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Abstract

We study G/G/∞ queues with renewal alternating service interruptions, where the service

station experiences up and down periods. The system operates normally in the up periods,

and all servers stop functioning while customers continue entering the system during the down

periods. The amount of service a customer has received when an interruption occurs will be

conserved and the service will resume when the down period ends. We use a two-parameter

process to describe the system dynamics: Xr(t, y) tracking the number of customers in the

system at time t that have residual service times strictly greater than y. The service times

are assumed to satisfy either of the two conditions: (i) i.i.d. with a distribution of a finite

support, or (ii) a stationary and weakly dependent sequence satisfying the φ-mixing condition

and having a continuous marginal distribution function. We consider the system in a heavy-

traffic asymptotic regime where the arrival rate gets large and service time distribution is fixed,

and the interruption down times are asymptotically negligible while the up times are of the

same order as the service times. We show FLLN and FCLT for the process Xr(t, y) in this

regime, where the convergence is in the space D([0,∞), (D, L1)) endowed with the Skorohod M1

topology. The limit processes in the FCLT possess a stochastic decomposition property.

K eywords: G/G/∞ queue; dependent service times; service interruptions; two-parameter stochas-
tic processes; FLLN; FCLT; Skorohod M1 topology

1 Introduction

We study G/G/∞ queues with service interruptions. The service station operates in a renewal
alternating environment with “up” and “down” periods. All servers function normally in an “up”
period, but break down in a “down” period. Customers enter the system according to some point
process, without being affected by the interruptions. They are served immediately upon arrival if
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arriving during an “up” period, and wait for service until the next “up” period starts otherwise.
Services received when interruptions occur will be conserved, and when interruptions end, services
resume from where they are left. Customers may experience multiple interruption “down” periods
before completing their services. To describe the system dynamics, we use a two-parameter process
Xr(t, y), representing the numbers of customers in the system at time t that have residual service
times strictly greater than y. The second parameter will help track the amount of services that are
interrupted. The total number of customers in the system at time t is X(t) = Xr(t, 0).

We consider the system in a heavy-traffic asymptotic regime. The arrival rate gets large while
the service time distributions are fixed. The alternating renewal “up” and “down” times are scaled
such that the “up” time periods are of the same order as service times, while the “down” time
periods are asymptotically negligible compared with service times. Specifically, we let the “down”
times be of order O(1/nγ) for some γ > 0 while the service times are O(1). We study the system
under two different assumptions on the service times: (i) i.i.d. service times with a finite support,
and (ii) the sequence of service times is stationary and weakly dependent, satisfying the φ-mixing
condition and having a continuous marginal distribution function. We show functional law of large
numbers (FLLNs) and functional central limit theorems (FCLTs) for the processes Xr(t, y) and
X(t) in the asymptotic regime under the two assumptions on the service times.

The limit processes in the FLLNs and FCLTs of the process Xr(t, y) have sample paths in the
space DD := D([0,∞),D([0,∞),R)). To prove the convergence, due to unmatched jumps of prelimit
and limit processes, we employ the Skorohod M1 topology in the space DD, where the interior space
D := D([0,∞),R) is endowed with the L1 norm. The fluid limits take the same forms as those in
the corresponding G/G/∞ queues without interruptions [11, 25, 28]. However, the convergence is
proved in the Skorohod M1 topology. The limits in the FCLT have extra terms to capture the effect
of service interruptions, in addition to the same terms as those in the corresponding G/G/∞ queues
without interruptions [11, 25, 28]. We obtain a stochastic decomposition property for the limiting
processes in the FCLTs, that is, the variabilities of arrivals, services and interruptions are captured
in mutually independent processes. When the arrival limit process is a Brownian motion and the
limiting counting process for the number of “up” and “down” periods is Poisson, we characterize
the transient and stationary distributions for the limiting processes (Corollaries 3.1 and 4.1).

1.1 Literature and contributions

There has been a large body of literature on queues with service interruptions; see, e.g., [16, 17,
22, 23] and references therein. Infinite-server queues with service interruptions (or in a random
environment) are studied in [1, 2, 5, 8, 20, 21, 23]; however, all these studies have focused on either
Poisson arrivals and/or exponential service times. Infinite-server queues with general service times
and service interruptions (or in a random environment) are studied in [4, 6, 9, 12]. Our work is the
first to establish two-parameter heavy-traffic limits for G/G/∞ queues with service interruptions,
under general assumptions on the arrival, service and interruption processes.

Infinite-server queues with general arrival and service processes have been studied in [10, 11,
18, 35] and more recently in [25, 28, 30]. In [11], when the service time distribution has a finite
support, the key idea is to treat that as a mixture of deterministic service time distributions, and
split the arrival process into corresponding arrival processes associated with each deterministic ser-
vice time. The main step relies on the FCLT for the split counting processes. That key idea can
be used to show FLLN and FCLT for the total count process X(t) in the system as well as the
two-parameter process Xr(t, y). We first generalize that approach to G/G/∞ queues with service
interruptions when the service times have finite support in this paper. In [25, 28], Pang and Whitt
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have established FLLN and FCLT for the two-parameter process Xr(t, y) when the service times
are i.i.d. with continuous distributions and when the service times form a stationary and weakly de-
pendent sequence satisfying certain mixing conditions and have continuous marginal distributions.
The approach in [25, 28] relies on the important observation first made in Krichagina and Puhalskii
[18] that the queue length process in G/GI/∞ queues can be represented via sequential empiri-
cal processes driven by service times. Here we make a novel and important observation that for
G/G/∞ queues with service interruptions, the two-parameter process Xr(t, y) can be represented
via sequential empirical processes driven by service times together with the cumulative “up” time
process. This enables us to establish the limits in the fluid and diffusion scales. Here we assume
that the service time distributions are either of finite support or weakly dependent with continuous
marginal distributions as in [11, 28]. It is conceivable that the results can be extended to the most
general conditions on service times, but that is beyond the scope of this paper. Our approach is
extended to study the total count processes for G/G/N(+G) queues in the Halfin-Whitt regime in
[19] when the services are i.i.d. with a continuous distribution function. It remains to prove the
two-parameter limits for these models. We also conjecture that it can be potentially extended to
study other many-server non-Markovian models.

An interesting stochastic decomposition property has been established forM/M/∞ andM/G/∞
queues with service interruptions or vacations in [2, 4, 8, 12, 21]. Namely, the steady-state dis-
tribution of the number of customers in the system can be decomposed into two independent
components: the steady-state distribution of the number of customers in the system without in-
terruptions and the distribution taking into account the effects of service interruptions. In the
heavy-traffic setting, similar stochastic decomposition properties are proved for G/M/∞ queues
in [23] and for G/G/1 queues in [16, 17]. In this paper we establish a stochastic decomposition
property for the two-parameter process Xr(t, y) and the total count process X(t) of G/G/∞ queues
with service interruptions under the two assumptions on the service time distributions. As a result,
their steady-state distributions also possess a stochastic decomposition property. In fact, as shown
in Theorems 3.2 and 4.2, the limiting two-parameter processes and total count processes in the
diffusion scale are decomposed into independent processes which capture variabilities in the arrival
processes, service processes and service interruptions.

To prove the convergence of the fluid and diffusion scaled processes for queues with service
interruptions, the Skorohod M1 topology in the space D is necessary to take into account the
unmatched jumps and discontinuity when the interruption “down” times are scaled properly. For
example, single-server queues with service interruptions in the conventional heavy-traffic regime [16,
17] and G/M/N(+M) queues with service interruptions in the many-server heavy-traffic regimes
[23, 24] all require the convergence in (D,M1). To prove the convergence of the two-parameter
process Xr(t, y) of G/G/∞ queues with service interruptions, it requires to use the Skorohod M1

topology in the space DD. Since the Skorohod M1 topology is only well defined for the space
D([0,∞),S) when S is a Banach space [29, 32, 36], we endow the interior space D with the L1

norm. This topology is discussed to study G/GI/∞ queues on page 350 of §10.3.1 in Whitt [36].
We establish some useful continuity properties in the space DD with Skorohod M1 topology, which
may be of separate interest.

