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Abstract. We prove two-parameter process limits for infinite-server queues with weakly
dependent service times satisfying the ρ-mixing condition. The two-parameter processes
keep track of the elapsed or residual service times of customers in the system. We use
the new methodology developed in Pang and Zhou (2017) to prove weak convergence
of two-parameter stochastic processes. Specifically, we employ the maximal inequalities
for two-parameter queueing processes resulting from the method of chaining. This new
methodology requires a weaker mixing condition on the service times than the φ-mixing
condition in Pang and Whitt (2013), as well as less regularity conditions on the service
time distribution function.

1. Introduction

In this paper we continue the study on infinite-server queues with weakly dependent
service times in Pang and Whitt [24, 22, 23]. When the consecutive service times satisfy
the φ-mixing or S-mixing conditions, two-parameter process limits are established for the
system dynamics tracking the amount of elapsed and residual service times in [24]. In the
decomposition of the diffusion-scaled two-parameter processes (Lemma 3.1), one component
is handled by applying the continuous mapping theorem (see Lemma 6.1 in [21] and Lemmas
6.2 and 6.3 in [26]). For the second component, the approach to prove its weak convergence
employs the convergence criterion by showing convergence of finite dimensional distributions
and tightness of the associated two-parameter processes (see the proofs of Theorem 3.2 and
Lemmas 4.1–4.2 in [24]). To prove the convergence of the finite dimensional distributions,
the representation of the limit via a mean-square integral with respect to a generalized Kiefer
process is used (see the proof of Lemma 4.2 in [24]), which relies on the established invariance
principles for sequential empirical processes driven by the dependent random variables [1, 2].
(It is worth noting that under the φ-mixing condition, the convergence of finite dimensional
distributions of the total count process is also studied with a different approach in Section
2.6 of [6].) To prove the tightness, the martingale difference sequences constructed from the
sequence of service times and then the associated Doob’s martingale inequalities play a key
role in verifying the tightness criterion in the space DD ≡ D([0,∞),D([0,∞),R)) endowed
with Skorohod J1 topology (see the proof of Lemma 4.1 in [24]).

That approach has mostly followed the “machinery” developed in Krichagina and Puhalskii
[15], with a generalization to weakly dependent service times under the above two mixing
conditions. That methodology has been mostly useful for many-server queues with i.i.d.
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service times [27, 28, 21, 19, 17, 18, 8]. It relies on the semimartingale decomposition of
sequential empirical processes driven by i.i.d. random variables. As a result, the associated
queueing processes have the corresponding decomposition so that the tightness criteria
can be verified by taking advantage of the martingale properties, in particular, Doob’s
maximal inequalities for martingales. However, for many stochastic systems, the assumption
of i.i.d. service times may not hold; for example, the service times may be correlated
themselves or time-varying (e.g., depending on the arrival times [26]). As a consequence,
the semimartingale decomposition may not be obtained, and new methodology must be
developed to prove weak convergence of the queueing processes, especially new tools to
establish maximal inequalities in the lack of convenient martingale property.

In our recent work [26], we have developed a new methodology to prove weak convergence
of two-parameter processes for infinite-server queues with arrival dependent (time-varying)
service times (which includes i.i.d. service times as a special case). That approach differs
from the “machinery” in [15] in many aspects. First, a new auxiliary two-parameter process
is introduced, and it is shown that weak convergence of the two-parameter queueing processes
tracking either elapsed or residual service times follows from that of the new auxiliary process
in a straightforward way (see the proof of Lemma 6.4 in [26]). Second, in order to prove
the weak convergence of the new auxiliary two-parameter process, we employ a sufficient
weak convergence criterion in DD (Theorem 4.1 in [26] and Theorem 6.1 below), which is
adapted from Theorem 13.5 in [5]. For the convergence of finite dimensional distributions,
although we do not represent the limit process as a mean-square integral with respect to
some “generalized” Kiefer process, the limiting two-parameter process is clearly a Gaussian
process (two-parameter Gaussian random field; of course, the existence and continuity of
the limit process are part of the proof), and we have used the standard approach with
characteristic functions. What is more important is that for the proof of the probability
bound in the criterion (see equation (6.4) below), we employ the maximal inequalities for
two-parameter processes arising from the method of chaining. As discussed in Section 8
of [26], in the special case of i.i.d. service times, this new approach does not require any
assumption on the service time distribution function.

The method of chaining is an important technique to prove maximal inequalities in
probability for many interesting stochastic processes [30, 31, 32]. It results in many useful
and important bounds for the expectation of the supremum of a process over a domain
given some moment bound conditions on its increments. To our best knowledge, the
maximal inequalities resulting from the method of chaining were first used to prove weak
convergence in queueing theory in [26]. It provides an extremely powerful tool to verify weak
convergence criteria associated with tightness, bridging the gap between moment bounds on
the increments of the process of interest and the associated maximal inequalities, which are
necessary for tightness. It is expected that this new methodology may turn out to be useful
for heavy-traffic analysis of many queueing systems and stochastic networks.

The objective of this paper is to further develop the methodology in [26] in the study of
the infinite-server queueing model with weakly dependent service times. We highlight the
distinguishing contributions from the work in [24].

(i) We relax the conditions imposed on the service times. We assume that the sequence
of service times satisfies a weaker mixing condition, ρ-mixing, than the φ-mixing
condition. In [24] it is assumed that the marginal distribution function is continuous
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and has a density, but the new approach here does not impose any assumption on
the distribution function. See also Remark 2.1.

(ii) We do not represent the limit process for the second component in the decomposition
as a mean-square integral with respect to a generalized Kiefer process. Instead,
the limit process is characterized as a continuous Gaussian process (two-parameter
Gaussian random field). We prove the existence and continuity of the limit process
(see Definition 2.2 and Lemma 6.2).

(iii) To prove the weak convergence, we employ a sufficient convergence criterion as
used in [26] (see Theorem 6.1). We introduce an auxiliary two-parameter process

as in [26]; see V̂ n defined in (3.1) and their relationship with the two-parameter
queueing processes tracking elapsed and residual times in Lemma 3.4. Since the
procedure to prove the weak convergence of the two-parameter queueing processes
from that of V̂ n follows exactly the same argument as in [26], we focus on the

proof of V̂ n under the ρ-mixing condition. In the proof of the convergence of
finite dimensional distributions, under the ρ-mixing condition, we employ a general
criterion for proving CLT for dependent random variables, see Theorem 5.1 and
[33]. To prove the criterion on the probability bound, we establish the maximal

inequalities for the limiting two-parameter process V̂ and the prelimit two-parameter
processes V̂ n (see Propositions 4.2 and 4.3). It is worth noting that the maximal
inequalities hold in the same way (except the constant coefficients) for the limit and
prelimit processes; see also Remark 4.1.

For the applications of infinite-server queues with dependent service times, we refer the
interested readers to [22, 23].

