
Submitted to INFORMS Journal on Computing
manuscript (Please, provide the manuscript number!)

Acuity-Based Allocation of ICU-Downstream Beds
with Flexible Staffing

Silviya Valeva
Department of Decision & System Sciences, Erivan K. Haub School of Business, Saint Joseph’s University, svaleva@sju.edu

Guodong Pang
Department of Computational Applied Mathematics and Operations Research, Rice University, gdpang@rice.edu

Andrew J. Schaefer
Department of Computational Applied Mathematics and Operations Research, Rice University, andrew.schaefer@rice.edu

Gilles Clermont
Critical Care Medicine, University of Pittsburgh, cler@pitt.edu

Intensive care units (ICUs) are crucial resources within hospitals, caring for the most critically ill patients.

We propose a novel modeling framework that improves the outflow of ICU patients by anticipating unit

interactions and resource sharing within the system. Across an arbitrary bipartite network of units, we

consider two types of downstream staffing (baseline and flexible) and a two-stage decision process. In the

first stage, we determine the level of flexible bed staffing using existing physical beds at downstream units in

anticipation of incoming transfers from the ICUs. In the second stage, we determined the allocation of ICU

patients to downstream beds. The goal of the model is to reduce inefficiencies and transfer delays causing

ICU bed block due to lack of space in downstream units. We formulate a dynamic multi-period model and

analyze the dual of its (relaxed) stationary counterpart. Decomposing the relaxed stationary model into

an ICU and downstream subproblems, we calculate the relative values of downstream beds and derive a

practical acuity-based policy for the daily operational decisions. Using a large-scale simulation calibrated with

historic hospital data, we demonstrate that our acuity-based policy reduces the number of long-run diverted

ICU arrivals, particularly in high-demand scenarios, thus improving ICU throughput, when compared to a

deterministic, a generalized randomized-most-idle, and static policies.
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1. Introduction

Hospitals face extensive demand from patients for improved clinical outcomes and service quality.

However, inefficiencies and delays in bed usage as well as unproductive occupancy resulting from

waiting for tests, transfer, or discharge often lead to patient blocking, diversions, unit congestions

(Green 2005, Hall 2012), increased waiting time, rescheduling of planned procedures, and reduced

perceived quality of service for patients (de Bruin et al. 2010). Furthermore, inefficient use of

facilities often poses a significant financial strain, as many US hospitals often operate at or near
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full capacity and regularly face shortages of healthcare workers (Toner and Waldhorn 2020). The

situation is further exacerbated during local or global surges in demand for beds. As the COVID-19

pandemic has illustrated, ICU capacity can quickly reach its limits (Leatherby et al. 2020), calling

for improved hospital management policies (Landro 2020) and making efficient use of the existing

scarce resources even more pressing. Hall (2012) identifies bed management as a crucial step for

reducing inefficiencies, as for most hospitals the available beds and the types of patients they serve

create bottlenecks. While the whole hospital is a highly complex network that is extremely difficult

to study, interactions among units should not be ignored (Armony et al. 2015). Hence, studies of

hospital sub-networks provide a more focused and tractable middle ground. We focus our study on

the sub-network of intensive care units (ICUs) and downstream units within a hospital.

ICUs provide temporary care to critically ill patients, who usually arrive through emergency

departments or immediately after surgery. ICUs are characterized by high nurse-to-patient ratio

(1:2 or 1:1) and expensive specialized equipment. Consequently, a day in an ICU bed can be 2.5

times more costly than elsewhere in a hospital (Barrett et al. 2014). Proper management of ICUs

is important not only from a financial standpoint but also for patient safety, as increased ICU

occupancy is associated with a heightened risk of patients’ early death or readmission (Chrusch

et al. 2009). Furthermore, delayed or refused patient admission in ICUs from emergency depart-

ments is associated with higher length of stay and increased mortality (Metcalfe et al. 1997, Chalfin

et al. 2007, Robert et al. 2012). Thus, efficient utilization of ICU beds is crucial for reducing cost,

limiting delays or refused admissions, and increasing patient throughput and health outcomes.