1.2 Notation

We use Rk (and Rk+), k ≥ 1, to denote real-valued k-dimensional (nonnegative) vectors, and
write R and R+ for k = 1. Let Dk = D([0,∞),Rk) denote the Rk-valued function space of
all right continuous functions on [0,∞) with left limits everywhere in (0,∞). Denote D ≡ D1.
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Let (Dk, J1) = (D, J1) × · · · (D, J1) be the k-fold product of (D, J1) with the product topology.
Similarly, let (Dk,M1) = (D,M1) × · · · (D,M1) be the k-fold product of (D,M1) with the product
topology. We use C↑ and D↑ to denote the space of nondecreasing functions in C and D, respectively.
Denote ‖ · ‖ the uniform norm: for any real-valued function x and T > 0, ‖x‖T = supt∈[0,T ] |x(t)|.
Notations → and ⇒ mean convergence of real numbers and convergence in distributions. The
abbreviations w.p.1 and a.e. mean with probability 1 and almost everywhere, respectively. We use
the familiar big-O and small-o notations for deterministic functions: for two real-valued functions
f and non-zero g, we write f(x) = O(g(x)) if lim supx→∞ |f(x)/g(x)| < ∞ and f(x) = o(g(x)) if
lim supx→∞ |f(x)/g(x)| = 0.

All random variables and processes are defined on a common probability space (Ω,F , P ). For
any two complete separable metric spaces S1 and S2, we denote S1 × S2 as their product space,
endowed with the product topology. Let DD = D([0,∞),D) denote the D-valued function space of
all right continuous functions on [0,∞) with left limits everywhere in (0,∞). Let CC = C([0,∞),C)
where C denotes the real-valued function space of all continuous functions on [0,∞). For x(t, s) ∈
DD, we often denote x(t) := x(t, ·). We use (DD, J1) to denote the space DD with both the interior
and exterior D spaces endowed with the Skorohod J1 topology. We refer the reader to [33] and
[25] for an introduction and some properties of (DD, J1). We use (DD,M1) to denote the space DD
with the exterior D space endowed with the Skorohod M1 topology, while the interior D space is
endowed with the L1 norm, that is, for any x ∈ D, the L1 norm is defined by ‖x‖L1 =

∫∞
0 |x(t)|dt.

See §§10.3 and 11.5 in Whitt [36]. Note that the space (D, L1) is a Banach space, and thus, the
space D([0,∞), (D, L1)) with Skorohod M1 topology is well defined [29, 32, 36]. Let ((DD)k,M1) =
(DD,M1)× · · · × (DD,M1) be the k-fold product of (DD,M1) with the product topology.

1.3 Organization of the paper

The rest of the paper is organized as follows. In §2, we describe the model in detail, and the
assumptions on the interruptions are given in §2.1. We present the results for service times with
finite support in §3 and their proofs in §5. The results for service times that form a stationary and
weakly dependent sequence and have continuous marginal distributions are presented in §4 and
their proofs are in §6. Some technical proofs in §§5–6 are given in the appendix §7.

2 The model

Consider a G/G/∞ queue subject to service interruptions. The service station is in a renewal
alternating environment with up and down periods, where all servers function normally during the
up period but break down during the down period. During an up period, customers will enter
service immediately (no delay or queue). During a down period, customers in service will wait at
their associated servers until the end of the down period and resume their services when the next
up period starts, and new customers will continue to enter the system and get assigned to some
free servers and wait there for service to start until the next up period begins.

Assume that customers arrive to the system according to a general arrival process A = {A(t) :
t ≥ 0} with τi representing the arrival time of the ith customer, i.e., A(t) = max{i ≥ 1 : τi ≤ t} for
each t > 0 and A(0) = 0. Let {ηi : i ≥ 1} be a sequence of random variables, with ηi representing
the service times of the ith customer. We will consider two assumptions on the sequence {ηi : i ≥ 1}:
(i) i.i.d. with a finite support, and (ii) stationary and weakly dependent, satisfying the φ-mixing
condition and having a general continuous marginal distribution function (see Assumption 4.2
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for the precise statement). This second assumption includes i.i.d. service times with a general
continuous distribution function as a special case. Let {(ui, di) : i ≥ 1} be a sequence of i.i.d.
random vectors with ui and di representing the up and down times in the ith up-down cycle of the
underlying renewal process. We assume that the arrival, service and service-interruption processes
are mutually independent.

Let Xr(t, y) be the number of customers in the system at time t that have a remaining amount
of service time strictly greater than y. Let X(t) be the total number of customers in the system
at time t. Then X(t) = Xr(t, 0) for each t ≥ 0. We assume that the system starts empty at the
starting epoch of an up period.

To describe the dynamics of Xr(t, y), we first define some auxiliary processes associated with
the underlying renewal process {(ui, di) : i ≥ 1}. Let the sequence {Ti : i ≥ 1} be the renewal times,
defined by Ti =

∑i
k=1(uk + dk), for i ≥ 1 and T0 = 0. Let N = {N(t) : t ≥ 0} be the associated

renewal counting process, defined by N(t) = max{i ≥ 0 : Ti ≤ t}, t ≥ 0. Let ξ = {ξ(t) : t ≥ 0}
be the service-availability process, defined by ξ(t) = 1 when Ti ≤ t ≤ Ti + ui+1 and ξ(t) = 0 when
Ti + ui < t < Ti+1 for i ≥ 0. The cumulative up-time process U = {U(t) : t ≥ 0} is defined by
U(t) =

∫ t
0 ξ(s)ds, t ≥ 0. The cumulative down-time process D = {D(t) : t ≥ 0} is defined by

D(t) = t− U(t) for each t ≥ 0.
We now give a representation of the processes Xr(t, y) and X(t):

Xr(t, y) =

A(t)∑
i=1

1(ηi > U(t)− U(τi) + y), t, y ≥ 0, (2.1)

X(t) = Xr(t, 0) =

A(t)∑
i=1

1(ηi > U(t)− U(τi)), t ≥ 0. (2.2)

We give an intuitive explanation of representation in (2.1). For the process Xr(t, y), we count the
arrivals up to time t that have residual service times strictly greater than y. The amount of service
that the ith customer has received by time t, if she is still in the system, is equal to U(t)−U(τi), the
cumulative up time from her arrival time τi to time t. Thus, for the ith customer to be counted at
time t, the amount of received service U(t)−U(τi) must be strictly less than the service requirement
ηi minus y, i.e., ηi > U(t)− U(τi) + y.

We will consider a sequence of systems indexed by n and let n→∞, where the arrival processes
and the underlying interruption processes are scaled while the service time distribution does not
change with n. We let the arrival rate increase to infinity as n→∞ and the underlying interruption
processes have the up times O(1) and the down times O(1/nγ), for some positive constant γ > 0
(see §2.1).

2.1 Assumptions on service interruptions

We consider a scaling regime for the underlying service interruption process, where the down times
are asymptotically negligible.

Assumption 2.1. The sequence of up and down times {(uni , dni ) : i ≥ 1} satisfies

{(uni , nγdni ) : i ≥ 1} ⇒ {(ui, di) : i ≥ 1} in
(
R2
)∞

as n→∞, (2.3)

for some γ > 0, where ui, di > 0 for each i w.p.1.
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Let {T̂i : i ≥ 0} be the associated sequence of cycle renewal times in the limit, defined by
T̂i =

∑i
k=1 uk, i ≥ 1, and T̂0 = 0. Assumption 2.1 implies that T̂i < T̂i+1 for all i ≥ 0. Let

N̂ = {N̂(t) : t ≥ 0} be the associated renewal counting process in the limit, defined by

N̂(t) = max{i ≥ 0 : T̂i ≤ t}, t ≥ 0. (2.4)

Define the diffusion-scaled processes Ûn = nγ(Un − e) and D̂n = nγDn = −Ûn, where e(t) ≡ t
is the identity function, and Un and Dn are the cumulative up and down times.

