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Abstract. We study a class of Markov-modulated compound Poisson processes whose
arrival rates and the compound random variables are both modulated by a stationary
finite-state Markov process. The compound random variables are i.i.d. in each state of the
Markov process, while having a distribution depending on the state of the Markov process.
We prove a functional central limit theorem and local limit theorems under appropriate
scalings of the arrival process, compound random variables and underlying Markov process.

1. Introduction

We consider a Markov-modulated compound Poisson (MMCP) processX := {X(t) : t ≥ 0}
described as follows. Let Y := {Y (t) : t ≥ 0} be a finite-state Markov process with state
space S := {1, . . . , I} and transition rate matrix Q := (qij)i,j∈S . Let A := {A(t) : t ≥ 0} be
a Markov modulated Poisson process with an arrival rate λi when Y is in state i, for each
i ∈ S. Then it is standard to write

A(t) = A∗

(∫ t

0
λY (s)ds

)
, t ≥ 0, (1.1)

where A∗ = {A∗(t) : t ≥ 0} is a unit-rate Poisson process. Let {τi : i ∈ N} be the sequence of
arrival times for the process A. Let {Zi : i ∈ N} be a sequence of conditionally independent
random variables given the Markov process Y , such that at each arrival time τi, i ∈ N, the
conditional distribution of Zi given the state of the Markov process Y = k is

P (Zi ≤ x|Y (τi) = k) = Fk(x), x ∈ R,
for each k ∈ S. We write the sequence {Zi} as {Zi(Y (τi))} to indicate the dependence on
{Y (τi)} explicitly. We assume that for each i ∈ S, the distribution Fi has finite variance,
and let mi and σ2

i be its mean and variance. We now define the process X as

X(t) :=

A(t)∑
i=1

Zi(Y (τi)) =

∫ t

0
ZA(s)(Y (s))dA(s), t ≥ 0. (1.2)

We also assume that the Markov process Y starts from stationarity at time zero. Let
π := (π1, . . . , πI) be the stationary distribution of Y , and Π be a matrix with each row being
the steady-state vector π. Let Υ = (Υij)i,j=1,...,I be the fundamental matrix, given by

Υij =

∫ ∞
0

(Pij(t)− πj)dt.

It is known that Υ = (Π−Q)−1 −Π.

We consider a sequence of the MMCP processes Xn, indexed by a superscript n, and let
n→∞. Similarly for the processes An and Y n, and the compound random variables {Zni }.
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We index the corresponding parameters λni , mn
i and σni and the transition rate matrix Qn

by a superscript n. Denote λn := (λn1 , ..., λ
n
I ), mn := (mn

1 , ...,m
n
I ) and σn := (σn1 , ..., σ

n
I ),

which are all in RI+. We make the following assumptions on these parameters.

Assumption 1. As n→∞,

λn

n
→ λ, mn → m and σn → σ,

where λ := (λ1, ..., λI), m := (m1, ...,mI) and σ := (σ1, ..., σI) are all in RI+. The transition
rate matrix Qn = nαQ for some α > 0.

It is evident that under the assumption that Qn = nαQ, the Markov process Y n is
stationary and has the same stationary distribution π as the process Y . The value of α > 1
or α < 1 indicates the speeding or slowing effect of the modulating process, respectively.

Define the diffusion-scaled process X̂n := {X̂n(t) : t ≥ 0} by

X̂n(t) :=
1

nδ

(
Xn(t)−

I∑
i=1

λnim
n
i πit

)
, for

1

2
≤ δ < 1 and t ≥ 0.

Such a scaling for counting processes is studied in [1, 19] for infinite-server queueing systems.

We prove the following functional central limit theorem (FCLT) for X̂n.

Theorem 1.1. Under Assumptions 1,

X̂n ⇒ X̂ in (D, J1) as n→∞,

where the limit process X̂ is a driftless Brownian motion with variance coefficient

% :=


σ̄2 + ν̄, if δ = 1/2, α > 1,

σ̄2 + ν̄ + β̄, if δ = 1/2, α = 1,

β̄, if δ = 1− α/2, 0 < α < 1,

and

σ̄2 :=

I∑
i=1

λiσ
2
i πi, ν̄ :=

I∑
i=1

λim
2
iπi, β̄ := 2

I∑
i=1

I∑
j=1

λiλjmimjπiΥij . (1.3)

Note that the parameters ν̄, β̄, σ̄ represent the variabilities from the arrival process, the
underlying Markov process and the compound random variables, respectively. This result
captures the effects of these variabilities under different scaling parameter values.