1.1. Organization of the paper. We first summarize the notation used in this paper in
the next subsection. In Section 2, we describe the model and assumptions in detail and
present our main results. In Section 3, we introduce the auxiliary two-parameter process
V̂ n and the limit Gaussian random field V̂ . Based on the weak convergence of V̂ n ⇒ V̂
in DD (Theorem 3.1), we prove our main results in Section 3. We review the maximal
inequalities for two-parameter processes resulting from the method of chaining, and prove
maximal inequalities for both the limiting two-parameter Gaussian process V̂ and the
auxiliary two-parameter processes V̂ n in Section 4. The proof for the weak convergence of
finite-dimensional distributions of V̂ n (Lemma 4.2) is given in Section 5. We then prove

the weak convergence of V̂ n in DD (Theorem 3.1) in Section 6. We make some concluding
remarks in Section 7.

1.2. Notation. Throughout the paper, N denotes the set of natural numbers. Rk (Rk+)
denotes the space of real-valued (nonnegative) k-dimensional vectors, and we write R (R+)
for k = 1. Let Dk = D(R+,Rk) denote Rk-valued function space of all cádlág functions
on R+. Denote D ≡ D1. (D, J1) denotes space D equipped with Skorohod J1 topology
with the metric dJ1 [5, 7, 34]. Note that the space (D, J1) is complete and separable. Let
DD = D(R+, D) denote the D-valued function space of all cádlág functions on R+ with both
D spaces equipped with J1 topology. Let C be the subset of D for continuous functions, and
similarly for Ck and CC. D2 ≡ D(R2

+, R) denotes the space of all “continuous from above
with limits from below” functions on R2

+, and is endowed with the same metric dD2 as in
[4]. Let C2 be the subset of D2 for continuous functions. It is worth noting that D2 ⊂ DD
(see Example 4.1 in [9] and discussions in Remark 3.3 in [21]), and D2 ≡ DD provided the
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second D in DD is equipped with uniform norm [4], and thus, we have C2 ≡ CC. When
considering functions defined on finite intervals, we write D([0, T ], R), D([0, T ],D([0, T ′], R))
and D([0, T ] × [0, T ′], R) for T, T ′ > 0. We refer the readers to [14, 4, 20, 29, 9] for the
general theory of two-parameter (and multi-parameter) stochastic processes and their weak
convergence. For any two complete separable metric spaces S1 and S2, we denote S1× S2 as
their product space equipped with the product topology (Section 11.4 in [34]).

2. Model and Results

Consider an infinite-server queueing model with dependent service times, denoted as
“Gt/G

D/∞”. The arrival process A is a general non-homogeneous counting process, with
arrival times {τi : i ∈ N}. The ith customer has a service time ηi, for i ∈ N. The consecutive
service times {ηi : i ∈ N} are a sequence of weakly dependent nonnegative random variables
satisfying the ρ-mixing condition (see Assumption 2), with a general distribution function
F . Denote F c := 1− F as the complement of F . We assume that the system starts from
empty at time 0 and the arrival process is independent from the service process.

Let Xe := {Xe(t, y) : t, y ≥ 0} and Xr := {Xr(t, y) : t, y ≥ 0} be two-parameter stochastic
processes tracking the elapsed and residual service times respectively. Specifically, Xe(t, y)
and Xr(t, y) represent the number of customers in the system at time t that have received
an amount of service less than or equal to y, and whose residual service is strictly greater
than y, respectively. By definition, the two-parameter processes Xn,e(t, y) and Xn,r(t, y)
can be written as

Xe(t, y) =

A(t)∑
i=A((t−y)−)+1

1(τi + ηi > t),

Xr(t, y) =

A(t)∑
i=1

1(τi + ηi > t+ y),

for each t, y ≥ 0, where A(t−) is the left limit of A at t > 0. Note that the sample paths of
the processes Xe(t, y) and Xr(t, y) are in space DD but not in D2 (see Remark 3.3 in [21]
for a detailed discussion). Let X := {X(t) : t ≥ 0} be the process counting the total number
of customers in the system. By definition, we have X(t) = Xe(t, t) = Xr(t, 0) for each t ≥ 0.
Let D := {D(t) : t ≥ 0} be the departure process, defined by D(t) := A(t)−X(t) for t ≥ 0.

We consider a sequence of such Gt/G
D/∞ queueing models indexed by n and let n→∞,

in which the service times are unscaled, independent of n. We denote the processes An,
Xn,e, Xn,r and Dn with a superscript n, and similarly for the other relevant processes.

We make the following assumption on the arrival processes An.

Assumption 1. (Arrival Process) The sequence of arrival processes An satisfies an FCLT:

Ân :=
√
n
(
Ān − Λ

)
⇒ Â in (D, J1) as n→∞

where Ān := n−1An, Λ := {Λ(t) : t ≥ 0} is a deterministic strictly increasing continuous

and unbounded above function with Λ(0) = 0, and Â is a stochastic process with continuous
sample paths.

The ρ-mixing condition on the service times {ηi : i ∈ N} requires the following assumption.
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Assumption 2. (Weakly Dependent Service Times) The successive service times {ηi : i ∈ N}
are weakly dependent and constitute a one-sided stationary sequence, satisfying the ρ-mixing
condition: ρk → 0 as k →∞, where

ρk := sup

{
|E[ξζ]− E[ξ]E[ζ]|
‖ξ‖2‖ζ‖2

: ξ ∈ Fm, ζ ∈ Gm+k,m ≥ 1

}
,

with Fk := σ{ηi : 1 ≤ i ≤ k}, Gk := σ{ηi : i ≥ k} and ‖ξ‖2 := (E[ξ2])1/2. Let Cρ :=∑∞
k=1 ρk <∞.

Remark 2.1. There are various mixing coefficients characterizing dependence between
random variables (see [3] for a thorough review). The uniformly strong mixing (φ-mixing)
condition considered in [24] requires that φk → 0 as k →∞ and

∑∞
k=1 φk <∞, where

φk := sup{P (B|A)− P (B)| : A ∈ Fm, P (A) > 0, B ∈ Gm+k,m ≥ 1}.
It is shown that ρk ≤ 2

√
φk for k ≥ 1 (see [3] and [5]). Thus, we impose a weaker mixing

condition here. In terms of regularity conditions, in [24], it also requires that E[η2
1] <∞ and∑∞

i=1

(
E[(E[ηi+k|Fk])2]

)1/2
<∞ for each k = 1, 2, . . . , which are not needed in this paper.

In addition, we do not require the continuity and existence of its density on the distribution
function F and F (0) = 0 as in [24].

Define the fluid-scaled processes X̄n,e := {X̄n,e(t, y) : t, y ≥ 0}, X̄n,r := {X̄n,r(t, y) :
t, y ≥ 0}, X̄n := {X̄n(t) : t ≥ 0} and D̄n := {D̄n(t) : t ≥ 0} by

X̄n,e := n−1Xn,e, X̄n,r := n−1Xn,r, X̄n := n−1Xn, D̄n := n−1Dn.

The functional weak law of large numbers (FWLLN) is stated as follows.

