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Abstract. We study the sample-path moderate deviation principle (MDP) for shot noise processes
in the high intensity regime. The shot noise processes have a renewal arrival process, non-stationary
noises (with arrival-time dependent distributions) and a general shot response function of the noises.
The rate function in the MDP exhibits a memory phenomenon in this asymptotic regime, which is
in contrast with that in the conventional time-space scaling regime.

To prove the sample-path MDP, we first establish that this is equivalent to establishing the
sample-path MDP of another process that is easier to study. We will then establish the sample-
path MDP of this process combining the Gärtner-Ellis (to prove the finite dimensional MDP)
and Dawson-Gärtner Theorem (to prove the sample-path MDP under the topology of pointwise
convergence). Finally, we prove exponential tightness and strengthen the MDP to the Skorohod
J1 topology. In the proofs, because of the inherent non-stationarity of shot noise process, we
establish a new maximal inequality and use it to prove exponential tightness and the aforementioned
equivalence. The rate function is derived using the tools of reproducing kernel Hilbert space.

1. Introduction

Shot noise process can be viewed as a natural model for a system which experiences shocks that
occur according to an arrival process and have an enduring effect on its dynamics. In particular,
they have been found very useful in the areas of physics ([7, 39, 53]), queueing theory ([10, 27, 38])
and teletraffic theory ([37, 48]), insurance and risk theory ([35, 36, 41, 42, 44, 54]), storage processes
([11, 40]) and so on.

Various asymptotic properties and scaling limits have been established for shot noise processes.
There are two asymptotic scaling regimes that have been studied in the literature. The first
one is the conventional time-space scaling regime (speeding up time and scaling down space;
see (2.23) and (2.31)). This is studied in different settings, including functional central limit theo-
rems (FCLTs) in [29, 30, 31, 32, 34, 35, 36] and sample-path large deviation principles (LDPs) in
[15, 19, 22]. The second one is referred to as the high intensity regime (the arrival rate is scaled up
while time is not scaled in the shot response function, and space is scaled down; see (2.6) and (2.9)).
FCLTs and relevant asymptotic properties in this regime have been studied in [4, 26, 28, 46, 47].
Infinite-server queues can be regarded as a shot noise process with a particular indicator response
function, and heavy-traffic limits (that is, in the high intensity regime with no scaling on service
times) have been established in the literature (see, e.g., [45] and references therein). Large deviation
principles are also established for infinite-server queues in heavy traffic/high intensity regime, see
[24] for results at a fixed time, and [6] for the sample-path LDP of a two-parameter process tracking
elapsed/residual service times. However, to our best knowledge, no MDPs have been established
for shot noise processes in either asymptotic regime in the literature.
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The main aim of this paper is to establish the sample-path MDP for shot noise processes in
the high intensity regime. We consider the arrival process to be a renewal process satisfying a
sample-path MDP, and assume that the noises are non-stationary, in particular, the noises are
conditionally independent given the arrival times while the distribution of each noise depends on
its own associated arrival time. The shot response function also satisfies rather general conditions
(see Assumptions 2.1, 2.2, 2.3 and 2.4; see also the relevant remarks). The MDP-scaled process
in this regime is given in (2.9), which has a centering term as in FCLTs, but has a scaling of
arrival rate and space satisfying a certain condition (2.8). See further discussions on the scaling
at the beginning of Section 2.2. The main result of the sample-path MDP is given in Theorem
2.2, in which the rate function consists of two components, one involving a “covariance” operator
(corresponding to the covariance function in the Gaussian limit with memory of the FCLT in [46])
and the other being standard corresponding to that of a Brownian motion. We refer to Remark
2.12 on discussions about how the MDP rate functions are related to the Gaussian limit processes
in the FCLT. As a corollary, we also state the sample-path MDP result for the GI/Gt/∞ queueing
model (Corollary 2.1).

To prove the sample-path MDP, we show that the scaled process of interest (see (2.9)) is equiva-
lent (in an appropriate sense) to a new process that is easier to study. The main consequence of this
is that the MDP of the process of interest is implied by the MDP of the new process with identical
rates and rate functions. The important feature of this new process is that it can be written as
the sum of two independent intermediate processes where one process (say P1) is independent of
the arrival process and the other process (say P2) has randomness only through the arrival pro-
cess. This feature helps us to study and establish the MDPs of these two intermediate processes
separately and infer the MDP of their sum. The MDP of the P2 can be easily concluded by an
application of the contraction principle. However, the MDP of the P1 is non-trivial. The proof
involves the application of Gärtner-Ellis and Dawson-Gärtner Theorems to conclude the MDP un-
der the topology of pointwise convergence. We then strengthen it to the Skorohod J1 topology by
establishing an appropriate version of tightness of P1. As already mentioned, due to the memory
phenomenon, the sample path rate function is only expressed in a variational form which is in
contrast to the memoryless case (for example, compound Poisson), where the rate function can be
given in an explicit form.

As a comparison we also state the the sample-path MDP result in the conventional time-space
scaling regime (Theorem 2.3 in Section 2.3). Although both the scalings give rise to the MDP with
the same rates, the rate functions are dramatically different. In the case of the conventional time-
space scaling, the rate function looks like the inverse of covariance of a Brownian motion (with a
time-varying covariance function), whereas in the high intensity regime, the rate function looks like
the inverse of covariance of a certain non-stationary Gaussian process with memory. See further
discussions in Remarks 2.13 and 2.14.

As another comparison, we also state the sample-path LDPs for the shot noise processes in the
two scaling regimes (Section 2.4). It is expected that the rate functions in the LDPs are very
different in the two regimes (see (2.29) and (2.32)), since in the conventional time-space scaling
regime, the ‘lingering’ effect of noises vanishes (equivalent to that the response function H(t, x) is
replaced by H(∞, x)), while in the high intensity scaling regime, the effect of noises is indicated
as ‘memory’. On the other hand, the rate functions in the LDPs involve the LDP rate function
of the renewal arrival process, which further involves the log moment generating function of the
interarrival times (see (2.30)). However, the rate functions in the MDPs in both regimes only involve
the mean and variance of the interarrival times of the renewal arrival process (Theorems 2.2 and
2.3). We highlight that some of the LDP results in both regimes are also new to the literature since
we consider non-stationary noises (see further discussions in Section 2.4). The sample-path large
deviation principles (LDPs) in [15, 19, 22] all assume Poisson arrival processes and stationary noises
in the conventional time-space scaling regime. The results we present are more general involving
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both a renewal arrival process and non-stationary noises. The methodology we develop also goes
beyond those in [15, 22] since the well developed LDP methods for Poisson random measures (see
the recent monograph [13]) could be used, which is impossible in our setting.

To put our paper in the context of the vast literature of MDPs of stochastic systems, we give
a partial overview of the different methods used to prove MDPs. The general approach to prove
sample-path LDP and MDP is to use Dawson-Gärtner theorem [18, Theorem 4.6.1] in conjunction
with Gärtner-Ellis theorem [18, Theorem 2.3.6] and exponential tightness in appropriate functional
spaces. This has been used in the study of various Markov and non-Markov systems (see, e.g., [6,
19, 21, 22, 49, 50, 51]). Specific properties of processes of interest are often exploited to establish the
required properties, such as convergence of the non-linear semi-groups of Markov processes [21], and
semimartingale representations [50, 51]. For certain Markov processes driven by Brownian motion
or Poisson random measure, a weak convergence approach using the variational representation of
certain functionals of Brownian motion and/or Poisson random measure and the associated control
problem formulation (see [13, Section 3.2, 3.3, 8.1 and 8.2]) has been used extensively (see, e.g.,
[3, 12, 14, 16, 17, 23, 43] for Markov models and [1, 9, 33] for non-Markov models). However, shot
noise processes in our paper bring in new challenges with the non-Markovian and non-stationary
characteristics. This leads us to great difficulties in proving the exponential tightness (Theorem 3.3)
and exponential equivalence (Theorem 3.1), as well as identifying the rate function due to the
memory property. We have developed new methods to tackle these challenges, which may turn to
be useful to study LDP and MDP for other non-Markovian stochastic systems in future work.

1.1. Organization of the paper. In the rest of this section, we introduce notation that we will
use throughout the paper. In Section 2.1, we introduce the model, and in Section 2.2, we state the
main results on sample-path MDP in the high intensity regime. The assumptions on the model are
given in Sections 2.1 and 2.2. In Sections 2.3 and 2.4, we compare with the MDP in the conventional
time-space scaling regime, and the LDP results in the two scaling regimes. In Sections 3–5, we
provide the proofs of the main result. In the Appendix, we prove a maximal equality that will be
used in the proof of our main result. We also provide the sketch of the proof for the analogous
LDP result in the high intensity regime.

1.2. Notation. (Ω,F ,P) denotes the abstract probability space. For a Polish space S, B(S) de-
notes the corresponding Borel σ–algebra. P(S) denotes the space of probability measures on S
equipped with the topology of weak convergence. For a set A ∈ B(S), Ā, Ac, A◦ denote the clo-
sure, the complement and the interior of A, respectively. For a fixed T > 0, (DT , J1) denotes the
space of real valued functions on [0, T ] that are right continuous with left limits equipped with the
Skorohod topology (dJ1(·, ·) is the corresponding metric). Let ‖x‖T

.
= sup0≤t≤T |x(t)| for x ∈ DT ,

and 〈·, ·〉 denote the Euclidean inner product on Rm, for any m ∈ N. Also, for any m, we write
x = (x1, x2, . . . , xm) for short. The set of continuous functions on [0, T ] equipped with the uniform
norm is denoted by (CT , ‖ · ‖T ) and the set of absolutely continuous functions x : [0, T ] → R such
that x(0) = 0 by AC0. For a, b ∈ R, we let a∧b = min{a, b} and a∨b = max{a, b}. Let R+

.
= [0,∞).

For any two real-valued functions f and g, we write f = O(g) whenever lim supx→∞

∣∣∣f(x)
g(x)

∣∣∣ < ∞.

The indicator function associated to set A is denoted by 1A. Finally, VT (h(·)) is the total variation
of any function h(·) on [0, T ].

For a Polish space S and bn (bn ↑ ∞), a family of S–valued random variables {Yn}n∈N is said
to satisfy a large deviation principle (LDP) with rate bn and rate function I : S → [0,∞], if the
following holds:

(i) For A ∈ B(S),

− inf
x∈A◦

I(x) ≤ lim inf
n→∞

1

bn
logP(Yn ∈ A) ≤ lim sup

n→∞

1

bn
logP(Yn ∈ A) ≤ − inf

x∈Ā
I(x);

(ii) The set {x : I(x) ≤ l} is compact in S, for every l ≥ 0.
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We say that {Yn}n∈N is exponentially tight with rate bn, if for every l > 0, there exists a compact
set Kl such that

lim sup
n→∞

1

bn
logP(Yn ∈ Kc

l ) ≤ −l .

Two families of S–valued random variables {Yn1}n∈N and {Yn2}n∈N are said to be exponentially
equivalent with respect to rate bn, if the following holds: for every δ > 0,

lim
n→∞

1

bn
logP (d(Yn1 ,Y

n
2 ) > δ) = −∞ .

Here, d(·, ·) is the metric associated with S.
For stochastic processes {Yn} whose paths are in DT , in the context of our paper, the processes

Yn are associated with appropriate scalings for LDP and MDP (n as the scaling parameter). The
LDP and MDP will be given as the LDP described above, but with different rates bn and rate
functions I. See the corresponding statements in Theorem 2.2 for the MDP and Section 2.4.1 for
the LDP for the shot noise process under different scalings.

2. Model and Results

2.1. The model. We consider the following shot noise process

X(t) =

A(t)∑
i=1

H(t− τi, ξi), t ≥ 0. (2.1)

Here H : R+ ×Rd → R is a Borel measurable function, with H(t, ·) ≡ 0 for t < 0. {A(t) : t ≥ 0}
is a renewal process with almost surely positive i.i.d. interarrival times {ηi}i≥1, i.e., with arrival
times {τi}i≥1 defined by τi =

∑i
k=1 ηk for i ≥ 1,

A(t) =
∑
k≥1

1{τk≤t}, t ≥ 0. (2.2)

Let λ
.
= (E[η1])−1 and σ2 .

= E[η2
1]− (E[η1])2. The noises {ξi}i≥1 are given by

ξi = g(τi, ϑi), (2.3)

where g : R+ ×Rd → Rd is a measurable and deterministic function, and {ϑi}i≥1 is a sequence of
i.i.d. Rd-valued random variables, independent of {ηi}i≥1. Let F be the distribution of ϑ1.

Remark 2.1. The distribution of the noises ξi = g(τi, ϑi) depends on the arrival time τi. Since
ϑ1, ϑ2, . . . are i.i.d., the random variables ξ1, ξ2, . . . are independent given the arrival times {τi}i∈N,
and given that τi = s, the distribution of ξi is

Fs(x)
.
= P(ξi ≤ x|τi = s) = P(g(s, ϑi) ≤ x) =

∫
Rd
1{g(s,y)≤x}F (dy).

This is one approach to model the non-stationarity of noises. For instance, Fs(x) = 1− e−µ(s)x

for a positive function µ(s) can be regarded as a non-stationary exponential distribution with
rate µ(s) ≥ 0 for s ≥ 0 and x ≥ 0. In this case, if µ(s) > 0 for all s ≥ 0, one can take
g(s, ϑi) = (µ(s))−1ϑi with ϑi being an exponential random variable with mean 1. For another

instance, if ξi = g(s, ϑi) =
∫ s+ϑi
s φ(u)du for some φ : R+ → R+ and ϑi ∈ R+, that is, in the context

of queueing systems, the realization of the service requirement ϑi is through a time-varying rate
φ and ξi is the realized service time, and in this case, Fs(x) =

∫
R+
1{
∫ s+y
s

φ(u)du≤x}F (dy). A third

example is that the functions are specified in the piecewise sense over t: for each fixed x ∈ Rd,
g(s, x) = gk(x) for s ∈ [tk, tk+1] given 0 = t1 < t2 < · · · < tk < tk+1 < · · · < tK = T and
gk : Rd → Rd for each k, so that Fs(x) =

∑K
k=1 1{s∈[tk,tk+1]}

∫
Rd 1{gk(y)≤x}F (dy) for s ≥ 0.