Lemma 2.1. Under Assumption 2.1,

(Un, Dn, Nn)⇒ (e, 0, N̂) in (D3, J1) as n→∞, (2.5)

and
(Ûn, D̂n)⇒ (−Ĵ , Ĵ) in (D2,M1) as n→∞, (2.6)

where the limit process Ĵ = {Ĵ(t) : t ≥ 0} is defined by

Ĵ(t) =

N̂(t)∑
i=1

di, t ≥ 0, (2.7)

and N̂(t) is defined in (2.4) and di’s are the limits in (2.3).

Proof. The proof of (2.5) follows directly from the Assumption 2.1 and the proof of (2.6) can be
found in §5.4 of [23].

3 Service times with finite support

In this section, we consider service time distributions that are i.i.d. and have a finite support. In
particular, we assume that the service times {ηi : i ≥ 1} are i.i.d. and have a distribution F with
a finite positive support {x1, ..., xm} with associated probabilities p1, ..., pm such that

∑m
i=1 pi = 1.

We say that a customer requiring service time xi is a type i customer. Let Ani (t) be the cumulative
number of arrivals of type i customers up to time t in the nth system. Denote An = (An1 , ..., A

n
m).

Let Disc(x) be the set of discontinuity points of x in [0,∞) and θs : D → D be the shift operator
defined by θs(x)(t) = x(t+ s) for t+ s ≥ 0 and θs(x)(t) = 0 for t+ s < 0 and t ≥ 0. We make the
following assumption on the diffusion-scaled arrival processes.

Assumption 3.1. There exist a deterministic non-decreasing function
Λ(t) = (Λ1(t), ...,Λm(t)) in Dm and a stochastic process Â = (Â1, ..., Âm) in Dm such that
P (Disc(Âi)∩Disc(θs(Âj))) = 0 for all i, j = 1, ...,m and s ≤ 0, and Ân(t)⇒ Â(t) in (Dm,M1) as

n→∞, where Ân = (Ân1 , ..., Â
n
m) is defined by Âni (t) := nγ(n−1Ani (t)− Λi(t)), t ≥ 0, i = 1, ...,m.

The functions Λi(t), i = 1, ...,m, are centering terms in the FCLT. This assumption implies
that the fluid-scaled processes satisfy an FLLN [36]: Ān = n−1An ⇒ Λ in (Dm,M1) as n→∞.

Let Xr
n,i(t, y) be the associated two-parameter processes for type i customers and Xn,i(t) be the

associated total count process for type i customers. Then by (2.1) and (2.2), we can write

Xr
n,i(t, y) =


Ani (t)−Ani (Un,−1(Un(t)− (xi − y))), t ≥ 0, 0 ≤ y < xi,

0, t ≥ 0, y ≥ xi,
(3.1)
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and
Xn,i(t) = Ani (t)−Ani (Un,−1(Un(t)− xi)), t ≥ 0, (3.2)

where
Un,−1(t) = sup{s ≥ 0 : Un(s) ≤ t}, t ≥ 0. (3.3)

We also let Un,−1(t) ≡ 0 for t < 0, so that the expressions (3.1) and (3.2) are well defined. We
remark that the inverse process Un,−1 has sample paths in D and can be represented as

Un,−1(t) = t+

N̂u
n (t)∑
k=1

dnk , t ≥ 0, (3.4)

where
N̂u
n (t) = max{i ≥ 0 : T̂ un,i ≤ t}, t ≥ 0, (3.5)

and T̂ un,i =
∑i

k=1 u
n
k , i ≥ 1, and T̂ un,0 = 0. We remark that Xr

n,i(t, y) in (3.1) cannot be simply

written as Ani (t)−Ani (Un,−1(Un(t)− (xi− y)+)) for all y ≥ 0, as in the case without interruptions.
By the definition of Un,−1(t) in (3.3), the expression is only correct for 0 ≤ y < xi. But in the
FLLN and FCLT limits for Xr

n,i(t, y) in (3.6) and (3.8), we can use the expression t− (xi − y)+ to
combine the two scenarios with 0 ≤ y < xi and y ≥ xi.

We write

Xr
n(t, y) = (Xr

n,1(t, y), ..., Xr
n,m(t, y)), Xr

n(t, y) =
m∑
i=1

Xr
n,i(t, y),

and

Xn(t) = (Xn,1(t), ..., Xn,m(t)), Xn(t) =
m∑
i=1

Xn,i(t).

Now define the fluid-scaled processes X̄r
n(t, y) = n−1Xr

n(t, y), X̄r
n(t, y) = n−1Xr

n(t, y), X̄n(t) =
n−1Xn(t) and X̄n(t) = n−1Xn(t). The fluid limits for these processes X̄r

n(t, y), X̄r
n(t, y), X̄n(t)

and X̄n(t) are stated in the following theorem. We remark that it is understood that for each
i = 1, ...,m, Λi(t) ≡ 0 whenever t < 0, so that the limit processes in Theorem 3.1 are all well
defined, and similarly for other relevant processes throughout the paper.

Theorem 3.1. (FLLN) Under Assumptions 2.1 and 3.1,

(X̄r
n(t, y), X̄r

n(t, y), X̄n(t), X̄n(t))⇒ (xr(t, y), xr(t, y),x(t), x(t))

in
(
(DD)m+1 ,M1

)
× (Dm+1,M1) as n → ∞, where xr(t, y) = (xr1(t, y), ..., xrm(t, y)) and x(t) =

(x1(t), ..., xm(t)), and for each i = 1, ...,m,

xri (t, y) = Λi(t)− Λi(t− (xi − y)+), xi(t) = xri (t, 0) = Λi(t)− Λi(t− xi), (3.6)

xr(t, y) =
∑m

i=1 x
r
i (t, y) and x(t) =

∑m
i=1 xi(t).

Define the diffusion-scaled processes X̂r
n,i(t, y) = nγ(X̄r

n,i(t, y)−xri (t, y)), X̂r
n(t, y) =

∑m
i=1 X̂

r
n,i(t, y),

X̂n,i(t) = X̂r
n,i(t, 0) = nγ(X̄n,i(t) − xi(t)), X̂n(t) = X̂r

n(t, 0) =
∑m

i=1 X̂n,i(t), and write X̂r
n(t, y) =

(X̂r
n,1(t, y), ..., X̂r

n,m(t, y)), and X̂n(t) = (X̂n,1(t), ..., X̂n,m(t)). We show an FCLT for these diffusion-
scaled processes.
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Theorem 3.2. (FCLT) Under Assumptions 2.1 and 3.1, assuming that Λ is absolutely continuous
with density λ := (λ1, ..., λm) ∈ Cm a.e.,

(X̂r
n(t, y), X̂r

n(t, y), X̂n(t), X̂n(t))⇒ (X̂r(t, y), X̂r(t, y), X̂(t), X̂(t)) (3.7)

in
(
(DD)m+1 ,M1

)
× (Dm+1,M1) as n → ∞, where X̂r(t, y) = (X̂r

1(t, y), ..., X̂r
m(t, y)), X̂(t) =

(X̂1(t), ..., X̂m(t)),

X̂r
i (t, y) = Âi(t)− Âi(t− (xi − y)+) + Ĵri (t, y), X̂i(t) = X̂r

i (t, 0), (3.8)

Ĵri (t, y) = λi(t− (xi − y)+)

N̂(t)∑
k=N̂(t−(xi−y)+)

dk, Ĵi(t) = Ĵri (t, 0), (3.9)

X̂r(t, y) =
∑m

i=1 X̂
r
i (t, y), X̂(t) =

∑m
i=1 X̂i(t), and N̂(t) is defined in (2.4). The processes Ĵri (t, y)

and Ĵi(t) are independent of the arrival limit processes Âi(t) for each i = 1, ...,m.