Theorem 2.1. (FWLLN) Under Assumptions 1–2,(
Ān, X̄n,e, X̄n,r, X̄n, D̄n

)
⇒
(
Λ, X̄e, X̄r, X̄, D̄

)
in D× (DD)2 × D2 as n→∞,

where Λ is given in Assumption 1, the fluid limits X̄e := {X̄e(t, y) : t, y ≥ 0}, X̄r :=
{X̄r(t, y) : t, y ≥ 0}, X̄ := {X̄(t) : t ≥ 0} and D̄ := {D̄(t) : t ≥ 0} are continuous
deterministic functions given by

X̄e(t, y) :=

∫ t

(t−y)+
F c(t− s)dΛ(s), t, y ≥ 0,

X̄r(t, y) :=

∫ t

0
F c(t+ y − s)dΛ(s), t, y ≥ 0,

X̄(t) := X̄e(t, t) = X̄r(t, 0), t ≥ 0,

and

D̄(t) :=

∫ t

0
F (t− s)dΛ(s), t ≥ 0.

Define the diffusion-scaled processes X̂n,e := {X̂n,e(t, y) : t, y ≥ 0}, X̂n,r := {X̂n,r(t, y) :

t, y ≥ 0}, X̂n := {X̂n(t) : t ≥ 0} and D̂n := {D̂n(t) : t ≥ 0} by

X̂n,e :=
√
n
(
X̄n,e−X̄e

)
, X̂n,r :=

√
n
(
X̄n,r−X̄r

)
, X̂n :=

√
n
(
X̄n−X̄

)
, D̂n :=

√
n
(
D̄n−D̄

)
,

where X̄e, X̄r, X̄ and D̄ are given in Theorem 2.1.
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We next define the following limit processes.

Definition 2.1. Define the two-parameter processes X̂e
1 := {X̂e

1(t, y) : t, y ≥ 0} and

X̂r
1 := {X̂r

1(t, y) : t, y ≥ 0} by

X̂e
1(t, y) :=

∫ t

(t−y)+
F c(t− u)dÂ(u),

X̂r
1(t, y) :=

∫ t

0
F c(t+ y − u)dÂ(u),

for each t ≥ 0 and y ≥ 0. They are well-defined as stochastic integrals with “integration by
parts” (that is, a pathwise construction via integration by parts), and it is easy to verify
that they have continuous sample paths.

Definition 2.2. Define the processes X̂e
2 := {X̂e

2(t, y) : t, y ≥ 0} and X̂r
2 := {X̂r

2(t, y) :
t, y ≥ 0} to be two-parameter Gaussian processes with mean zero and covariance functions:
for t, s ≥ 0 and y, x ≥ 0,

Cov
(
X̂e

2(t, y), X̂e
2(s, x)

)
=

∫ t∧s

(t−y)+∨(s−x)+

(
F (t ∧ s− u)− F (t− u)F (s− u) + Γ(t− u, s− u)

)
dΛ(u),

and

Cov
(
X̂r

2(t, y), X̂r
2(s, x)

)
=

∫ t∧s

0

(
F c((t+ y) ∧ (s+ x)− u)− F c(t+ y − u)F c(s+ x− u)

+Γ(t+ y − u, s+ x− u)
)
dΛ(u),

where

Γ(x, y) :=
∞∑
k=2

(
E
[
γ̃1(x)γ̃k(y)

]
+ E

[
γ̃1(y)γ̃k(x)

])
with

γ̃k(x) := 1(ηk ≤ x)− F (x), k ∈ N. (2.1)

We prove the following FCLT for the two-parameter processes X̂n,e and X̂n,r.

Theorem 2.2. (FCLT) Under Assumptions 1–2,

(Ân, X̂n,e, X̂n,r, X̂n)⇒ (Â, X̂e, X̂r, X̂) in D× (DD)2 × D as n→∞, (2.2)

where Â is given in Assumption 1, and

X̂e = X̂e
1 + X̂e

2 , X̂r = X̂r
1 + X̂r

2 ,

with X̂e
1 and X̂r

1 given in Definition 2.1 and X̂e
2 and X̂r

2 given in Definition 2.2, and

X̂(t) = X̂e(t, t) = X̂r(t, 0) for t ≥ 0. The limit departure process D̂ := {D̂(t) : t ≥ 0} is

given by D̂(t) = Â(t)− X̂(t) for t ≥ 0. All the limit processes have continuous sample paths.
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3. Proof of Theorem 2.2

In this section we prove Theorem 2.2. Theorem 2.1 follows from Theorem 2.2 and its proof
is omitted. By simple algebra, we obtain the following representations for the diffusion-scaled
processes X̂n,e and X̂n,r.

Lemma 3.1. The diffusion-scaled processes X̂n,e and X̂n,r can be represented as

X̂n,e(t, y) = X̂n,e
1 (t, y) + X̂n,e

2 (t, y), t, y ≥ 0,

X̂n,r(t, y) = X̂n,r
1 (t, y) + X̂n,r

2 (t, y), t, y ≥ 0,

where

X̂n,e
1 (t, y) :=

∫ t

(t−y)+
F c(t− u)dÂn(u), X̂n,r

1 (t, y) :=

∫ t

0
F c(t+ y − u)dÂn(u),

X̂n,e
2 (t, y) := − 1√

n

An(t)∑
i=An((t−y)−)+1

(1(ηi ≤ t− τni )− F (t− τni )) ,

X̂n,r
2 (t, y) := − 1√

n

An(t)∑
i=1

(1(ηi ≤ t+ y − τni )− F (t+ y − τni )) .

The weak convergence of X̂n,e
1 and X̂n,r

1 follows the same proof of Lemmas 6.2 and 6.3 in
[26] by employing continuous mapping theorem (without additional assumptions on F since
the service time distribution is not time-varying). We quote it here for completeness.

Lemma 3.2. Under Assumptions 1–2,(
X̂n,e

1 , X̂n,r
1

)
⇒
(
X̂e

1 , X̂
r
1

)
in (DD)2 as n→∞.

We focus on the weak convergence of X̂n,e
2 and X̂n,r

2 , as stated in the following lemma.

Lemma 3.3. Under Assumptions 1–2,(
X̂n,e

2 , X̂n,r
2

)
⇒
(
X̂e

2 , X̂
r
2

)
in (DD)2 as n→∞.

Both X̂e
2 and X̂r

2 have continuous sample paths.

Define an auxiliary two-parameter process V̂ n := {V̂ n(t, x) : t ≥ 0} by

V̂ n(t, x) := − 1√
n

An(t)∑
i=1

(
1(ηi ≤ x− τni )− F (x− τni )

)
(3.1)

=
1√
n

An(t)∑
i=1

(
1(ηi > x− τni )− F c(x− τni )

)
, t, x ≥ 0.

By direct observation, we obtain the following relationships of X̂n,e
2 and X̂n,r

2 with V̂ n.

Lemma 3.4. For each t, y ≥ 0 and n ≥ 1, we have

X̂n,r
2 (t, y) = V̂ n(t, t+ y), a.s.,

and

X̂n,e
2 (t, y) = V̂ n(t, t)− V̂ n((t− y)−, t), a.s.
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We state the following theorem for the weak convergence of V̂ n and its proof is given in
Section 6.

