assumptions of Theorem 3.3,

Q̂0
n ⇒ Q̂ in (D,M1) as n → ∞,

where Q̂ is defined in (3.3).

Proof (sketch) As in Sect. 7.1 in [27], the processes (Ŝ0
n,1, L̂

0
n,1) in (5.9) are square

integrable martingales with respect to the filtration F0
n ≡ {F 0

n(t) : t ≥ 0}, where

F 0
n(t) ≡ σ

{
Qn(0), S1

(
nµ1

∫ s

0

(
Q̄0

n(u) ∧ 1
)
du

)
,

L1

(
nθ1

∫ t

0

(
Q̄0

n(s) − 1
)+

ds

)
: 0 ≤ s ≤ t

}

∨ σ
(
An(s),Un(s),ηn(s) : s ≥ 0

)
∨ N ,
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and N is the collection of all null sets. The predictable quadratic variation processes
〈Ŝ0

n,1〉 and 〈L̂0
n,1〉 are defined by

〈
Ŝ0

n,1
〉
(t) ≡ µ1

∫ t

0

(
Q̄0

n(s) ∧ 1
)
ds,

〈
L̂0

n,1
〉
(t) ≡ θ1

∫ t

0

(
Q̄0

n(s) − 1
)+

ds, for all t ≥ 0.

Moreover, the sequence of martingale processes {(Ŝ0
n,1, L̂

0
n,1) : n ≥ 1} is sto-

chastically bounded in the space D2. Next, by (5.8), we have the crude bound
0 ≤ Q̄0

n(t) ≤ Q̄n(0) + Ān(t) for any t ≥ 0. So we obtain

R0
n,1(t) ≤ √

n

∫ t

0

(
1 + Q̄n(0) + Ān(s)

)(
1 − Un(s)

)
ds + 2Vn(t)

≤
(
3 + Q̄n(0) + Ān(t)

)
Vn(t),

and

R0
n,2(t) ≤ √

n

∫ t

0

(
1 + Q̄n(0) + Ān(s)

)(
1 − Un(s)

)
ds ≤

(
1 + Q̄n(0) + Ān(t)

)
Vn(t).

By the assumption on the initial condition Qn(0), (2.3) and Lemma 2.2, the sequence
of processes {(R0

n,1,R
0
n,2) : n ≥ 1} is stochastically bounded in D2. Hence, by Lem-

mas 3.3, 5.8 and 6.2 in [27], the sequence of processes {Q̂0
n : n ≥ 1} is stochastically

bounded in D.
Now by (5.7) and applying the FWLLN for the stochastic bounded sequences of

processes in D in Lemma 5.9 in [27], we obtain the FWLLN: Q̄0
n ⇒ ω in D as

n → ∞ where ω(t) = 1 for t ≥ 0. Then, by applying continuous mapping theorem
to the function φ : D → D2 defined by

φ(x)(t) =
(∫ t

0
µ1

(
x(s) ∧ 1

)
ds,

∫ t

0
θ1

(
x(s) − 1

)+
ds

)
, t ≥ 0,

we obtain (〈Ŝ0
n,1〉, 〈L̂0

n,1〉) ⇒ (µ1e, ζ ) in D2 as n → ∞, where e(t) = t and ζ(t) = 0
for all t ≥ 0. By the martingale FCLT (Theorem 7.1 in [13], [38]), we obtain the
weak convergence of the processes (Ŝ0

n,1, L̂
0
n,1) ⇒ (B ◦µ1e, ζ ), where B is a standard

Brownian motion.
By Lemma 2.2 and Q̄0

n ⇒ ω in D as n → ∞, we have
(
R0

n,1,R
0
n,2

)
⇒ (−R,R) in (D2,M1) as n → ∞.

So we have the joint convergence
(
Q̂n(0), Ân, Ŝ

0
n,1, L̂

0
n,1,Vn,R

0
n,1,R

0
n,2

)

⇒
(
Q̂(0), Â,B ◦ µ1e, ζ,V ,−R,R

)
as n → ∞,

in R × (D,M1) × (D2, J1) × (D3,M1), where e(t) = t and ζ(t) = 0 for all t ≥ 0.
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The representation of the processes Q̂0
n in (5.9) corresponds to the mapping in

(5.4) with the functions g defined by g(w) = −µ1(w ∧ 0) − θ1(w ∨ 0) for all w ∈ R,
b = 1 and q = h = 0. By the continuous mapping theorem applied to the addition
operation and the mapping in (5.4), we obtain the weak convergence of the processes
Q̂0

n to the process Q̂ in (D,M1). When we apply continuous mapping theorem to the
addition operation, we need the assumption that the processes Â, V and R have no
simultaneous jumps w.p.1. !

