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Abstract. We study multiclass many-server queues for which the arrival, service and abandonment
rates are all modulated by a common finite-state Markov process. We assume that the system
operates in the “averaged” Halfin–Whitt regime, which means that it is critically loaded in the
average sense, although not necessarily in each state of the Markov process. We show that under
any static priority policy, the Markov-modulated diffusion-scaled queueing process is exponentially
ergodic. This is accomplished by employing a solution to an associated Poisson equation in order
to construct a suitable Lyapunov function. We establish a functional central limit theorem for the
diffusion-scaled queueing process and show that the limiting process is a controlled diffusion with
piecewise linear drift and constant covariance matrix. We address the infinite-horizon discounted
and long-run average (ergodic) optimal control problems and establish asymptotic optimality.

1. Introduction

Queueing networks operating in a random environment have been studied extensively. A func-
tional central limit theorem (FCLT) for Markov-modulated infinite-server queues is established in
[1], which shows that the limit process is an Ornstein–Uhlenbeck diffusion; see also [2, 3] for more
recent work. Scheduling control problems for Markov-modulated multiclass single-server queueing
networks have been addressed in [4–6]. In [6], the authors show that a modified cµ-policy is asymp-
totically optimal for the infinite horizon discounted problem. For a single-server queue with only
the arrival rates modulated, service rate control problems over a finite and infinite horizon have
been studied in [4, 5]. For multiclass many-server queues without modulation, the infinite-horizon
discounted and ergodic control problems have been studied in [7] and [8], respectively.

In this paper we address the aforementioned control problems for Markov-modulated multiclass
many-server queues. We establish the weak convergence of the diffusion-scaled queueing processes,
study their stability properties, characterize the optimal solutions via the associated limiting dif-
fusion control problems, and then prove asymptotic optimality. Specifically, we assume that the
arrival, service and abandonment rates are all modulated by a finite-state Markov process, and
that given the state of this process, the arrivals are Poisson, and the service and patient times are
exponentially distributed. The system operates in the “averaged” Halfin–Whitt (H–W) regime,
namely, it is critically loaded in an average sense, but it may be underloaded or overloaded for
a given state of the environment. This situation is different from the standard H–W regime for
many-server queues, which requires that the system is critically loaded as the arrival rates and
number of servers get large; see, e.g., [3, 7–9].
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We first establish a FCLT in Theorem 2.1 for the Markov-modulated diffusion-scaled queueing
processes under any admissible scheduling policy (only considering work-conserving and preemptive
policies). Proper scaling is needed in order to establish weak convergence of the queueing processes.
In particular, since the arrival processes are of order n, and the switching rates of the background
process are assumed to be of order nα for α > 0, the queueing processes are centered at the
‘averaged’ steady state, which is of order n, and are then scaled down by a factor of an nβ, with
β := max{1/2, 1− α/2}, in the diffusion scale. Thus, when α ≥ 1, we have the usual diffusion scaling
with β = 1/2, which is due to the fact that the very fast switching of the environment results in
an ‘averaging’ effect for the arrival, service and abandonment processes of the queueing dynamics.
The limit queueing process is a piecewise Ornstein–Uhlenbeck diffusion process with a drift and
covariance given by the corresponding ‘averaged’ quantities under the stationary distribution of
the background process. When α = 1, both the variabilities of the queueing and background
processes are captured in the covariance matrix, while when α > 1, only the variabilities of the
queueing process is captured. On the other hand, when α < 1, the proper diffusion scaling requires
β = 1− α/2, for which we obtain a similar piecewise Ornstein–Uhlenbeck diffusion process with the
covariance matrix capturing the variabilities of the background process only.

The ergodic properties of this class of piecewise linear diffusions (and Lévy-driven stochastic
differential equations) have been studied in [10,11], and these results can be applied directly to our
model. The study of the ergodic properties of the diffusion-scaled processes, however, is challeng-
ing. Ergodicity of switching Markov processes has been an active research subject. For switching
diffusions, stability has been studied in [12–14]. However, studies of ergodicity of switching Markov
processes are scarce. Recently in [15,16], some kind of hypoellipticity criterion with Hörmander-like
bracket conditions is provided to establish exponential convergence in the total variation distance.
As pointed out in [17], this condition cannot be easily verified, even for many classes of simple
Markov processes with random switching. Cloez and Hairer [17] provided a concrete criterion for
exponential ergodicity in situations which do not verify any hypoellipticity assumption (as well as
criterion for convergence in terms of Wasserstein distance). Their proof is based on a coupling
argument and a weak form of Harris’ theorem. It is worth noting that in these studies, the tran-
sition rates of the underlying Markov process are unscaled, and therefore, the Markov processes
under random switching do not exhibit an ‘averaging’ effect. Because of the ‘averaging’ effect in
our model, we are able to construct a suitable Lyapunov function to verify the standard Foster-
Lyapunov condition in order to prove the exponential ergodicity of the diffusion-scaled queueing
processes.

The technique we employ is much similar in spirit to the approach in [12] for studying p-stability
of the switching diffusion processes with rapid switching. For diffusions, Khasminskii [12] observes
that rapid switching results in some ‘averaging’ effect, and thus if the ‘averaged’ diffusion (mod-
ulated parameters are replaced by their averages under the invariant measure of the background
process) is stable, then a Lyapunov function can be constructed by using solutions to an associ-
ated Poisson equation to verify the Foster-Lyapunov stability condition for the original diffusion
process. To the best of our knowledge, this approach has not been used to study general fast
switching Markov processes. We employ this technique to the Markov-modulated diffusion-scaled
queueing process of the multiclass many-server model. Ergodicity properties for multiclass Mar-
kovian queues have been established in [18]; in particular, it is shown that the queueing process is
ergodic under any work-conserving scheduling policy. Following the approach in [8], we show that
under a static priority scheduling policy, the ‘averaged’ diffusion-scaled processes (with the arrival,
service and abandonment parameters being replaced by the averaged quantities) are exponentially
ergodic (Lemma 3.1). We then construct a Lyapunov function using a Poisson equation associated
with the difference of the Markov-modulated diffusion-scaled queueing process and the ‘averaged’
queueing process, and thus verify the Foster-Lyapunov stability criterion for exponential ergodicity
(Theorem 3.1).
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To study asymptotic optimality in Theorem 2.2 for the discounted problem , we first establish a
moment bound for the Markov-modulated diffusion-scaled queueing process, which is uniform un-
der all admissible policies, that is, work-conserving and non-preemptive polices. We then adopt the
approach in [7] and construct a sequence of polices which asymptotically converges to the optimal
value of the discounted problem for the limiting diffusion process. To prove asymptotic optimality
in Theorem 2.3 for the ergodic problem, it is critical to study the convergence of the mean empir-
ical measures associated with the Markov-modulated diffusion-scaled queueing processes. Unlike
the studies in [8, 19, 20], the Markov modulation makes this work much more challenging. For
both the lower and upper bounds, we construct an auxiliary (semimartingale) process associated
with a diffusion-scaled queueing process and the underlying Markov process. We then establish
the convergence of the mean empirical measure of the auxiliary process, and thus prove that of
the Markov-modulated diffusion-scaled queueing processes by establishing their asymptotic equiv-
alence. In establishing the upper bound, we adopt the technique developed in [8]. Using a spatial
truncation, we obtain nearly optimal controls for the ergodic problem of our controlled limiting
diffusion by fixing a stable Markov control (any constant control) outside a compact set. We then
map such concatenated controls for the limiting diffusion process to a family of scheduling polices
for the auxiliary processes as well as the diffusion-scaled queueing processes, which also preserve
the ergodic properties. With these concatenated policies, we are able to prove the upper bound for
the value functions.

1.1. Organization of the paper. In the next subsection, we summarize the notation used in this
paper. Section 2 contains a detailed description of the Markov-modulated multiclass many-server
queueing model. In Section 2.1, we introduce the scheduling policies considered in this paper.
In Section 2.2, we present the controlled limiting diffusions and weak convergence results. We
state the main results on asymptotic optimality for the discounted and ergodic problems in Sec-
tions 2.3 and 2.4, respectively. In Section 3, we summarize the ergodic properties of the controlled
limiting diffusions, and establish the exponential ergodicity of the diffusion-scaled processes. A
characterization of optimal controls for the controlled limiting diffusions, and the proofs of as-
ymptotic optimality are given in Section 4. Appendix A is devoted to the proofs of Theorem 2.1
and Lemma 3.1, while Appendix B contain the proofs of some technical results in Section 4.

1.2. Notation. We let N denote the set of positive integers. For k ∈ N, Rk (Rk+) denotes the set

of k-dimensional real (nonnegative) vectors, and we write R (R+) for k = 1. For k ∈ N, Zk+ stands
for the set of d-dimensional nonnegative integer vectors. For i = 1, . . . , d, we let ei denote the vector
in Rd with the ith element equal to 1 and all other elements equal to 0, and define e = (1, . . . , 1)T.
The complement of a set A ⊂ Rd is denoted by Ac. The open ball in Rd with center the origin and
radius R is denoted by BR. For a, b ∈ R, the minimum (maximum) of a and b is denoted by a ∧ b
(a ∨ b), and we let a+ := a ∨ 0. For a ∈ R+, bac denotes the largest integer not greater than a.
Given any vectors a, b ∈ Rd, let 〈a, b〉 denote the inner product.

The Euclidean norm in Rk is denoted by | · |. For x ∈ Rk, we let ‖x‖ :=
∑k

i=1|xi|. The

indicator function of a set A ⊂ Rk is denoted by 1(A) or 1A. We use the notations ∂i := ∂
∂xi

and

∂ij := ∂2

∂xi∂xj
. For a domain D ⊂ Rd, the space Ck(D) (C∞(D)) denotes the class of functions

whose partial derivatives up to order k (of any order) exist and are continuous, and Ckc (D) denotes
the space of functions in Ck(D) with compact support. For D ⊂ Rd, we let Ckb (D) denote the

set of functions in Ck(D), whose partial derivatives up to order k are continuous and bounded.
For a nonnegative function f ∈ C(Rd), we use O(f) to denote the space of function g ∈ C(Rd)
such that supx∈Rd

|g(x)|
1+f(x) < ∞ , and we use o(f) to denote the subspace of O(f) consisting of

functions g ∈ C(Rd) such that lim sup|x|→∞
|f(x)|

1+g(x) = 0 . The arrows → and ⇒ are used to denote

convergence of real numbers and convergence in distribution, respectively. For any path X(·),
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∆X(t) is used to denote the jump at time t. We use 〈·〉 to denote the predictable quadratic
variation of a square integrable martingale, and use [·] to denote the optional quadratic variation.
We define D := D(R+,R) as the real-valued function space of all cádlág functions on R+. We
endow the space D with the Skorohod J1 topology and denote this topological space as (D,J ).
For any complete and separable metric spaces S1 and S2, we use S1 × S2 to denote their product
space endowed with the maximum metric. For any complete and separable space S, and k ∈ N,
the k-fold product space with the maximum metric is denoted by Sk. For k ∈ N, (Dk,J ) denotes
the k-fold product of (D,J ) with the product topology. Given a Polish space E, P(E) denotes the
space of probability measures on E, endowed with the Prokhorov metric.

2. The Model and Control Problems

We consider a sequence of d-class Markov-modulated M/M/n+M queueing models indexed by
n. Define the space of customer classes by I := {1, . . . , d}. For n ∈ N, let Jn := {Jn(t) : t ≥ 0}
be a continuous-time Markov chain with finite state space K := {1, . . . ,K}, with an irreducible
transition rate matrix nαQ for some α > 0. Thus, Jn has a stationary distribution denoted by
π = (π1, · · · , πK), for each n ∈ N. We assume that Jn starts from this stationary distribution.