Theorem 3.1. Under Assumptions 1–2,

V̂ n ⇒ V̂ in DD as n→∞,

where V̂ := {V̂ (t, x) : t, x ≥ 0} is a continuous two-parameter Gaussian process with mean
zero and covariance function

Cov
(
V̂ (t, y), V̂ (s, x)

)
=

∫ t∧s

0

(
F (x ∧ y − u)F c(x ∨ y − u) + Γ(x− u, y − u)

)
dΛ(u), (3.2)

for t, s ≥ 0 and x, y ≥ 0.

Note that the covariance function of the two-parameter process V̂ defined in (3.2) is
continuous, which is evidently implied by the continuity of Λ, the definition of Γ, and the
ρ-mixing condition.

Given the weak convergence of V̂ n in Theorem 3.1, and the relationship of X̂n,e
2 and

X̂n,r
2 with V̂ n in Lemma 3.4, the weak convergence of X̂n,e

2 and X̂n,r
2 should follow in a

straightforward manner as shown in [26]. The existence, continuity and Gaussian properties

of the limits X̂e
2 and X̂r

2 also follow directly from those of V̂ .

Proof of Lemma 3.3. The proof follows from the same argument as that of Lemma 6.4 in
[26], by applying Lemma 3.4 and Theorem 3.1. �

Proof of Theorem 2.2. The weak convergence in (2.2) follows from Lemmas 3.2–3.3 and the
continuous mapping theorem. �

4. The Method of Chaining and Maximal Inequalities

4.1. A Maximal Inequality for Two-Parameter Stochastic Processes. We review
an important maximal inequality for two-parameter stochastic processes first introduced
in Pang and Zhou [26]. The inequality provides a useful bound for the moments of the
supremum norm of two-parameter processes in any finite time interval provided some moment
conditions on their increments. That is derived from the maximal inequalities for general
stochastic processes resulting from the method of chaining (see a good review in [30, 31]).
The maximal inequalities will provide useful bounds for the two-parameter Gaussian limit
processes and for the proof of weak convergence of two-parameter processes.

Recall a semimetric satisfies all conditions of a metric except (possibly) the triangle
inequality. For a semimetric space (T, d), define the covering number N(ε, d) as the minimal
number of balls of radius ε needed to cover T. In this paper, we use T = [0, T ] for T > 0.
We state the following proposition in [26].

Proposition 4.1. Let X(t, y) be a real-valued, separable two-parameter stochastic process
on [0, T ] × [0, T ′]. For 0 ≤ s < t ≤ T , define Zs,t(y) := X(t, y) − X(s, y) for y ∈ [0, T ′].
Suppose that

E
[
|Zs,t(y)− Zs,t(x)|p

]
≤ C1

(
ds,t(x, y)

)p
, for x, y ∈ [0, T ′] and p > 1,
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where C1 is a positive constant, ds,t(x, y) is a semimetric on [0, T ′] such that the diameter
ds,t(T

′) of [0, T ′] under this semimetric is equal to ds,t(0, T
′), and the covering number

N(ε, ds,t) ≤
⌈

ds,t(0, T
′)

2ε

⌉
+ 1. (4.1)

Then,

E

[
sup

x,y∈[0,T ′]
|Zs,t(y)− Zs,t(x)|p

]
≤ C2

(
ds,t(0, T

′)
)p
,

for some constant C2 > 0 depending only on p and C1. The same bound holds for 0 ≤ t <
s ≤ T by defining a semimetric dt,s symmetrically.

4.2. A Maximal Inequality for the Two-Parameter Gaussian Process V̂ . We apply
Proposition 4.1 to obtain the following maximal inequality for the two-parameter Gaussian
process V̂ introduced in Theorem 3.1.

Definition 4.1. For any 0 ≤ s < t ≤ T , define a semimetric ds,t(x, y) on [0, T ′] as follows:
for 0 ≤ x ≤ y ≤ T ′, let

ds,t(x, y) :=

(
(t− s) ∧ (y − x) + (1 + 2Cρ)

∫ t

s

[
F (y − u)− F (x− u)

]
dΛ(u)

)1/2

, (4.2)

and for 0 ≤ y ≤ x ≤ T ′, by symmetry, let

ds,t(x, y) := ds,t(y, x). (4.3)

It is easy to check that ds,t(x, y) defined in (4.2)–(4.3) is indeed a semimetric on [0, T ′]
for any T ′ > 0. The diameter of [0, T ′] under ds,t is equal to

ds,t(T
′) = ds,t(0, T

′) =

(
(t− s) ∧ T ′ + (1 + 2Cρ)

∫ t

s
F (T ′ − u)dΛ(u)

)1/2

,

and the covering number satisfies (4.1). The nature of the semimetric is similar to the

one used to prove the convergence of V̂ n in the cases of i.i.d. service times and of arrival
dependent (time-varying) service times studied in [26].

Lemma 4.1. For 0 ≤ s < t ≤ T and y ∈ [0, T ′], define

Zs,t[V̂ ](y) := V̂ (t, y)− V̂ (s, y). (4.4)

Then for x, y ∈ [0, T ′],

E
[∣∣Zs,t[V̂ ](y)− Zs,t[V̂ ](x)

∣∣4] ≤ 3
(
ds,t(x, y)

)4
.

Proof. By direct calculation, we obtain that

E
[∣∣Zs,t[V̂ ](y)− Zs,t[V̂ ](x)

∣∣4]
= 3

(∫ t

s

(
[F (y − u)− F (x− u)][1− F (y − u) + F (x− u)]

+Γ(y − u, y − u) + Γ(x− u, x− u)− 2Γ(x− u, y − u)
)
dΛ(u)

)2

= 3

(∫ t

s

(
[F (y − u)− F (x− u)][1− F (y − u) + F (x− u)]
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+2

∞∑
k=2

E[γ̃1(y − u)− γ̃1(x− u)][γ̃k(y − u)− γ̃k(x− u)]

)
dΛ(u)

)2

≤ 3

(∫ t

s

(
[F (y − u)− F (x− u)] + 2[F (y − u)− F (x− u)]

∞∑
k=1

ρk

)
dΛ(u)

)2

= 3

(∫ t

s
(1 + 2Cρ)[F (y − u)− F (x− u)]dΛ(u)

)2

≤ 3

(
(t− s) ∧ (y − x) + (1 + 2Cρ)

∫ t

s

[
F (y − u)− F (x− u)

]
dΛ(u)

)2

= 3
(
ds,t(x, y)

)4
. (4.5)

This completes the proof. �

Proposition 4.2. The two-parameter Gaussian process V̂ satisfies: for 0 ≤ s, t ≤ T ,

E

[
sup

x∈[0,T ′]

∣∣V̂ (t, x)− V̂ (s, x)
∣∣p] ≤ K̂1

∣∣t− s+ (Λ(t)− Λ(s))
∣∣p/2,

for p = 2, 4, and some constant K̂1 > 0.