Instead of scaling the parameters, we can also scale the process X in the conventional
approach, that is, define the diffusion-scaled process

X̃n(t) :=
1√
n

(X(nt)− nλ̄t), t ≥ 0, (1.4)

where λ̄ :=
∑I

i=1 λimiπi. We observe that this scaling is equivalent to our scaling above
with δ = 1/2 and α = 1. As a consequence of Theorem 1.1, we have the weak convergence

of X̃n:
X̃n ⇒ X̃ in (D, J1) as n→∞,

where X̃ is a Brownian motion with mean zero and variance coefficient σ̄2 + ν̄ + β̄.

We next consider local limit theorems for the process Xn. We distinguish two cases in
which the compound variables have either lattice (integer-valued) or non-lattice distributions.
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Assumption 2. For i ∈ N, k ∈ S and fixed u,∣∣∣E[eiuZni (Y (τi))
∣∣∣Y (τi) = k

]∣∣∣→ ∣∣∣E[eiuẐ(Y (τi))
∣∣∣Y (τi) = k

]∣∣∣ as n→∞, (1.5)

where the sequences {Zni (Y (τi)) : i ∈ N} and {Ẑi(Y (τi)) : i ∈ N} have integer values given
the Markov process Y .

Define the process {X̆n(t) : t ≥ 0} as

X̆n(t) := Xn(t)− λ̄nt, t ≥ 0,

where λ̄ is defined in (1.4).

Theorem 1.2. Under Assumption 1 and 2, for each t ≥ 0,

sup
x∈X̆nt

∣∣∣∣nδP (X̆n(t) = x
)
− ψt(x)

∣∣∣∣→ 0 as n→∞, (1.6)

where X̆ nt := {−λ̄nt+ z : z ∈ Z} and ψt(x) is defined by

ψt(x) := (2π%t)−1/2 exp
(
− x2/2%t

)
, (1.7)

with % given in (1.3).

Assumption 3. For i ∈ N, k ∈ S and fixed u, (1.5) holds, where the sequences {Zni (Y (τi)) :

i ∈ N} and {Ẑi(Y (τi)) : i ∈ N} have nonlattice distribution given the Markov Process Y .

Theorem 1.3. Under Assumption 1 and 3. If xn/n
δ → x as n→∞ and a < b, then for

each t ≥ 0,

nδP
(
X̆n(t) ∈ (xn + a, xn + b)

)
→ (b− a)ψt(x) as n→∞, (1.8)

where ψt(x) is given in (1.7).

These results can be applied in several contexts. First, when the compound variables
are positive integers (e.g., geometrically distributed), the process X becomes a Markov-
modulated Poisson batch arrival process. It can be used to model queueing systems with
batch arrivals (see, e.g., [24]). Second, in insurance risk theory, the compound variables
represent the claim sizes and the process X is the cumulative amount claims with both
the arrivals and claims modulated by a Markov process (see, e.g., [2, 4, 20]). Although
some asymptotic results have been derived for the associated ruin probability, the FCLT
and local limit theorem for the process X under the scaling regime in our paper have not
been studied in the literature. Third, in the Markov-modulated M/G/1 queue studied in
[26, 16, 17, 3, 5], the compound variables represent the service times for each arrival, and
the process X is the cumulative-input process. By Theorem 1.1, we can thus obtain new
diffusion approximations correspondingly for the net-input process and the workload process
with the Skorohod mapping (see, e.g., Section 13.5 in [28]). Local limit theorems are of
particular interest to study local behavior of non-stationary stochastic systems, see, e.g.,
[13, 30]. Our results here on the MMCP processes can be used to study the local behaviors
of the Markov-modulated risk reserve processes and Markov-modulated M/G/1 queues.
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1.1. Literature review. MMCP processes have been studied to some extent in various
applications. In [2], the MMCP process was first introduced to the insurance risk theory
in random environments, where some asymptotic results on the associated ruin probability
are derived. Many interesting results are subsequently obtained for the ruin problems with
the MMCP processes; see, e.g., [4, 31, 6, 10] and references therein. In [21], the MMCP
processes are also extended to Markov modulated Poisson shot noise processes for ruin
problems. As mentioned above, the MMCP processes appear in Markov-modulated M/G/1
queueing models [26, 16, 17, 3, 5]. However, these studies have focused on exact analytical
methods and associated asymptotic results.

There are very limited results on diffusion approximations of the MMCP processes. In
[2], an approximation of the ruin probability based on a diffusion approximation of the
Markov modulated risk reserve process is provided. In [7], an FCLT is established for a
Markov-modulated risk reserve process, where the limit process becomes a Markov modulated
diffusion risk model under certain conditions on the claim sizes and the arrival rates of the
claims. However, our result in the FCLT shows a Brownian motion limit under suitable
scalings of the arrivals, compound variables and the underlying Markov process. We have
particularly studied the effects of different scalings of the transition matrix of the underlying
Markov process. In the heavy-traffic scaling regime, the effects of such different scalings
have been studied in infinite-server queueing models in [1, 19]. It is worth noting that in [5],
the effect of speeding up the modulating process is also studied for the tail of the waiting
time in a Markov-modulated M/G/1 queue.