Theorem 5.3 Under the assumptions of Theorem 3.3, the processes Q̂n and Q̂0
n are

asymptotically equivalent as n → ∞, so that Q̂n ⇒ Q̂ in (D,M1) as n → ∞.

Proof By the representation of the processes Q̂n and Q̂0
n, we have

∣∣Q̂n(t) − Q̂0
n(t)

∣∣

≤
∣∣Ŝn,1(t) − Ŝ0

n,1(t)
∣∣ +

∣∣L̂n,1(t) − L̂0
n,1(t)

∣∣ +
∣∣Ŝn,2(t)

∣∣ +
∣∣L̂n,2(t)

∣∣

+ µ2
∣∣Rn,1(t) − R0

n,1(t)
∣∣ + θ2

∣∣Rn,2(t) − R0
n,2(t)

∣∣

+ µ1

∣∣∣∣

∫ t

0

(
Q̂n(s) ∧ 0

)
Un(s) ds −

∫ t

0

(
Q̂0

n(s) ∧ 0
)
ds

∣∣∣∣

+ θ1

∣∣∣∣

∫ t

0

(
Q̂n(s) ∨ 0

)
Un(s) ds −

∫ t

0

(
Q̂0

n(s) ∨ 0
)
ds

∣∣∣∣

≤
∣∣Ŝn,1(t) − Ŝ0

n,1(t)
∣∣ +

∣∣L̂n,1(t) − L̂0
n,1(t)

∣∣ +
∣∣Ŝn,2(t)

∣∣ +
∣∣L̂n,2(t)

∣∣

+ µ2
∣∣Rn,1(t) − R0

n,1(t)
∣∣ + θ2

∣∣Rn,2(t) − R0
n,2(t)

∣∣

+ (µ1 + θ1)

∫ t

0

∣∣Q̂n(s)
∣∣(1 − Un(s)

)
ds

+ µ1

∫ t

0

∣∣(Q̂n(s) ∧ 0
)
−

(
Q̂0

n(s) ∧ 0
)∣∣ds

+ θ1

∫ t

0

∣∣(Q̂n(s) ∨ 0
)
−

(
Q̂0

n(s) ∨ 0
)∣∣ds

≤
∣∣Ŝn,1(t) − Ŝ0

n,1(t)
∣∣ +

∣∣L̂n,1(t) − L̂0
n,1(t)

∣∣ +
∣∣Ŝn,2(t)

∣∣ +
∣∣L̂n,2(t)

∣∣

+ µ2
∣∣Rn,1(t) − R0

n,1(t)
∣∣ + θ2

∣∣Rn,2(t) − R0
n,2(t)

∣∣

+ (µ1 + θ1)

∫ t

0

∣∣Q̂n(s)
∣∣(1 − Un(s)

)
ds + (µ1 ∨ θ1)

×
∫ t

0

∣∣Q̂n(s) − Q̂0
n(s)

∣∣ds, for all t ≥ 0.

We will apply the result of Problem 1.5.25 (solution on p. 45) in [19], which says
that for a sequence of continuous local martingales {M(n) : n ≥ 1} with filtration F
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and any stopping time T of the same filtration, if 〈M(n)〉T → 0 in probability as
n → ∞, then max0≤t≤T |M(n)

t | → 0 in probability as n → ∞.
We can define the augmented filtration F1

n = Fn ∨ F0
n such that Ŝn,1 − Ŝ0

n,1 and

L̂n,1 − L̂0
n,1 are square integrable martingales with respect to the filtration F1

n and
their predictable quadratic variation processes are given by

〈
Ŝn,1 − Ŝ0

n,1
〉
(t) = µ1

∫ t

0

[(
Q̄n(s) ∧ 1

)
Un(s) −

(
Q̄0

n(s) ∧ 1
)]

ds

≤ µ1

∫ t

0

[(
Q̄n(s) ∧ 1

)
−

(
Q̄0

n(s) ∧ 1
)]

ds, t ≥ 0,

and

〈
L̂n,1 − L̂0

n,1
〉
(t) = θ1

∫ t

0

[(
Q̄n(s) − 1

)+ −
(
Q̄0

n(s) − 1
)+]

ds, t ≥ 0.

