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Abstract

Motivated by large-scale service systems, we consider an infinite-server queue with batch
arrivals, where the service times are dependent within each batch. We allow the arrival rate
of batches to be time-varying as well as constant. As regularity conditions, we require that
the batch sizes be i.i.d. and independent of the arrival process of batches, and that the service
times from different batches be independent. We exploit a recently established heavy-traffic
limit for the queue length (number of busy servers) to determine the performance impact of the
dependence among the service times. The queue length process is approximately a Gaussian
process. The dependence among the service times does not affect the mean queue length, but
it does affect the variance of the queue length. The variance or equivalently the peakedness
(ratio of variance and mean) of the queue length in steady state is approximately linear in the
correlation parameter. We conduct simulations to evaluate the heavy-traffic approximations for
the stationary model and the model with a time-varying arrival rate. In the simulation exper-
iments, we use the Marshall-Olkin multivariate exponential distribution to model dependent
exponential service times within a batch. We also introduce a class of Marshall-Olkin multivari-
ate hyperexponential distributions to model dependent hyper-exponential service times within
a batch.

Keywords: infinite-server queues, batch arrivals, dependent service times, time-varying arrival
rates, peakedness, multivariate Marshall-Olkin exponential (hyperexponential) distribution

Short Title: GBt /G
D/∞ Queue

1 Introduction

This paper is a sequel to Pang and Whitt [18, 19]. In [18] we established heavy-traffic (HT)
stochastic-process limits for the queue length process (number in system, number of busy servers)
in the infinite-server (IS) queueing model Gt/G

D/∞, having a general arrival process with time-
varying arrival rate (the Gt) and weakly dependent (satisfying a φ-mixing or S-mixing condition,

1



see Berkes, Hörmann and Schauer [1]) service times (the GD). To do so, we applied functional
central limit theorems (FCLT’s) for sequential empirical processes (Berkes et al. [1], Berkes and
Philipp [2]) driven by dependent service times. From the HT limits, we observe that dependence
among the services times does not affect the mean queue length, but it can affect the variance of
queue length significantly. However, the variance formula takes a complicated form, depending on
the joint bivariate distribution of each pair of service times.

In [19], we began to extract the engineering significance of the HT limits established in [18].
We showed how the variance formula can be effectively computed, and carried out computations in
several specific models. In particular, we considered (i) a class of exponential autoregrssive moving-
average (EARMA, Jacobs and Lewis [9]) dependent exponential service times and (ii) a class of
randomly repeated service (RRS) times, generated from a discrete autoregressive process (DAR(1),
Jacobs and Lewis [10]), which allows for non-exponential dependent service times. Both classes
have a geometric decay of correlations between service times of arrivals j and j + k as a function
of k. We conducted simulations to show that the heavy-traffic approximations are remarkably
accurate in both stationary models and models with time-varying arrival rates.

Here we introduce a more specific Gt/G
D/∞ model, motivated by an idea about how the

dependence among service times should naturally arise. In particular, in many service systems
there may be multiple service requests in response to a common event. As mentioned in [19], in a
hospital emergency room, there may be multiple patients associated with the same medical incident.
Several people may be victims of a single highway accident or food poisoning at the same restaurant.
There may be rapid spread of a contagious disease. The common causes may lead to dependent
service times. However, in all these examples the dependence arises in a particular way. As a first
approximation, we have batch arrivals, where all dependence is confined to the service times of the
customers (or jobs) within the same batch. Another example is the components ordering process
in assemble-to-order systems, where components for a product are often ordered in batches and
their production processes can be dependent. Thus it is interesting to understand the impact of
dependence among the service times within batches.

In order to address the more specific batch phenomenon, we introduce a new IS model, denoted
asGBt /G

D/∞, in which customers arrive in batches, where the batch sizes are i.i.d. and independent
of the arrival process of batches, with all dependence among service times limited to customers in
the same batch, and moreover, the bivariate distributions of each two service times within the
same batch are the same. Thus, within the model, the dependence among the service times is
determined by two model features: (i) the batch-size distribution and (ii) the bivariate distribution
of any two service times within a batch. Because we wish to consider a stationary version of
the entire service-time sequence, it turns out that an important role is played by the associated
batch-size stationary-excess (or equilibrium residual lifetime) distribution; see (2.1).

This new GBt /G
D/∞ IS batch model can be regarded as a special case of the previous Gt/G

D/∞
IS model, but the new structure leads to new performance formulas. For this new IS batch model,
we show how the performance depends on the parameters of: (i) the arrival process of batches, (ii)
the batch-size distribution, (iii) the service distribution for each customer and (iv) the dependence
assumed for the service times of the customers in the same batch. The impact of the dependence is
determined by the bivariate distribution of any pair of service times in the batch, see (2.11)-(2.15).
For the stationary batch model, it is remarkable that the peakedness (steady-state variance divided
by mean of queue length) is approximately linear in the single correlation parameter between
any pair of service times within each batch (Proposition 3.2) when the bivariate distribution is
approximated by a special distribution with correlation (3.8).

To illustrate our general results, we consider two special classes of dependent service times,
multivariate Marshall-Olkin (MO) exponential distributions (Marshall and Olkin [14]), and newly
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defined multivariate MO hyperexponential distributions (Definition 5.1). We show that the approx-
imate linearity relationship between the peakedness and the correlation parameter is exact when
the service times within each batch have a multivariate MO exponential distributions (Proposition
5.1). Moreover, our simulation results show that the approximation based on correlation is very
close to the exact HT approximation when the service times within each batch have a multivariate
MO hyperexponential distribution. For the batch model with time-varying arrival rates, we give
an explicit expression for the HT approximation of the variance function in terms of mean values
of the minimum of two independent and dependent service times and their associated stationary
excesses (Proposition 4.1). We also give two approximations to the HT variance formula, based on
a Taylor series approximation and a recent average arrival rate. We give the explicit expressions for
all these HT approximations and conduct simulation experiments to evaluate their accuracy when
the arrival rate is sinusoidal.

Of course, IS queues with batch arrivals have been considered before, e.g., see Liu, Kashyap
and Templeton [11] and Shanbhag [20] and references therein, but it is standard to assume that
the service times are mutually independent. However, there are some notable exceptions: Liu and
Templeton [12] study the autocorrelation properties of an IS queueing model with multi-classes
of arrivals where arrivals are modulated by a Markov renewal process and batch sizes and service
times depend on the customer class, while service times are mutually independent conditional on
customer class. Falin [7] considers an IS queue with Poisson arrivals of batches where each batch
has a fixed number of classes that have correlated service times, independent of arrivals, while
service times among different batches are independent. Our detailed model is different from the
models in these previous papers. Moreover, we aim for relatively tractable formulas based on HT
limits. We aim to expose consequence of the dependence in a way that will provide insight and be
more useful for engineering applications.