For each n and i ∈ I, let Ani := {Ani (t) : t ≥ 0} denote the arrival process of class-i customers
in the nth system. Provided Jn is in state k, the arrival rate of class-i customers is defined by
λni (k) ∈ R+, and the service time and the patience time are exponentially distributed with rates
µni (k) and γni (k), respectively. Let An denote a Markov-modulated Poisson process, that is, for
t ≥ 0, each n and i ∈ I,

Ani (t) = An∗,i

(∫ t

0
λni (Jn(s)) ds

)
,

where {An∗,i : n ∈ N, i ∈ I} are unit-rate Poisson processes.
Let Xn, Qn and Zn denote the d-dimensional processes counting the number of customers of

each class in the nth system, in queue and in service, respectively, and the following constraints are
satisfied: for t ≥ 0 and i ∈ I,

Xn
i (t) = Qni (t) + Zni (t) ,

Qni (t) ≥ 0 , Zni (t) ≥ 0 and 〈e, Zn(t)〉 ≤ n .
(2.1)

Then, we have the following dynamic equation: for t ≥ 0, n ∈ N and i ∈ I,

Xn
i (t) = Xn

i (0) +Ani (t)− Sni (t)−Rni (t) , (2.2)

where

Sni (t) := Sn∗,i

(∫ t

0
µni (Jn(s))Zni (s) ds

)
, Rni (t) := Rn∗,i

(∫ t

0
γni (Jn(s))Qni (s) ds

)
,

and {Sn∗,i, Rn∗,i : n ∈ N, i ∈ I} are unit-rate Poisson processes. We assume that for each n ∈ N,

{Xn
i (0), An∗,i, S

n
∗,i, R

n
∗,i : i ∈ I} are mutually independent.

Assumption 2.1. As n→∞, for i ∈ I and k ∈ K,

n−1λni (k) → λi(k) > 0 , µni (k) → µi(k) > 0 , γni (k) → γi(k) > 0 ,

n−β (λni (k)− nλi(k)) → λ̂i(k) and n1−β(µni (k)− µi(k)) → µ̂i(k) ,

where

β := max{1/2, 1− α/2} .
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For i ∈ I and n ∈ N, we define

λπi :=
∑
k∈K

πkλi(k) µπi :=
∑
k∈K

πkµi(k) , γπi :=
∑
k∈K

πkγi(k) ,

λ̄ni :=
∑
k∈K

πkλ
n
i (k) µ̄ni :=

∑
k∈K

πkµ
n
i (k) , γ̄ni :=

∑
k∈K

πkγ
n
i (k) ,

and

ρi := λπi/µπi , ρn := n−1
∑
i∈I

λ̄ni/µ̄ni .

Assumption 2.2. The system is critically loaded, that is,
∑

i∈I ρi = 1.

Under Assumptions 2.1 and 2.2, we have

n1−β(1− ρn) =
∑
i∈I

n−β(nµ̄ni − nµπi )ρi − n−β(λ̄ni − nλπi )

µ̄ni
−−−→
n→∞

∑
i∈I

ρiµ̂
π
i − λ̂πi
µπi

,

with

λ̂πi :=
∑
k∈K

πkλ̂i(k), µ̂πi :=
∑
k∈K

πkµ̂i(k) .

Assumptions 2.1 and 2.2 are in effect throughout the paper, without further mention. A model
satisfying these assumptions is said to be in the “averaged” H–W regime.

Let X̄n, Z̄n, Q̄n, X̂n, Ẑn and Q̂n denote the d-dimensional processes satisfying

X̄n
i = n−1Xn

i , Z̄ni = n−1Zni , Q̄ni = n−1Qni ,

X̂n
i = n−β(Xn

i − ρin) , Ẑni = n−β(Zni − ρin) and Q̂ni = n−βQni

for i ∈ I. Then, for t ≥ 0 and i ∈ I, X̂n
i (t) can be written as

X̂n
i (t) = X̂n

i (0) + ˆ̀n
i (t) + L̂ni (t) + Âni (t)− Ŝni (t)− R̂ni (t)

−
∫ t

0
µni (Jn(s))Ẑni (s) ds−

∫ t

0
γni (Jn(s))Q̂ni (s) ds ,

(2.3)

where

ˆ̀n
i (t) := n−β

∑
k∈K

((
λni (k)− nλi(k)

)
− nρi

(
µni (k)− µi(k)

)) ∫ t

0
1(Jn(s) = k) ds ,

L̂ni (t) := n1−β
∫ t

0
(λi(J

n(s))− λπi ) ds− n1−βρi

∫ t

0
(µi(J

n(s))− µπi ) ds ,

Âni (t) := n−β
(
Ani (t)−

∫ t

0
λni (Jn(s)) ds

)
,

Ŝni (t) := n−β
(
Sni (t)−

∫ t

0
µni (Jn(s))Zni (s) ds

)
,

R̂ni (t) := n−β
(
Rni (t)−

∫ t

0
γni (Jn(s))Qni (s) ds

)
.

Define the random processes Ŷ n = (Ŷ n
1 , . . . , Ŷ

n
d )′ and Ŵn = (Ŵn

1 , . . . , Ŵ
n
d )′ by

Ŷ n
i (t) := ˆ̀n

i (t)−
∫ t

0
µni (Jn(s))Ẑni (s) ds−

∫ t

0
γni (Jn(s))Q̂ni (s) ds

for i ∈ I and t ≥ 0, and

Ŵn := L̂n + Ân − Ŝn − R̂n , (2.4)
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respectively. Then, (2.3) can be written as

X̂n(t) = X̂n(0) + Ŷ n(t) + Ŵn(t) , t ≥ 0 .

Throughout the paper, we assume that {X̂n(0) : n ∈ N} are deterministic and does not depend on
n.

2.1. Scheduling policies. Let τn(t) := inf{r ≥ t : Jn(r) = 1} for t ≥ 0. We define the following
filtrations: for t ≥ 0, r ≥ 0,

Fnt := σ{Ani (s), Sni (s), Rni (s), Qni (s), Zni (s), Xn
i (s), Jn(s) : i ∈ I, s ≤ t} ∨ N ,

Gnt,r := σ{Ani (τn(t) + r)−Ani (τn(t)), Sni (τn(t) + r)− Sni (τn(t)),

Rni (τn(t) + r)−Rni (τn(t)), L̂ni (τn(t) + r)− L̂ni (τn(t)) : i ∈ I} ∨ N ,

where N is a collection of P-null sets.

Definition 2.1. We say a scheduling policy Zn is admissible, if it satisfies following conditions.

(i) Preemptive: a server can stop serving a class of customer to serve some other class of
customers at any time, and resume the original service at a later time.

(ii) Work-conserving: for each t ≥ 0, 〈e, Zn(t)〉 = 〈e,Xn(t)〉 ∧ n.
(iii) Non-anticipative: for t ≥ 0 and r ≥ 0,

(a) Zn(t) is adapted to Fnt .
(b) Fnt and Gnt,r are independent.

We only consider admissible scheduling policies. Given an admissible scheduling policy Zn, the
process Xn in (2.2) is well defined, and we say that it is governed by the scheduling policy Zn.

Abusing the terminology, we equivalently also say that X̂n is governed by the scheduling policy
Ẑn. We say that an admissible scheduling policy is stationary Markov if Zn(t) = zn(Xn) for some
zn : Zd+ 7→ Zd+.

Define the set

U := {u ∈ Rd+ : 〈e, u〉 = 1} ,

It is often useful to re-parametrize and replace the scheduling policy Zn with a new scheduling
policy Ûn defined as follows. Given a process Xn defined using (2.2) and an admissible scheduling
policy Zn, for t ≥ 0, define

Ûn(t) :=

{
Zn(t)−Xn(t)
n−〈e,Xn(t)〉 for 〈e,Xn(t)〉 > n ,

ed for 〈e,Xn(t)〉 ≤ n .

The process Ûn(t) takes values in U and represents the proportion of class-i customers in the

queue. Any process Ûn defined as above by using some admissible scheduling policy Zn is called
an admissible proportions-scheduling policy. The set of all such admissible proportions-scheduling

polices Ûn is denoted by Ûn. Then, given X̂n and any Ûn ∈ Ûn, the scaled processes Ẑn and Q̂n

are determined by

Ẑn = X̂n − Q̂n , Q̂n = 〈e, X̂n〉+Ûn . (2.5)

By replacing (Ẑn, Q̂n) with (X̂n, Ûn) in the equations, it is often easier to establish the limiting
controlled diffusion as we see in the next theorem. Also, the representation in (2.5) is useful in
the study of asymptotic optimality in Section 4. Abusing the terminology, we replace the term
admissible proportions-scheduling policy with admissible scheduling policy.
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2.2. The limiting controlled diffusion. By the equation (4) in [1] and Assumption 2.1, we have

ˆ̀n(t) → `t a.s. as n→∞ , (2.6)

where ˆ̀n := (ˆ̀
1, . . . , ˆ̀

d)
′, ` := (`1, . . . , `d)

′ and `i := λ̂πi −ρiµ̂πi . Let π be the stationary distribution of
Jn, that is, π′Q = 0 and π′e = 1. (Note that scaling Q does not change the stationary distribution.)
By Proposition 3.2 in [1], we obtain

L̂n ⇒ σLαW̃ in (Dd,J ) , as n→∞ , (2.7)

where L̂n := (L̂n1 , . . . , L̂
n
d )′, W̃ is a zero-drift standard d-dimensional Wiener process, and if α > 1,

then σLα = 0, while if α ≤ 1, then σLα satisfies (σLα)′σLα = Θ = [θij ], with

θij := 2
∑
l∈K

∑
k∈K

(
λi(k)− ρiµi(k)

)(
λj(l)− ρjµj(l)

)
πkΥkl (2.8)

for i, j ∈ I, and Υkl :=
∫ +∞

0 (Pkl(t)− πk) dt with Pkl(t) = [eQt]kl, that is, Υ = (Π − Q)−1 − Π.
Here, Π denotes the matrix whose rows are equal to the vector π.

The proof of the following result is in Appendix A.

Theorem 2.1. Under Assumptions 2.1 and 2.2, and assuming that X̂n(0) is uniformly bounded,
the following results hold.

(i) As n→∞,

(Z̄n, Q̄n) ⇒ (ρ, 0) in (Dd,J )2 ,

where ρ = (ρ1, . . . , ρd).
(ii) As n→∞,

Ŵn ⇒ Ŵ in (Dd,J ) ,

where Ŵ is a d-dimensional Brownian motion with a covariance coefficient matrix σ′ασα
defined by

σ′ασα =


Λ2, α > 1,

Λ2 + Θ, α = 1,

Θ, α < 1,

and Λ := diag(
√

2λπ1 , . . . ,
√

2λπd ).

(iii) (X̂n, Ŵn, Ŷ n) is tight in (Dd,J )3.

(iv) Provided that Ûn is tight, any limit X̂ of X̂n is a unique strong solution of

dX̂(t) = b
(
X̂(t), Û(t)

)
dt+ dŴ (t) , (2.9)

where X̂(0) = x, x ∈ Rd, is a limit of X̂n(0), Û is a limit of Ûn, and b : Rd × U 7→ Rd

satisfies

b(x, u) = `−M(x− 〈e, x〉+u)− Γ〈e, x〉+u ,

with M = diag(µπ1 , . . . , µ
π
d ) and Γ = diag(γπ1 , . . . , γ

π
d ). Furthermore, Û is non-anticipative,

that is, for s ≤ t, Ŵ (t)− Ŵ (s) is independent of

Fs := σ(Û(r), Ŵ (r) : r ≤ s) ∨N ,

where N is the collection of P-null sets.
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2.3. The discounted cost problem. Let R̃ : Rd+ 7→ R+ take the form

R̃(x) = c|x|m, (2.10)

for some c > 0 and m ≥ 1. Define the running cost function R : Rd × U 7→ R+ by

R(x, u) := R̃(〈e, x〉+u) .