Local limit theorems have not been established for the MMCP processes, to the best of
our knowledge. The early work on local limit theorems for Markov processes was marked
by [23], and more recent results are shown in, e.g., [18, 14] and references therein. Local
limit theorems for random walks are well studied; see, e.g., [12, 25, 11, 22] and Chapter 8 in
[9]. Some local limit theorems are shown for certain random walks in random environments
(see, e.g., [15, 27]). Here we prove the local limit theorems for the MMCP processes in the
cases of lattice and nonlattice distributed compound variables under the scaling regime in
Assumption 1.

1.2. Notation. The following notations will be used throughout the paper. N denotes the
set of positive integers. For k ∈ N, Rk (Rk+) denotes the space of real-valued (nonnegative)
k-dimensional vectors, and we write R (R+) for k = 1. For a, b ∈ R, denote a∧b := min(a, b).
For any x ∈ R+, bxc denotes the largest integer not greater than x. 1(A) denotes the
indicator function of a set A. We use ‘i’ to denote the imaginary unit. For two real-valued
functions f and g (non-zero), we write f(x) = o(g(x)) if lim supx→∞ |f(x)/g(x)| = 0, and
f(x) = O(g(x)) if lim supx→∞ |f(x)/g(x)| <∞.

All random variables are defined in a common complete probability space (Ω,F , P ).
Notations → and ⇒ mean convergence of real numbers and convergence in distribution,
respectively. The abbreviation a.s. means almost surely, i.i.d. means independent and
identically distributed and WLLN represents the weak law of large number. Let D :=
D(R+,R) denote real-valued function space of all cádlág functions on R+. Note that D is
complete and separable. We endow the space D with the Skorohod J1 topology (see, e.g.,
[8, 28]) throughout the paper. For any two complete and separable metric spaces S1 and S2,
S1 × S2 is used to denote their product space, endowed with the maximum metric, that is,
the maximum of two metrics on S1 and S2 (see, e.g., [28]). For any complete and separable
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space S, Sk denotes the k-fold product space with the maximum metric, for k ∈ N. (Dk, J1)
denotes the k-fold product of (D, J1) with the product topology.

2. Proof of Theorem 1.1

We first give a decomposition of the process X̂n.

Lemma 2.1. The diffusion-scaled process X̂n can be decomposed into the following three
processes:

X̂n(t) = X̂n
1 (t) + X̂n

2 (t) + X̂n
3 (t), t ≥ 0,

where

X̂n
1 (t) :=

1

nδ

An(t)∑
i=1

(
Zni (Y n(τni ))−mn

Y n(τni )

)
,

X̂n
2 (t) :=

1

nδ

(An(t)∑
i=1

mn
Y n(τni ) −

∫ t

0
mn
Y n(s)λ

n
Y n(s)ds

)
,

and

X̂n
3 (t) :=

1

nδ

(∫ t

0
mn
Y n(s)λ

n
Y n(s)ds−

I∑
i=1

λnim
n
i πit

)
.

For each n ∈ N, define mn
∗ := maxi∈Sm

n
i , λn∗ := maxi∈S λ

n
i and σn∗ := maxi∈S σ

n
i . By

Assumption 1, we can obtain that

1

n
λn∗ → λ∗, mn

∗ → m∗ and σn∗ → σ∗ (2.1)

in R as n→∞. Then we can find n1 > 0 and ∆ > 0 such that, for any n > n1,

max
{ 1

n
λn∗ , m

n
∗ , σ

n
∗

}
< ∆. (2.2)

We fix the n1 and ∆ throughout the proof.

We start proving the convergence of X̂n
1 . We quote the following two lemmas from [12].

Lemma 2.2. Let z1, ..., zn and w1, ..., wn be complex numbers of modulus ≤ b. Then∣∣∣∣ n∏
i=1

zi −
n∏
i=1

wi

∣∣∣∣ ≤ bn−1
n∑
i=1

|zi − wi|.

Lemma 2.3. If b is a complex number with |b| ≤ 1, then |eb − (1 + b)| ≤ |b|2.

We now prove two lemmas in order to prove the convergence of X̂n
1 .