Here is how the rest of this paper is organized: In §2 we specify the GBt /G
D/∞ model and

present the HT approximation following from [18]. In §3 we present the HT approximations for
the peakedness measure in the stationary model. In §4.1 we give alternative HT approximations
for the mean and variance functions for the model with time-varying arrivals, and show how these
expressions simplify when the arrival rate function for the batches is a sinusoidal function. In §4.3,
we also give two approximations for these expressions based on Taylor series approximations and
by applying a recent average arrival rate. In §4.2 and §4.4, we give the corresponding explicit
approximation formulas when the arrival rate function is sinusoidal. In §5 we conduct simulations
to evaluate the approximations for the batch model, including stationary models and models with
sinusoidal arrival rates. We use the MO multivariate exponential distributions to model dependent
exponential service times within a batch in §5.1. In §5.2, we first define the class of multivariate
MO hyperexponential distributions, and then use it to model dependent hyperexponential service
times within a batch. We conclude in §6.

2 The GB
t /G

D/∞ Model and its HT Approximation

We now introduce the batch model GBt /G
D/∞ and specify the HT approximation following from

[18].

2.1 The IS Batch Model

The arrival process of batches is general with a time-varying arrival rate; we say more below.
The successive batch sizes come from a sequence {Bk : k ≥ 1} of i.i.d. random variables that is
independent of the arrival process. Each random variable Bk is distributed as a random variable
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B that has probability mass function {pk : k ≥ 1}, mean mB and variance σ2B, and thus squared
coefficient of variation (SCV) c2B ≡ σ2B/m

2
B. Let the service times be independent of the arrival

process. Let the service times all have the common marginal cdf F with mean mS , variance
σ2S and SCV c2S ≡ σ2S/m

2
S . However, we now assume that the service times within a batch are

dependent, while the service times in different batches are independent. Moreover, we assume that
the bivariate cdf’s for all pairs of customers in the same batch are identical, denoted by H, where
H(x,∞) = H(∞, x) = F (x), x ≥ 0. Thus, the service times form a sequence of stationary weakly
dependent random variables satisfying the φ-mixing condition.

Since we want to consider a stationary version of the service times, when we look at an arbi-
trary customer in steady state, we need to use the stationary-excess distribution of the batch-size
distribution; i.e., we need to use a new discrete random variable B∗ with probability mass function

p∗k ≡ P (B∗ = k) ≡ 1

mB

∞∑
j=k

pj , k ≥ 1, (2.1)

which has mean

mB∗ ≡ E[B∗] =
E[B2] +mB

2mB
=
mB(c2B + 1) + 1

2
. (2.2)

See Whitt [21] for more on the batch-size stationary-excess distribution.

2.2 The Heavy-Traffic Limit

Following common practice for many-server HT limits (Pang et al. [16]), we consider a sequence of
these GBt /G

D/∞ models indexed by n and let n→∞. In this sequence of models we only change
the arrival process, letting the arrival rate be proportional to n. Specifically, the arrival rate in
model n at time t is a function nλ∗B(t), where λ∗B(t) is an integrable function. Let the process
Nn ≡ {Nn(t) : t ≥ 0} count the arrivals of batches in model n. We assume that the sequence of
arrival processes of batches satisfies a FCLT, i.e.,

(Nn(t)− nΛB(t))/
√
n⇒W (c2a,BΛB(t)) in D as n→∞, (2.3)

where ΛB(t) is the continuous function defined by

ΛB(t) ≡
∫ t

0
λ∗B(s) ds, t ≥ 0, (2.4)

W is a standard Wiener process or Brownian motion (BM) and the limit holds in D ≡ D([0,∞),R),
the space of real-valued functions on the interval [0,∞) that are right continuous with left limits,
e.g., see Whitt [23], and the variability parameter c2a,B is a constant, which is the SCV of an
interarrival time when the arrival processes of batches are renewal processes.

As a consequence of the assumptions above plus the results in §7.4 and §13.3 of Whitt [23], the
overall arrival process An ≡ {An(t) : t ≥ 0} is

An(t) ≡
Nn(t)∑
k=1

Bk, t ≥ 0, (2.5)

and it satisfies the FCLT

An(t)− nΛ(t)√
n

⇒
√
c2aW (Λ(t)) in D as n→∞. (2.6)
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where Λ(t) ≡ mBΛB(t), W (t) is a standard BM, and the overall arrival-process variability param-
eter is

c2a ≡ mB(c2B + c2a,B). (2.7)

Let Qn ≡ {Qn(t) : t ≥ 0} be the queue-length process for model n. Here we assume that the
system starts empty at time 0. We state the HT limit theorem for Qn in the following theorem,
following from Theorem 3.2 and Proposition 3.2 in [18].

Theorem 2.1 (HT limits in the IS batch model) In the IS batch model GBt /G
D/∞ above,

Q̂n(t) ≡ Qn(t)− nq(t)√
n

⇒ Q̂(t) in D as n→∞, (2.8)

where

q(t) = mB

∫ t

0
λ∗B(t− s)F c(s)ds, (2.9)

Q̂(t) =

∫ t

0
F c(t− s)

√
c2adW (Λ(s)) +

∫ t

0

∫ ∞
0

1(s+ x > t)dK̂(Λ(s), x), (2.10)

the process K̂(s, x) is a generalized Kiefer process (Berkes and Phillipp [2]), and the double integral
in (2.10) is defined in the mean-square limit sense. The limit process Q̂ is Gaussian process with
mean 0 and variance function

V ar(Q̂(t)) = mB

∫ t

0
λ∗B(t− s)

(
F c(s) + (c2a − 1)(F c(s))2 + Γ(s)

)
ds, (2.11)

where
Γ(s) = 2(E[B∗]− 1)(Hc(s, s)− F c(s)2). (2.12)

Approximations for IS batch models using HT limits. When we consider an IS batch model
with the time-varying arrival rate λB(t) ≈ nλ∗B(t) for large n, by the FCLT above, we obtain the
following HT approximation for the queue length at time t, Q(t),

Q(t) ≈ N(m(t), v(t)), t ≥ 0, (2.13)

where N(a, b) is a random variable with normal distribution of mean a and variance b,

m(t) = mB

∫ t

0
λB(t− s)F c(s) ds, t ≥ 0, (2.14)

and

v(t) = mB

∫ t

0
λB(t− s)

(
F c(s) + (c2a − 1)(F c(s))2 + Γ(s)

)
ds, t ≥ 0. (2.15)

Moreover, for a stationary IS batch model with λB(t) = λB for all t ≥ 0, we have a normal
approximation of the steady-state queue length

Q(∞) ≈ N(m∗, v∗), (2.16)

where
m∗ = λBmBmS , (2.17)

and

v∗ = λBmB

[
mS + (c2a − 1)

∫ ∞
0

(F c(s))2ds+

∫ ∞
0

Γ(s)ds

]
. (2.18)

The rest of this paper is primarily devoted to obtaining alternative expressions for the variance in
(2.15) and (2.18).
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3 Peakedness in the Stationary Batch Model

As indicated in §3.1 of [19], it is appealing to focus on the peakedness measure, defined by the ratio
of the steady-state variance and mean of the queue length for the stationary IS batch model. The
peakedness has been an effective measure of burstiness caused by non-Poisson arrival processes in
associated loss models, see Eckberg [4], Mark et al. [13], Massey and Whitt [15], Whitt [22] and
references therein. We obtain the following proposition characterizing the peakedness measure in
the stationary batch model from (2.17)-(2.18).