Assumption 2.1. H(·, x) is right continuous with left limits for each x ∈ Rd.
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Remark 2.2. Assumption 2.1 will ensure that the process {X(t), t ∈ [0, T ]} is DT –valued. To see
this, fix a sequence {τi}i≥1 of arrival times. Then A(t) = k, whenever t ∈ [τk, τk+1) for k ≥ 1
and A(t) = 0, for t ≤ [0, τ1). For any t ∈ [τk, τk+1), since the interarrival times are almost surely
positive, there is almost surely a δ > 0 small enough such that A(s) = k and

X(s) =
k∑
i=1

H(s− τi, ξi),

for s ∈ [t, t+ δ). Taking s ↓ t, Assumption 2.1 gives us the following:

lim
s↓t

X(s) = X(t).

This proves that for every t, X(t) is right continuous and the finiteness of left limits trivially follows.
Hence, {X(t), t ∈ [0, T ]} is a DT –valued process.

Remark 2.3. A common form of the function H(t, x) is multiplicative, taking the form H(t, x) =

H̃(t)ϕ(x), where H̃ : R+ → R and ϕ : Rd → R. The condition in Assumption 2.1 requires that

H̃ is right continuous with left limits. The function H̃(·) in the expression of X(t) represents the
effect of the noises as time progresses. A typical example is the exponential decay effect, that is,
H̃(t) = e−βt for some constant β > 0 and t ∈ R+. Another one is a power function effect, that is,

H̃(t) = tβ for some β > 0 and t ∈ R+. However, the function H(t, x) can be also non-multiplicative,
for example, in the G/G/∞ queueing model, the queue length (number of customers/jobs) process
has H(t, x) = 1{t<x} and the workload-input process has H(t, x) = x1{t<x} for x ≥ 0.

Define H(t, s, x)
.
= H(t − s, g(s, x)) for t, s ∈ R+ and x ∈ Rd. The following functions are

frequently used in what follows. For t, s, u ∈ [0, T ], if they exist, define

G1(t, s)
.
=

∫
Rd
H(t, s, x)F (dx) , (2.4)

G2(t, s, u)
.
=

∫
Rd
H(t, u, x)H(s, u, x)F (dx) ,

and

Λ(s, t)
.
= λ

∫ s∧t

0
(G2(t, s, u)−G1(t, u)G1(s, u)) du. (2.5)

In the special case of a multiplicative shot response function taking the form H(t, x) = H̃(t)ϕ(x),

where H̃ : R+ → R and ϕ : Rd → R, we have the functions

G1(t, s) = H̃(t− s)
∫
Rd
ϕ(g(s, x))F (dx) ,

G2(t, s, u) = H̃(t− u)H̃(s− u)

∫
Rd
ϕ(g(u, x))2F (dx) ,

Λ(s, t) = λ

∫ s∧t

0
H̃(t− u)H̃(s− u)

(∫
Rd
ϕ(g(u, x))2F (dx)−

( ∫
Rd
ϕ(g(u, x))F (dx)

)2
)
du .

2.2. Sample-path MDP in the high intensity regime. In this section, we consider a scaled
version of X(t) in the high intensity regime and establish a sample-path MDP. Define the following
scaled version of the shot noise process X(·) (defined in (2.1)):

X̄n(t)
.
=

1

n

An(t)∑
i=1

H(t, τni , ϑi) , (2.6)
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where

An(t)
.
= A(nt), τni

.
=
τi
n

=
1

n

i∑
k=1

ηk . (2.7)

We remark that the scaling in the process X̄n(t) should be regarded as a high intensity scaling
regime. The scaling of the renewal process An(t) = A(nt) has the arrival times τni (and the
interarrival times ηk) being scaled down by n, which is equivalent to the arrival rate λ being scaled
up by n, that is, the arrival rate of An(t) is λn = nλ. It can be thus regarded either as the usual
scaling of (arrival) time, or as the scaling of the intensity (arrival rate). However, since the function
H(t, τni , ϑi) has no scaling in t, one should regard the scaling of X̄n(t) in (2.6) as the high intensity
scaling regime. See further discussions and comparison of the MDP results in the time-space scaling
regime in Section 2.3 and the LDP results in the two different scaling regimes in Section 2.4.

Let {an}n∈N be a positive real valued sequence such that

an ↑ ∞ and

√
n

an
↑ ∞ as n→∞. (2.8)

We now define the following MDP-scaled process in the high intensity regime:‹Xn(t)
.
=

√
n

an

Ç
X̄n(t)− λ

∫ t

0
G1(t, s)ds

å
=

√
n

an

Ñ
1

n

An(t)∑
i=1

H(t, τni , ϑi)− λ
∫ t

0
G1(t, s)ds

é
, (2.9)

where G1(t, s) is defined in (2.4).

Assumption 2.2. The interarrival times {ηi}i∈N satisfy E[eρη1 ] <∞ for some ρ > 0.

To utilize the MDP results for renewal processes, we have imposed in Assumption 2.2 that the
interarrival times have finite moment generating functions.

Remark 2.4. We remark that Assumption 2.2 is stronger than what is necessary to prove our main
result which is Theorem 2.2. The reason behind choosing this assumption is as follows: One of
the key ingredients of the proof of Theorem 2.2 is to invoke Theorem 2.1 given below. Under
Assumption 2.2, the restrictions on an are the weakest where an satisfies (2.8) and Theorem 2.1
still holds. On the other hand, if we relax the assumption on moments of η1, then we require an to
satisfy stronger conditions than (2.8) for Theorem 2.1 to hold. See further discussions about how
the conditions on an change as the conditions on moments of η1 change in Remark 2.5.

Before presenting the main MDP result for ‹Xn(t), we first present a version of the sample-path
MDP for renewal processes.

Theorem 2.1. [52, Theorem 6.2]

Suppose Assumption 2.2 holds and an satisfies (2.8). Then, the family {‹An}n∈N defined by‹An(t)
.
=

1

an
√
n

(An(t)− nλt) , for t ∈ [0, T ] (2.10)

where An(t) is defined in (2.7), satisfies an MDP in (DT , J1) with rate a2
n and the following rate

function IMDP
A : DT → [0,∞] given by

IMDP
A (φ)

.
=

{
1

2λ3σ2

∫ T
0 |φ̇(t)|2dt, whenever φ ∈ AC0,

∞, otherwise.
(2.11)

Remark 2.5. We remark that in the above theorem, the sample-path MDP for renewal processes is
proved under either of the following two sets of conditions:
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(i) log(n)
a2n
→∞ and E(η1)2+ε <∞, for some ε > 0;

(ii) For some β ∈ (0, 1], n
β
2

a2−βn
→∞ and E exp(b(η1)β) <∞, for some b > 0.

The proof is given in [50, Example 7.2]. As noted right after Theorem 6.2 in [52], the case β = 1
which is not included there is dealt with by the same argument. In our paper, to prove the MDP for‹Xn(t), we will decompose it into two components ‹Xn

1 (t) and ‹Xn
2 (t), the MDP for ‹Xn

1 (t) is proved

under the conditions of an in (2.8), while the MDP for ‹Xn
2 (t) is proved using the contraction

mapping theorem together with the known MDP result for renewal processes. Thus, to unify the
conditions on an, we have imposed the conditions on the interarrival times {ηi}i∈N in Assumption
2.2.

Let M(x)
.
= sups,t∈[0,T ] |H(t, s, x)|.

Assumption 2.3. The random variable ϑ1 satisfies the following tail condition:

lim sup
n→∞

1

a2
n

log
[
nP
(
M(ϑ1) ≥ an

√
n
)]

= −∞. (2.12)

Remark 2.6. It is clear that if H is bounded uniformly in its arguments, then (2.12) necessarily
holds. It is easy to show (upon direct application of Markov’s inequality) that (2.12) also holds,
whenever

E
[
eρ̃M(ϑ1)

]
<∞, for some ρ̃ > 0.

We also have the following result.

Lemma 2.1. Suppose (2.12) holds. Then, we have the following:

E
[
M(ϑ1)2

]
<∞ (2.13)

lim
n→∞

an√
n
E
[
M(ϑ1)31{M(ϑ1)≤l

√
na−1
n }

]
= 0, for every l > 0. (2.14)

Proof. The proof of (2.13) follows directly from the arguments in the proof of [20, Lemma 2.5] and
the proof of (2.14) follows from arguments in [20, Pg. 212]. �

Remark 2.7. Recall Remarks 2.4 and 2.5 on the conditions for an satisfying (2.8), which we have
assumed throughout the paper. The following are two sufficient conditions under which (2.12) can
also be shown to hold (upon direct application of Markov’s inequality), but with a condition on an:

(i) logn
an
→∞ and E

î
M(ϑ1)2+ε

ó
<∞, for some ε > 0.

(ii) For some β ∈ (0, 1), n
β
2 /a2−β

n →∞ and E
î
eρ̃M(ϑ1)β

ó
<∞, for some ρ̃ > 0.

Define, for t, u ∈ [0, T ] and δ, δ′ ∈ R,“G2(t, u, δ, δ′)
.
=

∫
Rd

(
H
Ä
t− u+ δ, g(u+ δ′, x)

ä
−H

Ä
t− u, g(u, x)

ä)2
F (dx). (2.15)

and for t, u ∈ [0, T ] and δ ∈ R, let

“
G2(t, u, δ) = “G2(t, u,−δ, 0).

Assumption 2.4. The following hold.

(i) The total variation of G1(t, ·) is uniformly bounded in t ∈ [0, T ], i.e.,

sup
t∈[0,T ]

VT
Ä
G1(t, ·)

ä
<∞.

(ii) Suppose δn : [0, T ]→ R such that δn(u)→ 0, uniformly in [0, T ] and we have the following.

lim
n→∞

sup
t∈[0,T ]

∫ T

0

“G2(t, u, δn(u), δn(u))du = 0.
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(iii) For t ∈ [0, T ],

lim
δ↓0

∫ T

0

“
G2(t, u, δ)du = 0. (2.16)

Remark 2.8. Assumption 2.4(i) is only used in proving Proposition 3.2, where the contraction
principle can be applied under Assumption 2.4(i). It handles the dependence of {ξi}n∈N and
{τi}n∈N. It is a mild assumption and is satisfied in many practical applications. In particular,
consider the case where {ξi} are independent of {τi}i∈N. In this case, the above assumption is
satisfied as long as the shot shape function H(·, x) has bounded total variation on [0, T ], for every
x ∈ Rd. In particular, the examples discussed in Remark 2.3 satisfy Assumption 2.4(i).

Remark 2.9. Assumption 2.4(ii) is used crucially in the proofs of exponential equivalence (The-
orem 3.1) and exponential tightness (Theorem 3.3). Assumption 2.4(iii) is used in the proof of

exponential tightness. These are necessary to handle the non-stationarity of the process ‹Xn. These
conditions can be easily verified for many examples that we come across in practice. In the very
special case when the model has multiplicative response function H(t, x) = H̃(t)ϕ(x) and when
{ξi}i∈N and {τi}i∈N are independent i.e., g(s, x) = g̃(x), Assumption 2.4(ii) becomes

lim
n→∞

sup
t∈[0,T ]

∫ T

0

(
H̃
Ä
t− u+ δn(u)

ää
− H̃

Ä
t− u

ää)2
du = 0 ,

since the noise component becomes a constant
∫
Rd g̃(x)F (dx), and Assumption 2.4(iii) becomes

lim
δ↓0

∫ T

0

(
H̃
Ä
t− u− δ

ä
− H̃

Ä
t− u

ä)2
du = 0 .

These conditions are reduced to only requiring the above conditions on H̃ (recalling Assumption

2.1 that H̃ is only assumed to be right continuous). In general, this is not the case, which will
depend on both functions H and g.

We are now ready to state the main result of the paper.

Theorem 2.2. Under Assumptions 2.1–2.4 and the conditions on an in (2.8), the family of random

variables {‹Xn}n∈N satisfies the following.

(i) For every Borel measurable set A in (DT , J1),

− inf
φ∈A◦

IMDP(φ) ≤ lim inf
n→∞

1

a2
n

logP(‹Xn ∈ A) ≤ lim sup
n→∞

1

a2
n

logP(‹Xn ∈ A) ≤ − inf
φ∈Ā

IMDP(φ). (2.17)

(ii) For l ≥ 0, {φ : IMDP(φ) ≤ l} is a compact set in (DT , J1).

Here,

IMDP(φ) = inf
(φ1,φ2)∈DT×DT : φ=φ1+φ2

¶
IMDP

1 (φ1) + IMDP
2 (φ2)

©
, (2.18)

with

IMDP
1 (φ1)

.
=

1

2

∫ T

0

∫ T

0
z(s)Λ(s, t)z(t)dsdt , (2.19)

IMDP
2 (φ2)

.
=

1

2λ3σ2
inf

® ∫ T

0
|ẋ(t)|2dt

´
, (2.20)

where Λ(s, t) is defined in (2.5) and z is a Lebesgue measurable function on [0, T ] such that φ1(·) =∫ T
0 z(s)Λ(·, s)ds. If no such z exists, then we take IMDP

1 (φ1) = ∞. The infimum in (2.20) is over
x ∈ AC0 such that

φ2(t) =

∫ t

0
G1(t, u)dx(u) = x(t)G1(t, t)−

∫ t

0
x(u−)duG1(t, u), for t ∈ [0, T ].
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Remark 2.10. From here on, if the family of DT –valued random variable {Zn}n∈N satisfies (i) and
(ii) with a function I in place of IMDP, then we say that {Zn}n∈N satisfies a moderate deviation
principle (MDP) with rate function I and rate a2

n.

We now apply Theorem 2.2 to a GI/Gt/∞ queue which has a renewal arrival process and a time-
varying service time. In this model, H : R+×R+ → R+ with H(t, x) = 1{t<x} (non-multiplicative)
and X(t) is the number of customers/jobs in the system (in service) at time t. As a special case of
Theorem 2.2, we obtain the following sample-path MDP for the scaled version of queueing process
X(t).

Corollary 2.1. Under Assumptions 2.1–2.4, in the GI/Gt/∞ queueing model, the MDP-scaled

queueing process ‹Xn satisfies a MDP in (DT , J1) with rate a2
n and rate function in (2.18), in which

G1(t, s) = 1− Fs(t− s)
.
= F cs (t− s), G2(t, s, u) = 1− Fu(t∨s− u)

.
= F cu(t∨s− u),

and

Λ(t, s) = λ

∫ t∧s

0

Ä
F cu(t∨s− u)− F cu(t− u)F cu(s− u)

ä
du.

