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Abstract. A Markovian single-server queue is studied in an interactive random environment. The
arrival and service rates of the queue depend on the environment, while the transition dynamics of
the random environment depends on the queue length. We consider in detail two types of Markov
random environments: a pure jump process and a reflected jump-diffusion. In both cases, the joint
dynamics is constructed so that the stationary distribution can be explicitly found in a simple form
(weighted geometric). We also derive an explicit estimate for exponential rate of convergence to
the stationary distribution via coupling.

1. Introduction

In this paper we propose a tractable modeling approach to studying queues in an interactive
random environment, where the arrival and/or service rates are modulated by a Markov process
and the dynamics of the environment also depends on the state of the queue. Such models may
be used in the following setting: In a service system (for example, on-demand service platforms),
the demand may be affected by the service quality as indicated by dynamic ‘ratings’ which may
be modeled by a Markov chain, while the ratings dynamics may depend on the congestion level
in the system.

For an M/M/1 queue in an interactive random environment, let N(t) be the queue-length pro-
cess (the number of customers in the system) and Z(t) be the random process for the environment.
The joint process (N(t), Z(t)) can be modeled as a continuous-time Markov process on N×Z (Z
representing the range of Z(t)), with a generator

(1.1) Lf(n, z) =Mzf(n, z) +Anf(n, z),

whereMz describes the queueing dynamics depending on the environment state z andAn describes
the environment dynamics depending on the queueing state n. Specifically, given the arrival and
service rates λ(z) and µ(z), we can write

Mzf(n, z) = λ(z)(f(n+ 1, z)− f(n, z)) + 1{n6=0}µ(z)(f(n− 1, z)− f(n, z)).

On the other hand, the generator An can be for a general Markov process, depending on the queue
length n. For example, for a given n, An may represent the generator of a diffusion process,

Anf(n, z) = bn(z) · ∇zf(n, z) +
1

2
tr
(
Σn(z)∇2

zf(n, z)
)

or a continuous-time jump Markov chain with a transition rate matrix depending on the queueing
state n. In the utmost generality, one can impose mild conditions on the generators Mz and An
to guarantee the existence of an invariant measure for the joint process (N(t), Z(t)). However,
it seems difficult to go beyond that without any structural assumptions on the joint generator,
especially An. In many applications, it is convenient to have an explicit invariant measure to work
with. In general, it is hard to find an explicit form for stationary distributions of multidimensional
Markov processes. (For example, in [42] it is shown that an obliquely reflected Brownian motion
(RBM) in a polyhedral domain in Rd has a product-of-exponentials stationary distribution under
the skew symmetry condition, the only case with an explicit stationary measure.)
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Therefore, in order to provide an explicit expression for the invariant measure of the joint
process, we study a particular multiplicative (scaled) form in the generator component An, that
is,

Anf(n, z) = βnρ
−n(z)Af(n, z)

Here βn is a positive constant, ρ(z) = λ(z)/µ(z) is the traffic intensity in the queue, and Af(n, z)
is a generator corresponding to a Markov process whose transition dynamics does not depend
on n. (In the case of reflected processes, the boundary conditions should be treated carefully;
see Section 3 for details.) The scaling factors not only depend on the queue length n, but also
include the traffic intensity ρ(z). For an environment state z, ρ−n(z) > 1 for all queue state
n, but the factor βn gives more flexibility (slowing down or speeding up) to the scaling of the
generator A. Our approach is motivated by applications where the environment dynamics may
be sped up or slowed down by the congestion. For example, in on-demand service systems, the
transitions among the different service quality ‘ratings’ may simultaneously change faster when
many customers experience more congestion due to higher response rates.

We discuss two types of random environment: a pure jump Markov chain taking values in a
discrete state space D (finite or countable), and a reflected (jump) diffusion in a piecewise smooth
domain, also denoted by D. Each type of environment is of its own interest. Under certain
assumptions, we prove the existence of the joint invariant measure, derive its explicit expression
and establish the exponential rate of convergence to the steady state (in the total variation norm).
The explicit expression of the invariant measure can be regarded as a weighted geometric form
(or some “product form”, although not exactly in the same sense as in the literature on stochastic
networks [22, 10, 23]). Specifically, we have the joint invariant measure for (N(t), Z(t)) of the form
π({n}, dz) = Ξ−1ρn(z)ν(dz), where Ξ is some normalization constant, and ν(·) is the invariant
measure associated with the generator A. Recall that the steady-state distribution of the M/M/1
queue itself given an environment state z is geometric (P (N(∞) = n) = (1 − ρ(z))ρn(z)). The
product of the terms “ρn(z)” and “ν(dz)” mixes the invariant measures for the queue and the
environment, despite ρ(z) depending on z. Here the scaling factor ρ−n(z) in An is critical. For the
two types of environment processes we are able to establish the exponential rate of convergence.

With a diffusive environment, our work introduces new stochastic models. The simple models
include: (a) an M/M/1 queue with an interactive diffusive arrival rate: the arrival rate is a
one-dimensional reflected (jump) diffusion process in [0, 1] under a fixed service rate 1; (b) an
M/M/1 queue with an interactive diffusive service rate: the service rate is a one-dimensional
reflected (jump) diffusion process in [1,∞) under a fixed arrival rate 1; (c) the arrival and service
rates form a two-dimensional RBM in an open convex cone (with arrival rate strictly lower than
service rate). RBMs have been extensively studied in the queueing (network) literature as scaling
limits. However, RBMs as arrival and/or service rates have not been carefully studied. When
there is no interactive behavior, the M/M/1 queue with a RBM arrival rate can be regarded
as a special case of queues of the so-called doubly stochastic Poisson arrival processes with the
arrival rate being an independent stochastic process (see, e.g., [3, 4, 5]). Our first model extends
such existing interesting studies to include feedback loop from queue to environment. The second
and third models with RBM being the service rate or the RBM in the wedge for both arrival
and service rates are new, even in the setting of no interactive behavior. Such models are worth
further careful investigation. Of course, our models go beyond RBMs, to general reflected (jump)
diffusion models.

We aim to find the explicit rate of convergence to the stationary distribution in these models.
For standard M/M/1 queues, it is well known that the rate of convergence is exponential, see, e.g.,
[36, Proposition 5.8]. However, for diffusion processes (solutions of SDEs), reflected diffusions, and
their versions with jumps, the characterization of an explicit rate of convergence to steady state
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(as opposed to simply proving that there exists an exponential rate of convergence) is quite a
challenging problem. See, e.g., [11, 38, 37, 20]. Thus, it is a much more difficult problem to study
the rate of convergence for the joint Markov process with a generator in the general form in (1.1)
due to the complicated interactive behavior of the two processes (one being discrete and the other
being continuous). We attempt to solve this problem via a coupling technique for the joint process
(N,Z). We provide a novel way to construct the coupling time for the joint process in order to
prove that the convergence rate is exponential, and more importantly, provide good estimates of
the rate of convergence via careful studies of the exponential bounds for the coupling time. This
appears to be the first work in the literature to carefully find the estimates of the coupling times
of joint processes for queueing processes in random environments.

Although our main focus is on the multiplicative (scaling) form in the generator An, we have
also considered a setup where the the environment jump diffusion described above depend on the
queue length n via its domain Dn ⊆ D. In particular, the drift vector field, covariance matrix
field, and the jump measure remain the same for all n, but reflection vector fields may depend on
the queueing state n. The entire domain D is the union of these Dn, n = 0, 1, 2, . . .. We assume

that this reflected jump-diffusion in Dn has a unique invariant probability measure ν
(n)
Dn

inside the
domain Dn, which is the projection of a certain finite measure on D to Dn. (The corresponding
boundary measures may depend on n.) See Assumptions 3.3–3.6. We prove similar results as
above in this setting. We construct two special examples: an M/M/1 queue with a fixed service
rate and a reflected diffusion arrival rate, controlled based on a threshold of queue length (Example
3.1) and an M/M/1 queue with a fixed arrival rate and a diffusive service rate, controlled similarly
(Example 3.2).

When the random environment is a Markov chain taking discrete values, our results also extend
to the generator An of the form ρ−n(z)τn(z, z′), where the generator rate τn may depend on the
queueing state n unlike the multiplicative case. However, it is assumed that an invariant measure
associated with the transition rate τn(z, z′) exists such that it is independent of the queueing state
n (Assumption 2.1). This is slightly more general than the multiplicative case, so we state the
model and results in section 2 in this setup. We also give an example to illustrate how this slightly
more general setup is used (see Examples 2.1 and 2.2).

1.1. Literature review on queues in interactive environments. Queues in random envi-
ronments (e.g., Markov modulated models) have been extensively studied in the literature. Most
of the literature assumes that the queueing dynamics is affected by the environment, but not
interactive. For example, the paper [35] studies Markov-modulated arrival and service rates with
finite environment space, and finds expressions of waiting times. The paper [41] deals with similar
questions by comparing this queue with an appropriate M/M/1 queue. Optimization of service
rate for the case when arrival rate is a Markov process is studied in [26]. See also, a birth–
death process in random environment [13] and a Markov chain in Markov environment, studied
in [12, 16, 33]. A particular case of a Markov–modulated setting is when the service dynamics is
subject to interruptions. In this case, the random environment only affects service rate µ. The
survey [25] summarizes the existing literature on this topic.

In the Markov-modulated queueing literature, the arrival or service rates under modulation
take finite or countable number of values. However, in practice, the rates under modulation can
possibly take continuous values. Our work thus goes beyond the existing frameworks and develops
new queueing models.

In [19], the authors study a random particle (a distinguished customer) walking randomly over
the sites of a symmetric Jackson network (open or closed), where the arrival rate of a station/node
or the transition of customers from it to other stations/nodes is affected if the particle occupies it,
while the jump rate of the particle depends on the state of the station/node it currently occupies.
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An explicit steady state distribution for the joint process is derived. In [24], Jackson networks
in interactive random environments are studied, where the service capacities are affected by the
environment, while customer departing may enforce the environment to jump immediately. An
explicit expression of the product form is derived for the joint queueing and environment processes.
Inspired by [19], a different construction of Markov processes in random environments resulting
in product-form invariant measure is provided. In [6], various Markov processes with interactive
random environment are constructed. This paper is in the same flavor as that in [6]. The paper
[17] deals with feedback loop created by blocking some channels in a multi-server queue, and finds
a product-form stationary distribution for the joint process. None of these papers investigate the
rate of convergence to stationarity. Our model of a single-server queue is also constructed in a
more general manner.