Proposition 3.1 For the stationary GB/GD/∞ batch model, the peakedness is given by

z ≡ z(GB/GD) ≡ z(c2a, F,H) = 1 + (c2a − 1)I1 + I2, (3.1)

where c2a is given in (2.7),

I1 ≡ I1(F ) ≡
∫∞
0 F c(s)2 ds

mS
, (3.2)

I2 ≡ I2(F,H) =
2(mB∗ − 1)

mS

∫ ∞
0

(Hc(s, s)− F c(s)2)ds. (3.3)

From Proposition 3.1, we see that the peakedness depends on three parameters; c2a, I1 and I2.
From (2.7), we see that the first parameter c2a is the variability of the overall arrival process, which
in turn depends on three parameters: the variability parameter of the arrival process of batches,
c2a,B, the mean match size, mB and the SCV of the batch sizes, c2B. The two quantities I1 and I2
in (3.1)-(3.3) depend only on the service times, so the contributions of the arrival process and the
service times and the way they interact have been fully identified.

The two quantities I1 and I2 in (3.1)-(3.3) depend on the marginal distribution and the bivariate
joint distribution (capturing dependence) of the service times. The quantities I1 and I2 in (3.1)
can be written as the mean of the minimum of two independent or dependent service times within
a batch, i.e.,

I1 =
E[S1 ∧ind S2]

mS
, (3.4)

I2 = (mB(c2B + 1)− 1)(J1 − I1), (3.5)

where

J1 ≡
E[S1 ∧dep S2]

mS
, (3.6)

where S1 and S2 in (3.4) are regarded as two independent service times with distribution function
F , while S1 and S2 in (3.6) are understood as two different service times in the same batch of our
IS batch model.

It is significant that, for this batch model, the two integral terms I1 and I2 appearing in the
general peakedness formula, (3.1), are fully expressed in terms of only four mean values

mB∗ , mS , E[S1 ∧ind S2], and E[S1 ∧dep S2]. (3.7)

This representation can be usefully exploited in model fitting from system data or simulations,
because we can directly estimate the four means in (3.7).

Since any bivariate cdf can be approximated by a special distribution of a linear combination
of two extremals, that is, H can be approximated by H̃ρ

H̃ρ(x, y) ≡ ρF (x ∧ y) + (1− ρ)F (x)F (y), (3.8)
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we will use this to approximate the peakedness measure from the HT approximation in Proposition
3.1.

Proposition 3.2 If we approximately characterize the bivariate distribution of the service times
within a batch by the bivariate cdf H̃ρ in (3.8) based on a specified marginal cdf F and a nonnegative
correlation ρ for service times within a batch, then we obtain the the approximation J1 ≈ ρ+(1−ρ)I1,
which leads to the simple formula from (3.5) and (3.6),

I2 ≈ 2(mB∗ − 1)ρ (1− I1) = (mB(c2B + 1)− 1)ρ(1− I1). (3.9)

Corollary 3.1 If in addition to the condition of Proposition 3.2, the marginal service time is
exponential, then I1 = 1/2,

I2 ≈
(mB(c2B + 1)− 1)ρ

2
, (3.10)

and

z ≈
mB(c2a,B + c2B) + 1

2
+ ρ

mB(c2B + 1)− 1

2
. (3.11)

Corollary 3.2 If, in addition to the conditions of Corollary 3.1, c2a,B = 1, which occurs when

the arrival process of batches is Poisson, i.e., for the MB/MD/∞ model, then the approximate
peakedness in (3.11) simplifies to

z ≈ z(MB/MD) = 1 +
mB(c2B + 1)− 1

2
(1 + ρ). (3.12)

It is remarkable that in the stationary batch model, the HT approximation of peakedness,
and thus the variance of steady-state queue length, is linear in the correlation ρ between service
times within a batch if the bivariate distribution of service times within a batch is approximately
characterized by the bivariate cdf H̃ρ in (3.8). In fact, such a linearity relationship is exact for
some special service time distributions, for example, the MO multivariate exponential distribution,
see Proposition 5.1 below.

4 Approximations for Batch Models with Time-Varying Arrivals

As observed in [19], formulas derived for the time-varying mean in the Mt/GI/∞ model apply first
to the Gt/GI/∞ model and then also the more general Gt/G

D/∞. Thus they also apply to our
GBt /G

D/∞ model.

4.1 Exact Expressions for General Time-Varying Arrival Rates

First, we review exact expressions for the time-varying mean from Eick et al. [5] and then develop
analogs for the time-varying variance. Theorem 1 of Eick et al. [5] gives two alternative expressions
for the mean in (2.14), i.e.,

m(t) = E

(∫ t

t−S
mBλB(u) du

)
= mBE[λB(t− Se)]mS , (4.1)

where Se has the stationary-excess cdf

Fe(x) ≡ P (Se ≤ x) ≡ 1

mS

∫ x

0
F c(y) dy, (4.2)
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and E[Se] = mS(c2S + 1)/2.
The first formula in (4.1) expresses m(t) as the integral of the arrival rate over the interval

[t − S, t] of random length S ending at t. The second formula expresses m(t) as the pointwise-
stationary approximation (PSA) λB(t)mBmS modified by a random time shift by the stationary-
excess random variable Se. Analogous to the mean function expression in (4.1), we obtain the
following expression for the time-varying variance in (2.15).

Proposition 4.1 An alternative (exact) expression for the time-varying variance (of the HT limit)
in (2.15) for the batch model GBt /G

D/∞ is

v(t) = E[λB(t− Se)]mBmS +mB(mB(c2a,B + c2B)− 1)E[λB(t− (S1 ∧ind S2)e)]E[S1 ∧ind S2]

+mB(mB(c2B + 1)− 1)
(
E[λB(t− (S1 ∧dep S2)e)]E[S1 ∧dep S2]

−E[λB(t− (S1 ∧ind S2)e)]E[S1 ∧ind S2]
)
. (4.3)

We will call this expression as the PSA of the variance function λB(t)mBv(∞) modified by random
time shifts by the stationary-excess random variables Se, (S1 ∧ind S2)e and (S1 ∧dep S2)e.