By Lemma 5.1, the processes Ŝn,2 and L̂n,2 are also square integrable martingales
with respect to the filtration F1

n and their predictable quadratic variation processes
are bounded by

〈Ŝn,2〉(t) ≤ µ2

∫ t

0

(
1 − Un(s)

)
ds = µ2CD,n(t), t ≥ 0,

and

〈L̂n,2〉(t) ≤ θ2

∫ t

0

(∣∣Q̄n(s)
∣∣ + 1

)(
1 − Un(s)

)
ds, t ≥ 0.

Analogous to the proof of the stochastic boundedness of the sequence of processes
{Q̂0

n : n ≥ 1} in D and the FWLLN: Q̄0
n ⇒ ω in D as n → ∞ where ω(t) = 1

for t ≥ 0, we can prove that the sequence of processes {Q̂n : n ≥ 1} is stochasti-
cally bounded in D and the FWLLN holds: Q̄n ⇒ ω in D as n → ∞. So we have
〈Ŝn,1 − Ŝ0

n,1〉(T ) ⇒ 0 and 〈L̂n,1 − L̂0
n,1〉(T ) ⇒ 0 for any T > 0 as n → ∞, which

implies that ‖Ŝn,1 − Ŝ0
n,1‖T ⇒ 0 and ‖Ŝn,1 − Ŝ0

n,1‖T ⇒ 0 as n → ∞. Also, by

Lemma 2.2 and the stochastic boundedness of Q̄n, we have 〈Ŝn,2〉(T ) ⇒ 0 and
〈L̂n,2〉(T ) ⇒ 0 for any T > 0 as n → ∞, which implies that ‖Ŝn,2‖T ⇒ 0 and
‖L̂n,2‖T ⇒ 0 as n → ∞. By Lemma 2.2 and the convergence of Q̄n ⇒ ω in
D as n → ∞, we have (Rn,1,Rn,2) ⇒ (−R,R) in (D2,M1) as n → ∞. So
‖Rn,1 − R0

n,1‖T ⇒ 0 and ‖Rn,2 − R0
n,2‖T ⇒ 0 for any T > 0 as n → ∞.

Now let ε > 0 and δ > 0 be given and fix T > 0. Consider K > 0 such that
P(‖Q̂n‖T > K) < ε. On {‖Q̂n‖T > K},
∣∣Q̂n(t) − Q̂0

n(t)
∣∣ ≤

∣∣Ŝn,1(t) − Ŝ0
n,1(t)

∣∣ +
∣∣L̂n,1(t) − L̂0

n,1(t)
∣∣ +

∣∣Ŝn,2(t)| + |L̂n,2(t)
∣∣

+ µ2
∣∣Rn,1(t) − R0

n,1(t)
∣∣ + θ2

∣∣Rn,2(t) − R0
n,2(t)

∣∣

+ (µ1 + θ1)KCD,n(t) + (µ1 ∨ θ1)

∫ t

0

∣∣Q̂n(s) − Q̂0
n(s)

∣∣ds.
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By Gronwall’s inequality, on {‖Q̂n‖T > K},
∣∣Q̂n(t) − Q̂0

n(t)
∣∣ ≤

(∣∣Ŝn,1(t) − Ŝ0
n,1(t)

∣∣ +
∣∣L̂n,1(t) − L̂0

n,1(t)
∣∣ +

∣∣Ŝn,2(t)
∣∣ +

∣∣L̂n,2(t)
∣∣

+ µ2
∣∣Rn,1(t) − R0

n,1(t)
∣∣ + θ2

∣∣Rn,2(t) − R0
n,2(t)

∣∣

+ (µ1 + θ1)KCD,n(t)
)
e(µ1∨θ1)T .

By Lemma 2.2 and the above analysis, we can find n0 ≡ n0(ε, δ, T ) such that
∥∥Q̂n − Q̂0

n

∥∥
T

≤ δ for all n ≥ n0.

Hence

P
(∥∥Q̂n − Q̂0

n

∥∥
T

> δ
)
≤ ε for all n ≥ n0(ε, δ, T ).

Therefore, ‖Q̂n − Q̂0
n‖T ⇒ 0 as n → ∞. !