Downstream units (or general wards) provide care for stabilized and recovering patients after an

ICU stay and patients arriving from other units throughout the hospital. In practice, and depending

on their condition, patients may need to be transferred to different units of varying levels of care

after an ICU stay, such as step-down units, telemetry units, etc. For the purposes of this study, we

consider one layer of lower-level care units with possibly different connections to ICUs, referred to

as downstream units (DSUs). DSUs have a lower nurse-to-patient ratio compared to ICUs (about

1:8) and are significantly less expensive to operate. A single ward generally treats patients requiring

similar kind of care as determined by staff training. Thus, a particular downstream ward may

only accept patients from certain ICUs, resulting in a network of ICU-downstream routes, where

ICU patients are transferred to downstream units before being discharged from the hospital. The

topology of the network is determined by the existing hospital layout, policies, and staff training.

If no restrictions exist, we assume a complete bipartite network where each ICU is connected to

each downstream unit. The bed capacities at units are largely determined by staff availability.

This study focuses on two types of decisions in the ICU-DSU network, namely, the flexible

staffing of downstream beds and the allocation of ICU patients to downstream beds (see Figure 1).
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The discharge of a patient from the ICU happens after his/her status has been updated to ready –

a decision made by a physician based on health indicators(note that individual patient discharge

decisions are not modeled in this paper). The request for a ward bed is relayed to a ward bed

manager, who identifies an available bed in a downstream unit where the patient can be transferred.

If no downstream bed is available to accommodate a transfer request, the patient will remain in

ICU, which in turn could lead to incoming patient diversions and refused admissions. The discharge

delay of ICU patients can be defined as the time lag between the moment patients are declared

clinically ready for discharge from ICU and the moment when they physically vacate the ICU

bed (Perlmutter et al. 1998, Williams and Leslie 2004, Chaboyer et al. 2006). Lack of beds in

downstream units is a common reason for delayed discharge of ICU patients (Levin et al. 2003, Lin

et al. 2009). As a result, patients often cannot be admitted into ICU because it is full and a number

of ICU beds are occupied by patients waiting for ward beds, a situation commonly referred to as

“bed-block” or “outflow limitation” (Lin et al. 2009, Zychlinski et al. 2020). One way to mitigate

this issue is by staffing additional beds at downstream units during periods of peak demand.

Generally, there are fewer staffed beds in a unit than physical beds, however, only staffed beds are

available to accept patients (de Bruin et al. 2010). We distinguish between two types of staffing:

baseline staffing and flexible staffing. Baseline staffing refers to the regular bed staffing done with

full-time nurses and based on expected demand. Flexible staffing is the additional staffing of existing

physical beds (usually with temporary or on-call personnel) when needed. Saville et al. (2020) show

that in addition to baseline staffing, flexible staffing can be an effective measure for responding to

variation in demand and can reduce both overstaffing and understaffing. In particular, we consider

a setting in which (some) downstream units may have extra beds that can be staffed with on-call

personnel in order to better meet ICU transfer demand when baseline staffed beds are unavailable.

We thus propose a model to determine the number and location of additional operational beds

through flexible staffing and the allocation of ready ICU patients to DSU beds. Modeling the two

decisions together allows improved bed availability for incoming ICU patients and, to the best

of our knowledge, has not been studied before. Note that Zychlinski et al. (2020) study capacity

allocation and periodic reallocation of beds at geriatric units, however, their approach considers the

long-term setup of beds which remains fixed until the next round of reallocation (e.g., quarterly).

On the other hand, we consider the short-term staffing with on-call personnel of already existing

beds which can vary daily.

This decision environment poses several challenges:

(i) the arbitrary topology of the bipartite ICU-downstream network (note that, except ICU con-

nectivity, we do not impose any structural restrictions on number of units or connections);
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(ii) the aggregate number of transfers out of ICUs that are sharing (and competing for) down-

stream resources; and

(iii) the novel aspect of studying flexible staffing decisions in conjunction with patient allocation

in downstream units.

Thus, instead of an individual-based queuing theory analysis, we propose a dynamic multi-

period model to determine the staffing and allocation decisions. We use the dual of its relaxed

stationary counterpart to derive relative values of the downstream resources which we then

embed in an operational policy. As the DSU bed values are derived from a stationary sys-

tem model, they capture the global system dynamics, including the topology of the underly-

ing (arbitrary) network with resource sharing, as well as the capacities at units and expected

arrival rates, captured through a clinical benefit function. The proposed policy then dictates the

local operational decisions, based on current bed and staff availability. Considering the whole

system as opposed to individual waiting times ensures that resources are properly shared and

utilized within the network and beds are available for the incoming patients when needed.