Lemma 2.4. The finite-dimensional distributions of X̂n
1 converge to those of X̂1, where

X̂1 := {X̂1(t) : t ≥ 0} is given by

X̂1 :=

{
σ̄B1, if δ = 1/2, α ≥ 1,

0, if δ = 1− α/2, α ∈ (0, 1),
(2.3)

with B1 being a standard Brownian motion, and σ̄ defined in (1.3).
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Proof. We need to prove(
X̂n

1 (t1), ..., X̂n
1 (tk)

)
⇒
(
X̂1(t1), ..., X̂1(tk)

)
in Rk as n→∞, (2.4)

for any 0 ≤ t1 ≤ ... ≤ tk ≤ T and k ≥ 1.
We first consider one-dimensional case: to prove that for each t ≥ 0,

X̂n
1 (t)⇒ X̂1(t) in R as n→∞. (2.5)

By the continuity theorem in [12], it is sufficient to show that ϕt(θ) is continuous at 0 and

ϕnt (θ) converges pointwisely to ϕt(θ) for every θ, where the characteristic functions of X̂n
1 (t)

and X̂1(t) are denoted by ϕnt (θ) and ϕt(θ), respectively. By the definition of X̂1 in (2.3), we
obtain that

ϕt(θ) = E
[

exp
(
iθX̂1(t)

)]
=

exp

(
− 1

2θ
2σ̄2t

)
, δ = 1/2, α ≥ 1,

1, δ = 1− α/2, 0 < α < 1,
(2.6)

which is continuous at θ = 0.
Let Ant := σ{An(s) : 0 ≤ s ≤ t} ∨ σ{Y n(s) : 0 ≤ s ≤ t} ∨ N , where N is the collection of

P -null sets. Then, by conditioning, we obtain

ϕnt (θ) = E
[

exp
(
iθX̂n

1 (t)
)]

= E
[
E
[

exp
(
iθX̂n

1 (t)
)∣∣Ant ]]

= E

[An(t)∏
i=1

E

[
exp

(
iθ

1

nδ
(
Zni (Y n(τni ))−mn

Y n(τni )

))∣∣∣∣Ant ]]

= E

[An(t)∏
i=1

(
1− θ2

2n2δ

(
σnY n(τni )

)2
+ o
(
n−2δ

))]
. (2.7)

Under Assumption 1, by (2.1), we can find n2 such that for any n > n2,

0 < max
1≤i≤An(t)

{ θ2

2n2δ

(
σnY n(τni )

)2 − o(n−2δ
)}

< 1.

Recall n1 in (2.2). Thus, for δ = 1/2, α ≥ 1 and for any

n > n3 := max{n1, n2}, (2.8)

we have∣∣∣∣ϕnt (θ)− ϕt(θ)
∣∣∣∣ ≤ E[∣∣∣∣A

n(t)∏
i=1

(
1− θ2

2n

(
σnY n(τni )

)2
+ o(n−1)

)
−
An(t)∏
i=1

exp

(
− θ2

2n

(
σnY n(τni )

)2)∣∣∣∣]

+

∣∣∣∣E[ exp

(
− θ2

2n

An(t)∑
i=1

(
σnY n(τni )

)2)]− exp

(
− θ2

2
σ̄2t

)∣∣∣∣
≤ θ4

4n2
E

[An(t)∑
i=1

(
σnY n(τni )

)4]
+ o(1)

+

∣∣∣∣E[ exp

(
− θ2

2n

An(t)∑
i=1

(
σnY n(τni )

)2)]− exp

(
− θ2

2
σ̄2t

)∣∣∣∣
→ 0 as n→∞. (2.9)
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The first inequality is implied by the triangle inequality. The second inequality follows by
Lemmas 2.2 and 2.3. By (2.2), for large enough n defined above, we have

E

[
1

n

An(t)∑
i=1

(
σnY n(τni )

)4] ≤ ∆5t, t ≥ 0.

So the first two terms in the last equation converge to 0. For the last term convergence, since{
exp

(
− θ2

2n

∑An(t)
i=1

(
σnY n(τni )

)2)
: n ≥ 1

}
is uniformly integrable for each t ≥ 0, it suffices to

show that

1

n

An(t)∑
i=1

(
σnY n(τni )

)2 ⇒ σ̄2t in R as n→∞. (2.10)

This follows from the convergences:

I∑
i=1

λni
n

∫ t

0
1(Y n(s) = i) ds→

I∑
i=1

λiπit a.s., (2.11)

and
I∑
i=1

1

n
λni (σni )2

∫ t

0
1
(
Y n(s) = i

)
ds→

I∑
i=1

λiσ
2
i πit a.s. (2.12)

by the claim in (4) in [1] and Assumption 1, and the WLLN of Poisson processes and random
change of time Lemma in [8] (pp.151).