4.2 Exact Expressions for Sinusoidal Arrivals

In Eick at al. [6] exact formulas are given for the mean with a sinusoidal arrival-rate function and
in [19] we give exact formulas for the mean and variance of the Gt/G

D/∞ IS model with sinusoidal
arrival-rate function. Here we construct corresponding exact formulas for the time-varying mean
and variance for the IS batch model. Suppose the arrival rate function for batches is

λB(t) = λ̄B + β sin(γt), t ≥ 0. (4.4)

Theorem 4.1 of Eick et al. [6] gives the following expression for the mean

m(t) =
(
λ̄B + β (sin(γt)E[cos(γSe)]− cos(γt)E[sin(γSe)])

)
mBmS . (4.5)

Following Proposition 4.1, we obtain a corresponding exact expression for the variance function.

Proposition 4.2 An alternative (exact) expression for the time-varying variance (of the HT limit)
in (2.15) for the batch model GBt /G

D/∞ when the arrival-rate function is sinusoidal as in (4.4)
and mean service time is mS is

v(t) = mBmS

[
λ̄B + β

(
sin(γt)E[cos(γSe)]− cos(γt)E[sin(γSe)]

)]
+(mB(c2a,B + c2B)− 1)mB

[
λ̄B + β

(
sin(γt)E[cos(γ(S1 ∧ind S2)e)]

− cos(γt)E[sin(γ(S1 ∧ind S2)e)]
)]
E[S1 ∧ind S2]

+(mB(c2B + 1)− 1)mB

{[
λ̄B + β

(
sin(γt)E[cos(γ(S1 ∧dep S2)e)]

− cos(γt)E[sin(γ(S1 ∧dep S2)e)]
)]
E[S1 ∧dep S2]

−
[
λ̄B + β

(
sin(γt)E[cos(γ(S1 ∧ind S2)e)]

− cos(γt)E[sin(γ(S1 ∧ind S2)e)]
)]
E[S1 ∧ind S2]

}
. (4.6)

8



4.3 Approximations for General Time-Varying Arrivals

We consider two types of approximations. First, we apply a Taylor series approximation in the time-
varying mean and variance formulas in (4.1) and (4.3), assuming that the arrival rate is suitably
smooth and that the successive derivatives are suitably small so that the Taylor approximation is
justified. Following (15) of Eick et al. [5], we obtain

m(t) ≈ λB(t− E[Se])mBmS +
λ
′′
B(t)

2
V ar(Se)mBmS . (4.7)

The analog of approximation (4.7) for v(t) in Proposition 4.1 is obtained by again applying a
two-term Taylor series approximation to the arrival-rate function λB(t)

v(t) ≈ λB(t− E[Se])mBmS + (mB(c2B + c2a,B)− 1)mBλB(t− E[(S1 ∧ind S2)e])E[S1 ∧ind S2]

+(mB(c2B + 1)− 1)mB

(
λB(t− E[(S1 ∧dep S2)e])E[S1 ∧dep S2]

−λB(t− E[(S1 ∧ind S2)e])E[S1 ∧ind S2]
)

+
1

2
mBλ

′′
B(t)V ar(Se)mS

+
1

2
mB(mB(c2B + c2a,B)− 1)λ′′B(t)V ar((S1 ∧ind S2)e)E[S1 ∧ind S2]

+
1

2
mB(mB(c2B + 1)− 1)λ′′B(t)

(
V ar[(S1 ∧dep S2)e]E[S1 ∧dep S2]

−V ar[(S1 ∧ind S2)e]E[S1 ∧ind S2]
)
. (4.8)

Second, we exploit the formulas and approximations for the stationary model, after replacing
the time-varying arrival rate function in (2.15) by its time-varying average prior to t. So we obtain
the following alternative approximations:

m(t) ≈ λ̂B(t)mB

∫ ∞
0

F c(s)ds = λ̂B(t)mBmS , (4.9)

and

v(t) ≈ λ̂B(t)
[
mBmS + (mB(c2B + c2a,B)− 1)mBE[S1 ∧ind S2] (4.10)

+(mB(c2B + 1)− 1)mB

(
E[S1 ∧dep S2]− E[S1 ∧ind S2]

)]
,

where

λ̂B(t) ≡
∫ ∞
0

λB(t− s)δe−δs ds, (4.11)

with δ being a weighting factor that can be selected. A natural choice is δ = 1/E[Se] = 2E[S]/E[S2] =
2/(E[S](c2S + 1)), because Se is the random time lag and E[Se] is the approximate time lag. We
remark that the approximations for the mean and variance functions in (4.9) and (4.10) give us a
constant approximation of peakedness

z(t) ≈ v(t)

m(t)
= 1 + (mB(c2B + c2a,B)− 1)I1 + I2. (4.12)
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4.4 Approximations for Sinusoidal Arrivals

The corresponding approximations in (4.7) and (4.8) for the batch modelGBt /G
D/∞ with sinusoidal

arrival rate in (4.4) are given by

m(t) ≈
(

[λ̄B + β sin(γ(t− E[Se]))]−
1

2
βγ2 sin(γt)V ar(Se)

)
mBmS , (4.13)

and

v(t) ≈ [λ̄B + β sin(γ(t− E[Se]))]mBmS

+(mB(c2B + c2a,B)− 1)mB[λ̄B + β sin(γ(t− E[(S1 ∧ind S2)e]))]E[S1 ∧ind S2]

+(mB(c2B + 1)− 1)mB

(
[λ̄B + β sin(γ(t− E[(S1 ∧dep S2)e]))]E[S1 ∧dep S2]

−[λ̄B + β sin(γ(t− E[(S1 ∧ind S2)e]))]E[S1 ∧ind S2]
)

−1

2
mBβγ

2 sin(γt)V ar(Se)mS

−(mB(c2B + c2a,B)− 1)
1

2
mBβγ

2 sin(γt)V ar((S1 ∧ind S2)e)E[S1 ∧ind S2]

−(mB(c2B + 1)− 1)
1

2
mBβγ

2 sin(γt)
(
V ar[(S1 ∧dep S2)e]E[S1 ∧dep S2]

−V ar[(S1 ∧ind S2)e]E[S1 ∧ind S2]
)
. (4.14)

For appoximations in (4.9) and (4.10), we replace λ̂B(t) in (4.11) by

λ̂B(t) =

∫ t

0
[λ̄B + β sin(γ(t− s))]δe−δs ds. (4.15)

5 Simulation Experiments

In this section we conduct simulations to evaluate the approximations for the IS batch model. For
the service times within a batch, we will exploit the MO multivariate exponential distribution and
the multivariate hyperexponential distributions constructed from the MO exponential distributions.
We will evaluate the heavy-traffic approximations for the the stationary model and the model with
time-varying arrival rates with both types of dependent service times.