Remark 2.11. Puhalskii [51] recently established sample-path MDP for many-server queues with
renewal arrival processes and i.i.d. service times in the so-called Halfin-Whitt regime (the arrival
rate/intensity and number of servers are scaled up with fixed service rate in such a way that the
system becomes critically loaded). For that model, the MDP for the sequential empirical process
associated with the service times is proved and subsequently, the MDP for a process of the form
in (2.1) with the arrival process being the entering service process of customers/jobs (τi’s being
the entering service times and hence the arrival process is no longer a renewal process due to the
waiting times) and the functions H(t, x) = 1{t<x} and g(t, x) = x. The approach in that paper
is different from ours. The approach in [51] makes use of a semi-martingale decomposition of the
sequential empirical process along with the techniques of exponential martingales. That approach
however cannot be adapted to general shot noise processes.

Remark 2.12. We remark that the function Λ(t, s) is in fact the covariance function of the limit
process for the CLT-scaled processes

1√
n

An(t)∑
i=1

(H(t, τni , ϑi)−G1(t, τni )) .

See Theorem 2.2 in [46] for shot noise processes and Theorem 3.2 in [45] for the GI/Gt/∞ queue.
The constant λ3σ2 is the variance coefficient of the Brownian limit process of the CLT-scaled
renewal process

Ân(t)
.
=

1√
n

(An(t)− λnt) . (2.21)

See Theorem 17.3 in [5]. These indicate how the rate functions in the MDP are related to the
FCLT results.

2.3. Comparison with the MDP for shot noise processes in a conventional time-space
scaling regime. In this section, we discuss the MDP results in the conventional time-space scaling
regime. To that end, we suppose that Assumptions 2.1, 2.2, 2.3 and 2.4(i) still hold. Because of
the structure of the scaling, it is necessary to specify how H(t, x) behaves as t→∞. In particular,
we assume that

H(∞, x)
.
= lim

t→∞
H(t, x) exists uniformly in x ∈ Rd. (2.22)
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Consider the following MDP-scaled process with both time and space scalings:“
X
n
(t)

.
=

√
n

an

Ñ
1

n

An(t)∑
i=1

H(nt− τi, g(τi, ϑi))−
λ

n

∫ nt

0
E[H(nt− s, g(s, ϑ1))]ds

é
. (2.23)

For u ∈ [0, T ], define

G∞1 (u)
.
=

∫
Rd
H(∞, g(u, x))F (dx) ,

G∞2 (u)
.
=

∫
Rd
H(∞, g(u, x))2F (dx) .

Theorem 2.3. Under Assumptions mentioned above, the family of DT –valued random variables

{
“
X
n
}n∈N satisfies an MDP in (DT , J1) with rate a2

n and rate function IMDP
∞ : DT → [0,∞] given

by

IMDP
∞ (φ) =

1
2

∫ T
0
|φ̇(t)|2
σ2
∞(t)

dt, whenever φ ∈ AC0,

∞, otherwise,
(2.24)

where

σ2
∞(u)

.
= λ
Ä
G∞2 (u)− (G∞1 (u))2

ä
+ λ3σ2(G∞1 (u))2 . (2.25)

Remark 2.13. The proof of this theorem can be carried out by taking a similar approach as the

proof of Theorem 2.2 (details are omitted for brevity). To begin with, one can show that {
“
X
n
}n∈N

is exponentially equivalent to {
“
X
n
}n∈N defined as“

X
n
(t)

.
=

√
n

an

(
1

n

An(t)∑
i=1

H(∞, g(τi, ϑi))−
λ

n

∫ nt

0
G∞1 (u)ds

)
.

To prove this, one requires the uniform convergence condition on H(t, x) as t→∞ in (2.22) (and
its rate of convergence is irrelevant). This process can be decomposed into two processes:“

X
n
(t) =

1

an
√
n

An(t)∑
i=1

Ä
H(∞, g(τi, ϑi))−G∞1 (τi)

ä
+

∫ t

0
G∞1 (s)d

Ç
1

an
√
n

(A(ns)− λns)
å
.

These two processes are asymptotically independent, with the first capturing the variabilities in the
noises {ϑi} and the second capturing the variabilities in the renewal arrival process A(·) (see the
relevant discussions below (3.4) in the high intensity scaling regime). One can then prove the MDP

for each component and obtain the MDP for {
“
X
n
}n∈N with the rate function IMDP

∞ : DT → [0,∞]
given by

IMDP
∞ (φ) = inf

(φ1,φ2)∈DT×DT : φ=φ1+φ2

¶
IMDP

1,∞ (φ1) + IMDP
2,∞ (φ2)

©
, (2.26)

where

IMDP
1,∞ (φ1)

.
=

1

2λ

∫ T

0

|φ̇1(t)|2

G∞2 (t)− (G∞1 (t))2
dt ,

IMDP
2,∞ (φ2)

.
=

1

2λ3σ2

∫ T

0

|φ̇2(t)|2

(G∞1 (t))2
dt ,

and the two components in the rate function correspond to the two processes in the decomposition
above. Note that the infimum in (2.26) is over a convex functional of φ1 and φ2 subject to a
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constraint (viz., φ = φ1 +φ2). This can then be explicitly solved to obtain the desired result in the
theorem.

Remark 2.14. We remark on how the rate function is related to the FCLT for the diffusion-scaled
process

√
n

(
1

n

An(t)∑
i=1

H(nt− τi, ξi)−
λ

n

∫ nt

0
E[H(nt− s, g(s, ϑ1))]ds

)
.

Observe that it again be shown to be exponentially equivalent to a process that can be decomposed
into two components:

1√
n

An(t)∑
i=1

Ä
H(nt− τi, ξi)−G∞1 (τi)

ä
+

∫ t

0
G∞1 (s)dÂn(s)

where Ân(t) is defined in (2.21). It can be shown (for example, modifying the proofs in [29, 35])
that the diffusion-scaled processes converge in (DT , J1) to

B1

Ç∫ t

0
λVar(H(∞, g(s, ϑ1)))ds

å
+B2

Ç∫ t

0
λ3σ2(G∞1 (s))2ds

å
where B1 and B2 are two independent Brownian motions. Also, observe that the sum of the two
independent Brownian limits is equivalent in distribution to a Brownian motion with the variance
function

∫ t
0 σ

2
∞(u)du, for σ2

∞(u) given in (2.25). The function σ2
∞(·) is also exactly what appears

in the rate function in (2.24).
In the special case of i.i.d. noises with g(t, x) = x, the variance coefficient of the Brownian limit

reduces to

λVar(H(∞, ϑ1) + λ3σ2(E[H(∞, ϑ1)])2.

This is the variance coefficient in the FCLT for the compound renewal process
∑A(t)
i=1 H(∞, ϑi).

2.4. Comparison with the LDPs for shot noise processes in the two scaling regimes. In
this section, we discuss the differences of the MDP results above with the LDP results in the two
scaling regimes. We first recall the LDP result for renewal processes An defined in (2.7).

Theorem 2.4. [52, Theorem 6.1(b)] Assume that E[eγη1 ] <∞, for some γ > 0. Let γ∗
.
= sup{γ :

E[eγη1 ] <∞}. Then {n−1An}n∈N satisfies LDP in (DT , J1) with rate n and rate function

ILDP
A (x) =

{∫ T
0 ϕ(ẋ(t))dt, whenever x ∈ AC0,

∞, otherwise,

where

ϕ(x)
.
= sup

¶
γx− logE[eγη1 ] : γ < γ∗

©
.

Remark 2.15. Since An(t) = A(nt) in both the conventional scaling and the high intensity regimes,
the above LDP result is applicable in both the regimes.

2.4.1. LDP in the high intensity regime. Recall that X̄n was defined in (2.6). We assume that
Assumptions 2.1 and 2.2 hold. Moreover, we also assume that the following conditions hold.

E
[

exp
(
ρ sup
t,s∈[0,T ]

|H(t, s, ϑ1)|
)]
<∞, for every ρ > 0. (2.27)

lim
δ↓0

sup
t∈[0,T ]

logE
[

exp
(
ρ sup

0≤u≤δ
sup
t∈[0,T ]

|H(t+ u, s, ϑi)−H(t, s, ϑi)|
)]

= 0 (2.28)

The family of DT –valued random variables {X̄n}n∈N can be shown to satisfy the following:
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(i) For every Borel measurable set A in (DT , J1),

− inf
φ∈A◦

ILDP[X̄n](φ) ≤ lim inf
n→∞

1

n
logP(X̄n ∈ A)

≤ lim sup
n→∞

1

n
logP(X̄n ∈ A) ≤ − inf

φ∈Ā
ILDP[X̄n](φ).

(ii) For l ≥ 0, {φ : ILDP[X̄n](φ) ≤ l} is a compact set in (DT , J1).

Here,

ILDP[X̄n](φ)

=


supρ∈CT

∫ T

0

(
φ̇(t)

∫ T
t ρ(u)du−ΨA

(
logE

[
exp

Ç ∫ T
t ρ(s)H(s, t, ϑ1)ds

å]))
dt,

if φ ∈ AC0,

∞, otherwise,

(2.29)

where ΨA is defined as

ΨA(ρ)
.
= lim

n→∞
1

n
logE[eρA

n(1)].

From Theorem 1 in [25], we have

ΨA(ρ) = −ψ−1
η (−ρ) with ψη(ρ)

.
= logE[eρη1 ]. (2.30)

Remark 2.16. In what follows, whenever a family of DT –valued random variables {Zn}n∈N satisfy
above conditions (i) and (ii) with function I in place of ILDP[X̄n], we say that {Zn}n∈N satisfies a
large deviation principle with rate function I and rate n.

In the special case of GI/Gt/∞ queueing model, with ξi = g(τi, ϑi) and H(t, x) = 1{t<x}, the
rate function in the LDP becomes

ILDP[X̄n](φ)

=


supρ∈CT

∫ T

0

(
φ̇(t)

∫ T
t ρ(u)du−ΨA

(
logE

[
exp

Ç ∫ T∧(t+g(t,ϑ1))
t ρ(s)ds

å]))
dt,

if φ ∈ AC0,

∞, otherwise.

Note that in [24], the LDP for the GI/GI/∞ queue is established for the queueing process X(t)
at each fixed time t = t̂ ∈ [0, T ]. (That result can be formally obtained by setting ρ(·) = ρ̂δt̂(·) for
some constant ρ̂.) Our result extends that to a model with non-stationary service times and the
LDP result is in the sample-path sense (see also [6] for the sample-path LDP is established for a
two-parameter process tracking the elapsed/residual service times in GI/GI/∞ queues).

We also remark that the proof of the sample-path LDP for the scaled shot noise process X̄n(t)

differs from that of the MDP for the processes ‹Xn(t) in (2.9). The main difference between LDP and
MDP is similar to that of LLN and CLT viz., centering is necessary for MDP and CLT. Although
one can follow a similar approach in Section 3, the proof of finite-dimensional LDP would require
appropriate limits of log moment generating of An(·) and ϑ1, and the proof of exponential tightness
could be modified appropriately without the centering terms. In Appendix B, we provide a sketch
of the proofs of these results.
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2.4.2. LDP in the conventional time-space scaling regime. Next, for the shot noise process X(t) in
(2.1), define the following scaled process

¯̄Xn(t)
.
=

1

n

A(nt)∑
i=1

H(nt− τi, ξi). (2.31)

Here, we again assume that ξi is of the form g(τi, ϑi), for a family of i.i.d random variables {ϑi}i∈N
and that H(t, x) → H(∞, x) as t → ∞, uniformly in x ∈ Rd. The LDP result gives the rate
function:

ILDP[ ¯̄Xn](φ) =


supρ∈CT

∫ T

0

(
φ̇(t)ρ(t)−ΨA

(
logE

[
exp

Ç
ρ(t)H(∞, t, ϑ1)

å]))
dt,

if φ ∈ AC0,

∞, otherwise.

(2.32)

This can be established by using an argument similar to the one that is sketched in Appendix B.
In the case of i.i.d. noises with g(t, x) = x, the LDP is like that for the compound renewal process

as studied in [8]. However, with the general function g(t, x), the LDP is an extension to compound
renewal processes with non-stationary compound variables (arrival time dependent distributions).

In addition, in the special case of Poisson arrivals and i.i.d. noises, the LDP result coincides with
that in [22] and also in [15] when their model does not have state-dependent component in H. In
this case, the rate function is

ILDP[ ¯̄Xn](φ) =

{∫ T
0 Λ∗(φ̇(t))dt, if φ ∈ AC0,

∞, otherwise,
(2.33)

where
ΛH(∞,ξ)(θ) = logE[exp(θH(∞, ξ1))], Λ(θ) = λ

Ä
exp
Ä
ΛH(∞,ξ)(θ)

ä
− 1
ä

and Λ∗(x) is the Legendre transform of Λ, that is,

Λ∗(x) = sup
θ∈R
{θx− Λ(θ)}.

One can easily see how the rate function in (2.32) reduces to that in (2.33) by noting ΨA(ρ) =
λ(eρ − 1) for Poisson arrival process A(t). However, even with Poisson arrivals, for non-stationary
noises, one cannot simplify the rate function in (2.32) except using ΨA(ρ) = λ(eρ − 1).

3. Proof of Theorem 2.2

In this section we prove the sample-path MDP for ‹Xn(t) in (2.9) as stated in Theorem 2.2. First,

we observe that the process ‹Xn can be decomposed into two processes:‹Xn(t) = ‹Xn
1 (t) + ‹Xn

2 (t), (3.1)

where ‹Xn
1 (t)

.
=

1

an
√
n

An(t)∑
i=1

‹H(t, τni , ϑi) , (3.2)‹Xn
2 (t)

.
=

∫ t

0
G1(t, s)d‹An(s) , (3.3)

with ‹H(t, s, x)
.
= H(t, s, x)−G1(t, s), (3.4)

and ‹An is as defined in (2.10).
Before proceeding to the proof, we provide an overview of the proof strategy. From the statement

of the rate function in Theorem 2.2, as a sum of the two rate functions associated with the rate
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functions of ‹Xn
1 (t) and ‹Xn

2 (t), it may appear that the rate function comes from two independent

processes. However, the two processes ‹Xn
1 (t) and ‹Xn

2 (t) are not independent since both depend
on the arrival process An(t). On the other hand, because of the independence of η1, η2, . . . and

ϑ1, ϑ2, . . ., the two processes ‹Xn
1 (t) and ‹Xn

2 (t) are asymptotically independent as n → ∞, in the

sense that the variability of ‹Xn
1 (t) (as given in Λ(t, s) in (2.5)) only depends on the arrival rate λ of

the renewal process An(t), and comes rather from the variability of the noises, while the variability

of ‹Xn
2 (t) depends on the variability of the interarrival times of renewal process An(t) (as in the

associated FCLT). (This is also the case in the FCLT result for the shot noise processes in the high

intensity regime [46].) Therefore, we construct another process {ÙXn
1 } (see (3.5) below), which is

exponentially equivalent (see Theorem 3.1) to {‹Xn
1 }, and more importantly, independent of {‹Xn

2 }.
Thus, by [18, Theorem 4.2.13], instead of establishing the MDP of {(‹Xn

1 ,
‹Xn

2 )}n∈N, it then suffices

to establish the MDPs of {ÙXn
1 }n∈N and {‹Xn

2 } separately.