For δ = 1− α/2 and 0 < α < 1, we follow the similar arguments and prove∣∣∣∣E[ exp

(
− θ2

2n2δ

An(t)∑
i=1

(
σnY n(τni )

)2)]− 1

∣∣∣∣→ 0 as n→∞. (2.13)

Therefore, we have shown (2.5).
To show the convergence of the finite-dimensional distributions, it is sufficient to prove

that for any (θ1, ..., θk) ∈ Rk and 0 ≤ t1 < · · · < tk ≤ T ,

E

[
exp

(
i
k∑
i=1

θiX̂
n
1 (ti)

)]
→ E

[
exp

(
i
k∑
i=1

θiX̂1(ti)

)]
as n→∞,

and the limit is continuous at (0, ..., 0) ∈ Rk. By the definition of X̂1, we have

E

[
exp

(
i

k∑
i=1

θiX̂1(ti)

)]

=

exp

(
− 1

2

∑k
i=1

∑k
j=1 θiθj σ̄

2(ti ∧ tj)
)
, δ = 1/2, α ≥ 1,

1, δ = 1− α/2, 0 < α < 1,

and it is continuous at (0, ..., 0) ∈ Rk. Let t0 := 0. By conditioning and direct calculation as
in (2.7), we have

E

[
exp

(
i

k∑
i=1

θiX̂
n
i (ti)

)]
= E

[ k∏
j=1

exp

(
i

1

nδ

k∑
i=j

θi

An(tj)∑
h=An(tj−1)+1

(
Znh (Y n(τnh ))−mn

Y n(τnh )

))]
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→


∏k
j=1 exp

(
− 1

2

(∑k
i=j θi

)2

σ̄2(tj − tj−1)

)
, δ = 1/2, α ≥ 1,

1, δ = 1− α/2, 0 < α < 1,

as n→∞, and

k∏
j=1

exp

(
− 1

2

( k∑
i=j

θi

)2

σ̄2(tj − tj−1)

)
= exp

(
− 1

2

k∑
i=1

k∑
j=1

θiθj σ̄
2(ti ∧ tj)

)
.

Applying the continuous mapping theorem, the convergence can be shown in the similar
way in (2.7) and (2.9). Therefore, we have proved the convergence of finite-dimensional
distributions. �

Lemma 2.5. For 0 ≤ r ≤ s ≤ t ≤ T and n > n3 with n3 in (2.8),

E
[(
X̂n

1 (r)− X̂n
1 (s)

)2(
X̂n

1 (s)− X̂n
1 (t)

)2] ≤ K1(t− r)2, (2.14)

for some constant K1 > 0.

Proof. For any 0 ≤ r ≤ t, define Gnr,t := σ{Y n(u) : r ≤ u ≤ t} ∨ N with N being the
collection of P -null sets. It is evident that the inequality holds when r = s, s = t or
r = s = t. For r < s < t, we notice that

E
[(
X̂n

1 (s)− X̂n
1 (r)

)2|Gnr,t] =
1

n2δ
E

[( An(s)∑
i=An(r)+1

(
Zni (Y n(τni ))−mn

Y n(τni )

))2∣∣∣Gnr,t]

=
1

n2δ
E

[ An(s)∑
i=An(r)+1

(
σnY n(τni )

)2∣∣∣Gnr,t],
where the first central moment of {Zni : i ∈ N} is zero given the Markov process Y n. Then,
by the conditional independence property, we have, for n > n3,

E
[(
X̂n

1 (s)− X̂n
1 (r)

)2(
X̂n

1 (t)− X̂n
1 (s)

)2]
= E

[
E
[(
X̂n

1 (s)− X̂n
1 (r)

)2|Gnr,t]E[(X̂n
1 (t)− X̂n

1 (s)
)2|Gnr,t]]

≤ ∆4

n4δ
E
[
E
[
An(s)−An(r)

∣∣Gnr,t]E[An(t)−An(s)
∣∣Gnr,t]]

≤ ∆4n2−4δ
(λn∗
n

)2
(s− r)(t− s) ≤ ∆6(t− r)2. (2.15)

The inequalities are implied by (2.2). Thus, we have completed the proof. �

Lemma 2.6. X̂n
1 ⇒ X̂1 in D as n→∞, where X̂1 is given in (2.3).

Proof. By the continuity of X̂1, Lemma 2.4 and Lemma 2.5, we can apply Theorem 13.5 in
[8] to conclude the convergence of X̂n

1 . �

Lemma 2.7. X̂n
2 ⇒ X̂2 in D as n→∞, where X̂2 is given by

X̂2 :=

{
ν̄1/2B2, if δ = 1/2, α ≥ 1,

0, if δ = 1− α/2, α ∈ (0, 1),
(2.16)

with B2 being a standard Brownian motion, independent of B1, and ν̄ defined in (1.3).
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Proof. For each n ∈ N, since
{
An(t) −

∫ t
0 λ

n
Y n(u)du : t ≥ 0

}
is a Martingale, X̂n

2 is also a

Martingale. The maximum jump for X̂n
2 is mn

∗/n
δ. By (2.1), we obtain the expected value

of the maximum jump is asymptotically negligible, i.e.