ICU

DSU

Downstream 
flexible 
staffing

ICU patients 
transfer allocation

⋮
⋮

ICU

DSU

⋮

ICU patients 
transfer allocation

Figure 1: Illustration of the decisions modeled
within the ICU-DSU network including (i) the
number and location of downstream flexible
staffing beds and (ii) the allocation of ICU
patients transferred downstream.

Our extensive computation study measures

the long-run number of diverted ICU patients

(i.e., arrivals that are lost to the system)

and shows that our policy achieves a reduc-

tion when compared to several other poli-

cies. This metric is significant as research

has shown that delayed or refused patient

admission in ICUs is associated with higher

length of stay and increased mortality (Met-

calfe et al. 1997, Chalfin et al. 2007, Cardoso

et al. 2011, Robert et al. 2012). Sensitivity

analyses demonstrate that the proposed pol-

icy is most valuable in high-demand settings

but remains competitive in other scenarios as

well.

The main contributions of this work can be summarized as follows:

• We provide a dynamic multi-period model to determine efficient staffing and patient allocation

at downstream units based on ICU requests, expected arrivals, and downstream bed availability.

Our formulation allows for downstream capacity expansion through flexible staffing of beds at

additional cost. This is the first study to consider flexible staffing decisions in an optimization

framework that streamlines the ICU-downstream patient transfer process.
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• Through analysis of the relaxed stationary model, we derive relative values of the downstream

beds, which in turn allow us to generate an acuity-based policy for the staffing and alloca-

tion decisions. In particular, decomposition of the relaxed stationary model allows us to derive

the dual bed values from the downstream network subproblem, necessary for guiding the daily

downstream staffing and allocation decisions. As the bed values are obtained for the specific

underlying network topology and expected unit capacities, they capture global system dynamics

which are subsequently used to make local decisions (based on daily availability). The policy

provides practical and easy-to-implement operational rules that do not require knowledge of the

number of incoming ICU patients or frequent optimization.

• We demonstrate that the integrated decision model can have significant impact on improving

efficiency in ICU-DSU management through a series of numerical experiments. In particular, we

validate policy’s advantages in an illustrative setting as well as a multi-week simulation using

arrival and discharge rates calibrated with historic hospital data. We evaluate the performance of

the proposed acuity-based policy through comparison with several other policies. The examples

illustrate that our proposed acuity-based policy reduces the long-run number of diverted ICU

arrivals – a crucial determinant of patient safety and outcomes.

The remainder of this paper is organized as follows: Section 2 discusses the relevant literature.

Section 3 presents a dynamic multi-period model for patient transfer and flexible staffing decisions,

while Section 4 derives an acuity-based policy from its relaxed stationary counterpart. We discuss

the numerical experiments and results in Section 5 and conclude in Section 6.

2. Literature Review

General issues and trends in hospital bed management and patient flow are identified by Green

(2005) and Hall (2012). A comprehensive literature review of operations research in ICU manage-

ment is provided by Bai et al. (2018). The topics of future research identified in the survey that our

work addresses include coordinating decisions between the ICU and connected wards as well as the

medium and short-term bed capacity planning that involves bed allocation and patient routing.

This paper draws from several different streams of research – as such, we organize our review of

relevant literature based on the main research methodology.

2.1. Empirical Studies

Empirical approaches to ICU operations have considered patient admissions, discharge, and staff

workload. In studying the impact of workload on service time and patient safety, Kc and Terwiesch

(2009) find that an increase in workload is associated with an increase in the early patient discharge,

which is in turn associated with a heightened mortality rate. Kc and Terwiesch (2012) present an

empirical study focused on discharge patterns and the rationing of beds in a cardiac ICU. The
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authors find that a patient is likely to be discharged early when the occupancy in the ICU is

high, which in turn leads to an increased likelihood of the patient having to be readmitted. Kim

et al. (2014) focus on ICU admission control to “quantify the cost of denied ICU admissions” and

evaluate various admission strategies. The authors use data-calibrated simulation and show that

ICU congestion can significantly impact patient admission decisions and patient health outcomes.