5.1 Dependent Exponential Service Times

A concrete multivariate distribution for the service times to use in the batch model is the MO
multivariate exponential distribution (Marshall and Olkin [14]). (Other forms of multivariate ex-
ponential distributions appear in Bladt and Nielsen[3] and Jacobs and Lewis [9].) The MO bivariate
exponential distribution function H(x, y) for the random vector (S1, S2) is defined by

Hc(x, y) = P (S1 > x, S2 > y) = exp(−µ1x− µ2y − µ12(x ∨ y)), x, y ≥ 0, (5.1)

with three positive parameters µ1, µ2 and µ12. The marginals of S1 and S2 are exponential with
rates µ1 + µ12 and µ2 + µ12, respectively, and the correlation between S1 and S2 is given by

ρ ≡ ρS1,S2 = µ12/(µ1 + µ2 + µ12) ∈ [0, 1]. (5.2)
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Note that this class of bivariate exponential distributions can have only nonnegative correlation,
which is all that we wish to consider.

It is significant that there are multivariate generalizations of this bivariate distribution such that
each pair of random variables has this bivariate marginal distribution. We can obtain a specific
bivariate distribution with exponential marginal cdf with rate µ and specified correlation ρ by
choosing the parameters

µ1 = µ2 = µ− µ12, µ12 =
2µρ

1 + ρ
, (5.3)

where ρ ∈ [0, 1] is the specified correlation coefficient between each pair of service times, and µ is
the rate of exponential service times. Note that for any pair (S1, S2) of service times in a batch,
E[S1S2] = E[S1]E[S2]+ρV ar[S1] = µ−2(1+ρ). It is easy to check that I1 = 1/2 and J1 = (1+ρ)/2,
so that (3.5) gives

I2 = (mB(c2B + 1)− 1)ρ/2 (5.4)

which is the same as the approximation given by (3.9).

Proposition 5.1 For the GB/MD/∞ model, where the bivariate service-time distribution is the
MO distribution specified above, the exact formulas for I2 and the peakedness z coincide with the
approximations in Corollary 3.1. For the MB/MD/∞ model, the exact peakedness coincides with
Corollary 3.2.

5.1.1 Evaluating the Stationary Batch Model

The following algorithm is used to generate MO multivariate exponential random variables with bi-
variate marginals in (5.1) of parameters in (5.3): (1) generate independent exponential random vari-
ables Y1, Y2, ..., Yn,W , where Yi ∼ Exp(µ− µ12) and W ∼ Exp(µ12), (2) set X1 = min{Y1,W},...,
Xn = min{Yn,W}. Then each Xi ∼ Exp(µ) and each pair (Xi, Xj) has correlation ρ.

We compare the heavy-traffic peakedness approximation in (3.11) with simulations for five
models, where the results are shown in Table 1. In all models we choose the mean of the marginals
of service times to be 1, and simulate for correlation parameter ρ = 0, 0.25, 0.5, 0.75, 1. We calculate
the peakedness approximation using formula in (3.11), which are listed in the row of “Approx.”
for each model. To estimate the peakedness at each time point, we conducted 2000 (or in some
cases 3000, 5000) independent replications up to time 30, starting with an empty system. In
each simulation run, we collected data over the time interval [5, 30] and formed the time average.
(The system tends to reach steady-state in a few service times.) To estimate the halfwidth of
the 95% confidence interval, we conducted four more independent simulations and used Student
t-distribution with three degrees of freedom. (The halfwidth is 3.183S4/

√
4, where S4 is the sample

deviation.)
In the first two models, we consider the MB/MD/∞ model with Poisson arrivals of batches and

batch size B of geometric distribution, and we set the parameters for the geometric distributions to
be 0.5 and 0.1, respectively. (Note that here the geometric random variables take values 1,2,3,...)
So, c2a,B = 1 for both models and mB = 2, V ar[B] = 2, c2B = 0.5 for the first model while mB = 10,

V ar[B] = 90, c2B = 0.9 for the second model.
In the third model, we consider the MB/MD/∞ model with Poisson arrivals of batches and

batch size B of a mixture distribution, where B = 1 w.p. 8/9 and B ∼ Geom(0.1) w.p. 1/9. So,
c2a,B = 1, mB = 2, V ar[B] = 18 and c2B = 4.5. We simulate the cases for arrival rates of batches
λB = 10, 100 for these three models.

In the fourth model, we consider the EB2 /M
D/∞ model where the arrival process of batches

follows a renewal process with interarrival times of an E2 distribution, and the batch size B of a
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mixture distribution as in the third model. We simulate the cases of E2 distributions of parameters
equal to 20 and 200, so that the arrival rates of batches λB = 10, 100 and c2a,B = 0.5.

In the fifth model, we consider the HB
2 /M

D/∞ model where the arrival process of batches
follows a renewal process with interarrival times of an H2 distribution, and the batch size B of
a mixture distribution as in the third model. We simulate the cases of H2 distribution of two
parameter sets: a mixture of exponential of rate 5 w.p. 0.25 and exponential of rate 15 w.p. 0.75,
and a mixture of exponential of rate 50 w.p. 0.25 and exponential of rate 150 w.p. 0.75, so that the
arrival rates of batches are equal to 10 and 100, respectively, and c2a,B = 5/3 for both parameter
sets.

We observe that in all the five models with various parameter sets and correlation values, the
HT approximation of the peakedness in (3.11) is remarkably accurate, even when the arrival rates
are relatively small, equal to 10. The halfwidths of the confidence intervals of all estimates are
approximately 1%.

Table 1: Comparison of the HT peakedness approximation in (3.11) and simulations in stationary
IS batch models with dependent exponential service times

Model / Correlation (ρ) 0 0.25 0.50 0.75 1

MB/MD/∞ Approx. 2 2.25 2.5 2.75 3
B ∼ Geom(0.5) Sim. 2.012 2.258 2.511 2.760 3.006

λB = 100 ± 0.014 ± 0.017 ± 0.028 ± 0.012 ± 0.007
Sim. 1.987 2.259 2.484 2.736 2.996

λB = 10 ±0.024 ± 0.037 ± 0. 013 ± 0.056 ± 0.022

MB/MD/∞ Approx. 10 12.25 14.5 16.75 19
B ∼ Geom(0.1) Sim. 10.009 12.243 14.501 16.762 19.006

λB = 100 ± 0.038 ± 0.047 ± 0.062 ± 0.035 0.072
Sim. 10.013 12.262 14.486 16.786 19.042