We remark that when the arrival rates are constant, that is, Λi(t) = λit, the fluid limits xri (t, y)
and xri (t) in (3.6) become

xri (t, y) = λi(t− (t− (xi − y)+)+), xi(t) = λi(t− (t− xi)+). (3.10)

and the processes Ĵri (t, y) and Ĵi(t) in (3.9) become

Ĵri (t, y) = λi

N̂(t)∑
k=N̂(t−(xi−y)+)

dk, Ĵi(t) = λi

N̂(t)∑
k=N̂(t−xi)

dk. (3.11)

As a consequence of Theorem 3.2, there exists a stochastic decomposition property for the limit
process X̂r(t, y), that is, each of the processes X̂r

i (t, y) is equal to a sum of a two independent
processes, the arrival limit processes Âi(t) − Âi(t − (xi − y)+), and the jump processes due to
service interruptions Ĵri (t, y). This stochastic decomposition property also holds for X̂r(t, y), X̂(t)
and X̂(t). This can be intuitively explained as follows. Since the service times are deterministic,
the realized service times with the interruptions are in fact the deterministic duration “inserted”
with the random down times from the arrival time to service completion. The randomness from
arrivals is captured in Âi(t)− Âi(t− (xi− y)+) as in [11], while the randomness from interruptions
is captured in Ĵri (t, y), which is exactly the number of down times (in the diffusion scale) during
the time period to be counted in X̂r

i (t, y). This is also demonstrated in the covariance formulas
below.

Corollary 3.1. In addition to the assumptions of Theorem 3.2, suppose that (i) the arrival rates
are constant and the arrival limit process Â is a Brownian motion with mean 0 and covariance
coefficient matrix Σ = (σij)i,j=1,...,m, where σii = λic

2
a,i for some constant c2a,i > 0, and σij ≥ 0

are some positive constants for all i 6= j, and (ii) the limit counting process N̂ is a Poisson
process with rate λu = 1/E[ui] ∈ (0,∞) and the limit up times ui have a finite second moment.
Then for each t > 0 and y ≥ 0, the distribution of X̂r(t, y) is a sum of two independent random
vectors, a multivariate Gaussian random vector N(0,Σr(t, y)) where Σr

ii(t, y) = c2a,ix
r
i (t, y) and

Σr
ij(t, y) = σij(x

r
i (t, y) ∧ xrj(t, y)) with xri (t, y) being defined in (3.10), and a random vector of

compound Poisson variables, Ĵr = (Ĵr1 , ..., Ĵ
r
m), which has mean E[Ĵri (t, y)] = λuE[d1]x

r
i (t, y),

i = 1, ...,m, and covariances: for i, j = 1, ...,m, Cov(Ĵri (t, y), Ĵrj (t, y)) = λiλj
(
λu((xi−y)+∧ (xj−

y)+)E[d21]− (λu)2((xi − y)+ ∧ (xj − y)+)2(E[d1])
2
)
.
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4 Dependent service times with continuous distributions

In this section, we consider G/G/∞ systems with stationary and weakly dependent service times
and a general continuous distribution function. Throughout this section, we assume that γ = 1/2
(see also Remark 4.2). We assume that the arrival processes An satisfy an FCLT.

Assumption 4.1. There exist a deterministic function Λ ∈ C with density λ ∈ D a.e. and a
stochastic process Â such that Ân(t) :=

√
n(n−1An(t)− Λ(t))⇒ Â(t) in (D,M1) as n→∞.

The service times are fixed with respect to n and so is their distribution function.

Assumption 4.2. The sequence of service times {ηi : i ≥ 1} is weakly dependent and constitutes a
one-sided stationary sequence. ηi’s have the same continuous c.d.f. F with F (0) = 0, and E[η21] <
∞, satisfying

∑∞
i=1(E[(E[ηi+k|Fsk ])2])1/2 < ∞ for k = 1, 2, ..., where Fsk := σ{ηi : 1 ≤ i ≤ k}.

Moreover, the sequence {ηi : i ≥ 1} satisfies the φ-mixing condition, that is,
∑∞

k=1 φk < ∞, where
φk := sup{|P (B|A)− P (B)| : A ∈ Fsm, P (A) > 0, B ∈ Gsm+k,m ≥ 1}, with Gsk := σ{ηi : i ≥ k}. Let
F c := 1− F .

Note that Assumption 4.2 includes many interesting examples of correlated service times as
studied in Pang and Whitt [26, 27, 28]. For example, customers arrive in batches (deterministic
or random batch sizes) and service times within each batch are (symmetrically) correlated while
service times across different batches are independent. Other examples include EARMA sequences
and first-order autoregressive sequences with exponential or general marginal distributions [13, 14,
15, 31], which have been used to study correlated service times in queueing; see Remark 4.3.

We first state the following FLLN for the fluid-scaled processes X̄r
n(t, y) = n−1Xr

n(t, y) and
X̄n(t) = n−1Xn(t). The proof follows directly from Theorem 4.2.

Theorem 4.1. Under Assumptions 2.1, 4.1 and 4.2, (X̄r
n(t, y), X̄n(t))⇒ (X̃r(t, y), X̃(t)) in (DD,M1)×

(D,M1) as n→∞, where X̃r(t, y) =
∫ t
0 F

c(t− s+ y)dΛ(s) and X̃(t) = X̃r(t, 0) for t, y ≥ 0.

Define the diffusion-scaled processes X̂r
n(t, y) =

√
n
(
X̄r
n(t, y)−X̃r(t, y)

)
and X̂n(t) =

√
n
(
X̄n(t)−

X̃(t)
)
. We next state the FCLT for the diffusion-scaled processes X̂r

n(t, y) and X̂n(t).

Theorem 4.2. Under Assumptions 2.1, 4.1 and 4.2,

(X̂r
n(t, y), X̂n(t))⇒ (X̂r(t, y), X̂(t)) in (DD,M1)× (D,M1) as n→∞, (4.1)

where

X̂r(t, y) = X̂r
1(t, y) + X̂r

2(t, y) + X̂r
3(t, y), X̂(t) = X̂1(t) + X̂2(t) + X̂3(t), (4.2)

X̂r
1(t, y) =

∫ t

0
F c(t− s+ y)dÂ(s), (4.3)

X̂r
2(t, y) =

∫ t

0

∫ ∞
0

1(x > t− s+ y)dK̂(Λ(s), x), (4.4)

X̂r
3(t, y) =

∫ t

0

(
Ĵ(t)− Ĵ(s)

)
λ(s)dF c(t− s+ y), (4.5)

X̂1(t) = X̂r
1(t, 0), X̂2(t) = X̂r

2(t, 0), X̂3(t) = X̂r
3(t, 0), (4.6)
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the process Ĵ(t) is defined in (2.7), the process K̂(t, x) is a two-parameter continuous Gaussian
process with mean zero and covariance function

Cov(K̂(t, x), K̂(s, y)) = (t ∧ s)ΓK(x, y), t, s, x, y ≥ 0, (4.7)

ΓK(x, y) = (F (x ∧ y)− F (x)F (y)) + ΓcK(x, y) <∞, x, y ≥ 0, (4.8)

ΓcK(x, y) =

∞∑
k=2

(E[γ̄1(x)γ̄k(y)] + E[γ̄1(y)γ̄k(x)]), x, y ≥ 0, (4.9)

with γ̄k(x) := 1(ηk ≤ x) − F (x) for x ≥ 0 and k ≥ 1, and the integral in (4.4) with respect to the
process K̂ is defined in the sense of mean-square integrals. The three processes X̂r

i (t, y), i = 1, 2, 3,
are mutually independent, and so are the three processes X̂i(t), i = 1, 2, 3.

When the service times are i.i.d., the covariance function of K̂(t, x) in (4.7)-(4.9) becomes
Cov(K̂(t, x), K̂(s, y)) = (t∧ s)(F (x∧y)−F (x)F (y)), t, s, x, y ≥ 0, and the process K̂(t, x) is called
a Kiefer process [18, 25].