1

nδ
E[mn

∗ ]→ 0 as n→∞. (2.17)

For n ∈ N, let {[X̂n
2 , X̂

n
2 ](t) : t ≥ 0} be the quadratic-variation process of X̂n

2 . Then, for
each t, we have

[X̂n
2 , X̂

n
2 ](t) =

1

n2δ

An(t)∑
i=1

(mn
Y n(τi)

)2

⇒

{
ν̄t, δ = 1/2, α ≥ 1,

0, δ = 1− α/2, 0 < α < 1,
in R as n→∞ (2.18)

where the convergence can be proved in the same way as (2.10). Applying Theorem 2.1 in

[29], we have shown the convergence of X̂n
2 . �

Lemma 2.8. X̂n
3 ⇒ X̂3 in D as n → ∞, where the limit process X̂3 = {X̂3(t) : t ≥ 0} is

given by

X̂3 :=

{
0, if δ = 1/2, α > 1,

β̄1/2B3, if δ = 1− α/2, 0 < α ≤ 1,
(2.19)

with B3 being a standard Brownian motion, independent of B1 and B2, and β̄ defined in
(1.3).

Proof. By Proposition 3.2 in [1] and Assumption 1, we have, as n→∞,

1

nδ

( I∑
i=1

mn
i λ

n
i

∫ t

0
1(Y n(s) = i)ds−

I∑
i=1

mn
i λ

n
i πit

)
⇒

{
0, δ = 1/2, α > 1,

B3(β̄t), δ = 1− α/2, 0 < α ≤ 1,

where B3 is a standard Brownian motion and β̄ is defined in (1.3). Therefore, we have shown

the convergence of X̂n
3 . �

Completing the Proof of Theorem 1.1. We first prove the joint convergence of the three
processes X̂n

1 , X̂n
2 and X̂n

3 . For k = 1, . . . , I, let Ank be the Poisson process with rate λnk ,
and we assume {Ank : k = 1, . . . , I} are mutually independent. Define the random processes
{Rnk : k = 1, . . . , I} by

Rnk (t) :=

∫ t

0
1(Y n(s) = k) ds , t ≥ 0 .

Note that
∑I

k=1A
n
k(Rnk (·)) d

= An(·) . Then, we can rewrite the following processes (equiva-
lent in distribution). For each n and t ≥ 0, Xn can be written as

Xn(t) =
I∑

k=1

∫ t

0
Znk,Ank (Rnk (s)) dA

n
k(Rnk (s)) =

I∑
k=1

Ank (Rnk (t))∑
i=1

Znk,i , t ≥ 0 ,
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where {Znk,i : i ∈ N} is a sequence of independent random variables following the distribution

Fnk , for each k = 1, . . . , I. X̂n
1 and X̂n

2 can be written as

X̂n
1 (t) =

1

nδ

I∑
k=1

Ank (Rnk (t))∑
i=1

(
Znk,i −mn

k

)
, X̂n

2 (t) =
1

nδ

I∑
k=1

mn
k

(
Ank(Rnk (t))− λnkRnk (t)

)
,

for t ≥ 0, respectively. Define {X̃n
1,k, X̃

n
2,k : k = 1, . . . , I} by

X̃n
1,k(t) :=

1

nδ

Ank (t)∑
i=1

(
Znk,i −mn

k

)
, X̃n

2,k(t) :=
1

nδ
mn
k

(
Ank(t)− λnk t

)
, t ≥ 0 ,

respectively. It is evident that

X̂n
1 =

I∑
k=1

X̃n
1,k ◦Rnk , X̂n

2 =
I∑

k=1

X̃n
2,k ◦Rnk .

Then, we approximate X̃n
1,k by X̌n

1,k:

X̌n
1,k(t) :=

1

nδ

bλnk tc∑
i=1

(
Znk,i −mn

k

)
.

Since the limits of {Rnk : k = 1, . . . , I} are deterministic functions by the claim in (4) of
[1], by Donsker Theorem and the FCLT for Poisson processes, we obtain the joint weak
convergence(
X̌n

1,1, . . . , X̌
n
1,I , X̃

n
2,1, . . . , X̃

n
2,I , R

n
1 , . . . , R

n
I , X̂

n
3

)
⇒
(
B1,1, . . . , B1,I , B2,1, . . . , B2,I , R1, . . . , RI , X̂3

)
in (D3I+1, J1) as n→∞ ,

where B1,k is a Brownian motion with variance coefficient σ2
kλk 1(δ = 1/2, α ≥ 1), B2,k

is a Brownian motion with variance coefficient m2
kλk 1(δ = 1/2, α ≥ 1), Rk(t) ≡ πkt, for

k = 1, . . . , I, and all limit processes are mutually independent. By Theorem 7.3.2 in [28],

we have that (X̌n
1,1, . . . , X̌

n
1,I) and (X̃n

1,1, . . . , X̃
n
1,I) are asymptotically equivalent. Thus, by

Theorem 3.1 in [8], we have the joint weak convergence(
X̃n

1,1, . . . , X̃
n
1,I , X̃

n
2,1, . . . , X̃

n
2,I , R

n
1 , . . . , R

n
I , X̂

n
3

)
⇒
(
B1,1, . . . , B1,I , B2,1, . . . , B2,I , R1, . . . , RI , X̂3

)
in (D3I+1, J1) as n→∞ ,

Applying the random change of time lemma in [8] and Theorem 13.2.2 in [28], we obtain the
joint convergence(