The proof of the sample-path MDP of {ÙXn
1 } inDT uses Gärtner–Ellis theorem [18, Theorem 2.3.6]

and Dawson–Gärtner theorem [18, Theorem 4.6.1]. We first establish the MDP in the topology
of pointwise convergence and then strengthen it to be in the Skorohod J1 topology. To be more
elaborate, we first prove the MDP for the finite dimensional distributions (see Lemma 3.2) by
considering appropriate limits of the log-moment generating function (see Proposition 3.1). Using

this, we arrive at the sample-path MDP of ÙXn
1 in topology of pointwise convergence by invoking

Dawson–Gärtner theorem. We next establish exponential tightness to arrive at the desired MDP in

(DT , J1). The MDP of {‹Xn
2 }n∈N is derived using the contraction principle and the existing MDP

for renewal processes (Theorem 2.1).

3.1. Exponential equivalence of ‹Xn
1 and ÙXn

1 . To prove this, we introduce a new process that
involves an appropriate truncation. This truncation is in such a way that as n → ∞, truncation
parameter also goes to infinity. This truncation technique is borrowed from [20] (see Theorem 2.2
of that paper). Fix l > 0 and defineÙXn

1 (t)
.
=

1

an
√
n

bλntc∑
i=1

Hn(t, sni , ϑi), (3.5)

where Hn(t, s, x)
.
= ‹Hn(t, s, x)− E

[‹Hn(t, s, ϑ1)
]

with‹Hn(t, s, x)
.
= H(t, s, x)1{|H(t,s,x)|≤l

√
na−1
n }.

In the above, sni
.
= i

λn . Note that comparing with ‹Xn
1 , in the definition of ÙXn

1 , we have replaced

the arrival times τni = τi
n by sni = i

λn and An(t) by bλntc, and thus removed the randomness from

the arrival process An. We prove that ÙXn
1 is exponentially equivalent to ‹Xn

1 in (DT , J1) below.
We give an important auxiliary result which is often used in the rest of the paper.

Lemma 3.1. The following hold. For t1, t2, s1, s2 ∈ [0, T ],

lim
n→∞

1

n

bλnt1c∑
i=1

∫
Rd
Hn(t1, s

n
i , x)2F (dx) = λ

∫ t1

0

∫
Rd

‹H(t1, s, x)2F (dx)ds , (3.6)

lim
n→∞

1

n
E
[ bλnt1c∑

i=1

bλnt2c∑
j=1

Hn(t1, s
n
i , ϑi)H

n(t2, s
n
j , ϑj)

]
= Λ(t1, t2) , (3.7)

lim sup
n→∞

1

n
E
[ bλnT c∑

i=1

∫
Rd

Ä
Hn(t1, s1, x)−Hn(t2, s2, x)

ä2
F (dx)

]



15

= lim sup
n→∞

1

n
E
[ bλnT c∑

i=1

∫
Rd

Ä‹H(t1, s1, x)− ‹H(t2, s2, x)
ä2
F (dx)

]
. (3.8)

Proof. We begin by recalling that

Hn(t, s, x) = ‹Hn(t, s, x)− E[‹Hn(t, s, ϑ1)].

Clearly, ‹Hn(t, s, x) and E[‹Hn(t, s, ϑ1)] increase to H(t, s, x) and E[H(t, s, ϑ1)], respectively as n→
∞. Consider

E
[

sup
t,s∈[0,T ]

|Hn(t, s, ϑ1)− ‹H(t, s, ϑ1)|2
]

= E
[

sup
t,s∈[0,T ]

∣∣∣∣H(t, s, ϑ1)1{|H(t,s,x)|>l
√
na−1
n } − E

[
H(t, s, ϑ1)1{|H(t,s,x)|>l

√
na−1
n }

]∣∣∣∣2]
≤ 2E

[
sup

t,s∈[0,T ]

∣∣∣∣H(t, s, ϑ1)1{|H(t,s,x)|>l
√
na−1
n }

∣∣∣∣2]+ sup
t,s∈[0,T ]

E
[
H(t, s, ϑ1)1{|H(t,s,x)|>l

√
na−1
n }

]∣∣∣∣2. (3.9)

Since using Lemma 2.1 we know that

E
[

sup
t,s∈[0,T ]

|H(t, s, ϑ1)|2
]
<∞,

taking n→∞, terms in (3.9) goes to zero which in turn, implies

lim
n→∞

E
[

sup
t,s∈[0,T ]

|Hn(t, s, ϑ1)− ‹H(t, s, ϑ1)|2
]

= 0

Below, we only prove (3.6) as the proofs of (3.7) and (3.8) follow on the similar lines. From
the above display, for every ε > 0, we can choose n large enough (uniformly in t ∈ [0, T ] and
1 ≤ i ≤ bλnt1c) such that∣∣∣∣ ∫

Rd
Hn(t1, s

n
i , x)2F (dx)−

∫
Rd

‹H(t1, s
n
i , x)2F (dx)

∣∣∣∣ < ε.

Therefore, using the Lebesgue measurability of ‹H, we have∣∣∣∣ 1n
bλnt1c∑
i=1

∫
Rd
Hn(t1, s

n
i , x)2F (dx)− λ

∫ t1

0

∫
Rd

‹H(t1, s, x)2F (dx)ds

∣∣∣∣
≤
∣∣∣∣ 1n
bλnt1c∑
i=1

∫
Rd
Hn(t1, s

n
i , x)2F (dx)− 1

n

bλnt1c∑
i=1

∫
Rd

‹H(t1, s
n
i , x)2F (dx)

∣∣∣∣
+

∣∣∣∣ 1n
bλnt1c∑
i=1

∫
Rd

‹H(t1, s
n
i , x)2F (dx)− λ

∫ t1

0

∫
Rd

‹H(t1, s, x)2F (dx)ds

∣∣∣∣
Now taking n→∞ and then taking ε ↓ 0, (3.6) follows. �

Theorem 3.1. Under Assumptions 2.1, 2.2, 2.3 and 2.4(ii), for any δ > 0,

lim
n→∞

1

a2
n

logP
Ä
‖‹Xn

1 − ÙXn
1 ‖T > δ

ä
= −∞.

Remark 3.1. Using Theorem 3.1 and Theorem 4.2.13 of [18], we can conclude the MDP of {‹Xn
1 }n∈N

in (DT , J1) from the MDP of {ÙXn
1 }n∈N in (DT , J1).

The proof is given in Section 4.
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3.2. MDP for the finite dimensional distributions of ÙXn
1 .

Proposition 3.1. Under Assumption 2.3, for N ≥ 1 and 0 < t1 < t2 < t3 < . . . < tN ≤ T , we
have

lim
n→∞

1

a2
n

logE
[
exp

(
a2
n

N∑
m=1

ρm ÙXn
1 (tm)

)]
=

1

2

N∑
i,j=1

ρiρjΛ(ti, tj) (3.10)

for every {ρm}Nm=1 ⊂ R, where Λ(·, ·) is defined in (2.5). In particular, for t ∈ [0, T ] and ρ ∈ R,

lim
n→∞

1

a2
n

logE
î
exp
Ä
a2
nρ
ÙXn

1 (t)
äó

=
1

2
ρ2Λ(t, t).

Proof. Recall the definition of ÙXn
1 :ÙXn

1 (t) =
1

an
√
n

bλntc∑
i=1

Hn(t, sni , ϑi), for t ∈ [0, T ],

where {ϑi}i∈N is a family of Rd–valued i.i.d. random variables distributed according to F .
Since for every n, Hn(t, s, x) is uniformly bounded in (t, s, x) ∈ R+ × R+ × Rd, we infer that

E
î

exp
Ä
a2
nρ
ÙXn

1 (t)
äó

is finite for every ρ ∈ R, t ∈ [0, T ] and n ∈ N. Therefore, the following series
expansion holds:

E
î
exp
Ä
a2
nρ
ÙXn

1 (t)
äó

= E
[

exp

(
ρ
an√
n

bλntc∑
i=1

Hn(t, sni , ϑi)

)]

=
∞∑
k=0

ρk

k!

Ç
an√
n

åk
E
[( bλntc∑

i=1

Hn(t, sni , ϑi)

åk]
.

Note that the linear term in the above equation is zero as E[Hn(t, sni , ϑi)] = 0. Since {ϑi}i∈N is an
i.i.d. sequence, using the definition of Hn(t, sni , ϑi) we have

E
[Ç bλntc∑

i=1

Hn(t, sni , ϑi)

å2
]

=

bλntc∑
i=1

∫
Rd
Hn(t, sni , x)2F (dx)

E
[Ç bλntc∑

i=1

Hn(t, sni , ϑi)

å3
]

=

bλntc∑
i=1

∫
Rd
Hn(t, sni , x)3F (dx). (3.11)

Taking the logarithm on both sides of the above and then applying the Taylor’s theorem to the
function log(1 + x), we get

1

a2
n

logE
î
exp
Ä
a2
nρ
ÙXn

1 (t)
äó

=
1

a2
n

ρ2a2
n

2n
E
[ bλntc∑

i=1

Hn(t, sni , ϑi)
2

]
+O

(
|E[ sup

t,s∈[0,T ]
Hn(t, s, ϑ1)3]|ann−

1
2

)
. (3.12)

Recall (2.14). Now from (3.12) and Lemma 2.1, taking n→∞, we obtain

lim
n→∞

1

a2
n

logE
î
exp
Ä
a2
nρ
ÙXn

1 (t)
äó

= lim
n→∞

1

n

ρ2

2

bλntc∑
i=1

∫
Rd
Hn(t, sni , x)2F (dx)

=
ρ2λ

2

∫ t

0

∫
Rd

‹H(t, s, x)2dsF (dx)

=
ρ2

2
Λ(t, t).
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Here the second equality follows from (3.6) of Lemma 3.1 and the last equation follows from the
definition of Λ(·, ·).

To prove (3.10) in the finite-dimensional case, we use a similar argument. Using the fact that
Hn, for every n uniformly bounded in all the arguments and applying Taylor’s theorem to the
function exp(x), we have

E
[

exp

(
an√
n

N∑
m=1

ρm

bλntmc∑
i=1

Hn(tm, s
n
i , ϑi)

)]

= 1 + E
[(

an√
n

N∑
m=1

ρm

bλntmc∑
i=1

Hn(tm, s
n
i , ϑi)

)2]
+O

(
E
[

sup
t,s∈[0,T ]

|Hn(t, s, ϑ1)|3
]
ann

− 1
2

)
, (3.13)

= 1 +
a2
n

n

N∑
k,m=1

ρmρkE
[ bλntmc∑

i=1

bλntkc∑
j=1

Hn(tm, s
n
i , ϑi)H

n(tk, s
n
j , ϑj)

]

+O
(
E
[

sup
t,s∈[0,T ]

|Hn(t, s, ϑ1)|3
]
ann

− 1
2

)
. (3.14)

In the above, we again use the fact that E[Hn(tm, s
n
i , ϑi)] = 0 and {ϑi}i∈N is an i.i.d. sequence.

Taking the limit as n→∞, we get

lim
n→∞

1

a2
n

logE
[

exp

(
an√
n

N∑
m=1

ρm

bλntmc∑
i=1

Hn(tm, s
n
i , ϑi)

)]

= lim
n→∞

1

n

N∑
k,m=1

ρmρk

bλntmc∧bλntkc∑
i=1

(G2(tm, tk, s
n
i )−G1(tm, s

n
i )G1(tk, s

n
i )) (3.15)

=
1

2

N∑
k,m=1

ρmρkΛ(tm, tk), from the definition of Λ(·, ·). (3.16)

In the above, we get (3.15) after using (3.7) of Lemma 3.1 and also using the fact that the term
in (3.14) goes to zero as n→∞, using Lemma 2.1. This completes the proof of the lemma. �

The following lemma gives us the MDP of {ÙXn
1,N}n∈N

.
= {ÙXn

1 (t1), ÙXn
1 (t2), ÙXn

1 (t3), . . . , ÙXn
1 (tN )}n∈N,

for every N ∈ N and 0 < t1 < t2 < t2 < t3 < . . . < tN ≤ T .

Lemma 3.2. Under Assumption 2.3, the family of RN–valued random variables {ÙXn
1,N}n∈N satis-

fies the following:

(i) For every Borel measurable set A in RN ,

− inf
x∈A◦

INf (x) ≤ lim inf
n→∞

1

a2
n

logP(ÙXn
1,N ∈ A) ≤ lim sup

n→∞

1

a2
n

logP(ÙXn
1,N ∈ A) ≤ − inf

x∈Ā
INf (x). (3.17)

(ii) For l ≥ 0, {x : INf (x) ≤ l} is a compact set in RN .

Here, INf : RN → [0,∞] is given by

INf (x) =
1

2
〈x, Λ̂−1x〉, (3.18)

where {Λ̂ij}
.
= {Λ(ti, tj)} for 1 ≤ i, j ≤ N and Λ(·, ·) is as defined in (2.5).