Proof. We prove the case when p = 4. The case when p = 2 follows from a similar argument.
Without loss of generality, we only prove the bound for 0 ≤ s < t ≤ T . Recall Zs,t[V̂ ](y)

defined in (4.4). By Proposition 4.1, Lemma 4.1, and the fact that V̂ (t, 0) = 0 a.s., we obtain

E

[
sup

x∈[0,T ′]

∣∣V̂ (t, x)− V̂ (s, x)
∣∣4]

≤ K̆
(
ds,t(0, T

′)
)4

≤ K̂1

(
t− s+ (Λ(t)− Λ(s))

)2
,

for some K̆ > 0 and K̂1 > 0. This completes the proof. �

4.3. A Maximal Inequality for the Two-Parameter Process V̂ n. We first state a
lemma on the finite dimensional distributions of V̂ n and V̂ . The proof is postponed to
Section 5.

Lemma 4.2. The finite dimensional distributions of V̂ n converge weakly to those of V̂ as
n→∞.

Next we state a moment condition for truncated processes V̂ n. Observe that for any
K ∈ N, K = Ān(τnnK). Fix T > 0 below, choose K ∈ N such that K > Λ(T ). Also, fix this
K for the next lemma and proposition.

Lemma 4.3. For 0 ≤ s ≤ t ≤ T and x ∈ [0, T ′], define

Zns,t[V̂
n](x) := V̂ n(t ∧ τnnK , x)− V̂ n(s ∧ τnnK , x).

There exists some constant K̂2 such that for n ≥ 1 and for x, y ∈ [0, T ′],

E
[∣∣Zns,t[V̂ n](y)− Zns,t[V̂ n](x)

∣∣4] ≤ K̂2

(
ds,t(x, y)

)4
. (4.6)
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Proof. Notice that τnnK = (Ān)−1(K) and continuity of first passage time (Theorem 13.6.4
in [34]), Assumption 1 implies that

τnnK ⇒ Λ−1(K) as n→∞.
Then, by random time change (lemma on page 151, [5]) and Lemma 4.2, the finite dimensional

distributions of V̂ n(t ∧ τnnK , y) converge weakly to those of V̂ (t ∧ Λ−1(K), y) as n→∞.

Since the truncated processes V̂ n(t ∧ τnnK , y) are uniformly integrable, we obtain that

E
[∣∣Zns,t[V̂ n](y)− Zns,t[V̂ n](x)

∣∣4]
= E

[∣∣V̂ n(t ∧ τnnK , y)− V̂ n(s ∧ τnnK , y)− V̂ n(t ∧ τnnK , x) + V̂ n(s ∧ τnnK , x)
∣∣4]

→ E
[∣∣V̂ (t ∧ Λ−1(K), y)− V̂ (s ∧ Λ−1(K), y)− V̂ (t ∧ Λ−1(K), x) + V̂ (s ∧ Λ−1(K), x)

∣∣4]
as n→∞. By direct calculations, the right hand side is equal to

3

(∫ t∧Λ−1(K)

s∧Λ−1(K)

(
[F (y − u)− F (x− u)][1− F (y − u) + F (x− u)]

+Γ(y − u, y − u) + Γ(x− u, x− u)− 2Γ(x− u, y − u)
)
dΛ(u)

)2

≤ 3

(
(1 + 2Cρ)

∫ t

s

[
F (y − u)− F (x− u)

]
dΛ(u)

)2

≤ 3

(
(t− s) ∧ (y − x) + (1 + 2Cρ)

∫ t

s

[
F (y − u)− F (x− u)

]
dΛ(u)

)2

= 3
(
ds,t(x, y)

)4
.

Therefore, there exists a positive constant K̂2 such that (4.6) holds. This completes the
proof. �

Proposition 4.3. There exists some constant K̂3 > 0 such that for n ≥ 1, the two-parameter
process V̂ n satisfies: for 0 ≤ s, t ≤ T ,

E

[
sup

x∈[0,T ′]

∣∣V̂ n(t ∧ τnnK , x)− V̂ n(s ∧ τnnK , x)
∣∣p] ≤ K̂3

∣∣t− s+ (Λ(t)− Λ(s))
∣∣p/2,

for p = 2, 4.

Proof. The proof follows exactly the same arguments as in the proof of Proposition 4.2 by
applying Lemma 4.3 and Proposition 4.1. �

Remark 4.1. It is worth noting that the maximal inequalities for the limiting two-parameter
process V̂ and the corresponding prelimit process V̂ n hold in the same form except the
different constants in the upper bounds. For the limit process V̂ we have calculated the
fourth moment of the process increments in Lemma 4.1. The same could be possibly done
for the prelimit process V̂ n, as in [26]. However, under the ρ-mixing condition, it seems
quite challenging to directly compute the bound for the fourth moment of the process
increments. Instead, we have taken a different approach here to prove the fourth moment
bound in Lemma 4.3. We first prove the convergence of finite dimensional distributions of
the processes V̂ n in Lemma 4.2, and then by truncating the arrival process (which is all that
is needed for the proof of the convergence below), we can derive the fourth moment bound
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given the resulting uniform integrability property. In fact, this approach can be also used
for the model with time-varying service times in [26] and the case of i.i.d. service times.

5. Proof of Lemma 4.2

To prove Lemma 4.2, we will apply the following theorem, which is adapted from Theorem
2.1 and Proposition 2.1(a) in [33].

Theorem 5.1. Let {Zin : i = 1, ..., κn, n = 1, 2, ...} be a triangular array of bounded random
variables with zero-mean and κn →∞ as n→∞. Define Sn :=

∑κn
i=1 Zin for each n ∈ N.

Let

Sn(a, b) =
a+b∑
i=a+1

Zin, 0 ≤ a, 1 ≤ b ≤ n− a,

c̃n(k) = sup
|l̃−m̃|≥k, 1≤l̃,m̃≤n

|E[Zl̃nZm̃n]|
‖Zl̃n‖2‖Zm̃n‖2

, 0 ≤ k < n,

and
c̃(k) = max

n:k<n
c̃n(k).

Suppose that

(i)

sup
a,b,n

1

b
E[Sn(a, b)2] <∞;

(ii)
∞∑
k=1

c̃(k) < +∞;

(iii)

σ2
n := V ar(Sn)→∞ as n→∞.

Then
Sn/σn ⇒ N(0, 1) as n→∞.

Remark 5.1. We have modified Theorem 2.1(A) in [33] by using the sufficient condition in
Proposition 2.1(a) for the moment inequality (2.3) in that reference. The assumptions of
Proposition 2.1(a) in [33] are satisfied because of boundedness of {Zin} and condition (i)
above with ε = γ = 0 there. The `-mixing condition and condition (A) in Theorem 2.1 in
[33] are implied by conditions (ii) and (iii) since ρ-mixing implies strong `-mixing and Zin’s
are assumed to be bounded.

Proof of Lemma 4.2. By Cramér-Wold theorem, it is equivalent to show that for 0 ≤ t1 <
t2 < · · · < tm ≤ T , 0 ≤ y1 < y2 < · · · < yl ≤ T ′ and {aij ∈ R : i = 1, ...,m, j = 1, ..., l},

m∑
i=1

l∑
j=1

aij V̂
n(ti, yj)⇒

m∑
i=1

l∑
j=1

aij V̂ (ti, yj) as n→∞.