X̂n
1 , X̂

n
2 , X̂

n
3

)
⇒
(
X̂1, X̂2, X̂3

)
in (D3, J1) as n→∞ .

By Lemmas 2.1, 2.6, 2.7 and 2.8, we complete our proof by applying the continuous mapping
theorem. �
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3. Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2. By the Fourier inversion formula, for x ∈ X̆ nt , we have

P (X̆n(t) = x) =
1

2π

∫ π

−π
e−iuxE

[
eiuX̆n(t)

]
du =

1

2πnδ

∫ πnδ

−πnδ
e−iun−δxψnt (u) du (3.1)

where

ψnt (u) := E
[
eiun−δX̆n(t)

]
for u ∈ R. (3.2)

Recall ψt(x) defined in (1.7). Since |e−iux| ≤ 1 for any x, we obtain that∣∣∣2πnδP (X̆n(t) = x)− 2πψt(x)
∣∣∣ ≤ ∫ πnδ

−πnδ

∣∣∣ψnt (u)− exp
(
− %tu2/2

)∣∣∣ du
+

∫
|u|>πnδ

exp
(
− %tu2/2

)
du. (3.3)

It is evident that the second term at the right hand side converges to 0 as n→∞.
To prove the convergence of the first term, we split the integral into three parts. Applying

Theorem 1.1 and the dominated convergence theorem, for any constant c, we have∫ c

−c

∣∣∣ψnt (u)− exp
(
− %tu2/2

)∣∣∣ du→ 0 as n→∞. (3.4)

By Taylor’s Theorem, recall that Ant is defined in (2.7) and we can find small enough
η > 0 such that, for |u| ≤ ηnδ and large enough n,∣∣∣E[eiun−δXn(t)

]∣∣∣ =
∣∣∣E[E[eiun−δXn(t)

∣∣∣Ant ]]∣∣∣ ≤ ∣∣∣∣E[A
n(t)∏
i=1

(
1− u2

4n2δ

(
σnY n(τni )

)2)]∣∣∣∣
≤
∣∣∣∣E[ exp

(
− u2

4n2δ

An(t)∑
i=1

(
σnY n(τni )

)2)]∣∣∣∣ ≤ exp
(
−K2u

2/4
)

(3.5)

where K2 is a positive constant. The last inequality can be proved by using the convergence
of the third term in (2.9), and (2.13). To prove the convergence for the second part of the
integral, by the triangle inequality and (3.5), we can get∫

c≤|u|≤ηnδ

∣∣∣ψnt (u)− exp
(
− %tu2/2

)∣∣∣ du
≤
∫
c≤|u|≤ηnδ

(
exp

(
−K2u

2/4
)

+ exp
(
− %tu2/2

))
du, (3.6)

which becomes arbitrarily small when c is arbitrarily large.
We next show the convergence for the third part of the integral. By Assumption 2 and

Theorem 3.5.1 in [12], we obtain that∣∣∣E[eiun−δẐi(Y n(τni ))
∣∣∣Y n(τni ) = k

]∣∣∣ < 1 for u ∈ (0, 2πnδ).

Since the characteristic function is uniformly continuous, by (1.5), for large enough n, there
exists r1 > 0 such that, for any i ∈ N, k ∈ S and u ∈ (ηnδ, πnδ),∣∣∣E[eiun−δZni (Y n(τni ))

∣∣∣Y n(τni ) = k
]∣∣∣ ≤ ∣∣∣E[eiun−δẐi(Y n(τni ))

∣∣∣Y n(τni ) = k
]∣∣∣ ≤ r1 < 1.
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By Assumption 1, there exists ∆̃ such that mini∈S{λni }/n ≥ ∆̃ > 0 for large enough n.
Then, by conditioning, we obtain that for large enough n and u ∈ (ηnδ, πnδ),∣∣∣E[eiun−δXn(t)

]∣∣∣ =

∣∣∣∣E[A
n(t)∏
i=1

E
[
eiun−δZni (Y n(τni ))

∣∣Ant ]]∣∣∣∣ ≤ E[A
n(t)∏
i=1

∣∣∣∣E[eiun−δZni (Y n(τni ))
∣∣Ant ]∣∣∣∣]