Proof. From Proposition 3.1, it is clear that

χ(ρ)
.
= lim

n→∞
1

a2
n

logE
[
exp

(
a2
n

N∑
m=1

ρm ÙXn
1 (tm)

)]
=

1

2
〈ρ, Λ̂ρ〉
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for every ρ ∈ RN . The Fenchel-Legendre transform of χ(·) is given by

χ∗(x)
.
= sup

ρ∈RN

Ä
〈x, ρ〉 − χ(ρ)

ä
=

1

2
〈x, Λ̂−1x〉. (3.19)

The second equality follows from a simple calculation. Now applying Theorem 2.3.6 in [18], we
have the result with INf = χ∗ after noting that statement in (ii) is clearly true. �

3.3. Sample-path MDP of {ÙXn
1 }n∈N in DT with the topology of pointwise convergence.

We next extend the above finite-dimensional MDP result to the sample-path MDP of {ÙXn
1 }n∈N

in DT endowed with the topology of pointwise convergence. The form of INf makes it difficult in

taking N → ∞. To overcome this difficulty, we simplify (3.18) in the following way: Instead of
solving the optimization problem

sup
ρ∈RN

Ä
〈x, ρ〉 − χ(ρ)

ä
explicitly in x using calculus (say) which can be difficult to perform in the case of infinite dimensions,
we solve it using the property of Euclidean inner product 〈·, ·〉. The advantage in doing so is that
this method works even when 〈·, ·〉 denotes a general inner product. With this observation in mind,

we first note that Λ̂ is positive definite. Therefore, for every x, there is a unique v ∈ RN such
that x = Λ̂v. We now solve the aforementioned optimization problem using just the properties of
Euclidean inner product 〈·, ·〉:

〈x, ρ〉 − 1

2
〈ρ, Λ̂ρ〉 = 〈Λ̂v, ρ〉 − 1

2
〈ρ, Λ̂ρ〉

= 〈v, Λ̂ρ〉 − 1

2
〈ρ, Λ̂ρ〉

=
1

2
〈v, Λ̂v〉 − 1

2
〈(ρ− v), Λ̂(ρ− v)〉.

where we have used the fact that Λ̂ is symmetric to get the second equality. From above, it is clear
that the supremum in (3.19) occurs when ρ = v and the value is

1

2
〈v, Λ̂v〉.

Clearly, as mentioned above, this method is robust enough to be applied for an infinite dimensional
Hilbert space. This is the motivation for the construction of a reproducing kernel Hilbert space in
the proof of the Theorem 3.2 below.

We are now in a position to state the sample-path MDP of {ÙXn
1 }n∈N in DT with the topology of

pointwise convergence. Recall that {fn}n∈N ⊂ DT converges to f ∈ DT as n→∞ in this topology
if fn(t)→ f(t), as n→∞, for t ∈ [0, T ].

Theorem 3.2. Suppose Assumptions 2.1, 2.3 hold. Then the family of DT –valued random variables

{ÙXn
1 }n∈N satisfies an MDP in the topology of pointwise convergence with rate a2

n and rate function
IMDP

1 : DT → [0,∞] given by (2.19).

Proof. Using Lemma 3.2 and Theorem 4.6.1 in [18], we have the MDP of {ÙXn
1 }n∈N with rate a2

n

and rate function IMDP : DT → [0,∞] given by

IMDP
1 (x)

.
= sup

0<t1<t2<...<tN≤T
INf (x(t1), x(t2), . . . , x(tN ))

=
1

2
sup

0<t1<t2<...<tN≤T

N∑
i,j=1

vNi Λ(ti, tj)v
N
j , (3.20)
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where vNj ’s are such that

x(ti) =
N∑
j=1

Λ(ti, tj)v
N
j , for 1 ≤ i ≤ N.

The rest of the proof is to show that the right hand sides of (2.19) and (3.20) are equal, when
they are finite. To that end, we interpolate (x(t1), x(t2), . . . , x(tN )) in the following way:

x̃N (t)
.
=

N∑
j=1

Λ(t, tj)v
N
j . (3.21)

The reason for doing this is that it lies in the Hilbert space defined below (in particular, a repro-
ducing kernel Hilbert space with norm denoted by ‖ · ‖Λ),

‖x̃N‖Λ =
N∑

i,j=1

vNi Λ(ti, tj)v
N
j .

We now construct the aforementioned Hilbert space. This is a standard construction [2, Sec-
tions 1.2 and 1.3], but we give it nonetheless for completeness. From the definition of Λ(·, ·), it is
clear that it is positive definite, i.e., for any v ∈ Rk, k ∈ N,

k∑
i,j=1

vivjΛ(ti, tj) ≥ 0,

for any (t1, t2, . . . , tk) ∈ [0, T ]k. Now consider the span (say H0) of all functions of the form f :
[0, T ]→ R,

f(t) =
K∑
i=1

ajΛ(tj , t),

where K ∈ N, (a1, a2, a3 . . . , aK) ∈ RK and (t1, t2, . . . , tK) ∈ [0, T ]K . Now we define an inner
product on H0 in the following way: for f, g ∈ H0 and (s1, s2, . . . , sJ) ∈ [0, T ]J with

f =
K∑
i=1

aiΛ(ti, t) and g =
J∑
j=1

bjΛ(sj , t),

〈f, g〉Λ
.
=

K∑
i=1

J∑
j=1

aibjΛ(ti, sj).

Finally, we get the reproducing kernel Hilbert space (say H) by completing H0 under 〈·, ·〉Λ [2,
Section 1.2 and 1.3].

Suppose x ∈ H0. Then from the definition of H0, we know

x(t) =
N∑
i=1

vNj Λ(t, ti), for some N and (vN1 , v
N
2 , . . . , v

N
N ) ∈ RN .

Therefore,

‖x‖Λ =
N∑

i,j=1

vNi Λ(ti, tj)v
N
j =

Ñ∑
i,j=1

ṽÑi Λ(ti, tj)ṽ
Ñ
j ,

for any other representation of x(·) such that

x(t) =
Ñ∑
i=1

ṽÑj Λ(t, ti).
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This in turn means that for x ∈ H0,

IMDP
1 (x) =

1

2
sup

0<t1<t2<...<tN≤T

N∑
i,j=1

vNi Λ(ti, tj)v
N
j

=
1

2
sup

0<t1<t2<...<tN≤T
‖x‖2Λ =

1

2
‖x‖2Λ .

Since any x ∈ H is a limit point of some sequence {xn}n∈N ⊂ H0, we can conclude that

IMDP
1 (x) =

1

2
‖x‖2Λ, for x ∈ H.

In the following, we explicitly give the expression for ‖x‖2Λ. To that end, we rewrite

xn(t) =
Nn∑
i=1

(wnj − wnj−1)Λ(t, tj), for some (wn1 , w
n
2 , . . . , w

n
Nn) ∈ RNn .

Then, we have

‖xn‖2Λ =
Nn∑
i,j=1

wni − wni−1

ti − ti−1
Λ(ti, tj)

wnj − wnj−1

tj − tj−1
(ti − ti−1)(tj − tj−1).

Since Λ(·, ·) is Lebesgue measurable on [0, T ]× [0, T ], as n→∞, we have

‖x‖2Λ = lim
n→∞

‖xn‖2Λ =

∫ T

0

∫ T

0
ẇ(s)Λ(s, t)ẇ(t)dsdt, where x(·) =

∫ T

0
Λ(·, s)ẇ(s)ds.

Since only ẇ is involved in the above equation (and it is sufficient for w to lie in AC0 to have the
above integrals well-defined), we replace ẇ(·) = z(·), where z is a Lebesgue measurable function on
[0, T ] . This gives us

‖x‖2Λ = lim
n→∞

‖xn‖2Λ =

∫ T

0

∫ T

0
z(s)Λ(s, t)z(t)dsdt, where x(·) =

∫ T

0
Λ(·, s)z(s)ds.

This proves the result. �

3.4. Exponential tightness of ÙXn
1 in (DT , J1). In order to prove the MDP {ÙXn

1 }n∈N in (DT , J1),

we need to first establish the exponential tightness (see Section 1.2 for the definition) of {ÙXn
1 }n∈N

in (DT , J1).

Theorem 3.3. Suppose Assumptions 2.1, 2.3, 2.4(ii) and 2.4(iii) hold. Then the following holds

lim
δ→0

lim sup
n→∞

sup
t∈[0,T ]

1

a2
n

logP
Ç

sup
0≤s≤δ

|ÙXn
1 (t+ s)− ÙXn

1 (t)| > ε

å
= −∞, (3.22)

for every ε > 0. As a consequence, {ÙXn
1 }n∈N is exponentially tight in (DT , J1).

The proof is given in Section 5. The space DT under the topology of pointwise covergence is not
Hausdorff. Hence, [18, Corollary 4.2.6] cannot be applied, and thus, one cannot directly conclude

the sample-path MDP of {ÙXn
1 }n∈N in (DT , J1) in Theorems 3.2 and 3.3.

3.5. Completing the proof of Theorem 2.2.

Theorem 3.4. Suppose Assumptions 2.1, 2.3, 2.4(ii) and 2.4(iii) hold. Then the family of DT –

valued random variables {ÙXn
1 }n∈N satisfies an MDP in (DT , J1) with rate a2

n and rate function
IMDP

1 given by (2.19).
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Proof. By the exponential tightness property in Theorem 3.3, from Theorem P in [49] and Theorem
A.3 in [51], we have the following consequence: For every subsequence nk, there exists a further

subsequence (still denoted by nk) such that {ÙXnk
1 }k∈N satisfies MDP in DT under the Skorohod J1

topology with some rate function I(nk). Moreover, I(nk)(x) =∞ whenever x ∈ DT \CT . This means

that for any L > 0, the set K̂L
.
= {I(nk) ≤ L} is a compact set of DT in the J1 topology and contains

only continuous functions. This means that K̂L is also compact in the uniform topology (i.e., the
topology that is induced by ‖ · ‖T ). This follows from the fact that the J1 topology restricted to
CT is the same as the uniform topology.

Now consider a closed set C ⊂ DT in the J1 topology. We have

lim sup
k→∞

1

a2
nk

logP
Ä ÙXnk

1 ∈ C
ä
≤ lim sup

k→∞

1

a2
nk

log
(
P
Ä ÙXnk

1 ∈ C ∩ K̂L

ä
+ P
Ä ÙXnk

1 ∈ C ∩ K̂c
L

ä)
≤ max

{
lim sup
k→∞

1

a2
nk

logP
Ä ÙXnk

1 ∈ C ∩ K̂L

ä
,

lim sup
k→∞

1

a2
nk

logP
Ä ÙXnk

1 ∈ C ∩ K̂c
L

ä}
≤ max

{
lim sup
k→∞

1

a2
nk

logP
Ä ÙXnk

1 ∈ C ∩ K̂L

ä
,

lim sup
k→∞

1

a2
nk

logP
Ä ÙXnk

1 ∈ K̂
c
L

ä}
≤ max

{
lim sup
k→∞

1

a2
nk

logP
Ä ÙXnk

1 ∈ C ∩ K̂L

ä
,−L

}
.

We have obtained the last inequality after using the fact that {ÙXnk
1 }k∈N satisfies MDP in (DT , J1)

with rate function I(nk) and the upper bound in the definition of MDP. Indeed,

lim sup
k→∞

1

a2
nk

logP
Ä ÙXnk

1 ∈ K̂
c
L

ä
≤ − inf

x∈K̂L
I(nk)(x) ≤ −L .

Now observe that C ∩ K̂L is closed in DT under uniform topology, and then it is also closed under
the topology of pointwise convergence. Therefore, using Theorem 3.2 and the MDP upper bound,
we get

lim sup
k→∞

1

a2
nk

logP
Ä ÙXnk

1 ∈ C
ä
≤ max

®
− inf
x∈C∩K̂L

IMDP
1 (x),−L

´
≤ max

®
− inf
x∈C

IMDP
1 (x),−L

´
≤ − inf

x∈C
IMDP

1 (x), after taking L ↑ ∞.

Since the right hand above is independent of the subsequence nk, we have

lim sup
n→∞

1

a2
n

logP
Ä ÙXn

1 ∈ C
ä
≤ − inf

x∈C
IMDP

1 (x).

We now move on to proving the lower bound in the definition of MDP. To do that, we remark that
it only suffices to prove the following: for any x ∈ DT such that IMDP

1 (x) <∞, for any subsequence
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nk and any open ball (in the J1 topology) of radius δ > 0 around x (denoted by Ox(δ)), we have

lim inf
n→∞

1

a2
n

logP
Ä ÙXn

1 ∈ Ox(δ)
ä
≥ −IMDP

1 (x) .

Without loss of generality, we can take x ∈ CT . Since x is continuous on [0, T ], it is also uniformly
continuous and let wx(·) be its modulus of continuity. Then from the property of the J1 topology,
there is an open r-ball Bx(‖ · ‖T , r) around x in uniform topology such that Bx(‖ · ‖T , r) ⊂ Ox(δ).
To see this, let e(·) denote the identity map on [0, T ] and a(·) : [0, T ]→ [0, T ] be a non-decreasing
and onto function. Using the definition of the J1 topology, we have

max{‖y − x ◦ a‖T , ‖e− a‖T } ≤ max
¶
‖y − x‖T + wx(‖e− a‖T ), ‖e− a‖T

©
with f ◦ g denoting the composition of functions f and g. Therefore, choosing r = δ

2 and a ≡ e, we
can ensure that

Bx(‖ · ‖T , r) ⊂ Ox(δ).

Again fix a subsequence nk, along which {ÙXnk
1 }k∈N satisfies the MDP in (DT , J1). For L > 0,

choose K̂L corresponding to this subsequence as earlier. From the above discussion, we have

lim inf
k→∞

1

a2
nk

logP
Ä ÙXnk

1 ∈ Bx(‖ · ‖T , δ)
ä
≤ lim inf

k→∞

1

a2
nk

logP
Ä ÙXnk

1 ∈ Ox(δ)
ä
.

Following the proof of the lower bound in Theorem 4.2.4 in [18] (whose proof involves choosing a
continuous function g mapping (DT , ‖ · ‖T ) to DT with the topology of pointwise convergence and

a compact set in (DT , ‖ · ‖T ); to that end, we choose K̂L as the compact set and the function g as
the continuous injection of (CT , ‖ · ‖T ) into CT with topology of pointwise convergence), we get

lim inf
k→∞

1

a2
nk

logP
Ä ÙXnk

1 ∈ Ox(δ)
ä
≥ lim inf

k→∞

1

a2
nk

logP
Ä ÙXnk

1 ∈ Bx(‖ · ‖T , δ)
ä
≥ −IMDP

1 (x).

From the arbitrariness of the sequence nk, we have

lim inf
n→∞

1

a2
n

logP
Ä ÙXn

1 ∈ Ox(δ)
ä
≥ −IMDP

1 (x).