Before proceeding to the proof, we fix the trajectory of An(t) in the following way and
thus omitting arguments involving conditional expectations. For each n ≥ 1, let the set
Υn be the collection of the trajectories of {An(t) : t ≥ 0} such that for each T ≥ 0,

sup0≤t≤T |Ân(t)| ≤ n1/4 and max1≤i≤An(T ) |τni+1 − τni | → 0 as n → ∞. It is evident that
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under Assumption 1, P (Υn) → 1 as n → ∞ and An(t) increases without limit and is of
order O(n). In the proof below, we consider the trajectories of An in the set Υn for each n.

We first consider the case m = l = 1, i.e., V̂ n(t1, y1) ⇒ V̂ (t1, y1) in R as n → ∞. For

brevity, we omit the subscripts and simply write V̂ n(t, y) and V̂ (t, y).
Fix t and y. Define for i = 1, ..., An(t) and n ≥ 1,

Zin := − (1(ηi ≤ y − τni )− F (y − τni )) .

(The explicit dependence on t and y is omitted for brevity.) Then

Sn :=

An(t)∑
i=1

Zin =
√
nV̂ n(t, y). (5.1)

We apply Theorem 5.1 to this sequence {Sn} with the associated variables {Zin}.
By definition of Zin, it is easy to see that supi,n |Zin| ≤ 1, a.s. By Assumption 2, direct

calculations yield

1

b
E

[( a+b∑
i=a+1

Zin

)2]
=

1

b

a+b∑
i=a+1

E
[
Z2
in

]
+

2

b

( a+b∑
i,j=a+1, i<j

E
[
ZinZjn

])

≤ 1 +
2

b

a+b∑
i,j=a+1, i<j

ρ|j−i|

≤ 1 + 2

b∑
k=1

ρk ≤ 1 + 2Cρ <∞.

Thus, condition (i) above is satisfied by Assumption 2.
The ρ-mixing condition satisfied by {ηi : i ∈ N} is naturally inherited by {Zin} through

its definition and thus by Assumption 2, for each n ≥ 1,

sup
|l̃−m̃|≥k, 1≤l̃,m̃≤n

|E[Zl̃nZm̃n]|
‖Zl̃n‖2‖Zm̃n‖2

≤ ρk.

Therefore, the inequality above implies that c̃(k) = maxn:k<n c̃n(k) ≤ ρk and condition (ii)
is satisfied.

We next check condition (iii). Recall that γ̃i(x) = 1(ηi ≤ x)− F (x) in (2.1). We have

σ2
n

n
=

1

n
V ar

(An(t)∑
i=1

Zin

)

=
1

n

An(t)∑
i=1

E
[(
γ̃i(y − τni )

)2]
+

2

n

An(t)∑
i<j

E
[
γ̃i(y − τni )γ̃j(y − τnj )

]
=

1

n

An(t)∑
i=1

F (y − τni )F c(y − τni ) +
2

n

An(t)∑
i<j

rni,j , (5.2)

where

rni,j := E[γ̃i(y − τni )γ̃j(y − τnj )]

= P (ηi ≤ y − τni , ηj ≤ y − τnj )− P (ηi ≤ y − τni )P (ηj ≤ y − τnj ).
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By stationarity of {ηi : i ≥ 1}, for fixed k, we consider

Rnk :=

An(t)−k∑
i=1

rni,i+k =

An(t)−k∑
i=1

P (η1 ≤ y − τni , η1+k ≤ y − τni )− P (η1 ≤ y − τni )2

+

An(t)−k∑
i=1

∆
n,(1)
i,k +

An(t)−k∑
i=1

∆
n,(2)
i,k ,

where

∆
n,(1)
i,k := P (η1 ≤ y − τni , η1+k ≤ y − τni+k)− P (η1 ≤ y − τni , η1+k ≤ y − τni ),

∆
n,(2)
i,k := P (η1 ≤ y − τni )2 − P (η1 ≤ y − τni )P (η1 ≤ y − τni+k).

Given the trajectories of An in Υn, for each fixed k and t ≥ 0, it is easy to check that

max
1≤i≤An(t)−k

∆
n,(1)
i,k → 0 and max

1≤i≤An(t)−k
∆
n,(2)
i,k → 0 as n→∞.

Note that this holds under general distribution function F and joint distribution function
F1,k for (η1, ηk) for any k ≥ 2, since these functions are right continuous with left limits and
the convergence is from the left. Thus, we have

Rnk =

∫ t

0
E[γ̃1(y − u)γ̃1+k(y − u)]dAn(u) + o(n).

Therefore, as n→∞,

2

n

An(t)∑
i<j

rni,j =
2

n

An(t)−1∑
k=1

Rnk → 2

∞∑
k=1

∫ t

0
E[γ̃1(y − u)γ̃1+k(y − u)]dΛ(u)

=

∫ t

0
Γ(y − u, y − u)dΛ(u).

Thus, by (5.2), we obtain

σ2
n

n
→ σ2 :=

∫ t

0
[F (y − u)F c(y − u) + Γ(y − u, y − u)]dΛ(u) as n→∞.

We have verified condition (iii).
Therefore, by Theorem 5.1, we have(An(t)∑

i=1

Zin

)/
σn ⇒ N(0, 1) as n→∞.

Since σn/
√
n→ σ as n→∞, by (5.1), we obtain that for the fixed t and y,

V̂ n(t, y)⇒ N(0, σ2)
d
= V̂ (t, y) as n→∞.

Here “
d
=” denotes “equal in distribution”.

Now we consider the case when m = 2 and l = 2. By simple algebra, we can write

−
√
n

2∑
i=1

2∑
j=1

aij V̂
n(ti, yj) = a11

An(t1)∑
i=1

γ̃i(y1 − τni ) + a12

An(t1)∑
i=1

γ̃i(y2 − τni )
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+a21

An(t2)∑
i=1

γ̃i(y1 − τni ) + a22

An(t2)∑
i=1

γ̃i(y2 − τni )

=

An(t2)∑
i=1

γn,∗i ,

where

γn,∗i :=

{
(a11 + a21)γ̃i(y1 − τni ) + (a12 + a22)γ̃i(y2 − τni ) for 1 ≤ i ≤ An(t1),

a21γ̃i(y1 − τni ) + a22γ̃i(y2 − τni ) for An(t1) + 1 ≤ i ≤ An(t2).

Since the randomness of γn,∗i comes only from ηi, the dependence between γn,∗i is the same
between γ̃i(y − τni ). Therefore, the similar arguments for the first case apply. It is clear
that this argument can be extended for any general m > 2 and l > 2. This completes the
proof. �

6. Proof of Theorem 3.1

We first prove that the sample path of V̂ is continuous, i.e., V̂ ∈ CC and C2. We quote
the following lemma for the continuity of two-parameter stochastic processes in [26].

Lemma 6.1. ([26, Lemma 4.2]) Let X be a separable mean-zero Gaussian process with
sample paths in D2. If X is continuous in quadratic mean, then it has sample paths in C2

a.s.