≤ E
[
r
An(t)
1

]
= E

[
exp

(
(r1 − 1)

∫ t

0
λnY n(s) ds

)]
≤ exp

(
∆̃nt(r1 − 1)

)
, (3.7)

Thus, we have∫
ηnδ<|u|<πnδ

∣∣∣ψnt (u)− exp
(
− %tu2/2

)∣∣∣ du
≤
∫
ηnδ<|u|<πnδ

(∣∣∣E[eiun−δXn(t)
]∣∣∣ · ∣∣e−iλ̄n1−δt

∣∣+ exp
(
− %tu2/2

))
du

≤
∫
ηnδ<|u|<πnδ

(
exp

(
∆̃nt(r1 − 1)

)
+ exp

(
− %tu2/2

))
du

≤ 2πnδ exp
(
∆̃nt(r1 − 1)

)
+ 2

∫ +∞

ηnδ
exp

(
− %tu2/2

)
du. (3.8)

Since r−1 < 0, it is easy to see (3.8) converges to 0 as n→∞. Therefore, by (3.4), (3.6) and
(3.8), we have shown that (3.3) converges to 0 as n→∞ and this completes the proof. �

Proof of Theorem 1.3. The proof follows closely from the proof of Theorem 3.5.3 in [12].
For some constant d > 0, let

p0(y) =
1− cos dy

πdy2

be the density of the Polya’s distribution and pθ(y) = eiθyp0(y). Define

p̂0(u) =
1

2π

∫ ∞
−∞

eiuyp0(y)dy =

{
1− |u/d|, |u| ≤ d,
0, otherwise,

and we have p̂θ(u) = p̂0(u+ θ).
By the result following claim (a) in the proof of Theorem 3.5.3 in [12], to prove Theorem

1.3, it suffices to show that for each t ≥ 0,∣∣∣nδE[pθ(X̆n(t)− xn)
]
− ψt(x)

∫ ∞
−∞

pθ(y) dy
∣∣∣→ 0 as n→∞. (3.9)

By the same calculation in the proof of Theorem 3.5.3 in [12], we have

E
[
pθ(X̆

n(t)− xn)
]

=
1

2π

∫ ∞
−∞

E
[
e−iuX̆n(t)

]
eiuxn p̂θ(u) du.

There is a constant M1 such that p̂θ(u) = 0 for u /∈ [−M1,M1]. Then, changing the variable,
we obtain that

nδE
[
pθ(X̆

n(t)− xn)
]

=
1

2π

∫ M1nδ

−M1nδ
eiun−δxnψnt (−u)p̂θ(u/n

δ) du.
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By Assumption 3, Theorem 3.5.1 in [12] and the continuity of characteristic function again,
for large enough n, we can find a constant r2 < 1 such that for any i ∈ N, k ∈ S and M2 > 0,∣∣∣E[eiun−δZni (Y n(τni ))

∣∣∣Y n(τni ) = k
]∣∣∣ ≤ r2 for M2 ≤ |u| ≤M1.

Since |p̂θ(u)| ≤ 1 for u in R, taking similar steps in (3.3), (3.6) and (3.8), there exist constant
c > 0, K3 > 0 and small enough M2 > 0 such that, for large enough n,∣∣∣nδE[pθ(X̆n(t)− xn)

]
− 1

2π

∫ ∞
−∞

exp(−%tu2/2)eiuxp̂θ(0) du
∣∣∣

≤ 1

2π

∫ c

−c

∣∣∣eiun−δxnψnt (−u)p̂θ(u/n
δ)− exp(−%tu2/2)eiuxp̂θ(0)

∣∣∣ du
+

1

2π

∫
c≤|u|≤M2nδ

(
exp

(
−K3u

2/4
)

+ exp
(
− %tu2/2

))
du

+
M1n

δ

π
exp(∆̃nt(r2 − 1)) +

1

π

∫ +∞

M2nδ
exp

(
− %tu2/2

)
du

+
1

2π

∫
|u|≥M1nδ

∣∣ exp(−%tu2/2)eiuxp̂θ(0)
∣∣ du. (3.10)

Applying Theorem 1.1, we obtain ψnt (−u) → exp(−%tu2/2) as n → ∞. Since xn/n
δ → x

as n→∞, by the dominated convergence theorem, we have that the first term converges
to 0 as n→∞. The second term is arbitrarily small, when c is arbitrarily large. By (3.6),
the third term also converges to 0. It is evident that the last two terms also converge to 0.
Applying inversion formula and Theorem 3.3.5 in [12], we have

1

2π

∫ ∞
−∞

exp(−%tu2/2)eiuxp̂θ(0) du = ψt(x)p̂θ(0) = ψt(x)

∫ ∞
−∞

pθ(y) dy. (3.11)

Therefore, we have shown (3.9). This completes the proof. �
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