Proof of Theorem 3.2 As in the proof of Theorem 3.3, the proof has two steps. The
first step is to show that Q̄0

n ⇒ Q̄ in D as n → ∞, which is similar to the argument
of Theorem 5.2, so we omit its proof. The second step is to show that the processes
Q̄n and Q̄0

n are asymptotically equivalent as n → ∞, for which we only highlight the
following key equation and the rest of the proof is the same as in Theorem 5.3:

∣∣Q̄n(t) − Q̄0
n(t)

∣∣

≤
∣∣S̄n,1(t) − S̄0

n,1(t)
∣∣ +

∣∣L̄n,1(t) − L̄0
n,1(t)

∣∣ +
∣∣S̄n,2(t)

∣∣ +
∣∣L̄n,2(t)

∣∣

+ µ1

∣∣∣∣

∫ t

0

(
Q̄n(s) ∧ 1

)
Un(s) ds −

∫ t

0

(
Q̄0

n(s) ∧ 1
)
ds

∣∣∣∣

+ θ1

∣∣∣∣

∫ t

0

(
Q̄n(s) − 1

)+
Un(s) ds −

∫ t

0

(
Q̄0

n(s) − 1
)+

ds

∣∣∣∣

+ µ2

∣∣∣∣

∫ t

0

(
Q̄n(s) ∧ ηn(s)

n

)(
1 − Un(s)

)
ds

∣∣∣∣

+ θ2

∣∣∣∣

∫ t

0

(
Q̄n(s) − ηn(s)

n

)+(
1 − Un(s)

)
ds

∣∣∣∣

≤
∣∣S̄n,1(t) − S̄0

n,1(t)
∣∣ +

∣∣L̄n,1(t) − L̄0
n,1(t)

∣∣ +
∣∣S̄n,2(t)

∣∣ +
∣∣L̄n,2(t)

∣∣

+ µ1

∫ t

0

∣∣Q̄n(s) ∧ 1
∣∣(1 − Un(s)

)
ds + θ1

∫ t

0

∣∣(Q̄n(s) − 1
)+∣∣(1 − Un(s)

)
ds

+ µ2

∣∣∣∣

∫ t

0

(
Q̄n(s) ∧ ηn(s)

n

)(
1 − Un(s)

)
ds

∣∣∣∣

+ θ2

∣∣∣∣

∫ t

0

(
Q̄n(s) − ηn(s)

n

)+(
1 − Un(s)

)
ds

∣∣∣∣

+ (µ1 ∨ θ1)

∫ t

0

∣∣Q̄n(s) − Q̄0
n(s)

∣∣ds for all t ≥ 0. !
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5.6 Proof of Theorem 3.4

First of all, by the fluid limit in Theorem 3.2, for any ε ∈ (0, (λ − µ1)/θ1) and each
T > 0, there exists some n0 large enough such that for all n ≥ n0,

inf
0≤t≤T

Qn(s) ≥ n

(
1 + λ− µ1

θ1
− ε

)
> n.

This will simplify the martingale representation of Q̂ED
n in (5.3) for large n:

Q̂ED
n (t) = Q̂ED

n (0) + Ân(t) − Ŝn,1(t) − Ŝn,2(t) − L̂n,1(t) − L̂n,2(t)

− θ1

∫ t

0
Q̂ED

n (s)Un(s) ds − θ2

∫ t

0
Q̂ED

n (s)
(
1 − Un(s)

)
ds

+ (µ2 − θ2)Rn(t) +
(
λ

(
1 − θ2

θ1

)
+

(
θ2

θ1
µ1 − µ2

))
Vn(t).

The proof is basically the same as that in the QED regime except that the martingale
processes L̂n,1 ⇒ B ◦ (λ − µ1)e in D as n → ∞, where B is a standard Brownian
motion and λ>µ 1.

6 Conclusions

We have established fluid limits and refined stochastic limits for the queue-length
process in a many-server queueing model with exponential service and patience
times, subject to exogenous regenerative service interruptions. A highlight is the
FCLT in Theorem 3.3, showing that even asymptotically negligible service interrup-
tions can have a significant performance impact through unmatched jumps in the limit
process. There are many further research topics worth pursuing. First, it remains to es-
tablish the stochastic-process limits for the queue-length process for non-exponential
service and patience distributions. Second, the conjecture that the steady-state dis-
tribution of the limit process Q̂ in (3.5) has a stochastic-decomposition property re-
mains to be proved. Third, for multiclass queueing models, it would be interesting
to see how service interruptions affect the asymptotically optimal scheduling poli-
cies established in [2, 16] and references therein. Fourth, stochastic-process limits
for waiting times remain to be proved; see [31] for limit without service interrup-
tions.
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