To show that {x ∈ DT : IMDP
1 (x) ≤ l} is a compact set (in the J1 topology) of DT for every

l ≥ 0, we do the following: Using the same argument as earlier, over any subsequence, {ÙXn
1 }n∈N

satisfies an MDP in (DT , J1) with some rate function I(n) which is such that {x ∈ DT : I(n)(x) ≤ l}
is a compact set (in the J1 topology) of DT . From Lemma 4.1.4 in [18], the rate function I(n) and

IMDP
1 are identical. Hence, IMDP

1 also satisfies the desired property. This completes the proof. �

Next we prove the MDP of {‹Xn
2 }n∈N by using the MDP for renewal processes in Theorem 2.1.

Proposition 3.2. Suppose Assumptions 2.1, 2.2 and 2.4(i) hold. Then the family of DT –valued

random variables {‹Xn
2 }n∈N satisfies an MDP in (DT , J1) with rate a2

n and rate function IMDP
2 given

by (2.20).

Proof. From Theorem 2.1, we know that {‹An}n∈N satisfies MDP with rate a2
n and rate function

IMDP
A . By integration by parts, we can write‹Xn

2 (t) =

∫ t

0
G1(t, s)d‹An(s)

= ‹An(t)G1(t, t)−
∫ t

0

‹An(u−)dG1(t, u) .
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From Lemma 6.1 in [46], Assumptions 2.1 and 2.4(i), we know that the mapping φ : (DT , J1) →
(DT , J1) defined by

φ(f)
.
= f(t)G1(t, t)−

∫ t

0
f(u−)dG1(t, u)

is continuous. Therefore, using the contraction principle [18, Theorem 4.2.1], we can conclude that

{‹Xn
2 }n∈N satisfies MDP in (DT , J1) with rate a2

n and rate function given by (2.20). �

Proof of Theorem 2.2. Let ÙXn(t)
.
= ÙXn

1 (t) + ‹Xn
2 (t), for t ∈ [0, T ].

From Theorem 3.1 and Theorem 4.2.13 in [18], the MDP of {‹Xn}n∈N in (DT , J1) is implied by the

MDP of {ÙXn}n∈N in (DT , J1) with the same rate and rate function. To get the MDP of {ÙXn}n∈N,
we use Proposition 3.2 and Theorem 3.4. This concludes the proof of the theorem. �

4. Proof of Exponential Equivalence (Theorem 3.1)

Firstly from Theorem 2.1, it is evident that for large n, An(t) satisfies the following with large
probability: for any k ≥ 0, there is n(k) such that for n ≥ n(k),

bλntc − bkan
√
nc ≤ An(t)(ω) ≤ bλntc+ bkan

√
nc, ∀ t ∈ [0, T ]. (P)

This suggests that we split the probability

P
Ä
‖‹Xn

1 − ÙXn
1 ‖T > δ

ä
into probabilities over two sets viz., over a set where the above property (P) holds (say Pn1 (k)) and
over a set where the above property (P) does not hold (say Pn2 (k)).

We will show that Pn2 (k) can be ignored for large n and hence, the only relevant term for large
n is Pn1 (k). To that end, define the following set:

W(k)
.
=
¶
ω : Λ−(t, k) < An(t)(ω) < Λ+(t, k), for n ≥ n(k) and t ∈ [0, T ]

©
(4.1)

where Λ±(s, k)
.
= bλsnc± bkan

√
nc. As mentioned already, the reason behind defining and consid-

ering the above sets is as follows: from Theorem 2.1, it is clear that for any k ≥ 0, the event¶
ω : |An(t)− λnt| ≥ bkan

√
nc
∣∣∣ , for t ∈ [0, T ]}

occurs with probability of the order of e−ka
2
n , for large n. Therefore, defining the setW(k) as above

allows us to study events that are very probable. Note that on W(k), we have the following:

sni −
1 + bkan

√
nc

bλnc
≤ τni ≤ sni +

bkan
√
nc

bλnc
, for 1 ≤ i ≤ bλnT c+ bkan

√
nc. (4.2)

To see this, we note that

|An(t)− bλntc| < bkan
√
nc, for t ∈ [0, T ]

on W(k). Since An(τni ) = i, we write

bλnτni c − bkan
√
nc < i < bλnτni c+ bkan

√
nc

=⇒ λnτni − bkan
√
nc < i < λnτni + 1 + bkan

√
nc

=⇒ sni −
1 + bkan

√
nc

λn
< τni < sni +

bkan
√
nc

λn
.
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We use the following representation in what follows. For a bounded Borel measurable function
f : [0, T ]→ R,

1

n

bλnT c∑
i=1

f(sni ) = λ

∫ T

0
f
Ä
snbλnsc

ä
ds+

f(sn0 )

n
+ λf(snbλnT c)

(
T − bλnT c

λn

)
= λ

∫ T

0
f
Ä
snbλnsc

ä
ds+O

Ä
n−1
ä

(4.3)

Recall that sni = i
λn .

Proof of Theorem 3.1. Fix δ > 0 and k > 0. Consider the event W(k) defined in (4.1). From now
on, we write Pk(A) for P(A ∩W(k)) and Ek[·] for E[·1W(k)], for short. Suppose we have

lim
n→∞

1

a2
n

logPk
Ä
‖‹Xn

1 − ÙXn
1 ‖T > δ

ä
= −∞, for every δ > 0 (4.4)

Then consider W(k)c which is a closed set. From Theorem 2.1 and the definition of MDP (as

{‹An}n∈N satisfies an MDP from Theorem 2.1), we have

lim sup
n→∞

1

a2
n

logP
(¶
‖‹Xn

1 − ÙXn
1 ‖T > δ

©
∩W(k)c

)
≤ lim sup

n→∞

1

a2
n

logP
Ä
W(k)c

ä
≤ − inf

x∈W(k)c
IMDP
A (x).

Combining (4.4) and the above display, we have

lim sup
n→∞

1

a2
n

logP
Ä
‖‹Xn

1 − ÙXn
1 ‖T > δ

ä
≤ max

{
lim sup
n→∞

1

a2
n

logP
(¶
‖‹Xn

1 − ÙXn
1 ‖T > δ

©
∩W(k)c

)
,

lim sup
n→∞

1

a2
n

logP
(¶
‖‹Xn

1 − ÙXn
1 ‖T > δ

©
∩W(k)

)}
≤ − inf

x∈W(k)c
IMDP
A (x).

Now letting k ↑ ∞, we have the result. Therefore, it suffices to show that (4.4) holds for every
k > 0.

To do this, we now define an intermediate process

Y n
1 (t)

.
=

1

an
√
n

An(t)∑
i=1

‹H(t, τni , ϑi)1{|H(t,τni ,ϑi)|≤
δ
2
an
√
n}.

We now show that ‹Xn
1 and Y n

1 satisfy

lim
n→∞

1

a2
n

logPk
Ä
‖‹Xn

1 − Y n
1 ‖T > δ

ä
= −∞, for every δ > 0 (4.5)

and then proceed to show that Y n
1 and the process Y n

2 defined as

Y n
2 (t)

.
=

1

an
√
n

An(t)∑
i=1

Ä
Hn(t, τni , ϑi)− E

î
Hn(t, τni , ϑi)

óä
,

satisfy

lim
n→∞

1

a2
n

logPk (‖Y n
1 − Y n

2 ‖T > δ) = −∞, for every δ > 0. (4.6)
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Finally, proving that

lim
n→∞

1

a2
n

logPk
Ä
‖Y n

2 − ÙXn
1 ‖T > δ

ä
= −∞, for every δ > 0 (4.7)

and combining (4.5), (4.6), (4.7), we have (4.4).

Proof of (4.5): We have

|‹Xn
1 (t)− Y n

1 (t)| ≤ 1

an
√
n

An(t)∑
i=1

∣∣∣∣‹H(t, τni , ϑi)1{|H(t,τni ,ϑi)|>
δ
2
an
√
n}

∣∣∣∣ (4.8)

Therefore,ß
‖‹Xn

1 − Y n
1 ‖T >

δ

2

™
⊂
ß
∃t ∈ [0, T ], 1 ≤ i ≤ An(t) : |‹H(t, τni , ϑi)| >

δ

2
an
√
n

™
.

This implies

lim sup
n→∞

1

a2
n

logPk
Å
‖‹Xn

1 − Y n
1 ‖T >

δ

2

ã
≤ lim sup

n→∞

1

a2
n

logPk

(
∃ 1 ≤ i ≤ An(T ) : sup

t,s∈[0,T ]
|H(t, s, ϑi)| >

δ

2
an
√
n

)
(4.9)

≤ lim sup
n→∞

1

a2
n

logPk

(
∃ 1 ≤ i ≤ bλnT c+ bkan

√
nc : sup

t,s∈[0,T ]
|H(t, s, ϑi)| >

δ

2
an
√
n

)
(4.10)

≤ lim sup
n→∞

1

a2
n

log

(Ä
bλnT c+ bkan

√
nc
ä
P
(

sup
t,s∈[0,T ]

|H(t, s, ϑ1)| > δ

2
an
√
n

))
. (4.11)

In the above, to get (4.9), we use the fact that An(t) ≤ An(T ), for t ∈ [0, T ]; to get (4.10), we use
the fact that on W(k), An(T ) ≤ bλnT c+ bkan

√
nc; to get (4.11), we use the union bound and the

fact that Pk(·) ≤ P(·).
Now for ε > 0, choose n large such that bkan

√
nc ≤ εn. Therefore, using (2.12) and (4.11), we

have (4.5).

Proof of (4.6): First choose n large such that |E[‹Hn(t, s, ϑi)]| < δ
2 for every t, s ∈ [0, T ]. This can

be done as H(t, s, ϑ1) is uniformly integrable in t, s ∈ [0, T ] (see Lemma 2.1). Now observe that
with

Kn(t, s, x)
.
= ‹H(t, s, x)1{|H(t,s,x)|≤ δ

2
an
√
n} −

(
Hn(t, s, x)− E

[
Hn(t, s, ϑ1)

])
,

we have Kn(t, s, x) ≤ δ
2an
√
n, for every t, s ∈ [0, T ] and x ∈ Rd. For ρ > 0, consider

lim sup
n→∞

1

a2
n

logPk (‖Y n
1 − Y n

2 ‖T > δ)

≤ lim sup
n→∞

1

a2
n

logPk

Ñ
1

an
√
n

∥∥∥∥∥∥
An(t)∑
i=1

Kn(t, τni , ϑi)

∥∥∥∥∥∥
T

> δ

é
≤ lim sup

n→∞

1

a2
n

logPk

Ñ
1

an
√
n

An(T )∑
i=1

sup
t,s∈[0,T ]

|Kn(t, s, ϑi)| > δ

é
(4.12)

≤ lim sup
n→∞

1

a2
n

logP

Ñ
1

an
√
n

bλnT c+bkan
√
nc∑

i=1

sup
t,s∈[0,T ]

|Kn(t, s, ϑi)| > δ

é
(4.13)

≤ −ρδ + lim sup
n→∞

1

a2
n

logE

exp

Ñ
ρan
n

bλnT c+bkan
√
nc∑

i=1

|Kn(t, s, ϑi)|

é (4.14)
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≤ −ρδ + lim sup
n→∞

bλnT c+ bkan
√
nc

a2
n

logE
ñ
exp

Ç
ρan√
n
|Kn(t, s, ϑi)|

åô
. (4.15)

In the above, to get (4.12), we use the fact that An(t) ≤ An(T ); to get (4.13), we use the fact that
on W(k), An(T ) ≤ bλnT c+ bkan

√
nc; to get (4.14), we use Markov’s inequality; to get (4.15), we

use the fact that {ϑi} is a family of i.i.d. random variables. Now suppose

sup
ρ>0

lim sup
n→∞

bλnT c+ bkan
√
nc

a2
n

logE
ñ
exp

Ç
ρan√
n
|Kn(t, s, ϑi)|

åô
<∞.

Then taking ρ ↑ ∞ gives us (4.6). The proof of the above display follows using the arguments in
[20, Pg. 213-214] with one small change, i.e., we do not take l →∞ (the authors in [20] take τ in
that paper to ∞; this does not change the applicability of the arguments in our case).

Proof of (4.7): On W(k), we consider

Y n
2 (t)− ÙXn

1 (t) =
1

an
√
n

An(t)∑
i=1

Hn(t, τni , ϑi)−
1

an
√
n

bλntc∑
i=1

Hn(t, sni , ϑi)

=
1

an
√
n

An(t)∧bλntc∑
i=1

Ä
Hn(t, τni , ϑi)−Hn(t, sni , ϑi)

ä
+

1

an
√
n

An(t)∨bλntc∑
j=An(t)∧bλntc+1

Ä
1{An(t)>bλntc}H

n(t, τnj , ϑj)− 1{An(t)≤bλntc}H
n(t, sni , ϑi)

ä
.
= Jn1 (t) + Jn2 (t) .

We next estimate

Pk
(
‖Jn1‖T >

δ

2

)
and Pk

(
‖Jn2‖T >

δ

2

)
as we know that the sum of these probabilities bound

Pk
Ä
‖Y n

2 − ÙXn
1 ‖T > δ

ä
from above. This will be the content of the next lemma.