The papers [14, 44] study birth-death processes in random environment with feedback. This
is a more general setup than in our paper, because an M/M/1 queue is a particular case of a
birth-death process. However, [14] is concerned with explosion questions, rather than stationary
distributions and convergence rates, and [44] focuses on generating function approach and achieves
only partial results for the steady-state distribution.

1.2. Notation. The integral with respect to the measure ν applied to the function f is written
as 〈ν, f〉. Exponential distribution with rate α is denoted by Exp(α). The arrow ⇒ indicates
weak convergence. The dot product of two vectors a and b is denoted by a · b. We say two finite
measures µ, ν on R satisfy µ � ν if for all u ∈ R we have µ(−∞, u] ≤ ν(−∞, u], but µ(R) = ν(R).
We say that µ is stochastically dominated by ν. We transfer this concept to random variables:
X is stochastically dominated by Y if the distribution of X is stochastically dominated by the
distribution of Y . Let Z+ = {0, 1, 2, . . .} and R+ := [0,∞). Define the total variation norm: For a
signed measure ν, let ‖ν‖TV := supA |ν(A)|. Throughout this article, we consider continuous-time
random processes (unless otherwise noted) on a filtered probability space (Ω,F , (Ft)t≥0,P) with
the filtration satisfying the usual conditions.

1.3. Organization of the paper. In Section 2, we study the model in an interactive jump
environment. In Section 3, we study the single-server queue with a reflected jump diffusion en-
vironment. In Section 4, we estimate the explicit rate of exponential convergence for the case of
compact environment state space, for both models in Sections 2 and 3. In Section 5 we state and
prove some auxiliary lemmata. We make some concluding remarks in Section 6.

2. M/M/1 queue in an interactive jump environment

Consider an M/M/1 queue with an infinite waiting space operating in an interactive jump
environment described as follows. Let D be a finite or countable state space. For every n ∈ Z+,
let Tn = (τn(z, z′))z,z∈D be the generator of an irreducible continuous-time Markov chain on D;
this (finite or countable-sized) matrix is called nominal jump intensity matrix for the jump process
Z in the queueing state n. We define a two-component Markov process (N,Z) taking values in
the countable state space Z+ ×D with the following generator matrix R =

(
R[(n, z), (n′, z′)]

)
:

R[(n, z), (n+ 1, z)] = λ(z), R[(n, z), (n− 1, z)] = µ(z),

R[(n, z), (n, z′)] = ρ−n(z)τn(z, z′), R[(n, z), (n′, z′)] = 0, n 6= n′, z 6= z′.
(2.1)

where ρ(z) := λ(z)/µ(z) for each z ∈ D. Here N = {N(t) : t ≥ 0} represents the number of jobs in
the system (including those in queue and in service), taking values in Z+, and Z = {Z(t) : t ≥ 0}
represents a jump process taking values in D. When the environment is in state z, the arrival and
service rates for the queueing process are λ(z) and µ(z), respectively, both depending on state z.
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When the queue size is in state n, the transition of the environment Z from state z to state z′

occurs at the rate ρ−n(z)τn(z, z′). Note that the fourth equation in (2.1) does not allow simulta-
neous jumps for N and Z. It is evident that the pair (N,Z) is a well-defined Markov process in
Z+ ×D with the generator R.

Remark 2.1. We do not multiply this transition rate τn by a factor βn: Dependence on n is
already enshrined in the rate τn. We impose a condition (2.2) to guarantee the product form of
the steady state.

We first make the following assumption on the nominal jump intensity matrix Tn.

Assumption 2.1. For each n ∈ Z+, z ∈ D, and for some function v : D → R+,

(2.2) v(z)
∑
z′∈D

τn(z, z′) =
∑
z′∈D

v(z′)τn(z′, z).

For fixed n ∈ Z+, if we define a Markov process Z̃n := {Z̃n(t) : t ≥ 0} on D with the nominal
jump intensity matrix Tn as the generator, then (2.2) implies that v(·) defines an invariant measure
for Z̃n. If

∑
z∈D v(z) <∞, then this measure can be normalized to a probability distribution. If∑

z′∈D

τn(z, z′) =
∑
z′∈D

τn(z′, z),

then the counting measure is invariant for Z̃n; if D is a finite set, then it is normalized to a uniform
distribution on D. It is important to note that the invariant measure v(·) does not depend on n,
although the jump intensity matrix Tn depends on n.

Remark 2.2. A simplest example is when τn(z, z′) has a multiplicative form:

τn(z, z′) = βnτ(z, z′)

for some transition rate matrix τ(z, z′) satisfying v(z)
∑

z′∈D τ(z, z′) =
∑

z′∈D v(z′)τ(z′, z). How-
ever, we provide examples below in which τn(z, z′) depends on n in a nontrivial manner while the
existence of v independent of n is guaranteed. See Examples 2.1 and 2.2.

Assumption 2.2. The functions ρ, v satisfy

(2.3) ρ(z) < 1 for z ∈ D,

(2.4) Ξ :=
∑
z∈D

v(z)

1− ρ(z)
=
∞∑
n=0

∑
z∈D

ρn(z)v(z) <∞.

Note that the constant Ξ is the normalization constant in the joint invariant measure π in (2.5).

Theorem 2.1. Under Assumptions 2.1 and 2.2, the Markov process (N,Z) is irreducible, aperi-
odic, and positive recurrent. It has an invariant probability measure

(2.5) π(n, z) := η(n, z)/Ξ, ∀(n, z) ∈ Z+ ×D,

where Ξ is given in (2.4), and

(2.6) η(n, z) := ρn(z)v(z), ∀(n, z) ∈ Z+ ×D,

This process has transition kernel Pt(x, ·) which converges to this invariant measure:

(2.7) ‖Pt(x, ·)− π(·)‖TV → 0 as t→∞, for all x ∈ Z+ ×D.
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Proof. We first show that the process (N,Z) is irreducible and aperiodic. It follows from the
observation that for every t > 0, (n, z), (n′, z′) ∈ Z+ × D, one can with positive probability get
from (n, z) to (n′, z′) in time t. For the measure η from (2.6) to be finite, we need∑

(n,z)

η(n, z) =
∑
(n,z)

ρn(z)v(z) =
∑
z

v(z)

1− ρ(z)
<∞,

which is implied by (2.3)–(2.4) in Assumption 2.2. If we prove that η from (2.6) is indeed an
invariant measure, the positive recurrent property follows from [34, Theorem 3.5.3], [40, Theorem
2.7.18], and then the ergodicity, as in (2.7), follows from [32]. To verify that η(n, z) in (2.6) is an
invariant measure, we show that η′R = 0. Let us show that for all n = 1, 2, . . . and z ∈ D,

−η(n, z)R[(n, z), (n, z)] = η(n− 1, z)R[(n− 1, z), (n, z)] + η(n+ 1, z)R[(n+ 1, z), (n, z)]

+
∑

z′ 6=z
η(n, z′)R[(n, z′), (n, z)],

−η(0, z)R[(0, z), (0, z)] = η(1, z)R[(1, z), (0, z)] +
∑

z′ 6=z
η(0, z′)R[(0, z′), (0, z)].

(2.8)

By (2.1), the left- and right-hand sides of the first equation in (2.8) are equal to, respectively,

η(n, z)
∑

(n′,z′)6=(n,z)

R[(n′, z), (n′, z)]

= ρn(z)v(z)

(
R[(n, z), (n+ 1, z)] +R[(n, z), (n− 1, z)] +

∑
z′ 6=z

R[(n, z), (n, z′)]

)
= ρn(z)v(z)

(
λ(z) + µ(z) +

∑
z′ 6=z

ρ−n(z)τn(z, z′)

)
= ρn(z)v(z)(λ(z) + µ(z)) + v(z)

∑
z′ 6=z

τn(z, z′);

ρn−1(z)v(z)λ(z) + ρn+1(z)v(z)µ(z) +
∑
z′ 6=z

ρn(z′)v(z′)ρ−n(z′)τn(z′, z)

= v(z)ρn(z)(λ(z) + µ(z)) +
∑
z′ 6=z

v(z′)τn(z′, z).

From (2.2) in Assumption 2.1, the last terms in the right-hand side of these two last equations are
equal. This proves the first equation in (2.8); the second one is similar. This completes the proof.

Example 2.1. (D as a union of finite sets) In Examples 2.1 and 2.2, δ(i, j) stands for the
Kronecker delta. Given n ∈ Z+, let Dn be a finite set in (0, 1) with cardinality mn. For definiteness,
assume that 1 < mn < M where M ∈ Z+ is a fixed value. Introduce an enumeration of points
in each Dn: Dn = {z(1), . . . , z(mn)} (say, in a increasing order) and make a convention that
z(0) = z(mn), z(mn + 1) = z(1). Sets Dn can have common points for different n or be pair-wise
disjoint. Set D = ∪

n
Dn and υ(z) = 1 for z ∈ D. Set D can be finite or countable.

Next, take a subset L ⊆ Z+ (L or Z+ \ L can be empty). For n ∈ L, set

τn(z, z′) =
βn

mn − 1
, ∀ z, z′ ∈ Dn with z 6= z′.

For n ∈ Z+ \ L, set

τn(z(i), z(j)) =
1

2
δ(j, i± 1), ∀ i, j ∈ {1, . . . ,mn}.
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Here βn ∈ (0,∞) are scaling constants depending on n (which is irrelevant for the invariant
measure of the process (N,Z)). Pictorially, τn for n ∈ L describes uniform jumps on Dn while for
n ∈ Z+ \ L, τn yields a ‘nearest-neighbor’ walk with cyclic (periodic) boundary condition. Either
way, the counting measure υ is invariant; cf. Assumption 2.1. Thus, (2.2) holds true.