When N̂(t) is Poisson, the jump process Ĵ(t) in (2.7) is a compound Poisson process. If, in
addition, the arrival rate is constant, by the stationarity of Ĵ(t) and integration by parts, we can
represent the process X̂r

3(t, y) in (4.5) as

X̂r
3(t, y) = −λ

∫ t

0
Ĵ(s)dF c(s+ y) = −λĴ(t)F c(t+ y) + λ

∫ t

0
F c(s+ y)dĴ(s)

= −λF c(t+ y)Ĵ ([0, t]× R+) + λ

∫ t

0

∫ ∞
0

xF c(s+ y)Ĵ (ds, dx),

where Ĵ (s, x) is a Poisson random measure defined on [0,∞) × R+, with intensity λuds × dG(x),
where λu = 1/E[ui] ∈ (0,∞) and G(·) is the distribution function of the limiting down times
{dk : k ≥ 1}.

Remark 4.1. There is a stochastic decomposition property for limit process X̂r(t, y): the variability
from the arrival process is captured in X̂r

1(t, y), the variability and correlation of service times are
captured in X̂r

2(t, y), and the impact of interruptions is captured in X̂r
3(t, y).

Remark 4.2. In Theorems 4.1–4.2, we have assumed that γ = 1/2. This is the only scaling
when a proper limit can be established to capture the variabilities from service times, the processes
X̂r

2(t, y) and X̂2(t) in (4.4) and (4.6), respectively. This is because the FCLT for the sequential
empirical processes driven by the service times requires

√
n scaling, see Lemma 6.1. When γ ∈

(0, 1/2), no limit exists for (X̂r
n(t, y), X̂n(t)), while when γ > 1/2, an FCLT can be established for

(X̂r
n(t, y), X̂n(t)), which will have the same limits in (4.2) with X̂r

2(t, y) = X̂2(t) ≡ 0.

When the arrival limit process is a Brownian motion and the limiting counting process N̂(t) is
Poisson, we can characterize the transient and stationary distribution of the limit processes as in
the following corollary. Its proof follows from direct calculations and is thus omitted.

Corollary 4.1. Under the Assumptions of Theorem 4.2, if, in addition, Â(t) = caB(Λ(t)) for some
ca > 0, Λ(t) =

∫ t
0 λ(s)ds and a standard Brownian motion B(t), and the limit counting process N̂(t)

is a Poisson process with rate λu = 1/E[ui] ∈ (0,∞) and the limit up times ui have a finite second
moment, the processes X̂r(t, y) and X̂(t) have mean E[X̂r(t, y)] = λuE[d1]

∫ t
0 [(t − s)λ(s)]dF c(t −

s+ y), E[X̂r(t)] = E[X̂r(t, 0)], and variance functions

V ar(X̂r(t, y)) =

∫ t

0
λ(s)

(
F c(t+ y − s) (4.10)
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+(c2a − 1)(F c(t+ y − s))2 + ΓcK(t+ y − s, t+ y − s))
)
ds

+λuE[d21]

∫ t

0

∫ t

0
(t− s ∨ u)λ(s)λ(u)dF c(t− s+ y)dF c(t− u+ y),

and V ar(X̂(t)) = V ar(X̂r(t, 0)). When the arrival rate is constant, we obtain
E[X̂r(∞, y)] = λλuE[d1]

∫∞
y (s− y)dF c(s), E[X̂(∞)] = E[X̂r(∞, 0)] = λE[η1]λ

uE[d1], and

V ar(X̂r(∞, y)) = λ

∫ ∞
y

(
F c(s) + (c2a − 1)((F c(s))2 + ΓcK(s, s))

)
ds

+λ2λuE[d21]

∫ ∞
y

∫ ∞
y

(s ∧ u− y)dF c(s)dF c(u), (4.11)

and V ar(X̂(∞)) = V ar(X̂r(∞, 0)).

Remark 4.3. The impact of correlation among service times is characterized in Pang and Whitt
[26, 27]. In particular, the effects of the terms Γck in (4.10) and (4.11) upon the mean and variance
of the queue in the infinite-server models and upon the delay in the finite-server models are carefully
studied. For example, consider the case of the sequence of service times forming a first-order discrete
autoregressive process, DAR(1), that is, ηi = ζi−1ηi−1 + (1 − ζi−1)η̃i, i ≥ 2, where {ζi : i ≥ 1} is
a sequence of i.i.d. Bernoulli random variables with P (ζi = 1) = p ∈ (0, 1) and {η̃i : i ≥ 2} is a
sequence of i.i.d. random variables with distribution F . Then as shown in [26], the term ΓcK(s, s)
in (4.11) is equal to 2p

1−pF (s)F c(s). Our contribution lies in the additional variabilities caused by
service interruptions, characterized by the last terms in (4.10) and (4.11), which depend on the
second moment of the limiting down times.

5 Proofs for service times with finite support

In this section, we prove Theorems 3.1 and 3.2, when the service times are i.i.d. and have a finite
support. We will need the following lemmas 5.2–5.5, whose proofs are in §7.

Lemma 5.1. Let (S, r) be a Banach space, and xn, x ∈ D([0, T ],S) and x ∈ C([0, T ],S) for
n ≥ 1 and T > 0. The following is a necessary and sufficient condition for xn → x in the space
D([0, T ],S) endowed with the Skorohod M1 topology : whenever tn → t as n→∞ for tn, t ∈ [0, T ],
r(xn(tn), x(t))→ 0 as n→∞.

Proof. See, e.g., Section 3.6 in [7] and Lemma 2.1 in [33].

Lemma 5.2. Suppose that (xn(t), yn(t, s)) → (x(t), y(t, s)) in (D,M1) × (DD, J1) as n → ∞ and
y(t, s) ∈ CC. Define zn(t, s) := xn(yn(t, s)) and z(t, s) := x(y(t, s)) and denote zn(t) := zn(t, ·) and
z(t) := z(t, ·). Suppose that yn(t, s) and y(t, s) are nondecreasing in t and strictly increasing in s.
Then zn(t, s) and z(t, s) are both in DD, zn(t) and z(t) are both continuous in t in D([0,∞), (D, L1)),
and zn → z in (DD,M1) as n→∞.

Lemma 5.3. If xn(t)→ x(t) in (D,M1) as n→∞, then xn(t)→ x(t) in (DD,M1) as n→∞.

Lemma 5.4. Suppose that (xn(t), yn(t, s)) → (x(t), y(t, s)) in (D,M1) × (DD,M1) as n → ∞,
and x(t) and y(t) := y(t, ·) do not have common discontinuity points. Then xn(t) + yn(t, s) →
x(t) + y(t, s) in (DD,M1) as n→∞.
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Proof of Theorem 3.1. First, by (3.1) and (3.4), for i = 1, ...,m, we can write X̄r
n,i(t, y) as the

following: for t ≥ 0 and 0 ≤ y < xi,

X̄r
n,i(t, y) = Āni (t)− Āni (Un,−1(Un(t)− (xi − y)))

= Āni (t)− Āni

Un(t)− (xi − y) +

N̂u
n (Un(t)−(xi−y))∑

k=1

dnk

 , (5.1)

and for t ≥ 0 and y ≥ xi, X̄
r
n,i(t, y) = 0. Thus, the main focus is on proving the convergence of

X̄r
n,i(t, y) for t ≥ 0 and 0 ≤ y < xi, i = 1, ...,m. In the following of this proof (convergences in

(5.3)-(5.6)), the space DD is restricted to functions z(t, y) with t ∈ [0,∞) and y ∈ [0, xi) for each
i = 1, ...,m. By Assumption 2.1 and the definition of N̂u

n in (3.5), we have

N̂u
n ⇒ N̂ in (D, J1) as n→∞ (5.2)

where N̂ is defined in (2.4). This, together with (2.5) in Lemma 2.1, implies that(
Un(t)− (xi − y), N̂u

n (Un(t)− (xi − y)), i = 1, ...,m
)

⇒
(
t− (xi − y), N̂(t− (xi − y))), i = 1, ...,m

)
(5.3)

in the in ((DD)2m, J1) as n→∞. Now by Assumption 2.1 and the convergence in (5.3),N̂u
n (Un(t)−(xi−y))∑

k=1

dnk , i = 1, ...,m

⇒ (0, i = 1, ...,m) , (5.4)

in ((DD)m, J1) as n→∞.
Thus, by the continuous mapping theorem applied to the addition mapping in (DD, J1), we haveUn(t)− (xi − y) +