λB = 10 ±0.063 ± 0.118 ± 0.101 ± 0.064 ± 0.062

MB/MD/∞ Approx. 6 7.25 8.5 9.75 11
B Mixture Sim. 6.027 7.240 8.497 9.737 11.098

λB = 100 ± 0.045 ± 0.036 ± 0.040 ± 0.084 ± 0.104
Sim. 5.932 7.227 8.485 9.767 11.070

λB = 10 ±0.107 ± 0.072 ± 0.130 ± 0.121 ± 0.156

EB2 /M
D/∞ Approx. 5.5 6.75 8 9.25 10.5

B Mixture Sim. 5.517 6.747 7.961 9.249 10.504
λB = 100 ± 0.028 ± 0.095 ± 0.040 ± 0.060 ± 0.065

Sim. 5.485 6.735 8.077 9.257 10.460
λB = 10 ±0.081 ± 0.093 ± 0.076 ± 0.085 ± 0.082

HB
2 /M

D/∞ Approx. 6.667 7.917 9.167 10.417 11.667
B Mixture Sim. 6.669 7.920 9.147 10.403 11.673

λB = 100 ±0.068 ± 0.071 ± 0.022 ± 0.069 ± 0.037
Sim. 6.574 7.908 9.116 10.436 11.693

λB = 10 ±0.029 ± 0.094 ± 0.043 ± 0.094 ± 0.125
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5.1.2 Evaluating the Batch Model with Sinusoidal Arrival Rates

With MO mutlivariate exponential distributions for the service times within each batch, we can
write down explicit expressions for the variance formulas in (4.3) and (4.6) in Propositions 4.1 and
4.2. Both S1 ∧ind S2 and (S1 ∧ind S2)e are exponential with mean mS/2. By (5.1) and (5.3), both
S1 ∧dep S2 and (S1 ∧dep S2)e are exponential with mean (1 + ρ)mS/2. Note that for an exponential
random variable S with mean mS ,

E[sin(γS)] = E[sin(γSe)] =
γmS

1 + γ2m2
S

, (5.5)

E[cos(γS)] = E[cos(γSe)] =
1

1 + γ2m2
S

. (5.6)

Thus, by Proposition 4.2, we obtain the following corollary for the explicit formula of variance.

Corollary 5.1 An alternative (exact) expression for the time-varying variance (of the HT limit)
in (2.15) for the batch model GBt /M

D/∞ when the arrival-rate function is sinusoidal as in (4.4)
and service times within each batch have MO mutlivariate exponential distribution with mean mS

and correlation ρ is

v(t) = mBmS

[
λ̄B + β(1 + γ2m2

S)−1
(

sin(γt)− γmS cos(γt)
)]

+
1

2
(mB(c2a,B + c2B)− 1)mBmS

[
λ̄B + β(1 + γ2m2

S/4)−1
(

sin(γt)− (γmS/2) cos(γt)
)]

+
1

2
(mB(c2B + 1)− 1)mBmS

×
{

(1 + ρ)
[
λ̄B + β(1 + γ2(1 + ρ)2m2

S/4)−1
(

sin(γt)− (γ(1 + ρ)mS/2) cos(γt)
)]

−
[
λ̄B + β(1 + γ2m2

S/4)−1
(

sin(γt)− (γmS/2) cos(γt)
)]}

. (5.7)

Moreover, approximations in (4.14) and (4.10) become

v(t) ≈ [λ̄B + β sin(γ(t−mS))]mBmS

+(mB(c2B + c2a,B)− 1)[λ̄B + β sin(γ(t−mS/2))]mBmS/2

+(mB(c2B + 1)− 1)
(

[λ̄B + β sin(γ(t− (1 + ρ)mS/2))](1 + ρ)

−[λ̄B + β sin(γ(t−mS/2]))]
)
mBmS/2

−1

2
βγ2 sin(γt)mBm

3
S −

1

16
(mB(c2B + c2a,B)− 1)βγ2 sin(γt)mBm

3
S

− 1

16
(mB(c2B + 1)− 1)βγ2 sin(γt)mB

(
(1 + ρ)3m3

S −m3
S

)
, (5.8)

and

v(t) ≈ λ̂B(t)mBmS

(
mB(c2B + c2a,B) + 1

2
+ ρ

mB(c2B + 1)− 1

2

)
, (5.9)

where λ̂B(t) is given by (4.15) with E[Se] equal to mS .
To evaluate the above approximations, we conducted simulations for the model MB

t /M
D/∞

with the following parameter values for the λB(t) function

λ̄B = 80, β = 20, γ = 0.5, ρ = 0.25
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and with the batch size distribution being a mixture as in the third model in Table 1.
We plot the simulated variance for an experiment with 5,000 replications for this model, and

compare with the heavy-traffic exact variance formula in (5.7), and the Taylor series approximation
in (5.8) and the recent-average-arrival-rate approximation in (5.9), denoted as “HT exact”, “Ap-
prox.1” and “Approx.2”, respectively, in Figure 1. We remark that the Taylor series approximation
will not be as good when the frequency parameter γ is large, as shown by extensive simulations in
§7 of [19].

Figure 1: Comparison of simulated variance and its approximation functions in the MB
t /M

D/∞
queue with B as a mixture, B = 1 w.p. 8/9 and B ∼ Geom(0.1) w.p. 1/9. mS = 1 and ρ = 0.25.
λB(t) = 80 + 20 sin(0.5t).

5.2 Dependent Hyperexponential Service Times

In this section, we consider the model GB/HD
k /∞ with batch arrivals and dependent hyperexponen-

tial (Hk, mixture of k-exponentials) service time distributions. We first define a class of dependent
Hk distributions from MO multivariate exponential distributions.

Definition 5.1 A vector of random variables (X1, ..., Xn) is said to have a multivariate Marshall-
Olkin hyperexponential distribution, denoted by MO Hk, if each Xi has a hyperexponential
marginal distribution, Hk(α1, µ1, ..., αk, µk), with cdf

F (x) = α1F1(x) + · · ·+ αkFk(x), x ≥ 0, (5.10)

where αi ∈ [0, 1] such that α1 + · · · + αk = 1, Fi’s are the cdf’s of exponential random variables
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with rate µi, i = 1, ..., k, and each pair of Xi and Xj has a joint cdf

H(x, y) =
k∑
i=1

αiHi(x, y), x, y ≥ 0, (5.11)

where Hi(x, y) is the MO bivariate exponential distributions with parameters

µ
(1)
i = µ

(2)
i = µi − µ(12)i , µ

(12)
i =

2µiρi
1 + ρi

, ρi ∈ [0, 1]. (5.12)

This class of multivariate MOHk distributions can be easily generated by adopting the algorithm
to generate multivariate MO exponential random variables, that is, with probability αi, we generate
a vector (X1, ..., Xn) with the multivariate MO exponential distributions. It is easy to check that
each pair of random variables (Xi, Xj) in Definition 5.1 has a common correlation

ρ =

∑k
i=1 αi(1 + ρi)µ

−2
i − µ−2

2
∑k

i=1 αiµ
−2
i − µ−2

, (5.13)

where µ ≡ (
∑k

i=1 αiµ
−1
i )−1.