Recall the following concepts for two-parameter processes defined in [4]. A block B in
[0, T ] × [0, T ′] is a subset of [0, T ] × [0, T ′] of the form (s, t] × (x, y]; two blocks B and C
in [0, T ] × [0, T ′] are said to be neighboring blocks if they share a common edge. Note
that there are only two kinds of neighboring blocks in [0, T ] × [0, T ′], (i) the first kind:
B = (s, t] × (x, y] and C = (s, t] × (y, z] and (ii) the second kind: B = (s, t] × (x, y] and
C = (r, s] × (x, y], for r < s < t and x < y < z. For each block B = (s, t] × (x, y], define
X(B) := X(t, y)−X(t, x)−X(s, y) +X(s, x) be the increment of X around B for stochastic
process X.

Lemma 6.2. Under Assumptions 1–2, the two-parameter Gaussian process V̂ is continuous,
namely, it has continuous sample paths in C2, and thus in CC.

Proof. Since the covariance function of V̂ is continuous, by Lemma 6.1, it suffices to show
that the Gaussian process V̂ ∈ D([0, T ]× [0, T ′],R) for T, T ′ > 0. We apply Theorem 4 in
[4] (see also Theorem 4.2 in [26]), which states a criterion for the existence of a stochastic
process with sample paths in D([0, T ]× [0, T ′],R) given its finite dimensional distributions.
We check the required four conditions.

(i) The condition P (V̂ (t, 0) = 0) = 1 and P (V̂ (0, y) = 0) = 1 for each t ∈ [0, T ] and

y ∈ [0, T ′] is satisfied since V ar(V̂ (t, 0)) = V ar(V̂ (0, y)) = 0 by the covariance function in
(3.2).

The continuity of the covariance function implies that the following two conditions are
satisfied:

(ii) for each ε > 0,

lim
h1,h2→0+

P
(
|V̂ (t+ h1, y + h2)− V̂ (t, y)| ≥ ε

)
= 0, 0 ≤ t < T, 0 ≤ y ≤ T ′;



16 GUODONG PANG AND YUHANG ZHOU

and
(iii) for each ε > 0,

lim
t→T−

P
(
|V̂ (t, y)− V̂ (T, y)| ≥ ε

)
= 0, 0 ≤ y ≤ T ′,

and

lim
y→T ′−

P
(
|V̂ (t, y)− V̂ (t, T ′)| ≥ ε

)
= 0, 0 ≤ t ≤ T.

The last condition (iv) requires that there exists a finite measure µ on [0, T ]× [0, T ′] with
continuous marginals such that

E
[
V̂ (B)2V̂ (C)2

]
≤ µ(B)µ(C), (6.1)

for all pairs of neighboring blocks B and C in [0, T ]× [0, T ′]. Recall that there are only two
kinds of neighboring blocks in [0, T ]×[0, T ′]. We consider the first kind with B = (s, t]×(x, y]
and C = (r, s]× (x, y] for r < s < t and x < y. By Cauchy-Schwarz inequality, it suffices to
show that there exists some finite measure µ with continuous marginals on [0, T ]× [0, T ′]
such that

E
[
V̂ (B)4

]
≤ µ(B)2. (6.2)

By the same calculations in (4.5),

E
[∣∣V̂ (t, y)− V̂ (s, y)− V̂ (t, x) + V̂ (s, x)

∣∣4]
≤

(√
3(1 + 2Cρ)

∫ t

s

[
F (y − u)− F (x− u)

]
dΛ(u)

)2

.

It is easy to verify that the measure µ on [0, T ]× [0, T ′] defined by

µ(B) :=
√

3(1 + 2Cρ)

∫ t

s

[
F (y−u)−F (x−u)

]
dΛ(u), ∀B = (s, t]× (x, y] ⊂ [0, T ]× [0, T ′],

is finite and has continuous marginals. Thus, the condition (6.2) is verified for the first kind
of neighboring blocks in [0, T ]× [0, T ′]. A similar argument also verifies it for the second
kind of neighboring blocks. This completes the proof. �

For each fixed t ≥ 0, we denote V̂ n(t) = {V̂ n(t, x) : x ≥ 0} and it is an element of D.

Similarly, for each fixed t ≥ 0, we denote V̂ (t) = {V̂ (t, x) : x ≥ 0}. Lemma 6.2 implies that

for each t ≥ 0, V̂ (t) is also an element of D (actually C). We next show the convergence

of V̂ n(t) to V̂ (t) in D for each t ≥ 0 by employing the following theorem, which is a
generalization of Theorem 13.5 in [5] from D([0, 1],R) to D([0, T ],S) for a metric space S
(see also Theorem 4.1 in [26]).

Theorem 6.1. ([5, Theorem 13.5])
Let Xn and X be stochastic processes with sample paths in D([0, T ],S) where (S,m) is a
metric space. Suppose that

(i) for any 0 ≤ t1 ≤ t2 ≤ ... ≤ tk ≤ T and k ≥ 1,(
Xn(t1), ..., Xn(tk)

)
⇒
(
X(t1), ..., X(tk)

)
in Sk as n→∞,

(ii)

m(X(T ), X(T − δ))⇒ 0 in R as δ → 0, (6.3)
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(iii) for 0 ≤ r ≤ s ≤ t ≤ T , n ≥ 1 and ε > 0,

P
(
m(Xn(r), Xn(s)) ∧m(Xn(s), Xn(t)) ≥ ε

)
≤ 1

ε4
(
H(t)−H(r)

)2
, (6.4)

where H is a nondecreasing and continuous function on [0, T ].

Then Xn ⇒ X in D([0, T ],S) as n→∞.

Lemma 6.3. Under Assumptions 1–2, for each fixed t ≥ 0, V̂ n(t)⇒ V̂ (t) in D as n→∞.

Proof. It suffices to prove the convergence in D[0, T ′] for each T ′ > 0. We prove the theorem
by verifying three conditions in Theorem 6.1. The first condition is implied by Lemma 4.2.

We next show that the limit process V̂ (t) = {V̂ (t, y) : y ≥ 0} for each t ≥ 0 satisfies
condition (6.3), that is,

V̂ (t, T ′)− V̂ (t, T ′ − δ)⇒ 0 as δ → 0.

It suffices to show that

E
[∣∣V̂ (t, T ′)− V̂ (t, T ′ − δ)

∣∣2]→ 0 as δ → 0.