Then Tn =
(
τn(z, z′)

)
generates a Markov chain Z̃n with an invariant probability measure

1Dn(z)/mn, z ∈ D. The invariant measure η is then given in (2.6) with η(n, z) = zn.

Example 2.2. (D as a countable set, τn as a null-recurrent jump chain.) Assume that D ⊂ (0, 1)
is countable, and can be enumerated by i = 0,±1,±2, so that ρi := ρzi for i ≥ 0 satisfies
ρ0 < ρ1 < · · · < 1 and limi→∞ ρi = 1. (Enumeration with labels i = −1,−2, . . . does not matter.)
Set υ(z) = 1 and

τn(z0, zj) = τn(zi, zi+j) = βnδ(j, n), ∀i, j ∈ Z.

Here, as earlier, βn is a scaling constant depending on n (again irrelevant for the invariant measure
of the process (N,Z)). Then Tn =

(
τn(z, z′)

)
generates a null-recurrent Markov chain Z̃n with

the invariant measure υ(z) = 1, z ∈ D. Thus, the random traffic intensity ρZ̃n
, depending on

both the state of the queue and the environment, will approach the critical value 1 infinitely often.
However, under the condition (2.4) the resulting Markov process (N,Z) is positive recurrent, with
an invariant measure η(n, z) = ρn(z) for (n, z) ∈ Z+ ×D.

3. M/M/1 queue in an interactive diffusive environment

3.1. Reflected jump-diffusions. In this section we consider the queue with λ and µ dependent
on a diffusive environment process Z(t). First, let us define the dynamics of this environment
process as a reflected (jump) diffusion in a certain domain in Rd.

It is instrumental to recapitulate some basic notion. A domain in Rd is the closure of an open
connected subset. A domain D is called smooth if its boundary ∂D is a (d − 1)-dimensional C2

manifold. Take m smooth domains D1, . . . , Dm in Rd. Assume D = ∩mi=1Di has boundary ∂D
with m faces: Fi := ∂D ∩ ∂Di which are (d − 1)-dimensional manifolds with an edge, and such
that all m domains are essential: Removal from the intersection of any domain will change the
result. Then D is called a piecewise smooth domain in Rd. Define by ni(z) the inward unit normal
vector to ∂Di at z ∈ Fi. Inward in this case is defined as pointing inside Di, even if this is not
inside D. An important example is a convex polyhedron with Di being half-spaces. Of particular
interest is the positive orthant D = Rd

+. Of course, smooth domains also belong to this class of
domains, with m = 1.

Take continuous functions g : D → Rd and Σ : D → Rd×d such that the matrix Σ(z) = (aij(z)) is
symmetric and positive definite for all z ∈ D, and there exists a δ > 0 such that Σ(z)v · v ≥ δ‖v‖2

for all v ∈ Rd and z ∈ D. For every z ∈ D, define a finite measure $(z, ·) on D such that
$(z, ·) ⇒ $(z0, ·) as z → z0 in D. Recall that ⇒ denotes weak convergence. Take ri : Fi → Rd:
continuous functions, pointing inside D; that is, ri(z) · ni(z) > 0 for i = 1, . . . ,m, z ∈ Fi. Let
us define a reflected jump-diffusion: a process Z = {Z(t) : t ≥ 0} in D with drift vector field g,
diffusion matrix field Σ, jump measures $(z, ·) and reflection vector fields r1, . . . , rm.

This process will be adapted and right-continuous with left limits. Take a d-dimensional Brow-
nian motion B = {B(t) : t ≥ 0}, adapted to the filtration. Take continuous nondecreasing
processes `i = {`i(t) : t ≥ 0} for i = 1, . . . ,m such that `i can grow only when Z(t) ∈ Fi, another
right-continuous process with left limits Z = (Z(t), t ≥ 0) with values in D, and yet another
process N = {N (t) : t ≥ 0} which is right-continuous piecewise constant, with jump measure
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$(Z(t−), ·), and such that

(3.1) dZ(t) = g(Z(t)) dt+ Σ1/2(Z(t)) dB(t) +N (t) +
m∑
i=1

ri(Z(t)) d`i(t), t ≥ 0.

We assume the equation (3.1) has a well-defined unique weak solution, and forms a Feller contin-
uous strong Markov semi-group, with generator

(3.2) Af(z) = g(z) · ∇f(z) +
1

2
tr(Σ(z)∇2f(z)) +

∫
D

(f(z′)− f(z))$(z, dz′),

which consists of a nondegenerate uniformly elliptic diffusion and a state-dependent finite jump
measure. This existence and uniqueness were proved under Lpischitz conditions on vector field
g(·) and the matrix (aij(·)), as well as continuity of ri(·) for each i = 1, . . . ,m, and some additional
technical conditions. The case without jumps was proved in [28]; the general case follows from
the standard construction by piecing out, [39]. The reflection at the boundary translates into
boundary conditions for (3.2):

(3.3) ri(z) · ∇f(z) = 0, z ∈ Fi, i = 1, . . . ,m.

The dynamics of this process can be described as follows:

• As long as it is strictly inside D, this process behaves as a jump-diffusion in d dimensions
with drift vector field g diffusion matrix field Σ, and family $ of jump measures. These
jump measures are such that the process does not jump out of D.
• At a point z ∈ Fi, i = 1, . . . ,m, it is reflected back inside the domain D, according to the

vector ri(z).
• If it hits the lower-dimensional edges: intersections of two or more faces F1, . . . , Fm, it

is reflected back inside D according to a positive linear combination of reflection vectors
corresponding to these intersecting faces.

Normal reflection corresponds to the case when ri(z) = ni(z), where z ∈ Fi and i = 1, . . . ,m.

Remark 3.1. In the case of a diffusion without reflection, the state space may be Rd, or still some
subset D. The latter happens if the drift coefficient is sufficiently large to compel the process to
stay in a certain domain. An example of this is the drift for a Bessel process on the half-line, see
[21, Chapter 3, Problem 3.23].

In the case d = 1, for a reflection on [a, b], we have a normal reflection, and the boundaries
consisting of two pieces {a} and {b}. For a reflection on [a,∞), we have a normal reflection again,
with the boundary {a}.

3.2. Construction of the joint Markov process. Let us now use symbol z for a point in D
(instead of x). Take continuous functions λ, µ : D → (0,∞) with λ(z) ≤ µ(z) for z ∈ D. Define
the traffic intensity:

(3.4) ρ(z) :=
λ(z)

µ(z)
≤ 1.

For every z ∈ D, consider an M/M/1 queue with arrival intensity λ(z) and service intensity µ(z),
where n is the state of this queue. The process Ñ counting the number of jobs in the system, called
the queueing process in the sequel, is a continuous-time Markov process on Z+ with generator

(3.5) Mzf(n) = λ(z)(f(n+ 1)− f(n)) + 1{n6=0}µ(z)(f(n− 1)− f(n)).

We now consider a (1 + d)-dimensional Markov process (N,Z) = {(N(t), Z(t)) : t ≥ 0} with
values in Z+ ×D which evolves as follows:
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(a) If N(t) = n ∈ Z+, then Z behaves as a reflected jump-diffusion in D with generator
ρ−n(z)βnA and reflection fields r1, . . . , rm.

(b) if Z(t) = z, then N(t) jumps from n to n + 1 with intensity λ(z), and (if n 6= 0) to n − 1
with intensity µ(z).

Here βn is the variability coefficient for the diffusive environment, depending on the queueing
state n, and ρ−n(z) is the queueing impact factor, capturing the impact from the traffic intensity
(congestion) from the queueing process. The component N can be informally described as the
queueing process of an M/M/1 queue with arrival and service rates, λ(z) and µ(z), respectively.
These rates depend on an auxiliary process Z. The dynamics of Z, however, depends on the
current position of this queueing process. Therefore, we call such a system as an M/M/1 queue
in an interactive diffusive environment.

The joint dynamics is described via a combined Markov process (N,Z) with the following
generator:

Lf(n, z) =Mzf(n, z) + βnρ
−n(z)Af(n, z), f ∈ D.(3.6)

Here, D stands for the following subspace of the domain of L:

D := {f : Z+ ×D → R | ∀n ∈ Z+ , f(n, ·) ∈ DD},(3.7)

DD := {f ∈ C2
b (D) | ri(z) · ∇f(z) = 0, z ∈ Fi, i = 1, . . . ,m}.

(Note that we were intentionally loose on the domains of f in (3.2) and (3.5), but they are clear
from this definition.) From the general theory of piecing out it follows that this is a Feller process,
see [39]. We denote by C2

b (D) the set of twice continuously differentiable functions D → R which
are bounded with their first and second derivatives (the last condition, automatically fulfilled for
bounded D). This is a separable Banach space with the norm

‖f‖D,2 := sup
z∈D

(
|f(z)|+ ‖∇f(z)‖+ ‖∇2f(z)‖

)
.

Denote by P t(y, ·) the transition kernel of (N,Z) where y = (n, z) ∈ Z+ ×D.

We give three special cases to illustrate the construction above.

(a) M/M/1 queue with an interactive diffusive arrival rate.

Assume that λ(z) = z and µ ≡ 1. Let D = [0, 1], and the generator A in (3.2) be that of
a reflected diffusion in (0, 1) without jumps. The reflections at 0 and 1 correspond to the
Neumann boundary conditions:

∂

∂z
f(n, 0+) = 0,

∂

∂z
f(n, 1−) = 0, ∀n ∈ Z+.

(b) M/M/1 queue with an interactive diffusive service rate.

Assume that λ ≡ 1 and µ(z) = z. Let D = [µ0,∞) for some µ0 ≥ 1, and the generator A
in (3.2) be that of a simple RBM on [µ0,∞) without jumps. The reflection at µ0 satisfies
the Neumann boundary condition.

(c) M/M/1 queue with both diffusive arrival and service rates.

Take D = {(z1, z2) ∈ R2
+ : z2 ≤ z1} be a cone in the positive orthant, and the generator A

in (3.2) be that of a two-dimensional Brownian motion in D with normal reflections at the
boundary. Let (λ(z), µ(z)) = z. Then the arrival and service rates of the M/M/1 queue
follow the dynamics of a reflected RBM in D in the interactive manner described above.
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3.3. Invariant measures. We need the following assumptions on some properties of the reflected
jump-diffusion process. The first assumption states that for each level, there exists a steady-
state distribution. The second assumption ensures that the whole process has a steady-state
distribution.