Note that the running cost function is penalizing the size of the queues, and depends on the
scheduling policy.

Remark 2.1. In place of (2.10) one may merely stipulate that R̃(x) is a locally Hölder continuous
function such that

c1|x|m ≤ R̃(x) ≤ c2(1 + |x|m) (2.11)

for some constants 1 ≤ m ≤ m. See, e.g., Remark 3.1 in [20]. For the discounted problem, the
lower bound in (2.11) is not required.

For each n and ϑ > 0, given X̂n(0), the ϑ-discounted problem can be written as

V̂ n
ϑ (X̂n(0)) := inf

Ûn∈Ûn
Jnϑ(X̂n(0), Ûn) ,

and

Jnϑ(X̂n(0), Ûn) := E
[∫ ∞

0
e−ϑsR

(
X̂n(s), Ûn(s)

)
ds

]
.

Let U denote the set of all admissible controls for the limiting diffusion in (2.9). The ϑ-discounted
cost criterion for the limiting controlled diffusion is defined by

Jϑ(x, Û) := EÛx
[∫ ∞

0
e−ϑsR

(
X̂(s), Û(s)

)
ds

]
,

for Û ∈ U, and the ϑ-discounted problem is

V̂ϑ(x) := inf
Û∈U

Jϑ(x, Û) .

The main result concerning the discounted cost problem is stated in the next theorem, the proof
of which is given in Section 4.2.

Theorem 2.2. Grant Assumptions 2.1 and 2.2. If X̂n(0)→ x ∈ Rd as n→∞, then it holds that

lim
n→∞

V̂ n
ϑ (X̂n(0)) = V̂ϑ(x) ∀ϑ > 0 .

2.4. The ergodic control problem. Given X̂n(0), define the ergodic cost associated with X̂n

and Ûn by

Jn(X̂n(0), Ûn) := lim sup
T→∞

1

T
E
[∫ T

0
R
(
X̂n(s), Ûn(s)

)
ds

]
,

and the associated ergodic control problem by

V̂ n(X̂n(0)) := inf
Ûn∈Ûn

Jn(X̂n(0), Ûn) .

Analogously, we define the ergodic cost associated with the limiting controlled process X̂ in (2.9)
by

J(x, Û) := lim sup
T→∞

1

T
E
[∫ T

0
R
(
X̂(s), Û(s)

)
ds

]
,

and the ergodic control problem by

%∗(x) := inf
U∈U

J(x, U) . (2.12)
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The value %∗(x) is independent of x. As we show in Theorem 4.2, the infimum is realized with a
stationary Markov control and %∗(x) = %∗.

The asymptotic optimality of the value functions is stated below (proof in Section 4.3).

Theorem 2.3. Grant Assumptions 2.1 and 2.2. If X̂n(0)→ x ∈ Rd as n→∞, then it holds that

lim
n→∞

V̂ n(X̂n(0)) = %∗(x) .

3. Ergodic Properties

We first review the ergodic properties of the limiting diffusion. Then, we establish some ergodic
results for the diffusion-scaled process. This second task forms the central part of this section, and
we explain why the results established here are needed for the study of ergodic control problems.
It is worth pointing out that equivalent results exist for non-modulated diffusion-scaled processes
(see [8]). However, the presence of modulation requires a fresh approach.

3.1. The limiting controlled diffusion. The limiting diffusion belongs to the class of piecewise
linear diffusions studied in [10]. Applying Theorem 3 in [10], we deduce that the limiting process X̂
with abandonment in (2.9) is exponentially ergodic (see, e.g., [21, Section 6], for definition) under

a constant control ū = ed = (0, . . . , 0, 1)′. By Theorem 3.5 in [11], the limiting process X̂ in (2.9)
is exponentially ergodic under any constant control. We summarize the ergodic properties of the
limiting controlled process X̂ in the following proposition.

Proposition 3.1. The controlled diffusion X̂ in (2.9) is exponentially ergodic under any constant
control u ∈ U.

Remark 3.1. As a consequence of the proposition, if ṽ is a stationary Markov control which is
constant on the complement of some compact set, then the controlled diffusion X̂ in (2.9) is expo-

nentially ergodic under this control. For the diffusion-scaled process X̂n, we first prove exponential
ergodicity under a static priority scheduling policy in Theorem 3.1. It then follows that any sta-
tionary Markov scheduling policy, which agrees with this static priority policy outside a compact
set, is exponentially ergodic. We remark here that exponential ergodicity of the diffusion-scaled
process under any stationary Markov scheduling policy is an open problem (compare with the study
of ergodicity for the standard ‘V’ network in [18]).

3.2. Diffusion-scaled processes. Theorem 2.1 asserts that the scaled process X̂n converges in a
weak sense to the diffusion X̂, under suitable controls. This does not mean that the optimal ergodic
control problem for the limiting diffusion is a good approximation for the optimal ergodic control
problem for the diffusion-scaled processes in general. Loosely speaking, in order to establish this,
we need to show that under some “near optimal controls”, the ergodic occupation measures of the
diffusion-scaled processes converge to the corresponding measures of the limiting diffusion process.
We make this formal in Section 4. Crucially, to establish Theorem 2.3, we need to establish that
the diffusion-scaled process under the “near optimal controls” are “exponentially ergodic uniformly
in n”. We make this last notion precise through the following definitions.

Definition 3.1. For each n ∈ N, let z̃n = z̃n(x), for x ∈ Zd+, denote the scheduling policy defined
by

z̃ni (x) := xi ∧

(
n−

i−1∑
i′=1

xi′

)+

for i ∈ I .
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By using the balance equation xi = z̃ni (x) + q̃ni (x) and Definition 3.1, we obtain for x ∈ Zd+ and
i ∈ I, that

q̃ni (x) =

xi −(n− i−1∑
i′=1

xi′

)+
+

.

Definition 3.2. For x ∈ Rd, define

x̃n(x) := (x1 − ρ1n, . . . , xd − ρdn)′ , x̂n(x) := n−βx̃n(x) ,

Xn := {x̂n(x) : x ∈ Zd+}, and X̃n := {x̂n(x) : x ∈ An}, with

An :=
{
x ∈ Rd+ : ‖x− ρn‖ ≤ c0n

β
}

for some positive constant c0.

Definition 3.3. We let L̂znn denote the generator of the process (X̂n, Jn), governed by a stationary

Markov scheduling policy zn. We say that
{

(X̂n, Jn)
}
n∈N governed by a sequence of stationary

Markov policies {zn}n∈N is uniformly exponentially ergodic of order m if for each n ≥ N0, where

N0 ∈ N is fixed, there exists a nonnegative function V̂n : Xn × K → R, which is continuous in its
first argument, and positive constants c, C1 and C2, independent of n, such that

V̂n(x, k) ≥ c
d∑
i=1

|xi|m ,

and

L̂znn V̂n(x̂, k) ≤ C1 − C2V̂n(x̂, k) , ∀(x̂, k) ∈ Xn ×K .

Since (X̂n, Jn) is irreducible and aperiodic, it is well known that uniform exponential ergodicity of
order m implies that the transition probabilities of the process converge to the invariant distribution
with an exponential rate which is independent of n ≥ N0. It also implies that

sup
n≥N0

lim sup
T→∞

1

T
Ez

n

[∫ T

0
|X̂n(s)|m ds

]
< ∞ .

We then say that the sequence of controls zn are stabilizing (of order m). We begin by showing
in Theorem 3.1 that “static” scheduling policies (Definition 3.1) are stabilizing. Then, roughly
speaking, we proceed to show in Lemma 3.3 that scheduling policies which agree with a static policy
outside a ball are also stabilizing. Finally in Section 4 we choose near optimal policies inside the
ball and static policy outside the ball, by Lemma 3.3 these are stabilizing, and hence the ergodic
occupation measures of the diffusion-scaled process are well approximated by the corresponding
ones of the limiting diffusion.

Definition 3.4. Let zn be a stationary Markov policy. We denote the infinitesimal generator of
the “average” process by

L̄znn f(x) :=
∑
i∈I

λ̄ni
(
f(x+ ei)− f(x)

)
+
∑
i∈I

µ̄ni z
n
i (x)

(
f(x− ei)− f(x)

)
+
∑
i∈I

γ̄ni q
n
i (x, z)

(
f(x− ei)− f(x)

)
for f ∈ Cb(Rd) and all x ∈ Zd+, where qni (x, z) := xi − zni (x), i ∈ I.
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Lemma 3.1. Let z̃n be the scheduling policy in Definition 3.1. Then for any even integer m ≥ 2,
there exist a positive vector ξ, positive constants C1 and C2, and n0 ∈ N, such that the functions
fn, n ∈ N, defined by

fn(x) :=
∑
i∈I

ξi|xi − ρin|m , ∀x ∈ Zd+ , (3.1)

satisfy

L̄z̃nn fn(x) ≤ C1n
mβ − C2fn(x) , ∀x ∈ Zn+ , ∀n ≥ n0 .

For a proof of Lemma 3.1, see Appendix A. This lemma shows that, under the static priority
policy z̃n, the “average” process is exponentially ergodic.

Definition 3.5. Under a stationary Markov policy zn = zn(x), the infinitesimal generator of
(Xn(t), Jn(t)) is defined by

L̃znn f(x, k) := Lznn,kf(x, k) +
∑
k′∈K

nαqkk′
(
f(x, k′)− f(x, k)

)
,

for f ∈ Cb(Rd ×K), where

Lznn,kf(x, k) :=
∑
i∈I

λni (k)
(
f(x+ ei, k)− f(x, k)

)
+
∑
i∈I

µni (k)zni (x)
(
f(x− ei, k)− f(x, k)

)
+
∑
i∈I

γni (k)qni (x, z)
(
f(x− ei, k)− f(x, k)

)
.

Let ∆λni (k) := λ̄ni − λni (k) for i ∈ I and k ∈ K, and define ∆µni and ∆γni , analogously. Let
∆Lznn,k : Cb(Rd ×K) 7→ Cb(Rd ×K) be the operator defined by

∆Lznn,kf(x, k) :=
∑
i∈I

∆λni (k)
(
f(x+ ei, k)− f(x, k)

)
+
∑
i∈I

∆µni (k)zni (x)
(
f(x− ei, k)− f(x, k)

)
+
∑
i∈I

∆γni (k)qni (x, z)
(
f(x− ei, k)− f(x, k)

)
.

Define the embedding M : Cb(Rd) ↪→ Cb(Rd×K) by M(f) = f̃ , where f̃(·, k) = f(·) for all k ∈ K.

It is easy to see, by Definitions 3.4 and 3.5, that for all f ∈ Cb(Rd), f̃ = M(f), and k ∈ K, we have

L̄znn f(x) = Lznn,kf̃(x, k) + ∆Lznn,kf̃(x, k). (3.2)

Abusing the notation, we can identify f̃ = M(f) with f , and thus (3.2) can be written as

L̄znn f(x) = Lznn,kf(x) + ∆Lznn,kf(x) .

Lemma 3.2. Let fn(x) be the function defined in (3.1), and zn be any stationary Markov policy.
There exists a function gn[fn] ∈ C(Rd ×K), satisfying

gn[fn](x, k) =
1

nα

∑
k′∈K

ckk′∆Lz
n

n,k′fn(x) , ∀ (x, k) ∈ Rd ×K (3.3)

with some constants ckk′ independent of n, and∑
k′∈K

nαqkk′
(
gn[fn](x, k′)− gn[fn](x, k)

)
= ∆Lznn,kfn(x) , ∀ (x, k) ∈ Rd ×K .