Now we assume that the service times for each batch follow a MO Hk distribution with marginals
Hk(α1, µ1, ..., αk, µk) and the joint cdf of any two service times in a batch is H(x, y) in (5.11). Then
the service times have mean mS ≡

∑k
i=1 αiµ

−1
i = µ−1 and variance σ2S ≡ 2

∑k
i=1 αiµ

−2
i − µ−2, and

the correlation between any pair of service times within a batch is given by (5.14), that is,

ρ = 1−

(
k∑
i=1

αi(1− ρi)µ−2i

)
/σ2S . (5.14)

Note that ρ can take values in [0, 1]. When αi = 1 for some i, ρ = ρi ∈ [0, 1].

Proposition 5.2 For the stationary GB/HD
k /∞ batch model with the service times within a batch

as a MO Hk distribution in Definition 5.1, the peakedness is given by (3.1) in Proposition 3.1,
where

I1 = m−1S

∑
i,j=1,...,k

αiαj
µi + µj

, (5.15)

and

I2 =
(
mB(c2B + 1)− 1

)
m−1S

 k∑
i=1

αi(1 + ρi)

2µi
−

∑
i,j=1,...,k

αiαj
µi + µj

 . (5.16)

5.2.1 Evaluating the Stationary Batch Model

We conduct simulations to compare the HT peakedness approximation in Proposition 5.2 with
simulation for five models, and also with the peakedness approximation based on correlations in
(3.9). These results are shown in Table 2. We follow the same procedure for the estimation of
peakedness and the 95% confidence intervals as in §5.1.1. It is remarkable that in all models, the
approximations of peakedness based on correlations in (3.9) are very close to the HT approximation
in Proposition 5.2 and the simulation results, all within 1-3% errors.

In the first model, we consider the MB/HD
2 /∞ queue with Poisson arrivals of batches and batch

size B of geometric distribution of parameter 0.1. We set the following parameter values for the
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H2 distribution, α1 = 0.1, µ1 = 1/9, µ2 = 9, ρ1 = 0.1, ρ2 = 0.9. Simple calculation gives us mS = 1,
σ2S = 15.222 and ρ = 0.521.

In the second model, we consider the same model as the first, but with the following different
parameter values. The batch size B is geometric with parameter 0.5, and the H2 distribution has
α1 = 0.5, µ1 = 1, µ2 = 10, ρ1 = 0.1, ρ2 = 0.5. We have mS = 0.55, σ2S = 0.708 and ρ = 0.360.

In the third model, we consider the MB/HD
2 /∞ queue with the batch size B of a mixture

distribution as in the third model of §5.1.1, and the H2 distribution of α1 = 0.8, µ1 = 1, µ2 =
100, ρ1 = 0.1, ρ2 = 0.6. We have mS = 0.802, σ2S = 0.957 and ρ = 0.248.

In the fourth model, we consider the EB2 /H
D
2 /∞ queue with a renewal arrival process with the

same parameters as in the fourth model of §5.1.1, and the batch size B is of the same mixture
distribution as above, and the H2 distribution has α1 = 0.9, µ1 = 1, µ2 = 10, ρ1 = 0.1, ρ2 = 0.3. we
have mS = 0.910, σ2S = 0.974 and ρ = 0.168.

In the fifth model, we consider the HB
2 /H

D
2 /∞ queue with a renewal arrival process with the

same parameters as in the fifth model of §5.1.1, and the batch size B is of the same mixture
distribution as above, and the H2 distribution has α1 = 0.6, µ1 = 0.5, µ2 = 10, ρ1 = 0.5, ρ2 = 0.2.
We have mS = 1.240, σ2S = 3.270 and ρ = 0.632.

Table 2: Comparison of the HT peakedness approximation in Proposition 5.2, the HT peakedness
approximation based on correlation in (3.9), and simulations in stationary IS batch models with
dependent MO H2 service times

Model λB Corr. HT Approx. Sim. 95%C.I. HT Approx.
based on ρ

MB/HD
2 /∞ 100 0.521 11.620 11.627 ± 0.068 11.325

B ∼ Geom(0.1) 10 11.690 ± 0.109

MB/HD
2 /∞ 100 0.360 2.136 2.137 ± 0.006 2.146

B ∼ Geom(0.5) 10 2.137 ± 0.013

MB/HD
2 /∞ 100 0.248 6.506 6.508 ± 0.030 6.509

B mixture 10 6.531 ± 0.063

EB2 /H
D
2 /∞ 100 0.168 6.047 6.044 ± 0.060 6.071

B mixture 10 6.063 ± 0.103

HB
2 /H

D
2 /∞ 100 0.632 8.897 8.891 ± 0.040 8.993

B mixture 10 8.847 ± 0.093

5.2.2 Evaluating the Batch Model with Sinusoidal Arrival Rates

First, we note that for a random variable S with the Hk distribution in (5.10), its stationary excess
Se also has a Hk(β1, µ1, ..., βk, µk) distribution, where βi = (αi/µi)/mS ∈ [0, 1], i = 1, ..., k. Thus,

E[Se] = m−1S

k∑
i=1

αiµ
−2
i , E[S2

e ] = 2m−1S

k∑
i=1

αiµ
−3
i . (5.17)

Moreover,

E[sin(γS)] =

k∑
i=1

γαi/µi
1 + γ2/µ2i

, E[cos(γS)] =

k∑
i=1

αi
1 + γ2/µ2i

, (5.18)

E[sin(γSe)] =

k∑
i=1

γβi/µi
1 + γ2/µ2i

= m−1S

k∑
i=1

γαi/µ
2
i

1 + γ2/µ2i
, (5.19)
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and

E[cos(γSe)] =

k∑
i=1

βi
1 + γ2/µ2i

= m−1S

k∑
i=1

αi/µi
1 + γ2/µ2i

. (5.20)

If two independent random variables S1 and S2 have the Hk distribution in (5.10), then their
minimum S1 ∧ind S2 has

E[S1 ∧ind S2] =
k∑

i,j=1

αiαj
µi + µj

, E[(S1 ∧ind S2)2] =
k∑

i,j=1

2αiαj
(µi + µj)2

, (5.21)

E[(S1 ∧ind S2)3] =
k∑

i,j=1

6αiαj
(µi + µj)3

, (5.22)

and its stationary excess (S1 ∧ind S2)e has

E[(S1 ∧ind S2)e] =
E[(S1 ∧ind S2)2]
2E[S1 ∧ind S2]

, E[(S1 ∧ind S2)2e] =
E[(S1 ∧ind S2)3]
3E[S1 ∧ind S2]