N̂u
n (Un(t)−(xi−y))∑

k=1

dnk , i = 1, ...,m

⇒ (t− (xi − y), i = 1, ...,m) (5.5)

in ((DD)m, J1) as n→∞.
By Assumption 3.1 on the arrival processes and Lemma 5.2, we obtainĀni

Un(t)− (xi − y) +

N̂u
n (Un(t)−(xi−y))∑

k=1

dnk

 , i = 1, ...,m


⇒ (Λi(t− (xi − y)), i = 1, ...,m) (5.6)

in ((DD)m ,M1) as n → ∞. To apply Lemma 5.2, it is easy to see that the sample paths of the

processes Un(t)− (xi− y) +
∑N̂u

n (Un(t)−(xi−y))
k=1 dnk and the functions t− (xi− y)+ are nondecreasing

in t and strictly increasing in y for y ∈ [0, xi), for each i = 1, ...,m.
Now, by applying the continuous mapping theorem, Lemmas 5.3 and 5.4, and by combining

the convergence of X̄r
n,i(t, y) for t ≥ 0 and y ≥ xi, we obtain the convergence of X̄n(t, y). The

convergence of X̄n(t), and thus that of X̄n(t), follow directly from the relationship between the
total count process and the two-parameter process in (2.2). It can also be proved directly by
applying the continuous mapping theorem to the composition and addition mappings in the space
(D,M1).

We then prove Theorem 3.2. For the proof, we need the following lemma.
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Lemma 5.5. Suppose that x(t, s) ∈ DD as a function of t is continuous in D([0,∞), (D, L1)) and
yn(t, s) → y(t, s) in (DD,M1), and y(t, s) as a function of t is continuous in D([0,∞), (D, L1)).
Then x(t, s)yn(t, s)→ x(t, s)y(t, s) in (DD,M1) as n→∞.

Proof of Theorem 3.2. First, by (5.1), for each i = 1, ...,m, we can write the processes X̂r
n,i(t, y) as

the following: for t ≥ 0 and 0 ≤ y < xi,

X̂r
n,i(t, y) = Âni (t)− Âni

Un(t)− (xi − y) +

N̂u
n (Un(t)−(xi−y))∑

k=1

dnk

+ Ĵrn,i(t, y), (5.7)

where

Ĵrn,i(t, y) = nγ

Λi(t− (xi − y))− Λi

Un(t)− (xi − y) +

N̂u
n (Un(t)−(xi−y))∑

k=1

dnk

 , (5.8)

and for t ≥ 0 and y ≥ xi, X̂
r
n,i(t, y) = 0. As in the proof of Theorem 3.1, we only need to

focus on proving the convergence of X̂r
n,i(t, y) for t ≥ 0 and 0 ≤ y < xi, i = 1, ...,m, and in the

following of the proof (convergences in (5.9)-(5.13)), the space DD is restricted to functions z(t, y)
with t ∈ [0,∞) and y ∈ [0, xi) for each i = 1, ...,m.

By Assumption 3.1, the convergence in (5.5) and Lemma 5.2, we obtainÂni
Un(t)− (xi − y) +

N̂u
n (Un(t)−(xi−y))∑

k=1

dnk

 , i = 1, ...,m


⇒

(
Âi(t− (xi − y)), i = 1, ...,m

)
(5.9)

in ((DD)m ,M1) as n→∞. Again, note that the sample paths of the processes Un(t)− (xi − y) +∑N̂u
n (Un(t)−(xi−y))

k=1 dnk and the functions t−(xi−y) are continuous as functions of t in D([0,∞), (D, L1)),
and are nondecreasing in t and strictly increasing in y for y ∈ [0, xi), for i = 1, ...,m.

Next, we focus on the processes Ĵrn,i(t, y). We note that the continuity assumption of Λi is

necessary because if t− (xi− y)+ is a discontinuity point of Λi, the processes Ĵrn,i(t, y) in (5.8) will
converge to infinity at those discontinuity points. In (5.8), we apply Taylor expansion and obtain

Ĵrn,i(t, y) = λi(t− (xi − y))Ẑrn,i(t, y) + o(1/nγ), (5.10)

where

Ẑrn,i(t, y) = D̂n(t)−
N̂u

n (Un(t)−(xi−y))∑
k=1

(nγdnk). (5.11)

By Assumption 2.1, the convergence of N̂u
n in (5.2), Lemma 2.1, we can easily show thatN̂u

n (Un(t)−(xi−y))∑
k=1

(nγdnk), i = 1, ...,m

⇒
N̂(t−(xi−y))∑

k=1

dk, i = 1, ...,m

 (5.12)

in ((DD)m, J1) as n→∞.
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Thus, by Assumption 2.1, the convergence of D̂n(t) in (2.6) of Lemma 2.1, and by Lemma 5.4,
we obtain that

(
Ẑrn,i(t, y), i = 1, ...,m

)
⇒

 N̂(t)∑
k=N̂(t−(xi−y))

dk, i = 1, ...,m

 (5.13)

in ((DD)m,M1) as n → ∞. We denote Ĵrn = (Ĵrn,1, ..., Ĵ
r
n,m). Recall the associated processes

Ĵr = (Ĵr1 , ..., Ĵ
r
m), where Ĵri is defined in (3.9). By Lemma 5.5, we obtain that Ĵrn ⇒ Ĵr in

((DD)m,M1) as n→∞.
Finally, by the fact that the limiting processes Âi and Ĵri do not have simultaneous jumps, and

by the continuity of summation in Lemma 5.4, and by combining the convergence of X̂r
n,i(t, y) for

t ≥ 0 and y ≥ xi, i = 1, ...,m, we obtain the convergence in (3.7). The convergence of X̂n(t), and
thus that of X̂n(t), follow directly from the relationship between the total count process and the
two-parameter processes in (2.2). In fact, a direct proof for the convergence of X̂n(t) and X̂n(t)
can be done by simply applying the continuous mapping theorem of composition, multiplication
and summation in the (D,M1) topology. The details are omitted for brevity. This completes the
proof this theorem.

6 Proofs for dependent service times with continuous distribu-

tions

In this section, we prove Theorem 4.2. As in [18, 25, 28], we can represent the processes X̂r
n(t, y) in

(4.1) as Lebesgue-Stieltjes integrals with respect to the sequential empirical process driven by the
sequence of service times. Let K̂n(t, x) be sequential empirical process driven by the service times

{ηi : i ≥ 1}, defined by K̂n(t, x) = 1√
n

∑bntc
i=1 (1(ηi ≤ x) − F (x)), t ≥ 0, x ≥ 0. We now state an

FCLT for the processes K̂n(t, x), whose proof can be found in §4.1 for Theorem 2.1 of [28].

Lemma 6.1. Under Assumption 4.2, K̂n(t, x) ⇒ K̂(t, x) in (DD, J1) as n → ∞, where K̂ is the
two-parameter continuous Gaussian process defined in Theorem 4.2.

Lemma 6.2. The processes X̂r
n(t, y) in (4.1) can be represented as X̂r

n(t, y) = X̂r
n,1(t, y)+X̂r

n,2(t, y)+

X̂r
n,3(t, y), where

X̂r
n,1(t, y) =

∫ t

0
F c(Un(t)− Un(s) + y)dÂn(s), (6.1)

X̂r
n,2(t, y) =

∫ t

0

∫ ∞
0

1(x > Un(t)− Un(s) + y)dK̂n(Ān(s), x), (6.2)

X̂r
n,3(t, y) =

∫ t

0

√
n(F c(Un(t)− Un(s) + y)− F c(t− s+ y))dΛ(s), (6.3)

where the integrals in (6.1) and (6.2) with respect to Ân and K̂n, respectively, are all defined as
Stieltjes integrals for functions of bounded variation as integrators.
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The proof of this lemma follows from a direct calculation and the observation that the processes
Xr
n(t, y) defined in (2.1), can be written as

Xr
n(t, y) =

∫ t

0

∫ ∞
0

1(x > Un(t)− Un(s) + y)d

An(t)∑
i=1

1(ηi ≤ x)

 .