As a consequence, we have, for fixed α > 0 and each n ∈ N,∣∣gn[fn](x, k)
∣∣ ≤ C3(1 + nm(1−α)) + εnfn(x) , ∀(x, k) ∈ Rd ×K , (3.4)

where C3 is some positive constant, and εn > 0 can be chosen arbitrarily small for large enough n.
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Proof. The existence of gn[fn](x, k) directly follows from the Fredholm alternative. The version
applicable here may be found in [12].

For k ∈ K, we observe that

|∆Lznn,kfn(x)|
nα

≤ 1

nα

∑
i∈I

ξi
∣∣∆λni (k)−∆µni (k)zni −∆γni (k)qni

∣∣∣∣m(x̃ni )m−1 + O
(
|x̃ni |m−2

)∣∣
≤ 1

nα

∑
i∈I

ξi

(
|∆λni (k)|+ |∆µni (k)|xi + |∆γni (k)|xi

)∣∣m(x̃ni )m−1 + O
(
|x̃ni |m−2

)∣∣
≤C4

(
1 + nm(1−α)

)
+ εnfn(x) ,

where C4 is some positive constant, and the last inequality follows by using xi = x̃ni +nρi, Assump-
tion 2.1, and following inequalities with sufficiently small ε > 0:

n−α|∆λni (k)||x̃ni |m−1 ≤ ε1−mnm(1−α) + ε|x̃ni |m ,

n1−α|x̃ni |m−1 ≤ ε1−mnm(1−α) + ε|x̃ni |m ,

O(n1−α)O(|x̃ni |m−2) ≤ ε1−
m/2n

m(1−α)/2 + ε
(
O(|x̃ni |m−2)

)m/m−2
.

(3.5)

Note that when α > 1, nm(1−α) ≤ 1 . Thus, by the expression of gn[fn] in (3.3), we obtain (3.4).
This completes the proof. �

For each n, define the function f̂n ∈ C(Rd ×K) by

f̂n(x, k) := fn(x) + gn[fn](x, k) .

The norm-like function Vm,ξ is defined by Vm,ξ(x) :=
∑

i∈I ξi|xi|m for x ∈ Rd, with m > 0 and

a positive vector ξ defined in (3.1). Recall from Definition 3.3 that L̂znn , denote thes generator of

(X̂n, Jn) governed by a stationary Markov policy zn. Using x̂n in Definition 3.2, we can write L̂znn
as [

L̂znn f(·, ·)
]

(x̂n(x), k) =
[
L̃znn f(x̂n(·), ·)

]
(x, k)

for f ∈ Cb(Rd ×K). We also define the operator ∆L̂znn,k : Cb(Rd ×K) 7→ Cb(Rd ×K) satisfying[
∆L̂znn,kf(·, ·)

]
(x̂n(x), k) =

[
∆Lznn,kf(x̂n(·), ·)

]
(x, k)

for f ∈ Cb(Rd ×K). Let V̂m,ξ be the function defined by

V̂nm,ξ(x, k) := Vm,ξ(x) +
1

nα

∑
k′∈K

ckk′∆L̂z
n

n,k′Vm,ξ(x)

for x ∈ Rd with the constants ckk′ defined in (3.3).

Theorem 3.1. Let L̂z̃nn denote the generator of the (X̂n, Jn) under the scheduling policy defined
in Definition 3.1. For any even integer m ≥ 2, there exists n2 ∈ N such that

L̂z̃nn V̂nm,ξ(x̂, k) ≤ C̃1 − C̃2V̂nm,ξ(x̂, k) , ∀(x̂, k) ∈ Xn ×K , ∀n > n2 , (3.6)

for some positive constants C̃1, C̃2 and n2 ≥ n0 depending on ξ and m. As a consequence, (X̂n, Jn)
under the scheduling policy z̃n is exponentially ergodic, and for any m > 0,

sup
n≥n2

lim sup
T→∞

1

T
Ez̃

n

[∫ T

0
|X̂n(s)|m ds

]
< ∞ . (3.7)
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Proof. Since operators defined in Definitions 3.4 and 3.5 are linear, we have

V̂nm,ξ(x̂n(x), k) = n−mβ f̂n(x, k)

for x ∈ Zd+ and k ∈ K. Thus, it suffices to show that

L̃z̃nn f̂n(x, k) ≤ C̃1n
mβ − C̃2f̂n(x, k) , ∀(x, k) ∈ Zd+ ×K , ∀n ≥ n2 . (3.8)

Let ξ be the vector in (3.1). It is easy to see that

L̃z̃nn f̂n(x, k) = L̄z̃nn,kfn(x) + Lz̃nn,kgn[fn](x, k)

≤ C1n
mβ − C2fn(x) + Lz̃nn,kgn[fn](x, k) , ∀n ≥ n0 ,

(3.9)

where the inequality follows from Lemma 3.1. Applying Lemma 3.2, we see that there exist positive
constants C6, C7, and ñ1, such that

C7n
mβ − C6f̂n(x, k) ≥ C1n

mβ − C2fn(x) , ∀n > ñ1 , ∀(x, k) ∈ Rd ×K . (3.10)

Thus, to prove (3.8), by using (3.9) and (3.10), it suffices to show that, for large enough n,

Lz̃nn,kgn[fn](x, k) ≤ C8n
mβ + εfn(x) , (3.11)

where C8 is some positive constant, and ε > 0 can be chosen arbitrarily small for large enough n.
Recall the definition of gn[fn] in (3.3), and observe that

∆Lz̃nn,kfn(x)

nα
=
∑
i∈I

ξi
nα

(
∆λni (k)−∆µni (k)z̃ni (x)−∆γni (k)q̃ni (x)

)(
m(x̃ni )m−1 + O(|x̃ni |m−2)

)
.

Let

hn(x) :=
1

nα

∑
i∈I

ξiq̃
n
i (x)(x̃ni )m−1 .

Note that in order to prove (3.11), by using (3.5) and the balance equation z̃ni (x) = x̃ni (x)− q̃ni (x)+
nρi, we only need to show that

Lz̃nn,khn(x) ≤ C9n
mβ + εfn(x) , (3.12)

where C9 is some positive constant, and ε > 0 can be chosen arbitrarily small for all large enough
n; the other terms in Lz̃nn,kgn[fn] can be treated similarly. We obtain

Lz̃nn,khn(x) =
∑
i∈I

(
F

(1)
n,i (x) + F

(2)
n,i (x)

)
,

where

F
(1)
n,i (x) := n−αξiλ

n
i (k)

(
q̃ni (x+ ei)(x̃

n
i + 1)m−1 − q̃ni (x)(x̃ni )m−1

)
+ n−αξi

(
µni (k)z̃ni (x) + γni (k)q̃ni (x)

)(
q̃ni (x− ei)(x̃ni − 1)m−1 − q̃ni (x)(x̃ni )m−1

)
,

and

F
(2)
n,i (x) := n−α

∑
j 6=i

[
λni (k)ξj

(
q̃nj (x+ ei)− q̃nj (x)

)
(x̃nj )m−1

+
(
µni (k)z̃ni (x) + γni (k)q̃ni (x)

)
ξj
(
q̃nj (x− ei)− q̃nj (x)

)
(x̃nj )m−1

]
.

Note that for i′ ∈ I,

|q̃ni′(x± ei)− q̃ni′(x)| ≤ 1 ,
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and q̃ni′(x) is the unscaled queueing process. We first consider F
(1)
n,i (x). We have∑

i∈I
F

(1)
n,i (x) ≤ n−α

∑
i∈I

[
ξiλ

n
i (k)

(
q̃ni (x+ ei)

(
(x̃ni + 1)m−1 − (x̃ni )m−1

)
+ |x̃ni |m−1

)
+ ξi

(
µni (k)(x̃ni + nρi − q̃ni (x)) + γni (k)q̃ni (x)

)(
q̃ni (x− ei)

(
(x̃ni − 1)m−1 − (x̃ni )m−1

)
+ |x̃ni |m−1

)]
.

Note that nρi −(n− i−1∑
j=1

nρj

)+
+

= 0 .

By using the fact that a+ − b+ = η(a− b), for a, b ∈ Rd and η ∈ [0, 1], we have

q̃ni (x) = −

nρi −(n− i−1∑
j=1

nρi

)+
+

+

xi −(n− i−1∑
i′=1

xi′

)+
+

= −ηi(x)(nρi − xi) + η̄i(x)

i−1∑
j=1

(xj − nρj)

= ηi(x)x̃ni + η̄i(x)

i−1∑
j=1

x̃nj ∀x ∈ Rd ,

(3.13)

for the mappings ηi, η̄i : R
d 7→ [0, 1]d. By using (3.13) and Young’s inequality, we have

q̃ni (x± ei)
(
(x̃ni ± 1)m−1 − (x̃ni )m−1

)
≤ O

(
|x̃ni |m−1

)
+

i−1∑
i′=1

O
(
|x̃ni′ |m−1

)
,

q̃ni (x)q̃ni (x− ei)
(
(x̃ni − 1)m−1 − (x̃ni )m−1

)
≤ O

(
|x̃ni |m

)
+

i−1∑
i′=1

O
(
|x̃ni′ |m

)
.

Therefore, applying inequalities in (3.5), we obtain∑
i∈I

F
(1)
n,i (x) ≤ C10n

m(1−α) + εfn(x) . (3.14)

where C10 is some positive constant, and ε can be chosen arbitrarily small for large enough n. On
the other hand, since z̃ni′(x) ≤ xi′ , and q̃ni′(x) ≤ xi′ for i′ ∈ I, applying Young’s inequality, we obtain

F
(2)
n,i (x) ≤ n−α

∑
j 6=i

ξj
(
|λni (k)|+ (|µni (k)|+ |γni (k)|)(x̃ni + nρi)

)
|x̃nj |m−1

≤ C11n
m(1−α) + εfn(x) ,

(3.15)

where C11 is some positive constant, and ε can be chosen arbitrarily small for large enough n,
and the second inequality follows from (3.5). By Lemma 3.2, there exists n1 > 0 such that for all
x̂ ∈ Xn, k ∈ K and n > n1, we have

V̂nm,ξ(x̂, k) ≥ 1

2
Vm,ξ(x̂) + o(1). (3.16)

We choose n2 ∈ N satisfying n2 ≥ max{n0, ñ1, n1}. Thus, since 1−α < β, by (3.14) and (3.15) we
have shown (3.12). As a result, we have proved (3.8), which implies (3.6).

Let Ez̃n = E. By Itô’s formula, we obtain

E
[
V̂nm,ξ(X̂n(T ), Jn(T ))

]
− E

[
V̂nm,k(X̂n(0), Jn(0))

]
= E

[∫ T

0
L̂z̃nn V̂nm,ξ(X̂n(s), Jn(s)) ds

]
.
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Then, using (3.6), we have, for ∀n ≥ n2,

− E
[
V̂nm,k(X̂n(0), Jn(0))

]
≤ C̃1T − C̃2 E

[∫ T

0
V̂nm,ξ(X̂n(s), Jn(s)) ds

]
. (3.17)

Applying (3.16) and (3.17), we obtain that, for some positive constant C12, and for all n ≥ n2,

1

T
E

[∫ T

0

∑
i∈I
|X̂n

i (s)|m ds

]
≤ C12 .

This proves (3.7). �

Definition 3.6. Let ω : Rd+ 7→ Zd+ be a measurable map defined by

ω(x) :=

(
bx1c, . . . , bxd−1c, bxdc+

d∑
i=1

(xi − bxic)

)
.

Definition 3.7. Let vn : Rd 7→ U be any sequence of functions satisfying vn(x̂n(x)) = ed, for all
x /∈ An, and such that x 7→ vn(x̂n(x)) is continuous. Define

qn[vn](x) :=

{
ω
(
(〈e, x〉 − n)+vn(x̂n(x))

)
for supi∈I |xi − nρi| ≤ κn ,

q̃n(x) for supi∈I |xi − nρi| > κn ,

where q̃n(x) is as in Definition 3.1, and κ < infi∈I{ρi}. Define the admissible scheduling policy

zn[vn](x) := x− qn[vn](x) .