Assumption 3.1. Assume the (reflected) jump-diffusion with generator A is positive recurrent,
and has a unique stationary/invariant measure νD, together with boundary measures νFi

, i =

1, . . . ,m. This means that the stationary copy of this process Z̃∗ = {Z̃∗(t) : t ≥ 0} with
Z̃∗(t) ∼ νD for t ≥ 0, satisfies the following condition: For every t ≥ 0, each i = 1, . . . ,m, and
every bounded function f : Fi → R,

(3.8) E
∫ t

0

f(Z̃∗(s)) d`i(s) = t

∫
Fi

f(z) νFi
(dz),

where `i(s) is the nondecreasing process in (3.1).

Assumption 3.2. The measure νD(·) satisfies

(3.9) Ξ :=

∫
D

νD(dz)

1− ρ(z)
=
∞∑
n=0

∫
D

ρn(z)νD(dz) <∞.

Note that Ξ is the normalization constant in the joint invariant measure of (N,Z) in (3.10).
This invariant measure on each boundary Fi has value zero.

Remark 3.2. Similarly to (3.8), we can define the concept of boundary measures for the joint
process (N,Z). First, construct the boundary process `i = (`i(t), t ≥ 0) for the component Z and
face Fi of the boundary ∂D. Assume 0 = ρ0 < ρ1 < . . . are jump times for N . Then Z(ρk + t)
for t ∈ [0, ρk+1 − ρk] behaves as a reflected jump-diffusion on D with generator ρ−nk(z)βnk

A
and reflection fields r1, . . . , rm, with N(t) = nk for t ∈ [ρk, ρk+1). Thus there exist a continuous

nondecreasing process `
(k)
i (t), t ∈ [0, ρk+1 − ρk] such that (3.1) holds with adjusted drift vector

field, diffusion matrix field, and jump measures family. Define

`i(t) = `i(ρk) + `
(k)
i (t− ρk), t ∈ [ρk, ρk+1],

using induction over k. This defines `i = (`i(t), t ≥ 0) for i = 1, . . . ,m. Next, define a boundary
measure νFi

on the face Fi corresponding to a stationary distribution π for this joint process
(N,Z): Take the corresponding stationary copy (N∗, Z∗) with (N∗(t), Z∗(t)) ∼ π for t ≥ 0. For a
bounded function f : Z+ × Fi → R and a t ≥ 0,

E
∫ t

0

f(Ñ∗(s), Z̃∗(s)) d`i(s) = t

∞∑
n=0

∫
Fi

f(n, z) νFi
({n} × dz).

Now we are ready to state and prove the main result of this section.

Theorem 3.1. Under Assumptions 3.1 and 3.2, there is a unique invariant measure for (N,Z):

(3.10) π({n}, dz) = Ξ−1ρn(z)νD(dz).

The corresponding boundary measures πi for Fi (if there is reflection) are given by

(3.11) πi({n}, dz) = Ξ−1ρn(z)νFi
(dz), i = 1, . . . ,m.

Finally, this Markov process is ergodic: for every y ∈ Z+ ×D,

(3.12) ‖P t(y, ·)− π(·)‖TV → 0 as t→∞.
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Proof. From stationarity we immediately get: for all f ∈ C2
b (D),

(3.13)

∫
D

Af(z) νD(dz) +
m∑
i=1

∫
Fi

ri · ∇f(z) νFi
(dz) = 0.

This is called the basic adjoint relationship in the literature. We refer to [43] for its deduction in
the case of a convex polyhedron; the same is true for a general piecewise smooth domain D, as
in our case. Apply [27, Theorem 1.7, Theorem 2.2, Lemma 2.4, Remark 2.5] using their notation,
with the state space E = Z+×D; U = {0, 1, . . . ,m}, where the point 0 corresponds to the domain
D itself, and i = 1, . . . ,m, correspond to faces F1, . . . , Fm of the boundary; for all z ∈ D, n ∈ Z+,
and u ∈ U ,

µ0({u} × {n} × dz) = 1(u = 0) ρn(z)νD(dz),

µ1({u} × {n} × dz) = 1(u 6= 0) ρn(z)νFu(dz);

µE0 ({n} × dz) = ρn(z)νD(dz),

µE1 ({n} × dz) = ρn(z) [νF1(dz) + . . .+ νFm(dz)] ;

η0((n, z), {u}) = 1(u = 0),

η1((n, z), {u}) = 1(u 6= 0);

Af((n, z), u) := Lf(n, z), cf. (3.6),

Bf((n, z), u) := 1(u 6= 0, z ∈ ∂D) βnρ
−n(z)ru(z) · ∇f(z).

(3.14)

We need to check [27, Condition 1.2] on the absolutely continuous generator A and the singular
generator B. Let

D := {f : Z+ ×D → R | ∀n ∈ Z+, f(n, ·) ∈ C2
b (D)}.

Part (i) requires that A,B : D ⊂ Cb(E) → C(E × U), and the unity function 1(n, z) = 1 for
(n, z) ∈ E satisfies 1 ∈ D, A1 = 0, and B1 = 0. This is trivially satisfied.

Part (ii) requires that there exist ψA(n, z) and ψB(n, z) in C(E×U), ψA, ψB ≥ 1 and constants
af , bf , f ∈ D such that

|Af(x, u)| ≤ afψA(x, u), |Bf(x, u)| ≤ bfψB(x, u), ∀(x, u) ∈ U
where U is any closed set of E × U . We can take af = bf := ‖f‖D,2, and

ψA = ψB = ‖A(z)‖+
m∑
i=1

‖ri(z)‖+ ρn(z).

Part (iii) requires the following: Defining (A0, B0) = {(f, ψ−1
A Af, ψ−1

B Bf) : f ∈ D}, (A0, B0) is sep-
arable in the sense that there exists a countable collection {gk} ⊂ D such that (A0, B0) is contained
in the bounded, pointwise closure of the linear span of {(gk, A0gk, B0gk) = (gk, ψ

−1
A Agk, ψ

−1
B gk)}.

This is proved by taking a dense countable subset Υ of C2
b (D) in the norm ‖·‖2, and then taking

a countable subset
∞⋃
n=0

[Υ]n ⊆ D '
[
C2
b (D)

]Z+ .

This subset is dense in the sense of pointwise convergence.
Part (iv) requires that for each u ∈ U , the operators Au and Bu defined by Auf(x) = Af(x, u)

and Buf(x) = Bf(x, u) are pre-generators. This follows from [27, Remark 1.1], because all these
operators satisfy the positive maximum principle.

Part (v) requires thatD is closed under multiplication and separates points. This follows directly
from the definition.
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Finally, we need to prove the main condition as in [27, Theorem 1.7, (1.17)]:

(3.15)

∫
E×U

Af(x, u)µ0(dx× du) +

∫
E×U

Bf(x, u)µ1(dx× du) = 0.

From (3.14) and (3.6), canceling βn and ρn(z) when appropriate, we rewrite the left-hand side
of (3.15) as follows:

∞∑
n=0

βn

[∫
D

Af(n, z) νD(dz) +
m∑
i=1

∫
Fi

ri(z) · ∇f(n, z) νFi
(dz)

]

+

∫
D

∞∑
n=0

ρn(z)Mzf(n, ·) νD(dz).

(3.16)

The first line in (3.16) is equal to zero; this follows from (3.13). Let us show that the second
line in (3.16) is equal to zero, too. For every z ∈ D, Mz is the generator of the M/M/1 queue
with arrival and service rates λ(z) and µ(z). This queue has geometric stationary distribution
(1− ρ(z))ρn(z), n ∈ Z+. Thus

(3.17)
∞∑
n=0

ρn(z)Mzf(n, ·) = 0, z ∈ D.

Integrating (3.17) with respect to µD(dz), we get: The second line in (3.16) is equal to zero. We
interchanged integration and series, which we can do by uniform boundedness of f combined with
Assumption 3.2. This completes the proof of (3.15), and with it [27, (1.17)]. Next, K1 := ∂D is
the closed support for µE1 . By [27, Remark 2.5], the results of [27, Lemma 2.4] hold, and we can
apply [27, Theorem 2.2 (f)], and obtain the stationary copy of our process (N,Z).

We have written the proof for reflected diffusions. For non-reflected ones, it is simpler: we can
simply verify (3.13), which in our case then becomes

(3.18)

∫
D

Af(z) νD(dz) = 0, f ∈ C2(D).

This is done similarly to the computation above, but without all boundary terms. The lack of
reflection obviates the need to apply results cited above from [27].

Finally, ergodicity follows from [32, Theorem 6.1] in the following way (for terminology, we
refer the reader to this cited article [32]). Our process is positive Harris recurrent, since the
invariant measure is finite. Meanwhile, every skeleton chain is irreducible, because of the following
irreducibility property. Define a Lebesgue measure on Z+ ×D as a sum of Lebesgue measures on
each layer of this set.

Lemma 3.2. For every n ∈ Z+, z ∈ D, and a subset G ⊆ Z+ ×D of positive Lebesgue measure,

(3.19) P t((n, z), G) > 0.

Proof. Without loss of generality, assume G = {m} × E for a subset E ⊆ D of positive Lebesgue
measure, and m ≥ n. We prove the statement (3.19) by induction over m.

Induction Base: m = n. Consider the probability

P t(y,G) = P(n,z)(N(t) = n, Z(t) ∈ E)

that, starting from y = (n, z), the joint process (N,Z) at time t will be in {n}×E. This probability
is bounded from below by

(3.20) P t(y,G) ≥ Qt
n(z, E) := P(n,z)

(
Z(t) ∈ E, N(s) = n, ∀ s ∈ [0, t]

)
.
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This probability Qt
n(z, E), in turn, is estimated from below by (with z∗ > 0 fixed later):

Qt
n(z, E) ≥ Q̃t

n(z, z∗, E) := P(n,z)

(
Z(t) ∈ E, ‖Z(t)‖ ≤ z∗; N(s) = n, ∀ s ∈ [0, t]

)
≥ exp

(
−t max
‖z‖≤z∗

(λ(z) + µ(z))
)
· q∗.