We omit the details of this proof for brevity.
We first show the convergence of X̂r

n,1(t, y). We need the following lemma, whose proof is in §7.

Lemma 6.3. For x ∈ C and z ∈ D, define a mapping φ : C× D→ DD by

φ(x, z)(t, y) = z(t)F c(y)−
∫ t

0
z(s)dF c(x(t)− x(s) + y), t, y ≥ 0.

Suppose that (xn, zn)→ (x, z) in (C, ‖ · ‖)× (D,M1) as n→∞ where xn, x ∈ C. Then φ(xn, zn)→
φ(x, z) in (DD,M1) as n→∞.

We are ready to prove the convergence of X̂r
n,1(t, y) and X̂n,1(t).

Lemma 6.4. Under Assumptions 2.1, 4.1 and 4.2, (X̂r
n,1, X̂n,1)⇒ (X̂r

1 , X̂1) in (DD,M1)× (D,M1)
as n→∞.

Proof. First, by (6.1) and (4.3), and integration by parts, we have

X̂r
n,1(t, y) = Ân(t)F c(y)−

∫ t

0
Ân(s)dF c(Un(t)− Un(s) + y),

X̂r
1(t, y) = Â(t)F c(y)−

∫ t

0
Â(s)dF c(t− s+ y).

Then it is clear that X̂r
n,1(t, y) = φ(Un, Ân)(t, y), and X̂r

1(t, y) = φ(e, Â)(t, y), where e(t) ≡ t is
the identity mapping. Recall that Un has continuous non-decreasing sample paths almost surely.
Now by the continuity of summation in (DD,M1), Lemmas 5.3 and 6.3, and Assumption 4.2, we
obtain the convergence of X̂r

n,1(t, y). The convergence of X̂n,1(t) follows from that of X̂r
n,1(t, y). It

can also be proved directly by showing the continuity in the M1 topology of the following mapping
ψ : C↑ × D→ D, defined by

ψ(x, z)(t) = z(t)F c(0)−
∫ t

0
z(s)dF c(x(t)− x(s)), t ≥ 0.

It is easy to check that the claim is true. Thus, the proof is complete.
We next prove the convergence of X̂r

n,3(t, y) and X̂n,3(t).

Lemma 6.5. Under Assumptions 2.1, 4.1 and 4.2, (X̂r
n,3, X̂n,3)⇒ (X̂r

3 , X̂3) in (DD,M1)× (D,M1)
as n→∞.

Proof. First, by (6.3) and Taylor expansion, we have

Xr
n,3(t, y) = −

∫ t

0
(D̂n(s)− D̂n(t))λ(s)dF c(t− s+ y) + o(1/

√
n)

= D̂n(t)

∫ t

0
λ(s)dF c(t− s+ y)
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−
∫ t

0
D̂n(s)λ(s)dF c(t− s+ y) + o(1/

√
n). (6.4)

For the first term on the right hand side of (6.4), by Lemma 2.1, we have D̂n ⇒ Ĵ in (D,M1)
and by a similar argument in the proof of Lemma 6.3, the function

∫ t
0 λ(s)dF c(t − s + y) as a

function of t is continuous in D([0,∞), (D, L1)). Thus by Lemmas 5.3 and 5.5, it follows that
D̂n(t)

∫ t
0 λ(s)dF c(t − s + y) ⇒ Ĵ(t)

∫ t
0 λ(s)dF c(t − s + y) in (DD,M1) as n → ∞. For the second

term on the right hand side of (6.4), we can apply Lemmas 6.3 and 2.1. To see this, we let zn(s)
and z(s) in Lemma 6.3 be the sample paths of D̂n(s)λ(s) and Ĵ(s)λ(s), respectively, and xn(s)
and x(s) be e(s) ≡ s. Thus, by the continuity of summation in (DD,M1), we obtain X̂r

n,3 ⇒ X̂r
3 in

(DD,M1).
The convergence of X̂n,3(t) follows directly from that of X̂r

n,3(t, y). It can also be shown directly

by proving the continuity in the M1 topology of the following mapping ψ̃ : D→ D, where ψ̃(x)(t) =
x(t)

∫ t
0 λ(s)dF c(t−s)−

∫ t
0 x(s)λ(s)dF c(t−s), t ≥ 0. It is easy to check that the claim is true. Thus,

the proof is complete.
We now focus on the proof of the convergence of X̂r

n,2(t, y) and X̂n,2(t). It turns out that
under the assumptions of Theorem 4.2, we can prove their convergence in the stronger Skorohod
J1 topology, which implies the convergence in the M1 topology.

Lemma 6.6. Under Assumptions 2.1, 4.1 and 4.2,

(X̂r
n,2, X̂n,2)⇒ (X̂r

2 , X̂2) in (DD, J1)× (D, J1) as n→∞. (6.5)

Proof. Define the process Ŷ r
n,2(t, y):

Ŷ r
n,2(t, y) =

∫ t

0

∫ ∞
0

1(x > t− s+ y)dK̂n(Ān(s), x), t, y ≥ 0.

By Theorem 3.2 in [28] (note that the convergence therein is directly proved for the associated
two-parameter process Xe(t, y) tracking the number of customers in the system at time t that have
received an amount of service less than or equal to t, but the convergence of the two-parameter
processes Xr(t, y) is implied and can be easily obtained as in [25] by exploiting the relationship
between the two-parameter processes tracking elapsed and residual times), we have Ŷ r

n,2(t, y) ⇒
X̂r

2(t, y) in (DD, J1) as n → ∞, where X̂r
2(t, y) is defined in (4.4). Thus, by Theorem 3.1 in [3], it

suffices to show that for each ε > 0 and for each T > 0 and T ′ > 0,

lim
n→∞

P

(
sup

t∈[0,T ],y∈[0,T ′]

∣∣Ŷ r
n,2(t, y)− X̂r

n,2(t, y)
∣∣ > ε

)
= 0. (6.6)

We provide a sketch proof of (6.6) here. The tightness of X̂r
n,2 follows first a straightforward

extension of that for Ŷ r
n,2. We next discretize the domain into rectangles as in Definition 3.1 in [28],

and denote the corresponding processes Ŷ r
n,2,k(t, y) and X̂r

n,2,k(t, y) for discretization size k. It is

then easy to show that the finite dimensional distributions of Ŷ r
n,2,k − X̂r

n,2,k converge to 0 for each
k as n→∞. Finally, by Theorem 3.2 in [3], it suffices to show that

lim
k→∞

lim sup
n→∞

P
(∣∣(Ŷ r

n,2,k(t, y)− X̂r
n,2,k(t, y))− (Ŷ r

n,2(t, y)− X̂r
n,2(t, y))

∣∣ > ε
)

= 0,

for each t ≥ 0 and 0 ≤ y ≤ t. This follows from a similar argument as in the proof of Lemma 4.2
in [28], by noting the convergence Un ⇒ e. This completes the proof.
Proof of Theorem 4.2. The convergence in (4.1) follows from Lemmas 6.2, 6.4, 6.5 and 6.6 and the
continuous mapping theorem.
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7 Appendix

In this appendix, we collect the proofs for the lemmas used in §§5–6.
Proof of Lemma 5.2. We first show zn(t) is continuous in t in D([0,∞), (D, L1)) for each n. To
see this, let tk, t ∈ [0, T ] for T > 0, and tk → t as k →∞, we need to show ‖zn(tk)− zn(t)‖L1 → 0
as k →∞, for each n ≥ 1, that is, for each Y > 0,∫ Y

0

∣∣xn(yn(tk, s))− xn(yn(t, s))
∣∣ds→ 0 as k →∞. (7.1)

Let Discs(xn, yn) be the set of s values such that s is a discontinuity point of yn(t, s) or yn(t, s) is a
discontinuity point of xn for the above t ≥ 0. Since yn ∈ DD is strictly increasing in s, we have that
there can only be countably many points in Discs(xn, yn) for the above t ≥ 0, which has Lebesgue
measure zero.