We have the following lemma on stabilization of the diffusion-scaled queueing processes.

Lemma 3.3. The process (X̂n, Jn) governed by the scheduling policy zn in Definition 3.7 is uni-
formly exponentially ergodic (of any order m).

Proof. Observe that for all n ∈ N, we have

(i) For i ∈ I, there exists a constant C such that |qn[vn](x± ei)− qn[vn](x)| ≤ C;
(ii) For i ∈ I, there exists functions εni , ε̃

n
i : Rd 7→ [0, 1] such that

qni [vn](x) = εni (x)(xi − nρi) + ε̃ni (x)
i−1∑
i′=1

(xi′ − nρi′) + O(nβ) .

Hence the same proof as that of Theorem 3.1 may be employed to obtain the result. �

Remark 3.2. Lemma 3.3 shows that any sequence of scheduling policies which satisfies (i) and (ii)
in the proof of Lemma 3.3 is “stabilizing”.

4. Asymptotic Optimality

4.1. Optimal solutions to the limiting diffusion control problems. The characterization of
optimal control for the limiting diffusion follow from the known results: the discounted problem in
[22, Section 3.5.2] and the ergodic problem in [8, Sections 3 and 4]. We summarize these for our
model.

We first introduce some notation for the limiting diffusion. For u ∈ U, let Lu : C2(Rd) 7→
C2(Rd × U) be the controlled generator of X̂ in (2.9), defined by

Luf(x) =
∑
i∈I

bi(x, u)∂if(x) +
∑
i,j∈I

aij∂ijf(x) , (4.1)

where aii := 1(α ≥ 1)λπi + 1
21(α ≤ 1)θii, and aij := 1

21(α ≤ 1)θij for i 6= j. Recall that a control is

Markov if Û(t) = v(t, X̂(t)) for a Borel map v on R+×Rd, and we say that it is stationary Markov
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if v : Rd 7→ U. The set of stationary Markov controls is denoted by USM. We extend the definition
of b and R by using the relaxed control framework (see, for example, Section 2.3 in [22]). Without
changing the notation, for v ∈ USM, we replace bi by

bi(x, v(x)) =

∫
U
bi(x, u) v(du |x) , for i ∈ I ,

where v(du |x) denotes a Borel measurable kernel on U given x, and replace R analogously. A
control which is a measurable map from Rd to U is called a precise control. We say that a control
v ∈ USM is stable if the controlled diffusion is positive recurrent, and the set of such controls is
denoted by USSM. Let νv ∈ P(Rd) denote the unique invariant probability measure of (2.9) under
the control v ∈ USSM. Here, P(Rd) denotes the space of Borel probability measures on Rd under the
Prokhorov topology. We define the corresponding ergodic occupation measure πv ∈ P(Rd × U) by
πv(dx,du) := νv(dx)v(du |x). The set of ergodic occupation measures corresponding to all controls
in USSM is denoted by G, and satisfies

G =

{
π ∈ P(Rd × U) :

∫
Rd×U

Luf(x)π(dx,du), ∀f ∈ C∞c (Rd)

}
.

This characterization of ergodic occupation measures follows by [22, Lemma 3.2.2].

Theorem 4.1. V̂ϑ is the minimal nonnegative solution in C2(Rd) of

min
u∈U

[
LuV̂ϑ(x) + R(x, u)

]
= ϑV̂ϑ(x) .

Moreover, v ∈ USM is optimal for the ϑ-discounted problem if and only if

〈b(x, v(x)),∇V̂ϑ(x)〉+ R(x, v(x)) = H(x,∇V̂ϑ(x)) ,

where
H(x, p) := min

u∈U
[〈b(x, u), p〉+ R(x, u)] .

Proof. The result follows directly from Theorem 3.5.6 and Remark 3.5.8 in [22, Section 3.5.2]. �

Theorem 4.2. There exists V̂ ∈ C2(Rd) satisfying

min
u∈U

[
LuV̂ (x) + R(x, u)

]
= %∗ .

Also, v ∈ USM is optimal for the ergodic control problem associate with R if and only if it satisfies

〈b(x, v(x)),∇V̂ (x)〉+ R(x, v(x)) = H(x,∇V̂ (x)) .

Moreover, for an optimal v ∈ USM, it holds that

lim
T→∞

1

T
Evx
[∫ T

0
R
(
X̂(s), v(X̂(s))

)]
= %∗ , ∀x ∈ Rd .

Proof. This follows directly from Theorem 3.4 in [8]. �

If we restrict the ergodic control problem in (2.12) to stable stationary Markov controls, then
the problem is equivalent to

min
π∈G

∫
Rd×U

R(x, u)π(dx, du)

(see, for example, [22, Section 3.2 and 3.4]). The next theorem shows the existence of an ε-optimal
control, for any ε > 0. This is proved via the spatial truncation technique.

Theorem 4.3. For any ε > 0, there exists a ball BR with R = R(ε) > 0, a continuous precise
control vε ∈ USSM which agrees with ed on Bc

R, and an associated invariant measure νε satisfying∫
Rd

R(x, vε(x)) νε(dx) ≤ %∗ + ε .
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Proof. This result follows from the proof of claim (5.14) in [8]. �

4.2. Asymptotic optimality of the discounted cost problem. In this subsection, we first
establish an estimate for X̂n by using an auxiliary process. Then, following a similar approach as
in [7], we prove asymptotic optimality for the discounted problem.

Given the admissible scheduling policy Ûn, let X̆n be a d-dimensional process defined by

X̆n
i (t) := X̂n

i (0) + ˆ̀n
i (t) + Ŵn

i (t)−
∫ t

0
µ̄ni
(
X̆n
i (s)− 〈e, X̆n(s)〉+Ûni (s)

)
ds

−
∫ t

0
γ̄ni 〈e, X̆n(s)〉+Ûni (s) ds

(4.2)

for i ∈ I, where Ŵn
i is defined in (2.4). Recall the representations in (2.5). X̆n is a simpler process

(compare with X̂n in (2.3)). Here we replace the state-dependent rates in the last two terms of

(2.3) by their averaged version. It is also worth noting that X̆n can be viewed as a continuous

integral mapping with inputs X̂n(0), ˆ̀n, Ŵn and Ûn (see, for example, [23, Lemma 5.2]), while X̂n

may not have this representation. This auxiliary process X̆n is useful in showing Theorem 2.1, the
proof of which is given in Appendix A, and relies on the following two lemmas.

Lemma 4.1. As n → ∞, X̆n and X̂n are asymptotically equivalent, that is, X̆n − X̂n converges
to the zero process uniformly on compact sets in probability.

The proof of Lemma 4.1 is given in Appendix B.

Lemma 4.2. We have

E
[
‖X̂n(t)‖m

]
≤ C1(1 + tm0)(1 + ‖x‖m0) (4.3)

for some positive constants C1 and m0, with m defined in (2.10).

Proof. Recall X̆n defined in (4.2). For t ≥ 0, X̆n(t)−〈e, X̆n(t)〉+Ûn(t) satisfies the work-conserving
condition. Thus, following the same method in [7, Lemma 3], we have

E
[
‖X̆n(t)‖m

]
≤ C2(1 + tm0)(1 + ‖x‖m0)

for some positive constants C2 and m0. As a consequence, (4.3) holds by Lemma 4.1. �

Proof of Theorem 2.2. (Sketch) We first show that

lim inf
n→∞

V̂ n
ϑ (X̂n(0)) ≥ V̂ϑ(x) . (4.4)

Lemma 4.2 corresponds to [7, Lemma 3], and Theorem 2.1 corresponds [7, Lemma 4]. By using
Theorem 4.1, we can get the same result as in [7, Proposition 5]. Thus, we can prove (4.4) by
following the proof of [7, Theorem 4 (i)].

Next, we show that there exists a sequence of admissible scheduling polices Ûn which attains
optimality (asymptotically). Observe from [7] that the partial derivatives of V̂ϑ in Theorem 4.1
up to order two are locally Hölder continuous (see also [22, Lemma 3.5.4]), and the optimal value

V̂ϑ has polynomial growth. By [7, Theorem 1], there exists an optimal control vh ∈ USM for the
discounted problem. Recall ω defined in Definition 3.6. Let

Anh := {x ∈ Rd+ : 〈e, x〉 ≤ xi, ∀i ∈ I} , and Xnh := {x̂n(x) : x ∈ Anh} .

Given Xn, we construct a sequence of scheduling policies as follows:

Qn(t) :=

{
ω
(
〈e,Xn(t)〉 − n)+vh(X̂n(t))

)
for X̂n(t) ∈ Xnh ,

z̃n(Xn(t)) otherwise ,
(4.5)
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where z̃n is the static priority policy defined in Definition 3.1. Here the value of the scheduling
policy outside Xnh is irrelevant for our purpose. For n ∈ N, let

(
Xn
h , Q

n
h, Z

n
h , Û

n
h

)
be a sequence of

queueing systems constructed by using (4.5), and Kn be the process defined by

Kn(t) :=
〈
b(X̂n

h (t), Ûnh (t)),∇V̂ϑ(X̂n
h (t))

〉
+ R

(
X̂n
h (t), Ûnh (t)

)
−H

(
X̂n
h (t),∇V̂ϑ(X̂n

h (t))
)
.

It is easy to see that, for any y ∈ Rd, |ω(y)− y| ≤ 2d. Then, using Theorem 2.1 and Lemma 4.2,
and following the same proof as in [7, Theorem 2 (i)], we have∫ ·

0
e−ϑsKn(s) ds ⇒ 0 . (4.6)

Note that (4.6) corresponds to the claim (49) in [7]. Then, we follow the method in [7, Theorem 4
(ii)] and obtain that

lim
n→∞

Jnϑ
(
X̂n
h (0), Ûnh

)
≤ V̂ϑ(x) .

This completes the proof. �

4.3. Proof of Theorem 2.3. In this section, we prove the asymptotic optimality for the ergodic
control problem by establishing the lower and upper bounds in Theorems 4.4 and 4.5, respectively.
The techniques used in the proofs differ from previous works. In the proofs of lower and upper
bounds for the diffusion-scaled process X̂n in (2.3), it is essential to analyze the term L̂n, which
in the presence of modulation is not a martingale. Thus, the approach in [8] may not be applied
directly, since the proofs there rely on the martingale property. So we construct a martingale by
adding a process to L̂n, and we establish results for this auxiliary process. Then, we show the same
results hold for X̂n by asymptotic equivalence. On the other hand, in the proof of convergence of
mean empirical measures (these are formally defined later), we need to consider the convergence of
scaled Markov-modulated rates, while non-modulated systems do not have this issue.

4.3.1. Proof of the lower bound for the ergodic problem. We have the following theorem concerning
the lower bound.

Theorem 4.4 (lower bound). It holds that

lim inf
n→∞

V̂ n(X̂n(0)) ≥ %∗(x) .

We first assert that X̂n is a semi-martingale. The proof of the following lemma is given in
Appendix B.

Lemma 4.3. Under any admissible policy Zn, X̂n is a semi-martingale with respect to the filtration
Fn := {Fnt : t ≥ 0}, where Fnt is defined in Section 2.1.