(3.21)

Here, q∗ is the probability that, starting from Zn(0) = z, the reflected jump-diffusion Zn in D with
generator ρ−n(z)L and reflection vector fields r1, . . . , rm ends at Zn(t) ∈ E and ‖Zn(s)‖ ≤ z∗ for
s ∈ [0, t]. It follows from known properties of reflected jump-diffusions with nonsingular covariance
matrix Σ(·) that q∗ > 0 for large enough z∗ > 0. This, together with (3.20) and (3.21), proves that

(3.22) P t(y,G) ≥ Qt
n(z, E) ≥ Q̃t

n(z, z∗, E) > 0.

Thus we have proved the statement (3.19) for m = n.

Induction Step: First, consider the case m = n+ 1. This probability P t(y,G) is estimated from
below by the probability that for some time τ ∈ [0, t], the process N will stay at level n, then
jump at time τ at level n + 1 and stay there until time t, and Z(t) ∈ E. If µ̂ is the distribution
of τ (which is a positive measure on [0, t]), then

(3.23) P t(y,G) ≥
∫ t

0

∫
D

Qs
n(y, dw)Qt−s

n+1(w,E) µ̂(ds).

It suffices to show that the double integral in the right-hand side of (3.23) is positive. Indeed,
from (3.22) we get: Qs

n(y, E ′) > 0 for E ′ ⊆ D of positive Lebesgue measure, and Qt−s
n+1(w,E) > 0.

In addition, µ̂ is a positive measure on [0, t]. Use twice the observation that the integral of a positive
function over a positive measure is positive, and complete the proof that the right-hand side (and
therefore the left-hand side) in (3.23) is positive.

Assuming we proved (3.19) for m = n+ k, k ≥ 0, let us prove this for m = n+ k + 1:

(3.24) P t(y,G) ≥
∫
D

P t/2(y, (n+ k, dw))P t/2((n+ k, w), {n+ k + 1} × E) > 0.

This follows from the same logic: The function P t/2((n + k, w), {n + k + 1} × E) is positive by
the previous part of the induction step, applied to n + k instead of n, and to n + k + 1 instead
of m = n + 1. The measure P t/2(y, (n + k, dw)) is positive by the induction hypothesis. This
completes the proof of this lemma. �

Using Lemma 3.2, we have shown ergodicity as in (3.12). Earlier, we have proved (3.10)
and (3.11). Thus we have completed the proof of Theorem 3.1. �

Remark 2.3. The crucial property is that for each n ∈ Z+, z ∈ D, t > 0, V, V ′ ⊆ D,

(3.25)

∫
D×D

1(z ∈ V, z′ ∈ V ′)pt(z, z′)νD(dz)νD(dz′)

=
∫
D×D 1(z ∈ V, z′ ∈ V ′)pt(z′, z)νD(dz)νD(dz′).

In fact, further generalizations depend on whether an analog of this equality can be established.
Here pt stands for the transition density for the diffusion with generator A in (3.2).

3.4. A more general setup. We offer a similar result under a more general feedback scheme.
For n = 1, 2, . . ., fix a piecewsie smooth domain Dn ⊆ D with mn faces of the boundary ∂Dn:

(3.26) F
(n)
1 , . . . , F (n)

mn
,

and corresponding reflection vector fields

(3.27) r
(n)
i : F

(n)
i → Rd.
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For each n ∈ Z+, this domain Dn, its boundary ∂Dn with faces (3.26), and reflection vector
fields (3.27) satisfy the same assumptions enunciated at the very beginning of Section 3, as the
original domain D and reflection vector fields r1, . . . , rm. In addition, we impose the following
assumptions on domains D and Dn.

Assumption 3.3. For all n ∈ Z+, Dn ∩Dn+1 contains an open subset of D; and D = ∪n∈Z+Dn.

For every level N(t) = n of the queue-size component, the environment variable z ∈ D is kept
fixed when z ∈ D \ Dn and follows a reflected jump-diffusion process in Dn as in (3.1) where

parameters vary with n. In other words, the process Z̃n lives in D but its mechanism depends on

n. The generator An of Z̃n has the form

(3.28) Anf(z) = g(z) · ∇f(z) +
1

2

d∑
i=1

d∑
j=1

aij(z)
∂2f(z)

∂zi∂zj
+

∫
Dn

(f(z′)− f(z))$(z, dz′),

for z ∈ Dn, and Anf(z) = 0 for other z. The generator L of the joint process, instead of (3.6),
has the following form:

Lf(n, z) =Mzf(n, z) + βnρ
−n(z)Anf(n, z), f ∈ D̃.(3.29)

Here D̃ is the following domain, defined similarly to (3.7):

D̃ := {f : Z+ ×D → R | ∀n ∈ Z+ , f(n, ·) ∈ D(n)},(3.30)

D(n) := {f : D → R | f ∈ Cb(D), f |Dn
∈ C2

b (Dn) ∩ C1
b (Dn),(3.31)

r
(n)
i (z) · ∇f(z) = 0, z ∈ F (n)

i , i = 1, . . . ,mn}.
Note that in this setup, the dependence of the generator An on the queueing state n is only

through the domain Dn while the drift vector field g(·), covariance matrix field Σ(·), and jump
measure family $(·, ·) are all independent of n; see also Examples 3.1 and 3.2.

Let us impose assumptions on An, similar to Assumptions 3.1 and 3.2.

Assumption 3.4. For every n ∈ Z+, the above (reflected) jump-diffusion in Dn has a unique

invariant distribution ν
(n)
Dn

, with corresponding boundary measures ν
(n)

F
(n)
i

, i = 1, . . . ,mn.

Assumption 3.5. There exists a finite measure υ on D whose restriction ν
(n)
Dn

on Dn is a stationary

measure for Z̃n, for every n.

This independence of the invariant measure υ of n is similar to Assumption 2.1 in Section 3.

Assumption 3.6. We have:

(3.32) Ξ :=
∞∑
n=0

∫
Dn

ρn(z)υ(dz) <∞.

Under these assumptions, we obtain the following theorem, analogous to Theorem 3.1.

Theorem 3.3. Under Assumptions 3.3–3.6, the combined proces (N,Z) with the generator L from
(3.28) has a unique invariant probability distribution π given by

(3.33) π({n}, dz) = Ξ−1ρn(z)υ(dz).

The corresponding boundary measures νFi
for Fi (if there is reflection) are given by

(3.34) νFi
({n}, dz) = Ξ−1ρn(z)ν

(n)
Fi

(dz), i = 1, . . . ,mn.

Finally, this process is ergodic in the sense of (3.12).
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Proof. For the proof of the stationary measure, we proceed very similarly to the proof of Theorem
3.1, except that we change (3.14)

µ0({u} × {n} × dz) = 1(u = 0) ρn(z) υ(dz),

µ1({u} × {n} × dz) = 1(u 6= 0) ρn(z) ν
(n)
Fu

(dz);

µE0 ({n} × dz) = ρn(z) υ(dz),

µE1 ({n} × dz) = ρn(z)ν
(n)
Fi

(dz), z ∈ Fi, i = 1, . . . ,m;

η0((n, z), {u}) = 1(u = 0),

η1((n, z), {u}) = 1(u 6= 0);

Af((n, z), u) := Lf(n, z), cf. (3.29),

Bf((n, z), u) := 1(u 6= 0, z ∈ ∂D) ρ−n(z) ru(z) · ∇f(z).

(3.35)

To prove ergodicity as in (3.12), similarly to Theorem 3.1, we show an analogue of Lemma 3.2:

Lemma 3.4. For all n,m ∈ Z+, z ∈ D, and a subset G ⊆ Z+ ×D of positive Lebesgue measure:

(3.36) P t((n, z), G) > 0.

Proof. Similarly to Lemma 3.4, without loss of generality, assume G = {m} × E for a subset
E ⊆ D of positive Lebesgue measure, and m ≥ n.

Case (a). z ∈ Dn, E ⊆ Dm. We prove this statement similarly to Lemma 3.2, using induction
over m. Induction base (m = n): can be shown as in (3.20). Induction step: for m = n + 1 we
prove this as in (3.23) (using the same notation), but we integrate over Dn ∩Dn+1 instead of D:

P t((n, z), {m} × E) ≥
∫ t

0

∫
Dn∩Dn+1

Qs
n(y, dw)Qt−s

n+1(w,E) µ̂(ds).

Assuming we proved this for m = n+ k, let us prove this for m = n+ k + 1. Similarly to (3.24),
but integrating over Dn+k ∩Dn+k+1, we get:

P t((n, z), {m} × E) ≥
∫
Dn+k

P t/2(y, (n+ k, dw))P t/2((n+ k, w), {n+ k + 1} × E) > 0.

This completes the proof of the induction step, and with it the proof of (3.36) in case (a).

Case (b). z ∈ Dn, E ∩Dm = ∅. (Clearly, we can reduce the case of a general E to these two
cases (a) and (b).) Since E ⊆ D = ∪kDk, there exists a k such that E ∩Dk has positive Lebesgue
measure. Take the k with such a property which is closest to m. The process can get from (n, z)
to {k}× (E∩Dk) with positive probability in time t/2, using the path described in case (a) above.
Afterwards, for every z ∈ E ∩Dk, the process (N,Z) can jump from (k, z) to (m, z) in time t/2
with positive probability. Indeed, for l between k and m we have z /∈ Dl; thus the component N
will jump from k to m, and the environment component Z will stay constant at z.

Case (c). z /∈ Dn. There exists a k such that z ∈ Dk, since z ∈ D = ∪kDk. Find such k
wich is closest to n. The process (N,Z) can get from (n, z) to (k, z) in time t/2 with positive
probability: The queue component N will jump from n to k, and the environment component Z
will stay constant at z, since z /∈ Dl for l between n and k. Starting the process from (k, z) instead
of (n, z) now, we are back to cases (a) and (b). Applying results from these cases for t/2 instead
of t, we prove (3.36) for z /∈ Dn. �

We proved Lemma 3.4, and with it we proved ergodicity (3.12), and thus Theorem 3.3. �
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Now we provide examples in which the generator of the diffusive component in the joint process
depends on the queueing state in a nontrivial manner.