Now for each s /∈ Discs(xn, yn), we obtain that for each n ≥ 1,
∣∣xn(yn(tk, s))−xn(yn(t, s))

∣∣→ 0
as k → ∞. Since xn(yn(t, s)) ∈ DD, xn(yn(t, s)) is bounded in finite time intervals, and thus by
the bounded convergence theorem together with the fact that Discs(xn, yn) has Lebesgue measure
zero, we obtain the convergence in (7.1). Similarly, z(t) is also continuous in t in D([0,∞), (D, L1)).

Finally, we prove zn → z in (DD,M1) as n → ∞. Since zn(t) and z(t) are continuous in t
in D([0,∞), (D, L1)), by Lemma 5.1, it suffices to show that for any T > 0 and any sequence
tn, t ∈ [0, T ] satisfying tn → t as n→∞, ‖zn(tn)− z(t)‖L1 → 0 as n→∞, that is, for each Y > 0,∫ Y

0

∣∣xn(yn(tn, s))− x(y(t, s))
∣∣ds→ 0 as n→∞. (7.2)

Let Discs(x) be the set of s values such that y(t, s) is a discontinuity point of x for the above t ≥ 0.
Since y is nondecreasing in t and strictly increasing in s, there can only be countably many points
in Discs(x), which has Lebesgue measure zero.

Now for each s /∈ Discs(x), since yn → y in the space DD endowed with the Skorohod J1
topology (and equivalently with the uniform topology due to the fact that y ∈ CC), by Proposition
3.6.5 in [7], we have

∣∣yn(tn, s)−y(t, s)
∣∣→ 0 as n→∞. Thus, by the convergence xn → x in (D,M1),

we have that xn(t) → x(t) uniformly at each continuity point of x, and since s /∈ Discs(x), we
obtain that

∣∣xn(yn(tn, s)) − x(y(t, s))
∣∣ → 0 as n → ∞. This, together with the fact that Discs(x)

has Lebesgue measure zero, implies that (7.2) holds and thus, the lemma is proved.
Proof of Lemma 5.3. Since xn(t) and x(t) are constant functions of the second time parameter
when they are regarded functions in DD, the same parametric representations for xn and x used for
the convergence of xn(t)→ x(t) in (D,M1) can be also used for the convergence of xn(t)→ x(t) in
(DD,M1). We omit the details for brevity.
Proof of Lemma 5.4. The continuity of summation in the M1 topology follows from Lemma 5.3
and Theorem III.3.1 in [29].
Proof of Lemma 5.5. Due to the continuity of x and y as functions of t in D([0,∞), (D, L1)), by
Lemma 5.1, it suffices to prove that for any T > 0 and any sequence tn, t ∈ [0, T ] satisfying tn → t
as n → ∞, we have ‖x(tn)yn(tn) − x(t)y(t)‖L1 → 0 as n → ∞. Recall that x(tn) := x(tn, ·) and
similarly for yn(tn), x(t) and y(t). Now,

‖x(tn)yn(tn)− x(t)y(t)‖L1

≤ ‖x(tn)yn(tn)− x(tn)y(t)‖L1 + ‖x(tn)y(t)− x(t)y(t)‖L1

≤ ‖x(tn)‖L1‖yn(tn)− y(t)‖L1 + ‖y(t)‖L1‖x(tn)− x(t)‖L1 → 0.
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The convergence follows from the facts that supn ‖x(tn)‖L1 < ∞, ‖y(t)‖L1 < ∞, yn(t, s) → y(t, s)
in (DD,M1), and the continuity property of y(t, s) and x(t, s) as functions of t in D([0,∞), (D, L1)).

Proof of Lemma 6.3. The proof proceeds in four steps.
Step 1: Since zn → z in (D,M1) as n → ∞, by Lemma 5.3 we have zn → z in (DD,M1) as

n → ∞. Since F is continuous, by Lemma 5.5, we have that zn(t)F c(y) → z(t)F c(y) in (DD,M1)
as n→∞.

Step 2: We claim that
∫ t
0 z(s)dF

c(x(t) − x(s) + y) is continuous in t in D([0,∞), (D, L1)).
Suppose tn, t ∈ [0, T ] for T > 0 and tn → t as n→∞, for each y ≥ 0, we have∣∣∣∣∫ tn

0
z(s)dF c(x(tn)− x(s) + y)−

∫ t

0
z(s)dF c(x(t)− x(s) + y)

∣∣∣∣
≤

∣∣∣∣∫ t

0
z(s)d (F c(x(tn)− x(s) + y)− F c(x(t)− x(s) + y))

∣∣∣∣
+

∣∣∣∣∫ tn

t
z(s)dF c(x(tn)− x(s) + y)

∣∣∣∣ . (7.3)

Since x and F are both continuous functions, F c(x(tn) − x(s) + y) − F c(x(t) − x(s) + y) → 0 as
n→∞, and thus the same holds for the first integral on the right hand side of (7.3). The second
integral goes to zero because tn → t and the continuity of F . (So far, we have proved the pointwise
convergence). Given Y > 0, and T > 0 such that tn, t ∈ [0, T ], z(t) ∈ D implies z(t) is bounded on

[0, T ]. So we have
∫ Y
0

∣∣ ∫ t
0 z(s)dF

c(x(t)− x(s) + y)
∣∣dy is bounded for each Y > 0. By (7.3) and the

bounded convergence theorem, we obtain∫ Y

0

∣∣∣∣∫ tn

0
z(s)dF c(x(tn)− x(s) + y)−

∫ t

0
z(s)dF c(x(t)− x(s) + y)

∣∣∣∣ dy → 0,

as n→∞. Thus, we have proved the claim. A similar argument also shows that
∫ t
0 zn(s)dF c(xn(t)−

x(s) + y) is continuous in t in D([0,∞), (D, L1)) since we assume xn ∈ C.
Step 3: We prove that∫ t

0
zn(s)dF c(xn(t)− xn(s) + y)→

∫ t

0
z(s)dF c(x(t)− x(s) + y) in (DD,M1),

as n→∞. By the claim proved in Step 2, by Lemma 5.1, it suffices to prove that for each T > 0
and Y > 0, for tn, t ∈ [0, T ] and any sequence tn → t as n→∞, we have∫ Y

0

∣∣∣∣∫ tn

0
zn(s)dF c(xn(tn)− xn(s) + y)−

∫ t

0
z(s)dF c(x(t)− x(s) + y)

∣∣∣∣ dy → 0 (7.4)

as n→∞. We first prove pointwise convergence and then L1 convergence. For each y ≥ 0,∣∣∣∣∫ tn

0
zn(s)dF c(xn(tn)− xn(s) + y)−

∫ t

0
z(s)dF c(x(t)− x(s) + y)

∣∣∣∣ (7.5)

≤
∣∣∣∣∫ tn

0
zn(s)d(F c(xn(tn)− xn(s) + y)− F c(x(t)− x(s) + y))

∣∣∣∣
+

∣∣∣∣∫ tn

0
(zn(s)− z(s))dF c(x(t)− x(s) + y)

∣∣∣∣+

∣∣∣∣∫ tn

t
z(s)dF (x(t)− x(s) + y)

∣∣∣∣ .
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The first integral on the right hand side of (7.5) converges to zero as n → ∞ because of the
continuity of F and xn(tn) → x(t) uniformly as n → ∞ (Recall that xn and x are continuous).
Since zn(t) → z(t) in (D,M1), the set {s ∈ [0,∞) : |zn(s) − z(s)| 9 0} has Lebesgue measure 0,
and thus the second integral on the right hand side of (7.5) goes to zero as n → ∞. It is evident
that the third integral on the right hand side of (7.5) also goes to zero as n→∞. Thus, we have
proved that for each y > 0,∣∣∣∣∫ t

0
zn(s)dF c(xn(t)− xn(s) + y)−

∫ t

0
z(s)dF c(x(t)− x(s) + y)

∣∣∣∣→ 0

as n → ∞. Given any Y > 0, we obtain the convergence in (7.4) by applying the bounded
convergence theorem.

Step 4: By the continuity of summation in (DD,M1), the conclusion of the lemma holds.
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