Definition 4.1. Define the family of operators An
k : C2(Rd × U) 7→ C2(Rd × U×K) by

An
kf(x, u) :=

∑
i∈I

(
bni (x, u, k)∂if(x) +

1

2
σni (x, u, k)∂iif(x)

)
,

where the functions bni ,σ
n
i : Rd × U×K 7→ R are defined by

bni (x, u, k) := `n,ki − µni (k)(x− 〈e, x〉+ui)− γni (k)〈e, x〉+ui ,
with

`n,ki := n−β
[(
λni (k)− nλi(k)

)
− nρi

(
µni (k)− µi(k)

)]
,

and

σni (x, u, k) := n1−2βµni (k)ρi +
λni (k)

n2β
+
µni (k)(xi − 〈e, x〉+ui) + γni (k)〈e, x〉+ui

nβ

for i ∈ I and k ∈ K, respectively.
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Let Gn denote the k-dimensional process

Gnk(t) := 1(Jn(t) = k)− 1(Jn(0) = k) , t ≥ 0 ,

and Bn denote the d-dimensional processes defined by

Bn
i (t) := n−

α/2+δ0
∑
k∈K

(
λi(k)− ρiµi(k)

) [
(Gn(t))′Υ

]
k
, t ≥ 0 , (4.7)

for i ∈ I, k ∈ K, where δ0 := (1 − β) − α
2 . Then we have the following result, which shows that

all the long-run average absolute moments of the diffusion-scaled process are finite. The proof is
given in Appendix B.

Lemma 4.4. Under any sequence of admissible scheduling polices {Ûn : n ∈ N} such that

supn J
n(X̂n(0), Ûn) <∞, we have

sup
n

lim sup
T→∞

1

T
EÛ

n

[∫ T

0
|X̂n(s)|m ds

]
< ∞ (4.8)

for m defined in (2.10).

Definition 4.2. Define the mean empirical measure ζnT ∈ P(Rd × U) associated with X̂n and Ûn

by

ζnT (A×B) :=
1

T
E
[∫ T

0
1A×B

(
X̂n(s), Ûn(s)

)
ds

]
for any Borel sets A ⊂ Rd and B ⊂ U.

Note that the sequence {ζnT } is tight by Lemma 4.4. The next lemma shows that the sequence
{ζnT } converges, along some subsequence, to an ergodic occupation measure associated with the
limiting diffusion process under some stationary stable Markov control.

Lemma 4.5. Suppose under some sequence of admissible scheduling polices {Ûn : n ∈ N}, (4.8)
holds. Then π is in G, where π ∈ P(Rd × U) is any limit point of ζnT as (n, T )→∞.

Proof. We construct a related stochastic process X̃n to prove this lemma. Let X̃n be the d-
dimensional process defined by

X̃n := X̂n +Bn , (4.9)

where Bn is defined in (4.7). Applying Lemma 3.1 in [1] and Lemma 4.3, X̃n is also a semi-
martingale. We first consider the case with α ≤ 1. Using the Kunita–Watanabe formula for

semi-martingales (see, e.g., [24], Theorem II.33) with E = EÛn , we obtain

E
[
f(X̃n(T ))− f(X̃n(0))

]
T

=
1

T
E

[∫ T

0

∑
k∈K

An
k f
(
X̃n(s), Ûn(s)

)
1(Jn(s) = k) ds

]

+
1

T
E

[∑
i∈I

∫ T

0
∂if(X̃n(s)) dL̂ni (s)

]
+

1

T
E

[∑
i∈I

∫ T

0
∂if(X̃n(s)) dBn

i (s)

]

+
1

T
E

∑
i,i′∈I

∫ T

0
∂ii′f(X̃n(s)) d [Bn

i , B
n
i′ ](s)

+
1

T
E
[∑
s≤T
Df(X̃n, s)

]
(4.10)

for any f ∈ C∞c (Rd), where

Df(X̃n, s) := ∆f(X̃n(s))−
∑
i∈I

∂if(X̃n(s−))∆X̃n
i (s)− 1

2

∑
i,i′∈I

∂ii′f(X̃n(s−))∆X̃n
i (s)∆X̃n

i′ (s)
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for s ≥ 0. Using [1, Lemma 3.1], Bn
i (s) + L̂ni (s) is a martingale, and hence the sum of the second

and third terms of (4.10) is equal to zero. By equation (8) in [1] and the same calculation as in
equation (10) of [1], the fourth term on the r.h.s. of (4.10) can be written as

2

T
E

∑
i,i′∈I

∫ T

0

∑
k∈K

∑
k′∈K

(
λi(k)− ρiµi(k)

)(
λi′(k

′)− ρi′µi′(k′)
)
Υkk′∂ii′f(X̃n(s))1(Jn(s) = k) ds

 .
Note that for any f ∈ C∞c (Rd),

lim sup
(n,T )→∞

1

T
E
[∫ T

0
f(X̃n(s), Ûn(s))

(
1(Jn(s) = k)− πk

)
ds

]
= lim sup

(n,T )→∞

1

T
E
[∫ T

0
n−

α/2f(X̃n(s), Ûn(s)) d

(∫ s

0
n
α/2
(
1(Jn(u) = k)− πk

)
du

)]
= 0

by the boundedness of f , [1, Proposition 3.2] and [3, Theorem 5.2]. Thus, we can replace 1(Jn(s) =
k) by πk for all k ∈ K in (4.10), when we let (n, T )→∞.

We next prove that the last term on the r.h.s. of (4.10) vanishes as (n, T )→∞. Let

‖f‖C3 := sup
x∈Rd

(
|f(x)|+

∑
i,j∈I
|∂ijf(x)|+

∑
i,j,k∈I

|∂ijkf(x)|
)
.

Since the jump size of X̃n is of order n−α/2+δ0 or n−β, then by Taylor’s formula, we have∣∣Df(X̃n, s)
∣∣ ≤ ĉ0‖f‖C3

nα/2

∑
i,i′∈I

∣∣∆X̃n
i (s)∆X̃n

i′ (s)
∣∣ (4.11)

for some positive constant ĉ0 independent of n. By equation (2) in [1], and the independence of
Poisson processes, we obtain

1

T
E
[∑
s≤T

∑
i,i′∈I

∣∣∆X̃n
i (s)∆X̃n

i′ (s)
∣∣]

=
1

T
E
[∫ T

0

∑
k∈K

∑
k 6=k′,k′∈K

ĉk

(
qkk′1(Jn(s) = k) + qk′k1(Jn(s) = k′)

)
+
∑
i∈I

(
λi(J

n(s))

n2β
+
µni (Jn(s))Zni (s)

n2β
+
γni (Jn(s))Qni (s)

n2β

)
ds

]
,

(4.12)

where {ĉk : k ∈ K} are determined by the constants in (4.7). Using (4.8), the r.h.s. of (4.12) is
uniformly bounded over n ∈ N and T > 0. Therefore, by (4.7) and (4.11), the last term on the
r.h.s. of (4.10) converges to 0 as (n, T )→∞.

As in Definition 4.2, let ζ̃nT ∈ P(Rd×U) denote the mean empirical measure associated with X̃n

and Ûn, that is,

ζ̃nT (A×B) :=
1

T
E
[∫ T

0
1A×B

(
X̃n(s), Ûn(s)

)
ds

]
for any Borel sets A ⊂ Rd and B ⊂ U. Then, by (4.10) and the above analysis, for f ∈ C∞c (Rd),
we have

lim sup
(n,T )→∞

∫
Rd×U

(∑
k∈K

An
k f(x, u)πk + 1(α ≤ 1)

∑
i,i′∈I

θii′∂ii′f(x)

)
ζ̃nT (dx,du) = 0 , (4.13)

where {θii′ : i, i′ ∈ I} is defined in (2.8). Note that for each i ∈ I, the sums
∑

k∈K b
n
i (x, u, k)πk

and
∑

k∈K σ
n
i (x, u, k)πk converge uniformly over compact sets in Rd × U, to bi (see (2.9)) and

21(α ≥ 1)λπi , respectively.
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On the other hand, by the definition of Bn, we have that

sup
t

∣∣X̂n(t)− X̃n(t)
∣∣ ≤ n−

α/2C̄0 (4.14)

for some positive constant C̄0. By (4.8) and (4.14), we deduce that
{
ζ̃nT
}

is tight. Let (nl, Tl) be

any sequence such that ζ̃nT converges to π̃, as (nl, Tl)→∞. Hence, for any f ∈ C∞c (Rd), we have∫
Rd×U

Luf(x) π̃(dx× du) = 0 for α ≤ 1 ,

with Lu defined in (4.1). Using (4.14), we deduce that ζnT and ζ̃nT have same limit points. Therefore,
as (n, T )→∞, any limit point π of ζnT satisfies∫

Rd×U
Luf(x)π(dx× du) = 0 for α ≤ 1 .

When α > 1, the proof is the same as above. This completes the proof. �

Proof of Theorem 4.4. Without loss of generality, suppose V̂ nl(X̂nl(0)) for some increasing se-

quence {nl} ⊂ N converges to a finite value, as l → ∞, and Ûnl ∈ Ûnl . By the definitions of

V̂ n, and the mean empirical measure ζnT in Definition 4.2, there exists a sequence of {Tl} ⊂ R+

with Tl →∞, such that

V̂ nl(X̂nl(0)) +
1

l
≥
∫
Rd×U

R(x, u) ζnlTl (dx, du) .

By Lemma 4.4 and Lemma 4.5, {ζnlTl : l ∈ N} is tight and any limit point of ζnlTl is in G. Thus

lim
l→∞

V̂ nl(X̂nl(0)) ≥
∫
Rd×U

R(x, u)π(dx,du) ≥ %∗ .

This completes the proof. �

4.3.2. Proof of the upper bound for the ergodic problem. We have the following theorem concerning
the upper bound.

Theorem 4.5 (upper bound). It holds that

lim sup
n→∞

V̂ n(X̂n(0)) ≤ %∗(x) .

The following lemma is used in the proof of the upper bound. The lemma shows that under
a scheduling policy constructed from the ε-optimal control given in Theorem 4.3, any limit of
the mean empirical measures of the diffusion-scaled queueing processes is the ergodic occupation
measure of the limiting diffusion under that control.

Lemma 4.6. For any fixed ε > 0, let {q̂n : n ∈ N} be a sequence of maps such that

q̂ni [v](x̂) =

{
ω
(
〈e, nβx̂〉+v(x̂)

)
for supi∈I |x̂i| ≤ κn1−β ,

q̃n(nβx̂+ nρ) for supi∈I |x̂i| > κn1−β .

with q̃n defined in Definition 3.1, κ in Definition 3.7, and v ≡ vε in Theorem 4.3. For x̂ ∈ Rd, let
ẑn[v](x̂) = nβx̂+ nρ− q̂n[v](x̂), and

un[v](x̂) :=

{
q̂n[v](x̂)
〈e,q̂n[v](x̂)〉 if 〈e, q̂n[v](x̂)〉 > 0 ,

ed otherwise .

Let ζ̂nT be the mean empirical measure defined by

ζ̂nT (A×B) :=
1

T
EZ

n

[∫ T

0
1A×B

(
X̂n(s), un[v](X̂n(s))

)
ds

]
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for Borel sets A ⊂ Rd and B ⊂ U, where X̂n is the queueing process under the admissible scheduling
policy Zn(t) = ẑn[v](X̂n(t)). Let πv ∈ P(Rd×U) be the ergodic occupation measure of the controlled

diffusion in (2.9) under the control v. Then ζ̂nT has a unique limit point πv as (n, T )→∞.

Proof. Applying Lemma 3.3, we obtain that ζ̂nT is tight. Recall the definition of X̃n in (4.9). Define
the mean empirical measure

ζ̆nT (A×B) :=
1

T
E
[∫ T

0
1A×B

(
X̃n(s), un[v](X̃n(s))

)
ds

]
for Borel sets A ⊂ Rd and B ⊂ U. For any f ∈ C∞c (Rd × U), we have

1

T
E
[∫ T

0
f
(
X̃n(s), un[v](X̃n(s))

)
ds

]
=

∫
Rd×U

f(x, u) ζ̆nT (dx,du) .