Example 3.1. Assume D = [0, 1], Dn = [0, αn], λ(z) = z, µ(z) = 1. Assume An is a reflected
diffusion (without jumps):

(3.37) Anf(z) =
a2(z)

2
f ′′(z) + b(z)f ′(z), z ∈ Dn.

The functions a, b ∈ C2
b ([0, 1]) are given, describing the local diffusion coefficient and the local

drift of the processes Z̃n in Dn, with a(z) > 0 for z ∈ (0, 1). Standard formulas from [8] guarantee
that the measure υ on D has Lebesgue density

(3.38) q(z) =
2

a2(z)
exp

(∫ z

0

2b(y)

a2(y)
dy

)
assuming that

(3.39)

∫ 1

0

|b(y)|
a2(y)

dy <∞.

Assumption 3.6 becomes

(3.40)
∞∑
n=0

∫ αn

0

ρn(z)q(z) dz <∞.

In particular, for a(z) ≡ 1 and b(z) = θ/(z−1) with θ > 0, we get q(z) = 2(1−z)−2θ. If we choose

(3.41) αn =

{
1, n < n0;

α∗, n ≥ n0,

for some α∗ ∈ (0, 1) and n0 ∈ N, then (3.40) holds for θ ∈ (0, 1/2). If a ≡ 1 and b ≡ 0, then the
driving process for the environment is a reflected Brownian motion, with υ being the Lebesgue
measure, and q(z) ≡ 1.

This example can be interpreted as follows. We keep the service rate fixed: µ = 1, while the
arrival rate λ varies as a reflected diffusion on [0, 1] if the queue size n is less than an agreed
threshold n0. However, if n reaches level n0 while λ < α∗, we allow λ to vary only in a “safety
range” [0, α∗]. If n attains level n0 while λ ≥ α∗, we simply “freeze” λ until the queue size becomes
n0 − 1, at which time λ is again allowed to follow the diffusion on [0, 1].

Example 3.2. Fix the arrival rate λ = 1 while the service rate µn is subject to a reflected diffusion
on the interval Dn := [αn, α

∗] ⊂ [1, α∗] =: D and kept unchanged in D \Dn. Here α∗ > 1 is a fixed
constant. Here again, the generator An is given by (3.37), with a, b ∈ C2

b ([1, α∗]); this operator
from (3.37) acts on f ∈ C2([αn, α

∗]) with boundary conditions f ′(αn) = f ′(α∗) = 0. Instead
of (3.38), we have

(3.42) q(z) =
2

a2(z)
exp

(∫ z

1

2b(y)

a2(y)
dy

)
.

and instead of assumption (3.39), we have

(3.43)

∫ α∗

1

|b(y)|
a2(y)

dy <∞.



QUEUES IN INTERACTIVE RANDOM ENVIRONMENT 17

Assumption 3.6 becomes

(3.44)
∞∑
n=0

∫ α∗

αn

ρn(z)q(z) dz <∞.

As in Example 3.1, if a ≡ 1, b ≡ 0, then the driving process for the environment is a reflected
Brownian motion, with υ being the Lebesgue measure, and q(z) ≡ 1.

4. Explicit rates of exponential convergence

4.1. A brief summary of results and methods. In this section, we prove (for both discrete-
space and reflected diffusion environments) that for some constants C,κ > 0, we have

(4.1) ‖P t(x, ·)− π(·)‖TV ≤ C(x)e−κt, x ∈ D, t ≥ 0,

and estimate the constant κ. We do this by coupling: Take two copies (N1, Z1) and (N2, Z2) of
this process starting from x1 = (n1, z1) and x2 = (n2, z2). Couple them (that is, construct them
on the same probability space) such that the coupling time

τ := inf{t ≥ 0 | N1(t) = N2(t), Z1(t) = Z2(t)}
satisfies E [eκτ ] <∞ for some constant κ > 0. By the standard Lindvall inequality we get

(4.2) ‖P t(x1, ·)− P t(x2, ·)‖TV ≤ E [eκτ ] e−κt, x ∈ D, t ≥ 0.

We need only to integrate (4.2) with respect to x2 ∼ π to get (4.1). To obtain such a coupling,
we apply the following method. We wait until the queue component hits 0 for both copies. Thus
these queue components become coupled, that is, they are at the same point. Then we wait until:
(a) either one of these queue components jumps back to 1, or (b) the environment components
become coupled. In case of (b), we have coupled both copies. In case of (a), we have failed, and
need to repeat this procedure. Each time, we succeed with positive probability (bounded from
below). Thus the number of tries is dominated by a geometric distribution.

To couple the environment components, we use the results of [37]; however, it is well-known
how to find hitting time of zero by the M/M/1 queue [36]. Note that assuming exponential rates
of convergence of An given each queue state n does not immediately imply the exponential rate
of convergence of the joint process (N,Z). The particular multiplicative structure we consider
in An enables us to obtain exponential estimates for the coupling time constructed for the joint
processes (N,Z) under the mild conditions imposed on A as well as the arrival and service rates.

4.2. Main statements. We impose two assumptions. The first assumes exponential bounds on
the coupling time (uniform in state variables) associated with the generator A.

Assumption 4.1. The domain D ⊆ Rd is bounded. There exist constants α > 1 and γ > 0
such that for all z1, z2 ∈ D we can couple two processes Z1, Z2 with generator A, starting from
Z1(0) = z1 and Z2(0) = z2, in time τz1,z2 := inf{t ≥ 0 | Z1(t) = Z2(t)}, with

(4.3) P(τz1,z2 ≥ t) ≤ αe−γt.

The other assumption is a stronger condition on the traffic intensity: In previous sections, we
assumed it is less than 1, but now it has to be uniformly bounded away from 1.

Assumption 4.2. There exist constants λ, µ > 0 which satisfy

λ(z) ≤ λ < µ ≤ µ(z), z ∈ D.
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From this Assumption 4.2,

(4.4) ρ(z) ≤ ρ :=
λ

µ
< 1, z ∈ D.

Next, define the function

(4.5) m(c) := −λc− µc−1 + (λ+ µ), c ≥ 1.

This function is concave, increasing on [1, c∗] and decreasing on [c∗,∞), with c∗ := ρ−1/2, and

m(1) = 0, m(c∗) =
(√

µ−
√
λ
)2

.

Finally, define the function

(4.6) θ(α, β, γ, a) :=
aγ

(a− β)(β + γ − a)
α(a−β)/γ +

β

β − a
.

for any α > 1, β, γ > 0 and a ≥ 0.

Theorem 4.1. Fix an initial condition x0 = (n0, z0) ∈ Z+×R+. Under Assumptions 4.1 and 4.2,
for some constants C > 0 and c ∈ (1, c∗),

(4.7) ‖P t((n0, z0), ·)− π(·)‖TV ≤ C (1 + cn0) e−κt, t ≥ 0.

where we can take any κ = (1− ε)m(c) for ε ∈ (0, 1) and c ∈ (1, c∗) such that

(4.8) cθ(α, λ, γ,m(c)) <
(

1− α−λ/γ γ

λ+ γ

)−ε/(1−ε)
.

The proof of the theorem is given at the end of this section. The only condition on the envi-
ronment process is the Assumption 4.1 on coupling time with (uniformly) exponential tail for the
environment process corresponding to N(t) = 0. It is natural to assume this condition also holds
for finite environment space.

Note that there exists a c ∈ (1, c∗) such that (4.8) is satisfied. Indeed, the left-hand side of (4.8)
is continuous with respect to c, and is equal to 1 for c = 1. Whereas the right-hand side of (4.8)
is larger than one for any ε ∈ (0, 1). However, to find a maximal rate of convergence, one needs to
maximize κ over the space of two parameters (ε, c) which satisfy (4.8). Possible values of κ form
an interval [0,κ∗), which does not contain its upper endpoint; therefore, we cannot claim that κ∗
is itself a rate of convergence.

Compare this with the simple M/M/1 queue with constant rates: arrival rate λ and service rate
µ, which has an exact rate of convergence e−m(c)t for c > 0 such that m(c) > 0 from (4.5). [36,
Proposition 5.8] states that the upper bound, restricting to only the queueing process, is(

1 + ρ−n/2
)

exp
[
−
(
λ

1/2 − µ1/2
)2
t
]

The constant in the exponent does not depend on n. Our result matches this rate.
After some modifications, this theorem is applicable not only for reflected diffusions from Section

2, but for discrete environment space from Section 3. Here is its version:

Assumption 4.3. There exist constants α > 1 and γ > 0 such that for all z1, z2 ∈ D we can
couple two continuous-time Markov chains Z1, Z2 with common generator σ(·)T0, starting from
Z1(0) = z1 and Z2(0) = z2, in time τz1,z2 , such that (4.3) holds.

Theorem 4.2. Under Assumptions 4.2 and 4.3, the result (4.7) for (c, ε) satisfying (4.8) holds.

4.3. On the Assumptions 4.1 or 4.3. Below we give examples of discrete and continuous
environment processes which satisfy Assumptions 4.1 or 4.3.
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4.3.1. Coupling of jump processes. First, let us start with discrete-space Markov chains. The
relation between coupling times and mixing times (for P t(x, ·) to converge within a fixed TV
distance from the stationary distribution) is partially explored in [18]. There is a lot of existing
literature on mixing times. For example, an extensive treatment of mixing times is given by [30].
The literature on coupling times is sparse. Much of the existing research is focused on γ from
Assumption 4.1, see for example [9], but we need to know both α and γ. We could not find articles
which estimate both of them. Thus we present an elementary result, which we hope will be useful.
The proof is in the Appendix.

Lemma 4.3. Take a pure jump Markov process on the state space D (finite, countable, or a
domain in Rd) such that the family of jump measures (ν(x, ·))x∈D obeys

Λ := sup
x∈D

λ(x), λ(x) := ν(x,D), x ∈ D,

and the family of probability measures

ν(x, ·) :=
1

Λ
ν(x, ·) +

Λ− λ(x)

Λ
δ{x}, x ∈ D,

satisfies the following condition:

(4.9) q := sup
x,y∈D

‖ν(x, ·)− ν(y, ·)‖TV < 1.