Lemma 4.1. The following holds:

lim sup
n→∞

1

a2
n

logPk
(
‖Jn1‖T ∨ ‖Jn2‖T >

δ

2

)
= −∞. (4.16)

Proof. Since

lim sup
n→∞

1

a2
n

logPk
(
‖Jn1‖T ∨ ‖Jn2‖T >

δ

2

)
≤ max

i=1,2

{
lim sup
n→∞

1

a2
n

logPk
(
‖Jni ‖T >

δ

2

)}
,

we show that the right hand side is −∞.
We first show that

lim sup
n→∞

1

a2
n

logPk
(
‖Jn2‖T >

δ

2

)
= −∞. (4.17)

We start by observing that on W(k), supt∈[0,T ] |An(t)− bλntc| ≤ bkan
√
nc. Therefore, conditioned

on An, Jn2 (t) is a sum of at most bkan
√
nc independent terms, for every t ∈ [0, T ]. So, by condition-

ing on An and using the fact that {ϑi}i∈N i.i.d given An, we can infer that the process Jn2 is exactly
of the form Zn defined in (A.1) in the Appendix A, if i started from An(t) ∧ bλntc + 1 instead of
1. Therefore, from Corollary A.1, we have (4.17).
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To complete the proof, all that remains is to show that

lim sup
n→∞

1

a2
n

logPk
(
‖Jn1‖T >

δ

2

)
= −∞. (4.18)

Define τ̂nδ
.
= inf{t > 0 : Jn2 (t) > δ

2}. To begin with, observing again that upon conditioning on
An and using the fact that {ϑi}i∈N is i.i.d. given An, we can infer that the process Jn1 is exactly
of the form Zn defined in (A.1) in the Appendix A. Therefore, from Theorem A.1, we can show
that (4.18) holds if we can show that

ΘJ
1
.
= lim sup

n→∞

1

n
Ek

[An(T )∧bλnT c∑
i=1

∫
Rd

Ä
Hn(τ̂nδ ∧ T, τni , x)−Hn(τ̂nδ ∧ T, sni , x)

ä2
F (dx)

]

= lim sup
n→∞

1

n
Ek

[An(T )∧bλnT c∑
i=1

∫
Rd

Ä‹H(τ̂nδ ∧ T, τni , x)− ‹H(τ̂nδ ∧ T, sni , x)
ä2
F (dx)

]
= 0.

The first equality above follows from (3.8) of Lemma 3.1. To prove (4.18), we follow the same
arguments of the proof of Theorem A.1 with two minor changes after choosing Nn(t) = An(t) ∧
bλntc, Zi(t, s, x) = ‹H(t, s, x) − ‹H(t, sni , x). Since given the event W(k), {ϑi}n∈N is i.i.d., the
arguments work even if we replace P(·) and E[·] with Pk(·) and Ek[·], respectively. Then, we use
the tower property of conditional expectation and write all the expectations Ek[·] as Ek[E[·|An[0,T ]]].

This is allowed as the event W(k) lies in the σ–algebra generated by the process An on [0, T ]. Due
to these minor changes, we omit the proof to avoid repetition.

To prove the desired result, it now suffices for us to show that ΘJ
1 = 0. To that end,

ΘJ
1 ≤ lim sup

n→∞

1

n
Ek

[ bλnT c+bkan√nc∑
i=1

∫
Rd

Ä‹H(τ̂nδ ∧ T, τni , x)− ‹H(τ̂nδ ∧ T, sni , x)
ä2
F (dx)

]
(4.19)

= lim sup
n→∞

1

n
Ek

[ bλnT c∑
i=1

∫
Rd

Ä‹H(τ̂nδ ∧ T, τni , x)− ‹H(τ̂nδ ∧ T, sni , x)
ä2
F (dx)

]
.
= ‹ΘJ

1 . (4.20)

To arrive at (4.19), we used the fact that An(T ) can be at most bλnT c+ bkan
√
nc as An ∈ W(k)

and to arrive at (4.20), we used the fact that bkan
√
nc

n → 0 as n → ∞ and the boundedness of
the integral (from Lemma 2.1). We will now show that the expression in (4.20) is zero. Recall
that sni = i

λn and τni is ith arrival time defined in (2.7). It also clear that as n → ∞, snbλnsc → s,

uniformly in s ∈ [0, T ] and since we are conditioning on W(k), τnbλnsc → s, uniformly in s ∈ [0, T ]

(see (4.2)). Let δn1 (s)
.
= snbλnsc − s and δn2 (s)

.
= τnbλnsc − s. Write‹H(τ̂nδ ∧ T, τnbλnsc, x)− ‹H(τ̂nδ ∧ T, snbλnsc, x) = ‹HÄτ̂nδ ∧ T, s+ δn2 (s), x

ä
− ‹HÄτ̂nδ ∧ T, s+ δn1 (s), x

ä
Then, using (4.3), we have‹ΘJ

1 = λ lim sup
n→∞

Ek

[ ∫ T

0

∫
Rd

(‹HÄτ̂nδ ∧ T, s+ δn2 (s), x
ä
− ‹HÄτ̂nδ ∧ T, s+ δn1 (s), x

ä)2
F (dx)ds

]

≤ 2λ lim sup
n→∞

Ek

[ ∫ T

0

∫
Rd

(‹HÄτ̂nδ ∧ T, s+ δn2 (s), x
ä
− ‹HÄτ̂nδ ∧ T, s, xä)2

F (dx)ds

]

+ 2λ lim sup
n→∞

Ek

[ ∫ T

0

∫
Rd

(‹HÄτ̂nδ ∧ T, s, xä− ‹HÄτ̂nδ ∧ T, s+ δn1 (s), x
ä)2

F (dx)ds

]

≤ 2λ lim sup
n→∞

sup
t∈[0,T ]

∫ T

0

∫
Rd

(‹HÄt, s+ δn2 (s), x
ä
− ‹HÄt, s, xä)2

F (dx)ds
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+ 2λ lim sup
n→∞

sup
t∈[0,T ]

∫ T

0

∫
Rd

(‹HÄt, s, xä− ‹HÄt, s+ δn1 (s), x
ä)2

F (dx)ds

= 0 .

To arrive at the last equation, we used Assumption 2.4(ii) in conjunction with the fact that
δn1 (·), δn2 (·)→ 0, uniformly on [0, T ] as n→∞. This proves Lemma 4.1. �

Therefore, we have proved that (4.4) holds and hence, this completes the proof of Theorem 3.1.
�

5. Proof of Exponential Tightness (Theorem 3.3)

Before we give the proof of Theorem 3.3, we first give the following lemma.

Lemma 5.1. Under Assumptions 2.1, 2.3 and 2.4(iii), the following hold:

lim
δ→0

sup
t∈[0,T ]

∫ T

0

“
G2(t, u, δ)du = 0 . (5.1)

Proof. To begin with, we first observe that under Assumption 2.3, using Lemma 2.1, we can con-

clude that

“
G2 is uniformly bounded in all the arguments. Now define G : [0, T ] × [0, T ] → R+

as

G(t, s)
.
=

∫ T

0

“
G2(t, u, s)du.

Suppose that G is continuous on [0, T ] × [0, T ]. Then G is uniformly continuous on [0, T ] × [0, T ].
This in turn, implies the existence of a modulus of continuity $ such that $ : R+ → R+ and
limδ→0$(δ) = 0 associated to G such that for (t, s), (t′, s′) ∈ [0, T ],

|G(t, s)− G(t′, s′)| ≤ $(|t− t′|+ |s− s′|).

For δ > 0, now choosing s = t′ = s′ = t+ δ and noting that G(s, s) = 0, we have supt∈[0,T ] |G(t, t+

δ)| ≤ $(δ). This immediately implies (5.1) after taking δ → 0.
Therefore, it remains for us to prove that G is continuous on [0, T ] × [0, T ]. To that end, it is

clearly sufficient to show that functions G(·, t) and G(t, ·) are continuous on [0, T ], for every t ∈ [0, T ].
This is what we will do. Since G(t, s) = G(s, t), we only consider G(·, t). Fix t, t0 ∈ [0, T ] and ε
small and consider

|G(t0, t)− G(t0 + ε, t)|

=

∣∣∣∣ ∫ T

0

(“
G2(t0, u, t)−

“
G2(t0 + ε, u, t)

)
du

∣∣∣∣
=

∣∣∣∣ ∫ T

0

∫
Rd

(
H
Ä
t0 − u, g(u, x)

ä
−H

Ä
t0 + ε− u, g(u, x)

ä)
×
(
H
Ä
t0 − u, g(u, x)

ä
+H

Ä
t0 + ε− u, g(u, x)

ä
− 2H

Ä
t− u, g(u, x)

ä)
F (dx)du

∣∣∣∣ (5.2)

≤
∫ T

0

( ∫
Rd

(
H
Ä
t0 − u, g(u, x)

ä
−H

Ä
t0 + ε− u, g(u, x)

ä)2
F (dx)

) 1
2

×
( ∫

Rd

(
H
Ä
t0 − u, g(u, x)

ä
+H

Ä
t0 + ε− u, g(u, x)

ä
− 2H

Ä
t− u, g(u, x)

ä)2
F (dx)

) 1
2
du

(5.3)

≤ C
∫ T

0

( ∫
Rd

(
H
Ä
t0 − u, g(u, x)

ä
−H

Ä
t0 + ε− u, g(u, x)

ä)2
F (dx)

) 1
2
du (5.4)
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≤ CT
( ∫ T

0

∫
Rd

(
H
Ä
t0 − u, g(u, x)

ä
−H

Ä
t0 + ε− u, g(u, x)

ä)2
F (dx)du

) 1
2
. (5.5)

In the above, to get (5.2), we use the identity x2−y2 = (x+y)(x−y); to get (5.3), we apply Cauchy-
Schwartz inequality; to get (5.4), we use the fact E[supt,s∈[0,T ] |H(t, s, ϑ1)|2] from Lemma 2.1; to

get (5.5), we again apply Cauchy-Schwartz inequality.
Now taking ε→ 0, (5.5) goes to 0 for the following reason: When ε→ 0+, the right continuity of

H (from Assumption 2.1) in conjunction with the dominated convergence theorem implies that (5.5)
goes to 0. Finally, when ε→ 0−, Assumption 2.4(iii) implies that (5.5) goes to 0. This proves the
continuity of G on [0, T ]× [0, T ] and also the result. �

Proof of Theorem 3.3. Fix 0 ≤ t ≤ T and δ > 0. For 0 ≤ s ≤ δ, considerÙXn
1 (t+ s)− ÙXn

1 (t) =
1

an
√
n

bλn(t+s)c∑
i=1

Hn(t+ s, sni , ϑi)−
1

an
√
n

bλntc∑
j=1

Hn(t, snj , ϑj)

=
1

an
√
n

bλntc∑
i=1

[Hn(t+ s, sni , ϑi)−Hn(t, sni , ϑi)] +
1

an
√
n

bλn(t+s)c∑
j=bλntc+1

Hn(t+ s, snj , ϑj).

For ε > 0, to estimate the probability of the event®
sup

0≤s≤δ
|ÙXn

1 (t+ s)− ÙXn
1 (t)| > ε

´
,

we again make use of Theorem A.1. To that end, notice that the process “Znt (·) .
= ÙXn

1 (t+ ·)− ÙXn
1 (·)

is of the form Zn defined in (A.1) with Nn(u) = bλn(t+ u)c and

Zi(u, r, x) =

{
Hn(t+ u, sni , x)−Hn(t, sni , x), if i ≤ bλntc,
Hn(t+ u, sni , x), otherwise.

Define τ̂nε,t
.
= inf{s > 0 : “Znt (s) > ε} and τ̂nε,t = δ + 1, “Znt (s) ≤ ε, for every s ∈ [0, δ].

With the choices of Nn and Zi, using the arguments of the proof of Theorem A.1 until we take
n→∞, we obtain

1

a2
n

logP
Ç

sup
0≤s≤δ

|ÙXn
1 (t+ s)− ÙXn

1 (t)| > ε

å
≤ −ρε+

ρ2

2n

bλntc∑
i=1

E
[Ä
Hn(t+ (τ̂nε,t ∧ δ), sni , ϑi)−Hn(t, sni , ϑi)

)2]

+
ρ2

2n

bλn(t+δ)c∑
i=bλntc

E
[(
Hn(t+ (τ̂nε,t ∧ δ), sni , ϑi)

)2]
+O

(
E
[

sup
t,s∈[0,T ]

|Hn(t, s, ϑ1)|3
]
ann

− 1
2

)
.

Taking supremum over t ∈ [0, T ] in the above display and taking n→∞, we have

lim sup
n→∞

sup
t∈[0,T ]

1

a2
n

logP
Ç

sup
0≤s≤δ

|ÙXn
1 (t+ s)− ÙXn

1 (t)| > ε

å
≤ −ρε+

ρ2

2
lim sup
n→∞

sup
t∈[0,T ]

1

n

bλntc∑
i=1

E
[Ä‹H(t+ (τ̂nε,t ∧ δ), sni , ϑi)− ‹H(t, sni , ϑi)

)2]
+

1

2
ρ2λδE

[
M(ϑ1)2

]
.

(5.6)

In the above, we have arrived at the second term from (3.8) of Lemma 3.1, and the third term on
the right hand side after invoking Lemma 2.1 and using the fact that the numbers of terms in the
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summation is bλn(t+ δ)c − bλntc+ 1. To prove the result, it suffices to show that

lim
δ↓0

lim sup
n→∞

sup
t∈[0,T ]

1

n

bλntc∑
i=1

(
E
[Ä‹H(t+ (τ̂nε,t ∧ δ), sni , ϑi)− ‹H(t, sni , ϑi)

)2])
= 0. (5.7)

To that end, define δn(u)
.
= snbλnuc − u. Using (4.3), we write

1

n

bλntc∑
i=1

E
[Ä‹H(t+ (τ̂nε,t ∧ δ), sni , ϑi)− ‹H(t, sni , ϑi)

)2]
= λE

[ ∫ T

0

∫
Rd

Ä‹H(t+ (τ̂nε,t ∧ δ), u+ δn(u), x)− ‹H(t, u+ δn(u), x)
)2
F (dx)du

]
+O(n−1)

≤ 3λE
[ ∫ T

0

∫
Rd

Ä‹H(t+ (τ̂nε,t ∧ δ), u+ δn(u), x)− ‹H(t+ (τ̂nε,t ∧ δ), u, x)
)2
F (dx)du

]
+ 3λE

[ ∫ T

0

∫
Rd

Ä‹H(t, u, x)− ‹H(t, u+ δn(u), x)
)2
F (dx)du

]
+ 3λE

[ ∫ T

0

∫
Rd

Ä‹H(t+ (τ̂nε,t ∧ δ), u, x)− ‹H(t, u, x)
)2
F (dx)du

]
+O(n−1)

.
= V n

1 (δ, t) + V n
2 (δ, t) + V n

3 (δ, t) +O(n−1).

Now we have

lim sup
δ↓0

lim sup
n→∞

sup
t∈[0,T ]

V n
1 (δ, t)

= 3λ lim sup
δ↓0

lim sup
n→∞

sup
t∈[0,T ]

3λE
[ ∫ T

0

∫
Rd

(‹H(t, u+ δn(u), x)− ‹H(t, u, x)
)2
F (dx)du

]
= 0.