By (4.14), it is easy to see ζ̆nT is also tight, and ζ̂nT and ζ̆nT have same limits as (n, T )→∞. Thus,

to prove the lemma, it suffices to show that ζ̆nT has the unique limit point πv as (n, T )→∞.
Note that

sup
x̂∈Rd∩D

|un[v](x̂)− v(x̂)| → 0 as n→∞ (4.15)

for any compact set D ⊂ Rd. Let πn be any limit point of ζ̆nT as T →∞. We have

πn(dx, du) = νn(dx) δun[v](x)(u) , where νn(A) = lim
T→∞

1

T
E
[∫ T

0
1A(X̃n(s)) ds

]
for A ⊂ Rd. By Lemma 4.5, νn exists for all n and {νn : n ∈ N} is tight. We choose an increasing

sequence n ∈ N such that νn → ν in P(Rd). For each n, let Ãn be the operator defined by

Ãnf(x) =
∑
k∈K

An
k f(x, un[v](x))πk + 1(α ≤ 1)

∑
i,i′∈I

θii′∂ii′f(x) .

Recall Lv defined in (4.1) for v ∈ USM. Therefore, we have∫
Rd

Ãnf dνn −
∫
Rd
Lvf dν =

∫
Rd

(
Ãnf − Lvf

)
dνn +

∫
Rd
Lvf

(
dνn − dν

)
. (4.16)

By (4.15) and the convergence of Ãn in (4.13), we have Ãnf → Lvf uniformly as n → ∞; thus
the first term on the r.h.s. of (4.16) converges to 0. By the convergence of νn, the second term of
(4.16) also converges to 0. Applying Lemma 4.5, it holds that, for any f ∈ C∞c (Rd × U),∫

Rd
Ãnf dνn → 0 as n→∞ .

Therefore, ∫
Rd
Lvf dν = 0 , ∀f ∈ C∞c (Rd × U) ,

which implies that ν is the invariant measure of X̂ defined in (2.9) under the control v. By (4.15),
we obtain δun[v](·)(u)→ δv(·)(u) in the topology of Markov controls. Define the ergodic occupation

measure πv ∈ P(Rd × U) by πv(dx,du) := ν(dx)δv(x)(u). Then, for g ∈ C∞c (Rd × U), we have∣∣∣∣∫
Rd×U

g(x, u)
(
πv(dx, du)− πn(dx,du)

)∣∣∣∣
≤
∣∣∣∣∫

U

(∫
Rd
g(x, u)

(
ν(dx)− νn(dx)

))
δun[v](x)(u)

∣∣∣∣
+

∣∣∣∣∫
U

(∫
Rd
g(x, u)ν(dx)

)(
δun[v](x)(u)− δv(x)(u)

)∣∣∣∣ .
(4.17)
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By the convergence of νn, the first term of (4.17) converges to 0 as n→∞. Since ν has a continuous
density, then applying [22, Lemma 2.4.1], we deduce that the second term of (4.17) converges to 0
as n→∞. Thus, πn → πv in P(Rd × U). This completes the proof. �

Proof of Theorem 4.5. Let m̃ = 2m with m defined in (2.10). Let Zn be a scheduling policy such

that Zn(t) = ẑn[vε](X̂
n(t)) with vε (together with a positive constant R(ε)) defined in Theorem 4.3

and ẑn defined in Lemma 4.6. Note that∫
Rd×U

R(x, u)πvε(dx,du) ≤ %∗ + ε ,

where πvε ∈ P(Rd×U) is the ergodic occupation measure defined by πvε(dx,du) := νε(dx)δvε(x)(u).

Let zn(x) = ẑn[vε](x̂
n(x)) for x ∈ Zd+, and c0 ≡ R(ε) in Definition 3.2. Then, by Lemma 3.3, there

exits n̂0 ∈ N such that

L̂znn V̂m̃,ξ(x̂, k) ≤ C1 − C2V̂m̃,ξ(x̂, k) ∀(x̂, k) ∈ Xn ×K , ∀n ≥ n̂0 , (4.18)

for some positive constants C1 and C2. Using (4.18), we can select a sequence of {Tn : n ∈ N} such
that Tn →∞ as n→∞, and

sup
n≥n̂0

sup
T≥Tn

∫
Rd×U

V̂m̃,ξ(x̂, k) ζ̂nT (dx̂,du) < ∞ .

It follows that R̃(x− ẑn[vε](x)) is uniformly integrable. Moreover, by Lemma 4.6, ζ̂nT converges in
distribution to πvε . This completes the proof. �

Appendix A. Proofs of Theorem 2.1 and Lemma 3.1

Proof of Theorem 2.1. To prove (i), we fix β = 1/2, and first show that X̂n is stochastically bounded

(see Definition 5.4 in [25]). Recall the definition of X̂n in (2.3). By (2.6) and (2.7), {ˆ̀ni +L̂ni : n ∈ N}
is stochastically bounded in (D,J ). The predictable quadratic variation processes of Ŝni and R̂ni
are defined by

〈Ŝni 〉(t) :=

∫ t

0
µni (Jn(s))Z̄ni (s) ds , 〈R̂ni 〉(t) :=

∫ t

0
γni (Jn(s))Q̄ni (s) ds ,

respectively. By (2.2), we have the crude inequality

0 ≤ X̄n
i (t) ≤ X̄n

i (0) + n−1Ani (t) ,

and thus, by (2.1), the analogous inequalities hold for Z̄ni and Q̄ni . Thus, applying Lemma 5.8 in

[25] together with (2.7), we deduce that {(Ŝni , R̂ni ) : n ∈ N} is stochastically bounded in (D,J )2,

and thus {Ŵn
i : n ∈ N} is stochastically bounded. For each u ∈ U, the map

x 7→ c1

(
x− 〈e, x〉+u

)
+ c2〈e, x〉+u

has the Lipschitz property, where c1 and c2 are some positive constants. Then, by Assumption 2.1,
we obtain

‖X̂n(t)‖ ≤ ‖X̂n(0)‖+ ‖Ŵn(t)‖+ C

∫ t

0

(
1 + ‖X̂n(s)‖

)
ds

for t ≥ 0 and some constant C. Therefore, applying Gronwall’s inequality, and using the assumption
on X̂n(0) and Lemma 5.3 in [25], it follows that {X̂n : n ∈ N} is stochastically bounded in (Dd,J ).
Then, applying the functional weak law of large numbers (Lemma 5.9 in [25]), we have

X̂n

√
n

= X̄n − ρ ⇒ 0 in (Dd,J ) as n→∞ ,
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for t ≥ 0. This implies X̄n ⇒ ρ in (Dd,J ) as n → ∞. By (2.1) and Assumption 2.2, we have
〈e, Q̄n〉 = (〈e, X̄n〉 − 1)+ ⇒ 0 in (D,J ) as n → ∞. Since Q̄n ≥ 0, it follows that Q̄n ⇒ 0 and
Z̄n ⇒ ρ, both in (Dd,J ) as n→∞.

We next prove (ii). For i ∈ I and t ≥ 0, Âni can be written as

Âni (t) = n−β

(
An∗,i

(
n
∑
k∈K

λni (k)

n

∫ t

0
1(Jn(s) = k) ds

)
− n

∑
k∈K

λni (k)

n

∫ t

0
1(Jn(s) = k) ds

)
.

By [3, Theorem 5.1] and Assumption 2.1, we have∑
k∈K

λni (k)

n

∫ ·
0
1(Jn(s) = k) ds

u.c.p.−−−→ λπi e(·) , as n→∞ ,

for i ∈ I,
u.c.p.−−−→ denotes uniform convergence on compact sets in probability, and e(t) := t for all

t ≥ 0. Thus, by the FCLT of Poisson martingales and a random change of time (see, for example,
[26, Page 151]), we have

Ân ⇒ 1(α ≥ 1)
Λ√
2
W1 in (Dd,J ) as n→∞ ,

where W1 is a d-dimensional standard Brownian motion. Similarly, applying Theorem 2.1 (i),
[3, Theorem 5.1] and Assumption 2.1,∑

k∈K
µni (k)

∫ ·
0
Z̄n(s)1(Jn(s) = k) ds =

∑
k∈K

µni (k)

∫ ·
0

(Z̄n(s)− ρi)1(Jn(s) = k) ds

+
∑
k∈K

µni (k)ρi

∫ ·
0
1(Jn(s) = k) ds

u.c.p.−−−→ λπi e(·) , as n→∞ ,

and ∑
k∈K

γni (k)

∫ ·
0
Q̄n(s)1(Jn(s) = k) ds

u.c.p.−−−→ 0 , as n→∞ ,

for i ∈ I and t ≥ 0. Thus, we obtain

Ŝn ⇒ 1(α ≥ 1)
Λ√
2
W2 in (Dd,J ) as n→∞ ,

with a d-dimensional standard Brownian motion W2, and

R̂n ⇒ 0 in (Dd,J ) as n→∞ .

Since the Poisson processes are independent and the random time changes converge to deterministic

functions, the joint weak convergence of (L̂n, Ân, Ŝn, R̂n) holds. Note that W̃ , W1 and W2 are
independent, and thus

Ŵn ⇒ Ŵ in (Dd,J ) as n→∞ .

This completes the proof of (ii).

It is easy to see that ˆ̀n
i , µni (k) and γni (k) are uniformly bounded in i, k and n. The rest of the

proof of (iii) is same as [7, Lemma 4(iii)].

Finally, we prove (iv). Note that Ûn may not have a limit in the space Dd. So to establish the

weak limit, we need to assume Ûn is tight in Dd. By the representation of X̆n in (4.2) together
with Theorem 2.1 (ii) , and the continuity of the integral representation (see [25, Theorem 4.1]

for one-dimension and [3, Lemma 4.1] in the multi-dimensional case), any limit of X̆n is a unique

strong solution of (2.9). Applying Lemma 4.1, we deduce that the limit X̂ of X̂n is also a strong
solution of (2.9).
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Recall that τn(t) is defined in Definition 2.1. For r ≥ 0, we observe that

Ŵn
i (t+ r)− Ŵn

i (t) = Ŵn
i (τn(t) + r)− Ŵn

i (τn(t))

+ Ŵn
i (t+ r)− Ŵn

i (τn(t) + r) + Ŵn
i (t)− Ŵn

i (τn(t)) .

It is easy to see that as n→∞, τn(t)⇒ t. By the random change of time lemma in [26, Page 151],
we have

Ŵn
i (t+ r)− Ŵn

i (τn(t) + r) + Ŵn
i (t)− Ŵn

i (τn(t)) ⇒ 0 in R ,

and thus
Ŵn
i (τn(t) + r)− Ŵn

i (τn(t)) ⇒ Ŵi(t+ r)− Ŵi(t) in R .

Thus, by Definition 2.1, and following the proof of Lemma 6 in [7], we deduce that Ûn is non-
anticipative. �

Proof of Lemma 3.1. Note that

(a± 1)m − am = ±mam−1 + O(am−2) , a ∈ R .
Recall the definition of x̃n in Definition 3.2. We obtain

L̄z̃nn fn(x) =
∑
i∈I

ξi

(
λ̄ni
(
mx̃ni |x̃ni |m−2 + O(|x̃ni |m−2)

)
+ µ̄ni z̃

n
i

(
−mx̃ni |x̃ni |m−2 + O(|x̃ni |m−2)

)
+ γ̄ni q̃

n
i

(
−mx̃ni |x̃ni |m−2 + O(|x̃ni |m−2)

))
.

Let

F̄ (1)
n (x) :=

∑
i∈I

ξi

(
λ̄ni + µ̄ni z̃

n
i + γ̄ni q̃

n
i

)
O(|x̃ni |m−2) ,

and

F̄ (2)
n (x) :=

∑
i∈I

ξi

(
λ̄ni − µ̄ni z̃ni − γ̄ni q̃ni

)
mx̃ni |x̃ni |m−2 .