Then the coupling times τx,y satisfy the following uniform estimate:

P(τx,y ≥ t) ≤ exp
(
− (1− q)Λt

)
.

Remark 4.1. The same result is true if the process is a reflected jump-diffusion with jump
measures satisfying conditions of Lemma 4.3.

Example 4.1. The condition (4.9) is not true if at least two measures ν(x, ·) and ν(y, ·) are
mutually singular; that is, there exists a set D0 ⊆ D such that ν(x,D0) = 0 but ν(y,D0) = 1.
Indeed, we then have

‖ν(x, ·)− ν(y, ·)‖TV ≥ |ν(x,D0)− ν(y,D0)| = 1.

Example 4.2. Assume that for all x ∈ D, ν(x, ·)� µ(·) for some σ-finite Borel measure µ on D.
It can be the Lebesgue measure if D is a domain in Rd, or the counting measure for discrete D.
Define the Radon-Nikodym derivative

f(x, z) :=
dν(x, ·)
dµ(·)

(z).

Then condition (4.9) is equivalent to

sup
x,y∈D

∫
D

|f(x, z)− f(y, z)|dµ(z) = q < 1.

For example, take a finite D (with m elements). Let µ be the counting measure, then ν(·, ·) can be
given by an m×m matrix (νij) (with zero diagonal elements). Each ith row gives Radon-Nikodym
derivative of ν(i, ·) with respect to µ. Thus we obtain

q := max
i,j=1,...,m

m∑
k=1

|νik − νjk|.
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4.3.2. Coupling of reflected diffusions. Now consider a reflected diffusion on [0, a]. It is stochas-
tically ordered, so every τx,y is stochastically dominated by T : hitting time of a starting from 0.
Thus

P(τx,y ≥ t) ≤ P(T ≥ t).

Let us estimate the tail of T . Take a non-reflected diffusion Z∗ = {Z∗(t) : t ≥ 0} on the real line,
with drift and diffusion coefficients

g∗(x) =

{
g(x), x ≥ 0,

−g(−x), x < 0,
σ∗(x) = σ(|x|), x ∈ R.

Let T ∗ := inf{t ≥ 0 : |Z∗(t)| = a}. Then the laws of Z(· ∧ T ) and Z∗(· ∧ T ∗) are the same, and
the laws of T and T ∗ are the same. Thus we have reduced this to tail estimation for an exit time
of a diffusion process from a strip [−a, a].

Denote by u∗(t, x) the probability that Z∗ stays in (−a, a) until at least time t, if Z∗(0) = x.
Denote by G(t, x, y) the transition density of this diffusion killed at±a, otherwise known as Green’s
function (or heat kernel) of the infinitesimal generator A∗ of Z∗. Then the function u∗ satisfies
the initial-boundary value problem

∂u∗

∂t
= A∗u∗, t ≥ 0, −a < x < a,

with initial and boundary conditions u∗|t=0 = 1 and u|x=±a = 0. Thus we can express

u∗(t, x) =

∫ a

−a
G(t, x, y) dy.

Knowing spectral decomposition of G gives us the exponent in (4.3). To find the constant A is
a little harder, since it requires some information on the function G itself, or its eigenvalues. In
some simple cases, however, it can be found explicitly. For example, for a RBM Z on [0, a], the
process Z∗ is also a Brownian motion, and [21, Chapter 2, Problem 8.2] gives us an exact estimate.

4.4. Proof of Theorem 4.2. We proceed in seven steps.

Step 1. It suffices to prove the following version of (4.2): For (n1, z1), (n2, z2) ∈ Z+ ×D,

(4.10) ‖P t((n1, z1), ·)− P t((n2, z2), ·)‖TV ≤ C∗ (cn1 + cn2) e−κt, t ≥ 0,

for some constant C∗ (which will be determined below). Indeed, then we can rewrite (4.10) as
follows: For every Borel subset A ⊆ Z+ ×D,

(4.11)
∣∣P t((n1, z1), A)− P t((n2, z2), A)

∣∣ ≤ C∗ (cn1 + cn2) e−κt.

Integrate (4.11) with respect to (n2, z2) ∼ π. Note that the function (n, z) 7→ cn is integrable with
respect to π. Indeed, this integral is equal to

Ξ−1

∞∑
n=0

∫
D

cnρn(z)νD(dz).

From (4.4), νD(D) = 1, and c < c∗ = ρ−1/2,

(4.12)
∞∑
n=0

∫
D

cnρn(z)νD(dz) ≤
∞∑
n=0

ρn/2 = (1− ρ1/2)−1 <∞.

Combining (4.11) and (4.12), we get (4.7).

Step 2. To get (4.10), we use coupling: As explained in the beginning of this section, we take
on the same filtered probability space two copies X1 = (N1, Z1) and X2 = (N2, Z2) of this queue,
starting from x1 = (n1, z1) and x2 = (n2, z2). Assume τ ≡ τ(x1, x2) is a stopping time such that
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X1(t) = X2(t) for t ≥ τ a.s. Then τ is called a coupling time. For every t ≥ 0 and a function
f : Z+ ×D → R with |f | ≤ 1, we can write

|Ef(X1(t))− Ef(X2(t))| ≤
∣∣E [f(X1(t))1{τ≤t}

]
− E

[
f(X2(t))1{τ≤t}

]∣∣
+
∣∣E [f(X1(t))1{τ>t}

]
− E

[
f(X2(t))1{τ>t}

]∣∣ ≤ 2P(τ > t).
(4.13)

In other words, we get the classic Lindvall inequality

(4.14) |Ef(X1(t))− Ef(X2(t))| ≤ 2P(τ > t).

Next, assuming that we prove that Eeκτ <∞, then

(4.15) P(τ > t) ≤ e−κt · Eeκτ .
Combining (4.14) with (4.15), we get (4.11). In the proof below, we shall see that the constant
before e−κt turns out to be of the same form as required in (4.11).

Step 3. Let us now describe the coupling in detail.

(a) First, we couple the queue components. Both N1 and N2 are stochastically dominated by
N , which is described as the M/M/1 queue with arrival rate λ and service rate µ, starting from
N(0) = n1 ∨ n2. Therefore, we can take copies of N1, N2, N such that

(4.16) N1(t) ≤ N(t) and N2(t) ≤ N(t), t ≥ 0.

From (4.16) it follows that for τ0 := inf{t ≥ 0 | N(t) = 0}, we have N1(τ0) = N2(τ0) = 0.

(b) At τ0, we start two competing clocks. The first one is an exponential clock η0 ∼ Exp(λ),
which measures the time until arrival of the process N to 1 from 0. The second one is ζ0, a coupling
time of Z1(τ0 + ·) and Z2(τ0 + ·). This time ζ0 exists by Assumption 4.1, since these two processes
are copies of the environment process with generator A (recall β0 = 1) starting from Z1(τ0) and
Z2(τ0), respectively. At least (importantly for us here), this is true until η0, when those drift and
diffusion coefficients change.

(c) If ζ0 < η0, then Z1 and Z2 have time to couple while N(t) = 0. By stochastic domination,
N1(t) = N2(t) = 0. Thus S0 := τ0 + ζ0 is a coupling time for X1 and X2.

(d) If, however, ζ0 ≥ η0, then the coupling did not work. The process N has jumped at time
τ0 + η0 back to 1, and we need to repeat this procedure. Let

τ1 := inf{t ≥ 0 | N(t+ τ0 + η0) = 0}, η1 ∼ Exp(λ).

Let ζ1 be a coupling time of Z1(τ1 + τ0 + η0 + ·) and Z2(τ1 + τ0 + η0 + ·). If ζ1 < η1, then for
S1 := τ0 + η0 + τ1 + ζ1 we have N(S1) = 0, and thus N1(S1) = N2(S1) = 0. But since ζ1 is also
a coupling time for environment components, Z1(S1) = Z2(S1). Thus S1 is a coupling time for
(N1, Z1) and (N2, Z2).

(e) If ζ1 ≥ η1, then this coupling did not work, and we need to repeat this procedure, with
ζ2, η2, S2, and so on. Let J := min{j ≥ 0 | ζj < ηj}. Then the ultimate coupling time is

(4.17) τ :=
J−1∑
j=0

(τj + ηj) + τJ + ζJ =
∑J

j=0
(τj + ηj ∧ ζj) = SJ ,

where we define the following random times:

(4.18) Sk :=
k∑
j=0

ξj, ξk := τk + ζk ∧ ηk, k ∈ Z+.

Next, we estimate the MGF of τ from (4.17).
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Step 4. First, we estimate the MGF for each τk. The generator of N is

Mf(n) = λ(f(n+ 1)− f(n)) + µ1{n6=0}(f(n− 1)− f(n)).

Therefore, letting f(n) = cn for a constant c > 1, we get

Mf(n) = −m(c)f(n), n ≥ 1,

with the constant m(c) defined in (4.5). The following process

L(t) := cN(t∧τ0) +m(c)

∫ t∧τ0

0

cN(s) ds, t ≥ 0,

is a local supermartingale, because the function WN : n 7→ cn satisfies

MWN(n) ≤ −m(c)WN(n), n = 1, 2, . . . .

In the terminology of [37, Section 4], this is a modified Lyapunov function for N . Then the
derivation is similar to [37, Section 5]. By Fatou’s lemma, L is a true supermartingale. Let

L∗(t) :=

∫ t

0

em(c)s dL(s), t ≥ 0.

Because ems ≥ 0, this process is also a supermartingale. Consider the process

L∗(t) := em(c)(t∧τ0)cN(t∧τ0), t ≥ 0.

By an elementary calculation, dL∗(t) = dL∗(t). Therefore L∗(t) = L∗(t) + const, and L∗ is itself
a supermartingale. Thus, for every t ≥ 0,

(4.19) E
[
em(c)(t∧τ0)cN(t∧τ0)

]
≤ EcN(0).

Let t→∞ in (4.19). By Fatou’s lemma with the observation that N(τ0) = 0, we get

(4.20) Eem(c)τ0 ≤ cn1∨n2 .