. (5.23)

Moreover, we have

E[sin(γ(S1 ∧ind S2))] =

k∑
i,j=1

γαiαj/(µi + µj)

1 + γ2/(µi + µj)2
, (5.24)

E[cos(γ(S1 ∧ind S2))] =

k∑
i,j=1

αiαj
1 + γ2/(µi + µj)2

, (5.25)

E[sin(γ(S1 ∧ind S2)e)] =
1

E[S1 ∧ind S2]

k∑
i,j=1

γαiαj/(µi + µj)
2

1 + γ2/(µi + µj)2
, (5.26)

and

E[cos(γ(S1 ∧ind S2)e)] =
1

E[S1 ∧ind S2]

k∑
i,j=1

αiαj/(µi + µj)

1 + γ2/(µi + µj)2
. (5.27)

In the calculations, we use the identities that
∫∞
0 sin(γx)e−µxdx = (γ/µ2)/(1 + γ2/µ2) and∫∞

0 cos(γx)e−µxdx = (1/µ)/(1+γ2/µ2), and also the formula to calculate expectations for functions
of nonnegative random variables X, E[g(X)] = g(0) +

∫∞
0 g′(x)P (X > x)dx for any differentiable

real-valued function g.
If two random variables S1 and S2 are dependent with joint distribution function H in (5.11),

then their minimum S1 ∧dep S2 has a Hk(α1, 2µ1/(1 + ρ1), ..., αk, 2µk/(1 + ρk)) distribution, and
its stationary excess (S1 ∧dep S2)e has a Hk(α̂1, 2µ1/(1 + ρ1), ..., α̂k, 2µk/(1 + ρk)) distribution with

α̂i = (αi(1 + ρi)/(2µi))(
∑k

i=1 αi(1 + ρi)/(2µi))
−1, i = 1, ..., k. Thus,

E[S1 ∧dep S2] =
k∑
i=1

αi(1 + ρi)

2µi
, E[(S1 ∧dep S2)2] =

k∑
i=1

αi(1 + ρi)
2

2µ2i
. (5.28)

E[(S1 ∧dep S2)e] =

k∑
i=1

α̂i(1 + ρi)

2µi
= E[S1 ∧dep S2]−1

k∑
i=1

αi(1 + ρi)
2

4µ2i
, (5.29)
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E[(S1 ∧dep S2)2e] =

k∑
i=1

α̂i(1 + ρi)
2

2µ2i
= E[S1 ∧dep S2]−1

k∑
i=1

αi(1 + ρi)
3

4µ3i
. (5.30)

Moreover, we have

E[sin(γ(S1 ∧dep S2))] =
k∑
i=1

γαi(1 + ρi)/(2µi)

1 + γ2(1 + ρi)2/(2µi)2
, (5.31)

E[cos(γ(S1 ∧dep S2))] =
k∑
i=1

αi
1 + γ2(1 + ρi)2/(2µi)2

, (5.32)

E[sin(γ(S1 ∧dep S2)e)] =
k∑
i=1

γα̂i(1 + ρi)/(2µi)

1 + γ2(1 + ρi)2/(2µi)2
, (5.33)

E[cos(γ(S1 ∧dep S2)e)] =

k∑
i=1

α̂i
1 + γ2(1 + ρi)2/(2µi)2

. (5.34)

When the arrival rate is time-varying as given in (4.4) in the model MB
t /H

D
2 /∞, we conduct

simulations to evaluate the approximations in (4.6), (4.14), and (4.10) with λ̂B replaced by (4.15)
and δ = 1/E[Se]. We consider the following parameter set:

λ̄B = 80, β = 20, γ = 0.5,

H2 : α1 = α2 = 0.5, µ1 = 1, µ2 = 10, ρ1 = 0.1, ρ2 = 0.5,

and the batch size B as a mixture of deterministic and geometric distributions as in the third model
in Table 1. We have mS = 0.55, σ2S = 0.708 and ρ = 0.360. We plot the simulated variance for an
experiment with 5,000 replications for this model, and compare with the heavy-traffic exact variance
formula in (4.6), and the Taylor series approximation in (4.14), and the recent-average-arrival-rate
approximation in (4.10), denoted as “HT exact”, “Approx. 1” and “Approx. 2”, respectively, in
Figure 2.

6 Conclusion

In this paper we have introduced and studied the GBt /G
D/∞ IS model with batch arrivals and

dependence among the service times confined within each batch. In order to capture main effects,
we have assumed that all pairs of service times within the same batch have identical bivariate
distributions. From our earlier work in [18, 19], we already know that the HT limit for the queue-
length process is a Gaussian process, where the mean is independent of the dependence, while the
variance depends on the dependence, but in a relatively complicated way.

We have quantified the impact of the dependence among the service times on the variance of
the queue length, both in stationary models and in models with time-varying arrival rates. For
the stationary model, Proposition 3.1 dramatically shows the variance as a function of all model
parameters. All quantities appearing there are either model parameters or can be expressed as mean
values of random variables; see (3.7). Proposition 3.2 shows an even more elementary formula if
we approximate the bivariate distribution by a special bivariate distribution, depending only on
a given correlation. Proposition 5.1 shows that the resulting simple approximation based on the
correlation parameter is actually exact for the MO bivariate exponential distribution, used in later
experiments.
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Figure 2: Comparison of simulated variance and its approximation functions in the MB
t /H

D
2 /∞

queue with B as a mixture, B = 1 w.p. 8/9 and B ∼ Geom(0.1) w.p. 1/9 and H2 service times with
parameters α1 = α2 = 0.5, µ1 = 1, µ2 = 10, ρ1 = 0.1, ρ2 = 0.5, so that mS = 0.55 and ρ = 0.360.
λB(t) = 80 + 20 sin(0.5t).

In §4 we showed that effective approximations for the time-varying variance of the queue-length
process can also be developed for time-varying arrival rates. In §5 we conducted simulation exper-
iments evaluating the approximations. To do so, we needed to introduce specific models of service
times that are dependent within batches. For that purpose we relied on the MO multivariate expo-
nential distribution and introduced a generalization to multivariate hyperexponential distributions.
The tables and plots show that the approximations are remarkably accurate.

There are many directions for future research. An important one is to empirically investigate
the presence of batch arrivals in service systems and dependence among the service times within
these batches. More generally, it would be good to estimate the dependence among service times
in service systems. In the batch model, it is natural for the customers in a batch not to arrive
precisely at the same instant. Instead, each customer in the batch may arrive after a random delay
following a “common triggering incident”. To capture that effect, we propose considering a more
general model, in particular, two IS stations in series, with the first IS station representing the
extra delay, while the second is the actual service facility. A basis for such investigations lies in
[18]. We hope to be able to report on progress in these directions in the future.
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