It is easy to see that

L̄z̃nn fn(x) = F̄ (1)
n (x) + F̄ (2)

n (x) .

From Definition 3.1 and Assumption 2.1, we have

F̄ (1)
n (x) ≤

∑
i∈I

ξi

(
λ̄ni + µ̄ni xi + γ̄ni xi

)
O(|x̃ni |m−2)

=
∑
i∈I

ξi

(
λ̄ni + µ̄ni (x̃ni + nρi) + γ̄ni (x̃ni + nρi)

)
O(|x̃ni |m−2)

≤
∑
i∈I

(
O(n)O(|x̃ni |m−2) + O(|x̃ni |m−1)

)
.

(A.1)

Next, we consider F̄
(2)
n (x). By using the balance equation z̃ni = x̃ni − q̃ni + ρni n, we obtain

F̄ (2)
n (x) =

∑
i∈I

ξi

(
−µ̄ni x̃ni + λ̄ni − µ̄ni ρin− (γ̄ni − µ̄ni )q̃ni

)
mx̃ni |x̃ni |m−2 .

By Assumption 2.1, we have
λ̄ni − µ̄ni ρin = O(nβ) . (A.2)

Let c̆1 := supi,k,n|γni (k)− µni (k)|, and c̆2 be some positive constant such that

inf
i∈I,k∈I,n∈N

{
µni (k), γni (k)

}
≥ c̆2 > 0 .

We choose

ξ1 = 1 , and ξi =
εm1
dm

min
i′≤i−1

ξi′ for i ≥ 2 ,
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where ε1 := c̆1
8c̆2

. Then, by using (3.13) and (A.2), we obtain

F̄ (2)
n (x) ≤

∑
i∈I

[
−mξi

(
(1− ηi(x))µ̄ni + ηi(x)γ̄ni

)
|x̃ni |m

+ ξi

(
O(nβ)− (γ̄ni − µ̄ni )η̄i(x)

i−1∑
j=1

x̃nj

)
mx̃ni |x̃ni |m−2

]
≤
∑
i∈I

ξiO(nβ)(x̃ni )m−1 − 3mc̆2

4
ξi|x̃ni |m ,

(A.3)

where the proof for the second inequality of (A.3) is same as the proof for the claim (5.12) in [8].
Using Young’s inequality and since β ≥ 1/2, we have

O(n)O(|x̃ni |m−2) ≤ ε
(
O(|x̃ni |m−2)

)m/m−2
+ ε1−

m/2
(
O(n)

)mβ
O(nβ)O(|x̃ni |m−1) ≤ ε

(
O(|x̃ni |m−1)

)m/m−1
+ ε1−m

(
O(nβ)

)m (A.4)

for any ε > 0. Therefore, by (A.1), (A.3), and (A.4), we have

L̄z̃nn fn(x) ≤ C1n
mβ − C2fn(x) , ∀x ∈ Zd+ .

This completes the proof. �

Appendix B. Proofs of Lemma 4.1, Lemma 4.3, and Lemma 4.4

Proof of Lemma 4.1. For i ∈ I and t ≥ 0, we have

X̂n
i (t)− X̆n

i (t) = −
∫ t

0

(
µni (Jn(s))− µ̄ni

)
X̂n
i (s) ds+

∫ t

0
µ̄ni
(
X̆n
i (s)− X̂n

i (s)
)

ds

+

∫ t

0
(µni (Jn(s))− µ̄ni − γni (Jn(s)) + γ̄ni )〈e, X̂n(s)〉+Ûni (s) ds

− (µ̄ni − γ̄ni )

∫ t

0

(
〈e, X̆n(s)〉+ − 〈e, X̂n(s)〉+

)
Ûni (s) ds .

(B.1)

For any a, b ∈ R, a+− b+ = η(a− b) with η ∈ [0, 1]. Then, the last term of (B.1) can be written as∫ t

0

(
〈e, X̆n(s)〉+ − 〈e, X̂n(s)〉+

)
Ûni (s) ds =

∫ t

0
η̃(X̆n(s), X̂n(s))

〈
e, X̆n(s)− X̂n(s)

〉
Ûni (s) ds ,

where η̃(x, y) : (x, y) ∈ R2 7→ [0, 1] . Note that Ûni (t) ∈ [0, 1] for all i ∈ I and t ≥ 0. By the
continuous integral mapping ([23, Lemma 5.2]), if the first and third terms of (B.1) converge to

the zero process uniformly on compact sets in probability, then X̂n− X̆n must converge to the zero
process uniformly on compact sets in probability. The first term of (B.1) can be written as

−
∑
k∈K

µni (k)

∫ t

0
n−

α/2X̂n
i (s) d

(
n
α/2

∫ s

0

(
1(Jn(u) = k)− πk

)
du

)
.

Note that 1 − β − α = min{0, (1 − α)/2}. Applying Theorem 2.1 (i), we have n−α/2X̂n
i converges

to the zero process uniformly on compact sets in probability. Similarly, since Ûni (s) is bounded, by

Theorem 2.1 (i), we obtain that n−α/2〈e, X̂n(s)〉+)Ûni (s) converges to the zero process uniformly

on compact sets in probability. Then, the asymptotic equivalence of X̆n and X̂n follows as in the
proof in [3, Lemma 4.4]. �
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Proof of Lemma 4.3. For n ∈ N and i ∈ I, define the processes Mn
Si

= {Mn
Si

(t) : t ≥ 0} and
Mn
Ri

= {Mn
Ri

(t) : t ≥ 0} by

Mn
Si(t) := Sn∗,i(t)− t , and Mn

Ri
:= Rn∗,i(t)− t ,

respectively. It is obvious that Mn
Si

and Mn
Ri

are square integrable martingales with respect to the
filtration generated by the processes Sn∗,i and Rn∗,i. Define the d-dimensional processes τn1 and τn2
by

τn1,i(t) :=

∫ t

0
µni (Jn(s))Zni (s) ds , and τn2,i(t) :=

∫ t

0
γni (Jn(s))Qni (s) ds ,

respectively. It is easy to see that {τnj,i : i ∈ I, j ∈ {1, 2}} have continuous nondecreasing nonnega-

tive sample paths. For x1 ∈ Rd+ and x2 ∈ Rd+, we obtain

(τn1 (t) ≤ x1, τ
n
2 (t) ≤ x2) ∈ Hn(x1, x2) ,

where

Hn(x1, x2) := {Sni (s1,i), R
n
i (s2,i), X

n
i (0) : i ∈ I, s1 ≤ x1, s2 ≤ x2}

∨ σ{Ani (s), Jn(s), Zni (s) : s ≥ 0, i ∈ I} ∨ N .

This implies that (τn1 (t), τn2 (t)) is Hn-stopping time, where Hn := {Hn(x1, x2) : x1 ∈ Rd+, x2 ∈ Rd+}.
Since Xn

i (t) ≤ Xn
i (0) +Ani (t) for i ∈ I, we observe that

E
[
τn1,i(t)

]
≤ max

k
{µi(k)}t(Xn

i (0) + E[Ani (t)] + n) < ∞ ,

E
[
Sn∗,i(τ

n
1,i(t))

]
≤ max

k
{µi(k)}t(Xn

i (0) + E[Ani (t)] + n) < ∞ .

Similarly, we have that E[τn2,i(t)] and E[Rn∗,i(τ
n
2,i(t))] are finite. Thus, applying Lemma 3.2 in [25]

and Theorem 8.7 on page 87 of [27], and using the decomposition in (2.3) and Lemma 3.1 in [3],

we conclude that X̂n is a semi-martingale with respect to the filtration F̃n := {F̃nt : t ≥ 0}, where

F̃nt := σ{Sni (s), Rni (s), Xn
i (0) : i ∈ I, s ≤ t} ∨ σ{Ani (s), Jn(s), Zni (s) : i ∈ I, s ≥ 0} ∨ N ,

and N is a collection of P-null sets. Since the processes An(t), Jn(t) and Zn(t) are adapted to Fnt ,

we can replace F̃n by the smaller filtration Fn. This completes the proof. �

Proof of Lemma 4.4. Define the function g ∈ C2(Rd) by g(x) :=
∑

i∈I gi(xi) with gi ∈ C2(R)
defined by gi(x) = |x|m for |x| ≥ 1 and i ∈ I. Recall An

k defined in Definition 4.1. Applying the

Kunita–Watanabe formula to X̃n with E = EÛn and the fact L̂ni +Bn
i is a martingale, we have

E
[
g(X̃n(t))

]
= E

[
g(X̃n(0))

]
+
∑
k∈K

E
[∫ t

0
An
k g
(
X̃n(s), Ûn(s)

)
1(Jn(s) = k) ds

]

+ E

∑
i,i′∈I

∫ t

0
∂ii′g(X̃n(s)) d [Bn

i , B
n
i′ ](s)

+ E

[∑
s≤t
Dg(X̃n, s)

] (B.2)

for t ≥ 0, where Dg(X̃n, s) is defined analogously to (4.10). By Assumption 2.1 and Young’s
inequality, we have

bni (x, u, k)g′i(x) ≤ c̄1

d

(
1 + (〈e, x〉+)m

)
− c̄2

d
|x|m ,

σni (x, u, k)g′′i (x) ≤ 2c̄1

d

(
1 + (〈e, x〉+)m

)
+
c̄2

4d
|x|m ,

and thus, for all k ∈ K, we obtain

An
k g(x, u) ≤ 2c̄1

(
1 + (〈e, x〉+)m

)
− 7

8
c̄2|x|m , (B.3)
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where c̄1 and c̄2 are some positive constants independent of n. Following the same analysis for the
fourth term on the r.h.s. of (4.10), and using Young’s inequality, we have

E

∑
i,i′∈I

∫ t

0
∂ii′g(X̃n(s)) d [Bn

i , B
n
i′ ](s)


≤ E

[∫ t

0
c̄1

(
1 + (〈e, X̃n(s)〉+)m

)
+
c̄2

8
|X̃n(s)|m ds

]
.

(B.4)

Since the jump size is of order n−β or n−α/2+δ0 , we can find a positive constant c̄3 such that

sup
|xi−x′i|≤1

|g′′i (x′i)| ≤ c̄3(1 + |xi|m−2)

for each xi ∈ R. Then, applying the Taylor remainder theorem, we obtain

∆gi(X̃
n
i (s))− g′i(X̃n

i (s))∆X̃n
i (s) ≤ 1

2
sup

|x′i−X̃n
i (s−)|≤1

|g′′i (x′i)|(∆X̃n
i (s))2 ,

for each i ∈ I. Following a similar analysis as in (4.12), and using Young’s inequality, we obtain

E

[∑
s≤t
Dgi(X̃n, s)

]
≤ E

[∑
s≤t

c̄3

(
1 + |X̃n

i (s−)|m−2
)

(∆X̂n
i (s))2

]

≤ E
[∫ t

0

(
c̄4 + c̄5

(
〈e, X̃n(s)〉+

)m
+
c̄2

2
|X̃n(s)|m

)
ds

] (B.5)

for some positive constants c̄4 and c̄5. Thus, by (B.2)–(B.5), we obtain

E
[∫ t

0
|X̃n(s)|m ds

]
≤ c̄6 E

[
g(X̃n(0))

]
+ c̄7t+ c̄8 E

[∫ t

0
(〈e, X̃n(s)〉+)m ds

]
(B.6)

for some positive constants c̄i, i ∈ {6, 7, 8}. Using (4.14), we see that (B.6) also holds if we replace

X̃n with X̂n. Therefore, under any sequence satisfying supn J
n(X̂n(0), Û) <∞, we have established

(4.8). This completes the proof. �
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