In the above, we have used Assumption 2.4(ii) and the fact that the random variable τnε,t ∧ δ is
uniformly bounded by δ and also the fact that δn(·) → 0, uniformly as n → ∞. Similarly, we can
conclude that

lim sup
δ↓0

lim sup
n→∞

sup
t∈[0,T ]

V n
2 (δ, t) = 0

To show that

lim sup
δ↓0

lim sup
n→∞

sup
t∈[0,T ]

V n
3 (δ, t) = 0,

we use Assumption 2.4(iii), in conjunction with Lemma 5.1. This proves (5.7). By taking δ ↓ 0
and ρ ↑ ∞ in (5.6), we obtain our desired result in (3.22). Therefore, exponential tightness follows
from Theorem A.3 in [51]. �

Appendix A. A Maximal inequality

As usual, we choose an ↑ ∞ to satisfy (2.8) throughout the Appendix. In the following, we
prove a new maximal inequality. The proof of this inequality is based on stopping times. We
state and prove the inequality in a form that is convenient for us to work with. Let {Tni }i∈N be
a sequence of deterministic positive constants that are strictly increasing with Tn0 = 0, and let
Nn(t) be a counting process with {Tni }i∈N being the corresponding sequence of arrival times, that
is, Nn(t) = max{k ≥ 0 : Tnk ≤ t} for t ≥ 0. Let Zn(t) be a process defined by

Zn(t)
.
=

1

an
√
n

Nn(t)∑
i=1

Zni (t, Tni , ϑi), (A.1)
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where for every i, n ∈ N, Zni : R+ × R+ × Rd → R is a Borel measurable function. We assume
that E[Zni (t, s, ϑ1)] = 0, for every s, t ∈ R+ and i, n ∈ N. Let F0 be the trivial σ–algebra and
Fk

.
= σ{ϑ1, ϑ2, . . . , ϑk}. In contrast to the case where Zni (t, s, x) independent of t, Zn(t) cannot

be treated as a martingale and hence the martingale based proofs cannot be used directly to the
above case. Define τnε

.
= inf{t > 0 : Zn(t) > ε} with τnε = T + 1, if supt∈[0,T ] Z

n(t) ≤ ε and

Θε
.
= lim sup

n→∞

1

n

Nn(T )∑
i=1

E
î
Zni (τnε ∧ T, Tni , ϑ1)2

ó
.

Theorem A.1. Assume that the following condition holds: for every n ∈ N

sup
i∈N, t,s∈[0,T ]

|Zni (t, s, ϑ1)| ≤ l
√
n

an
, for some l > 0. (A.2)

Suppose for some C > 0, Nn(t) ≤ Cnt, for t ∈ [0, T ]. Then for every ε > 0, the following holds:

lim sup
n→∞

1

a2
n

logP
Ç

sup
0≤t≤T

|Zn(t)| > ε

å{
≤ − ε2

2Θε
, if Θε > 0,

= −∞, if Θε = 0.
(A.3)

Proof. We set τ = τnε . Clearly, the event {τ ≤ t} ⊂ FNn(t) which implies {Nn(τ) ≤ i} ⊂ Fi. More-
over, {Nn(τ) ≥ i} is only dependent on ϑ1, ϑ2, . . . , ϑi−1 and independent of ϑi, ϑi+1, . . . , ϑNn(T ).

For ρ > 0, consider

P
(

sup
t∈[0,T ]

Zn(t) > ε

)
= P (τ ≤ T ) ≤ e−ρa2nεE

î
eρa

2
nZ

n(τ)1{τ≤T}
ó
≤ e−ρa2nεE

î
eρa

2
nZ

n(τ∧T )
ó
.

This implies that
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logP
(

sup
t∈[0,T ]

Zn(t) > ε

)

≤ −ρε+
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logE
î
eρa

2
nZ

n(τ∧T )
ó

≤ −ρε+ ρE
[
Zn(τ ∧ T )

]
+
ρ2a2
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2
E
[
Zn(τ ∧ T )2

]
+O

(
a4
nE
[
Zn(τ ∧ T )3

])
(A.4)

Now let us evaluate the expectations in the above equation. We have

an
√
nE
[
Zn(τ ∧ T )

]
= E

[Nn(τ∧T )∑
i=1

Zni (τ ∧ T, Tni , ϑi)
]

=

Nn(T )∑
i=1

E
[
Zni (τ ∧ T, Tni , ϑi)1{Nn(τ)≥i}

]

=

Nn(T )∑
i=1

E
[
Zni (τ ∧ T, Tni , ϑi)

]
P
(
Nn(τ) ≥ i

)
(A.5)

=

Nn(T )∑
i=1

∫
Nn(u)≥i

∫
Rd
Zni (u ∧ T, Tni , x)F (dx)Pτ (du) (A.6)

= 0 .

Here, Pτ is the distribution of τ . To arrive at (A.5), we have used the fact that {Nn(τ) ≥ i}
is independent of ϑi and to arrive at (A.6), we have used the fact that E[Zni (t, s, ϑ1)] = 0, for
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s, t ∈ [0, T ] and i ∈ N. Now consider
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nnE

[
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]
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i=1

Zni (τ ∧ T, Tni , ϑi)
)2]
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E
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Zni (τ ∧ T, Tni , ϑi)21{Nn(τ)≥i}

]

+ 2
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i<j

E
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Zni (τ ∧ T, Tni , ϑi)1{Nn(τ)≥i}Z

n
j (τ ∧ T, Tnj , ϑj)1{Nn(τ)≥j}

]
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Nn(T )∑
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E
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Zni (τ ∧ T, Tni , ϑi)21{Nn(τ)≥i}

]
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Nn(T )∑
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i<j

E
[
Znj (τ ∧ T, Tnj , ϑj)

]
E
[
Zni (τ ∧ T, Tni , ϑi)1{Nn(τ)≥i}1{Nn(τ)≥j}
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(A.7)

=

Nn(T )∑
i=1

E
[
Zni (τ ∧ T, Tni , ϑi)21{Nn(τ)≥i}

]
≤

Nn(T )∑
i=1

E
[
Zni (τ ∧ T, Tni , ϑi)2

]
. (A.8)

To arrive at (A.7), we have used the fact that i < j and independence of Znj (τ ∧ T, Tnj , ϑj) and
Zni (τ ∧ T, Tni , ϑi)1{Nn(τ)≥i}1{Nn(τ)≥j}. Finally, to arrive at (A.8), we have used the fact that
E[Zni (t, s, ϑ1)] = 0, for s, t ∈ [0, T ].

We now analyse the expectation in the fourth term in (A.4).
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(A.9)

≤ Can√
n
E
[

sup
i∈N, t,s∈[0,T ]

Zni (t, s, ϑi)
3
]

(A.10)

To arrive at (A.9), we argue exactly in the same way as we did to arrive at (A.7); To arrive at (A.10),
we used the fact that Nn(t) ≤ Cnt and 1{Nn(τ)≥i} ≤ 1. From (A.2), following the arguments of
[20, Pg. 212], we can conclude that

lim
n→∞

an√
n
E
[
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Zni (t, s, ϑi)
3
]

= 0.

We now take n→∞, to get
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≤ − ε2

2Θε
, if Θε > 0.
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To arrive at the last inequality, we have chosen the optimal value of ρ = ε
Θε
. If Θε = 0, then simply

take ρ ↑ ∞ to get −∞. Therefore, we have shown that

lim sup
n→∞

1
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logP
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Zn(t) > ε

)
≤ − ε2

2Θε
, if Θε > 0

and is equal to −∞, when Θε = 0. Using exactly the same analysis as above, we can show that
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2Θε
, if Θε > 0

and is equal to −∞, when Θε = 0. Combining the above two displays, we have
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logP
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|Zn(t)| > ε

)
≤ − ε2

2Θε
, if Θε > 0

and is equal to −∞, when Θε = 0. This proves the result. �

The following is a simple corollary of the above theorem.

Corollary A.1. Suppose (A.2) holds and limn→∞
Nn(T )
n = 0, then

lim sup
n→∞

1

a2
n

logP
Ç

sup
0≤t≤T

|Zn(t)| > ε

å
= −∞ .

Proof. From the arguments of the proof of [20, Lemma 2.2] and (A.2), we can conclude that

M
.
= E

[
sup

i∈N, t,s∈[0,T ]
Zni (t, s, ϑi)

2
]
<∞.

From the hypothesis of the corollary and the boundedness of M,

Θε ≤M lim sup
n→∞

Nn(T )

n
= 0.

Therefore, from Theorem A.1, we have the desired result. �

Appendix B. Sketch proof for the LDP results in Section 2.4

In this section, we give a sketch proof for the LDP result in the high intensity regime, and the
proof for that in the conventional time-space scaling regime can be done in similar steps and hence
is omitted for brevity. The sketch will be divided into two parts: (i) proving the LDP in DT
under the topology of pointwise convergence and identifying the corresponding rate function using
Gärtner-Ellis theorem [18, Theorem 2.3.6] and Dawson-Gärtner theorem [18, Theorem 4.6.1]; and
(ii) proving the exponential tightness in (DT , J1).

We now proceed with part (i). Recall X̄n(t) in (2.6) and An(t) in (2.7). Also recall that

ΨA(ρ)
.
= limn→∞

1
n logE[eρA

n(1)].

We first show the LDP for the finite-dimensional distributions of X̄n. For every N ≥ 1 and
0 = t0 < t1 < t2 < t3 < . . . < tN = T , define X̄n

N =
Ä
X̄n(t1), X̄n(t2), X̄n(t3), . . . , X̄n(tN )

ä
. We

show that the family of RN–valued random variables {X̄n
N}n∈N satisfies LDP with rate n and rate

function ILDP
N : RN → [0,∞] given by
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N (x)

.
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{
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(
logE
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)])
ds

}
.
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Since (2.27) and Assumption 2.2 hold, a direct calculation of the log moment generating function
of X̄n

N by conditioning, leads to

lim
n→∞
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)])
ds

for {%i}Ni=1 ⊂ R. From Gärtner-Ellis theorem, we know that {X̄n
N}n∈N now satisfies LDP with rate

n and rate function given by
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.

Using the Dawson-Gar̈tner theorem, we can now conclude that {X̄n}n∈N satisfies LDP in DT
under the topology of pointwise convergence with rate n and the rate function ILDP[X̄] : DT →
[0,∞] given by

ILDP[X̄](φ)
.
= sup

0=t0<t1<t2...<tN=T
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dt,

if φ ∈ AC0,

∞, otherwise.

We next prove part (ii), that is, to show that {X̄n}n∈N is exponentially tight. By [51, Theorem
A.3] (which also holds in the case of LDP), it suffices for us to prove that for ε > 0,
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Fix ε, δ > 0 and 0 ≤ s ≤ δ. We can write
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where

Jn1 (t, t+ s) :=
1

n

An(t)∑
i=1

Ä
H(t+ s, τni , ϑi)−H(t, τni , ϑi)

ä
,

Jn2 (t, t+ s) :=
1

n

An(t+s)∑
i=An(t)+1

H(t+ s, τni , ϑi) .
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For Jn1 (t, t + s), we can use an analogous result to Theorem A.1 in the context of LDP. Let
τ̃nt,δ

.
= inf{s > 0 : |Jn1 (t, t+ s)| > ε

2} and τ̃nt,δ = δ + 1, whenever |J1(t, t+ s)| < ε
2 , for 0 ≤ s ≤ δ. We
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≤ eρn
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From the above, we have
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then taking ρ ↑ ∞ gives (B.1) for i = 1. This is what we will do now. Consider
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)∣∣∣∣An]]

≤ E
[

exp
(An(t)∑

i=1

Φδ(τ
n
i )
)]
,

where

Φδ(s)
.
= logE

ñ
exp

Ç
ρ sup

0≤u≤δ
sup
t∈[0,T ]

|H(t+ u, s, ϑi)−H(t, s, ϑi)|
åô
.

Again using [24, Theorem 2.4], we have

lim sup
δ↓0

lim sup
n→∞

sup
t∈[0,T ]

1

n
logE

[
exp

(
ρn|Jn1 (t, t+ (τ̂nt,δ ∧ δ))|

)]
≤ lim sup

δ↓0

∫ T

0
ΨA(Φδ(s))ds = 0.

In the above, we use the fact that (2.28) holds.
We now move on to Jn2 (t, t + s). We can again use an analogous result to Theorem A.1 in the

context of LDP. Let τ̂nt,δ
.
= inf{s > 0 : |Jn2 (t, t+s)| > ε

2} and τ̂nt,δ = δ+1, whenever |J2(t, t+s)| < ε
2 ,

for 0 ≤ s ≤ δ. We have

P
Ç

sup
0≤s≤δ

|Jn2 (t, t+ s)| > ε

2

å
= E[τ̂nt,δ ≤ δ]

≤ eρn
ε
2E
[

exp
(
ρn|Jn2 (t, t+ τ̂nt,δ)|

)
1{τ̂n

t,δ
≤δ}

]
≤ eρn

ε
2E
[

exp
(
ρn|Jn2 (t, t+ (τ̂nt,δ ∧ δ))|

)]
.

From the above, we have

1

n
logP

Ç
sup

0≤s≤δ
|Jn2 (t, t+ s)| > ε

2

å
≤ −ρε

2
+

1

n
logE

[
exp

(
ρn|Jn2 (t, t+ (τ̂nt,δ ∧ δ))|

)]
.

Next, we obtain

E
[
E
[

exp
(
ρn|Jn2 (t, t+ (τ̂nt,δ ∧ δ))|

)∣∣∣∣An]] ≤ E
[ An(t+δ)∏
i=An(t)+1

E
[

exp
(
ρ|H(t+ (τ̂nt,δ ∧ δ), τni , ϑi)|

)∣∣∣∣An]]

≤ E
[

exp
( An(t+δ)∑
i=An(t)+1

“Φ(τni )
)]
,

where “Φ(u)
.
= logE

[
exp

(
ρ sup
t∈[0,T ]

|H(t, u, ϑi)|
)]
.
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Again using [24, Theorem 2.4], we have

lim sup
δ↓0

lim sup
n→∞

sup
t∈[0,T ]

1

n
logE

[
exp

(
ρn|Jn2 (t, t+ (τ̂nt,δ ∧ δ))|

)]
≤ lim sup

δ↓0

∫ t+δ

t
ΨA(“Φ(u))du = 0.

In the above, we use the fact that (2.27) holds. Then taking ρ ↑ ∞ gives our desired result. This
proves (B.1) for i = 2 and also the desired exponential tightness.
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