This directly follows from the continuity of the covariance function of V̂ .
We now verify condition (6.4) in Theorem 6.1. For K ∈ N such that K > Λ(T ) and ε > 0,

P
(∣∣V̂ n(t, x)− V̂ n(t, y)

∣∣ ∧ ∣∣V̂ n(t, y)− V̂ n(t, z)
∣∣ ≥ ε)

≤ P
(
An(T ) ≥ nK

)
+P

(
An(T ) ≤ nK,

∣∣V̂ n(t, x)− V̂ n(t, y)
∣∣ ∧ ∣∣V̂ n(t, y)− V̂ n(t, z)

∣∣ ≥ ε)
≤ P

(
Ān(T ) ≥ K

)
+

1

ε4
E
[
1(Ān(T ) ≤ K) ·

∣∣V̂ n(t, x)− V̂ n(t, y)
∣∣2 · ∣∣V̂ n(t, y)− V̂ n(t, z)

∣∣2]
≤ P

(
Ān(T ) ≥ K

)
+

1

ε4

(
E
[∣∣V̂ n(t ∧ τnnK , x)− V̂ n(t ∧ τnnK , y)

∣∣4])1/2

×
(
E
[∣∣V̂ n(t ∧ τnnK , y)− V̂ n(t ∧ τnnK , z)

∣∣4])1/2

≤ P
(
Ān(T ) ≥ K

)
+

3

ε4

(
(1 + 2Cρ)

∫ t

0

[
F (z − u)− F (x− u)

]
dΛ(u)

)2

where the second last inequality is obtained from applying Cauchy-Schwartz inequality and
the last one follows from Lemma 4.3 (with s = 0 in the lemma). Since Ān(T )⇒ Λ(T ) as
n→∞ by Assumption 1, we have

P
(
Ān(T ) ≥ K

)
→ P

(
Λ(T ) ≥ K

)
= 0 as n→∞ (6.5)

for the chosen K > Λ(T ). Since for fixed t, as a function in x, Ht(x) :=
∫ t

0 F (x− u)dΛ(u) is
nondecreasing and continuous in x, condition (iii) is satisfied. Thus, the proof is complete. �

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Consider [0, T ]×[0, T ′]. To prove this, it suffices to verify the following
three conditions by Theorem 6.1 with S = D.
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(i) for any 0 ≤ t1 ≤ t2 ≤ ... ≤ tk ≤ T and k ≥ 1,(
V̂ n(t1), ..., V̂ n(tk)

)
⇒
(
V̂ (t1), ..., V̂ (tk)

)
in Dk as n→∞, (6.6)

(ii)

dJ1
(
V̂ (T ), V̂ (T − δ)

)
⇒ 0 in R as δ → 0, (6.7)

(iii) for 0 ≤ r ≤ s ≤ t ≤ T and n ≥ 1,

P
(
dJ1
(
V̂ n(r), V̂ n(s)

)
∧ dJ1

(
V̂ n(s), V̂ n(t)

)
≥ ε
)
≤ 1

ε4
(
H(t)−H(r)

)2
, (6.8)

for some nondecreasing and continuous function H on [0, T ].

To prove (6.6), we show that for any 0 ≤ t1 ≤ t2 ≤ ... ≤ tk ≤ T and k ≥ 1,(
V̂ n(t1), ..., V̂ n(tk)

)
⇒
(
V̂ (t1), ..., V̂ (tk)

)
in (D[0, T ′])k as n→∞. (6.9)

Lemma 6.3 implies that the sequence {V̂ n(t) : n ≥ 1} is tight for each t ∈ [0, T ], and thus,(
V̂ n(t1), V̂ n(t2), ..., V̂ n(tk)

)
is also tight for 0 ≤ t1 < t2 < ... < tk ≤ T . Then it suffices to

show the finite dimensional distributions of
(
V̂ n(t1), V̂ n(t2), ..., V̂ n(tk)

)
converge weakly to

those of
(
V̂ (t1), V̂ (t2), ..., V̂ (tk)

)
, which is implied again by Lemma 4.2.

Condition (6.7) is simply implied by the fact that V̂ ∈ CC proved in Lemma 6.2.
Now we focus on (6.8). For K ∈ N such that K > Λ(T ) and ε > 0,

P
(
dJ1
(
V̂ n(r), V̂ n(s)

)
∧ dJ1

(
V̂ n(s), V̂ n(t)

)
≥ ε
)

≤ P

(
sup

y∈[0,T ′]

∣∣V̂ n(r, y)− V̂ n(s, y)
∣∣ ∧ sup

y∈[0,T ′]

∣∣V̂ n(s, y)− V̂ n(t, y)
∣∣ ≥ ε)

≤ P
(
An(T ) ≥ nK

)
+P

(
An(T ) ≤ nK, sup

y∈[0,T ′]

∣∣V̂ n(r, y)− V̂ n(s, y)
∣∣ ∧ sup

y∈[0,T ′]

∣∣V̂ n(s, y)− V̂ n(t, y)
∣∣ ≥ ε)

≤ P
(
Ān(T ) ≥ K

)
+

1

ε4
E

[
1(Ān(T ) ≤ K) · sup

y∈[0,T ′]

∣∣V̂ n(r, y)− V̂ n(s, y)
∣∣2 · sup

y∈[0,T ′]

∣∣V̂ n(s, y)− V̂ n(t, y)
∣∣2]

≤ P
(
Ān(T ) ≥ K

)
+

1

ε4

(
E

[
sup

x∈[0,T ′]

∣∣V̂ n(t ∧ τnnK , x)− V̂ n(s ∧ τnnK , x)
∣∣4])1/2

×
(
E

[
sup

x∈[0,T ′]

∣∣V̂ n(s ∧ τnnK , x)− V̂ n(r ∧ τnnK , x)
∣∣4])1/2

≤ P
(
Ān(T ) ≥ K

)
+
K̂3

ε4
(
t− r + (Λ(t)− Λ(r))

)2
,

where the last inequality follows from Proposition 4.3. The first term on the right hand side
vanishes as n → ∞, as in (6.5). Since the function H(t) = t + Λ(t) is nondecreasing and
continuous, condition (iii) is verified. Therefore, the proof is now complete. �
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7. Conclusion

We have proved the two-parameter process limits for infinite-server queues with ρ-mixing
service times by employing the new methodology developed in Pang and Zhou [26]. The
conditions required on the service times are much weaker than those in [24]. In the proof,

as in [26], the auxiliary two-parameter process V̂ n plays a key role in bridging the two-
parameter queueing processes tracking the elapsed and residual times. It is worth noting
that as discussed in Section 8 of [26], we can also prove the convergence of the two-parameter

processes X̂n,e
2 and X̂n,r

2 directly by deriving the corresponding maximal inequalities as in
Propositions 4.2 and 4.3. However, that would require additional conditions on either the
function Λ or the distribution function F . Specifically, for X̂n,e

2 , it requires Λ to be Lipschitz

continuous and for X̂n,r
2 , it requires the service distribution function F to be Lipschitz

continuous.
We conjecture that the new methodology in [26] can be further developed to prove two-

parameter process limits for non-Markovian many-server queues. As mentioned earlier, the
recent work on non-Markovian many-server queues with i.i.d. service times in [27, 28, 21, 19,
17, 18, 8] has adapted the “machinery” in Krichagina and Puhalskii [15]. We think the new
methodology can be employed for these models and potentially much simplify the proofs
as we have demonstrated in [26] and here. Also, the methodology using measure-valued
processes has been recently developed to study non-Markovian many-server queues with
i.i.d. service times in [35, 16, 17, 11, 12, 13, 36]. As shown in [10], it is equivalent to study
measure-valued and two-parameter processes for many-server queues in the fluid level. Our
approach may be potentially extended to study many-server queues with i.i.d. service times,
and with time-varying and dependent service times.
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