Similarly to (4.20), we get estimates for the MGFs of τ1, τ2, . . ., with the difference that the initial
state becomes 1 instead of n1 ∨ n2. Therefore,

(4.21) Eem(c)τk ≤ c, k = 1, 2, . . . .

Step 5. By Assumption 4.1, we have P (ζk > t) ≤ αe−γt for t > 0, and recall that ηk ∼ Exp(λ̄).
Also, ζk and ηk are independent. Thus, by Lemma 5.1, we have for all k ∈ Z+,

P(ζk ≤ ηk) ≤
γ

λ+ γ
α−λ/γ =: p.

Thus the number of ‘tries’, J , is stochastically dominated by a geometric random variable J̃ ,
which is the number of trials that one needs to get to the first success if the probability of success
of each trial is p. It has the distribution and generating function (with q := 1− p)

(4.22) P(J̃ = n) = pqn−1, n = 1, 2, . . . , and E
[
sJ̃
]

=
ps

1− qs
, s ∈ [0, q−1).

Step 6. Let us estimate the MGF of ξk, defined in (4.18). By Assumption 4.1 and Lemma 5.1
applied to a := m(c) for c ∈ [1, c∗],

(4.23) E
[
em(c)(ζk∧ηk)

]
≤ θ(α, λ, γ,m(c)).

The expression for θ(α, β, γ, a) is given in (4.6). Combining (4.21) and (4.23), we get

E
[
em(c)ξk

]
≤ cθ(α, λ, γ,m(c)) =: κ(c), k = 1, 2, . . .
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The same holds if we do conditional expectation

(4.24) E
[
em(c)ξk | FSk−1

]
≤ cθ(α, λ, γ,m(c)), k = 1, 2, . . .

Combining (4.20) and (4.23), we get

(4.25) E
[
em(c)ξk

]
≤ cn1∨n2θ(α, λ, γ,m(c)).

Step 7. Finally, recall (4.17). We estimate from above the MGF for appropriate κ > 0:
E
[
eκSJ

]
= E [eκτ ]. By (4.24), the process (Mk)k∈Z+ defined by

Mk := exp
(
m(c)Sk − k lnκ(c)

)
, k ∈ Z+,

is an (FSk
)k∈Z+-supermartingale. It is positive, and J is an (FSk

)k∈Z+-stopping time. Applying
the optional stopping theorem and using (4.25), we obtain

(4.26) E [MJ ] ≤ E[M0] = E
[
em(c)ξ0

]
= cn1∨n2θ(α, λ, γ,m(c)).

By Hölder’s inequality,

E [exp ((1− ε)m(c)SJ )]

≤
(
E
[
em(c)SJ−J lnκ(c)

])1−ε ·
(
E
[
exp (J ((1− ε)/ε) lnκ(c))

])ε
= (E [MJ ])1−ε E

[
κ(c)(1−ε)J /ε] .(4.27)

Since κ(c) > 0 for c ∈ [1, c∗], and J is stochastically dominated by a geometric random variable

J̃ as in (4.22), we have

(4.28) E
[
κ(c)(1−ε)J /ε] ≤ E

[
κ(c)(1−ε)J̃ /ε

]
=

pκ(c)(1−ε)/ε

1− κ(c)(1−ε)/εq
.

Here we require that κ(c)(1−ε)/ε < q−1, which is exactly the condition for c in (4.8). Combin-
ing (4.26), (4.27) and (4.28), we get

E [exp ((1− ε)m(c)SJ )] ≤ c(1−ε)(n1∨n2)θ(α, λ, γ,m(c))1−ε pκ(c)(1−ε)/ε

1− κ(c)(1−ε)/εq

= C∗c
(1−ε)[(n1∨n2)−1] < C∗c

n1∨n2 ≤ C∗(c
n1 + cn2),

C∗ :=
pκ(c)(1−ε)(1/ε+1)

1− κ(c)(1−ε)/εq
.

From (4.17), this completes the proof of (4.10) for κ := (1− ε)m(c), and Theorem 4.1.

5. Appendix

5.1. Proof of Lemma 4.3. Alternatively we can describe such pure jump process X = (X(t), t ≥
0) as follows: Run an exponential clock η1 ∼ Exp(Λ), and then let X(t) = X(0) for t < η1,
and X(η1) ∼ ν(X(0), ·) (independently of η1). Run another exponential clock η2 ∼ Exp(Λ)
independent of those random variables, then X(S2), Y (S2) with S2 := η1 + η2, and repeat the
process. Thus we couple these processes X = {X(t) : t ≥ 0} and Y = {Y (t) : t ≥ 0} starting
from X(0) = x and Y (0) = y as follows: We use the same exponential clocks η1, η2, . . ., and couple
X(Sk) and Y (Sk) with Sk := η1 + . . .+ ηk, using the maximal coupling from [30, Proposition 4.7]:

(5.1) P
(
X(ηk) 6= Y (ηk) | FSk−1

)
= ‖ν(X(ηk−1, ·)− ν(Y (ηk−1, ·))‖TV, k = 1, 2, . . .

The coupling time then becomes

(5.2) τx,y := SJ , J := min{k ≥ 1 : X(ηk) = Y (ηk)}.
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Combining (4.9) and (5.1), we get

(5.3) P
(
X(ηk) = Y (ηk) | FSk−1

)
≥ p := 1− q, k = 1, 2, . . . .

Therefore, J is stochastically dominated by a geometric random variable J̃ (the number of tries
until the first success in a sequence of independent Bernoulli trials with individual success proba-
bility p), independent of η1, η2, . . .. From (5.2) we get

(5.4) τx,y � η1 + . . .+ ηJ̃ =: S̃.

The MGF of each of these exponential random variables is

E [euηk ] =
Λ

Λ− u
, u < Λ,

and the generating function for this geometric random variable is

E
[
sJ̃
]

=
ps

1− qs
, s < q−1.

Therefore, the MGF for S̃ from the right-hand side of (5.4) is the composition:

E
[
euS̃
]

=
p Λ

Λ−u

1− q Λ
Λ−u

=
pΛ

pΛ− u
.

Thus S̃ ∼ Exp(pΛ), and it satisfies P(S̃ ≥ t) ≤ e−pΛt. The rest is trivial.

5.2. A technical comparison lemma.

Lemma 5.1. Fix constants α > 1, β, γ > 0. Take two independent random variables ξ ∼ Exp(β)
and η > 0 which satisfies P(η > u) ≤ αe−γu for u ≥ 0. Then

(5.5) P(η < ξ) ≥ α−β/γ
γ

β + γ
.

For a ∈ [0, β + γ), the moment generating function for ξ ∧ η satisfies

(5.6) E
[
ea(ξ∧η)

]
≤ θ(α, β, γ, a),

where the function θ is defined in (4.6).

Proof. Let us first show (5.5). We have αe−γu < 1 for u > u0 := γ−1 ln(α). Then we can rewrite
our tail estimate for η as follows:

P(η ≥ u) ≤

{
αe−γu, u ≥ u0,

1, u < u0.

Therefore, we have

P(ξ ≤ η) =

∫ ∞
0

βe−βuP(u ≤ η) du

≤
∫ ∞
u0

αβe−βue−γu du+

∫ u0

0

βe−βu du

=
αβ

β + γ
e−(β+γ)u0 + (1− e−βu0) = 1− γ

β + γ
α−β/γ.
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From here (5.5) immediately follows. Next, let us show (5.6). For every u ≥ 0,

E
[
ea(u∧η)

]
= eau P(η > u) +

∫ u

0

eav P(η ∈ dv)

≤ eau P(η > u)−
∫ u

0

eav dP(η > v)

= eau P(η > u)− eav P(η > v)|v=u
v=0 +

∫ u

0

P(η > v) deav

≤ 1 +

∫ u

0

(αe−γv ∧ 1) aeav dv.

Calculate the integral in the right-hand side by splitting it into two integrals: from 0 to u0 (where
u0 is defined above), and from u0 to u. If u ∈ [0, u0], this integral is equal to∫ u

0

(αe−γv ∧ 1) aeav dv =

∫ u

0

aeav dv = eau − 1.

If u > u0, then this integral is equal to∫ u

0

(αe−γv ∧ 1) aeav dv =

∫ u0

0

aeav dv +

∫ u

u0

αae(a−γ)v dv

= eau0 − 1 +
αa

a− γ
[
e(a−γ)u − e(a−γ)u0

]
= αa/γ +

αa

a− γ
[
e(a−γ)u − α(a−γ)/γ

]
− 1

=
γ

γ − a
αa/γ +

αa

a− γ
e(a−γ)u − 1.

Combining all these computations, we get

(5.7) E
[
ea(u∧η)

]
≤

{
γ

γ−aα
a/γ + αa

a−γ e
(a−γ)u, u > u0;

eau, u ∈ [0, u0].

Now integrate (5.7) with respect to the exponential distribution of ξ: βe−βu du:

E
[
ea(ξ∧η)

]
≤
∫ u0

0

eau βe−βu du+

∫ ∞
u0

[
γ

γ − a
αa/γ +

αa

a− γ
e(a−γ)u

]
βe−βu du

=
β

a− β
[
e(a−β)u0 − 1

]
+

γ

γ − a
αa/γe−βu0 +

αβa

(a− γ)(γ + β − a)
e−(γ+β−a)u0

=
a(β − γ)

(a− β)(a− γ)
α(a−β)/γ − β

a− β
+

β

(a− γ)(β + γ − a)
α1−(γ+β−a)/γ

=
aγ

(a− β)(β + γ − a)
α(a−β)/γ +

β

β − a
.

This completes the proof. �

6. Concluding Remarks

We have found the explicit invariant measure for the joint interactive queueing and environ-
ment process, and estimated the exponential rate of convergence for the compact environment
case. One interesting question would be to consider unbounded environment domains, but with
environment process being exponentially ergodic. This will require much finer estimates, because
Assumption 4.1 will hold only with α dependent on z1 and z2. One way to find such coupling
was developed in [7, 20, 31, 37] via Lyapunov functions. Subgeometric rates of convergence seem
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interesting. Some work was done in [15, 29] for general Markov processes and in [1, 2] for some
SDEs arising from many-server queues; but to the best of our knowledge none for our setup.
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