Kuntz et al. (2014) offer an empirical study on the safety tipping points in hospitals based on

capacity utilization, i.e., occupancy beyond a certain level is associated with a significant escalation

of in-hospital mortality. As the increased stress levels caused by high utilization forces clinical staff

to ration resources and become more error prone, the authors argue that a cost-effective solution

for safety improvement is flexible capacity expansion (as opposed to rigid capacity expansion) as

it is only used when occupancy reaches the threshold of the tipping point. Song et al. (2020) study

capacity pooling, i.e., the practice of assigning patients from a unit whose beds are currently fully

occupied to an available bed in a different unit. The study finds the practice to be associated with

an increase in the patients’ remaining length of stay (LOS) and an increase in their readmission

likelihood. The negative impacts that ICU congestion has on patients, as identified in the empirical

literature, serve as motivating factors for seeking new ways to improve patient flow efficiency by

allowing for flexibility through strategic staffing.

2.2. Queueing Models

There is a rich literature of queueing models in ICU management. Shmueli et al. (2003) consider

different ICU admission policies and study how each impacts the expected number of saved lives.

Chan et al. (2012) study discharge decisions and propose a policy for indexing (ranking) of patient

criticality to use in demand-driven discharge from ICUs. Bekker et al. (2017) consider flexibility in

the usage of beds in hospital wards and analyze various bed allocation policies. The study examines

patient admissions in settings including both dedicated/earmarked beds (treating a specific type

of patients) and flexible beds (treating multiple types of patients). Our work is also related to

queueing literature with fairness routing policies in stochastic networks, see, e.g., the threshold-

type of policies in Ward and Armony (2013), diffusion controls in Arapostathis and Pang (2019),

and in particular, the randomized-most-idle (RMI) algorithm by Mandelbaum et al. (2012) in the

network of a single emergency department (ED) to hospital wards. The proposed acuity-based

policy can be potentially used to study these ED-Ward networks.

The decisions in queues are made on the individual-patient basis with detailed models of arrival

and service and routing processes, and well-established theoretical results like (asymptotically)

optimal policies often require strong assumptions on the topology of the underlying network (espe-

cially for parallel server networks as in our study) of servers as well as heavy-traffic asymptotic
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regimes. For example, the well-known cµ-rule was first established for a “V” network (Buyukkoc

et al. 1985) and extended to general parallel server network with “tree” topology (Mandelbaum

and Stolyar 2004). Scheduling and routing problems in large-scale parallel server networks have

mostly focused on tree topology networks Atar et al. (2004), Atar (2005), Harrison and Zeevi

(2004), Gurvich and Whitt (2009a,b), Stolyar and Tezcan (2011), Arapostathis and Pang (2019).

An exception is the “X” model in Perry and Whitt (2009, 2013).

In reality, many, if not most ICU settings entail a non-tree topology, as studied in this paper (see

the ICU-DSU networks constructed from real data in the e-companion). Recognizing the specificity

of DSUs within the network and their varying clinical value is especially important in the case of

complex network topologies with resource sharing, as is the case in many hospital settings.

2.3. Optimization Approaches

Dobson et al. (2010) introduce a Markov chain model for a single ICU with patient bumping, i.e.,

the transfer of patients to other units to make room for new incoming patients. While this approach

allows for exact mathematical analysis as opposed to simulation, its complexity for a single ICU

makes it difficult to generalize for an entire hospital setting with multiple units. Thompson et al.

(2009) study admission allocation and reallocation in anticipation of a demand surge through a

finite-horizon Markov decision process (MDP). Here, the patient transfer/reallocation is not a

result of medical need but rather a proactive step towards capacity reallocation. Due to the high

dimensionality of MDPs, the authors resort to multiple approximations including a reduction in the

policy space and time horizon. It is thus unlikely for this approach to be scalable to larger hospitals

with more patient categories and unit types. Bertsimas and Pauphilet (2020) study admission

patient allocation and integrate machine learning into the optimization models. Three models

comprising an immediate, daily, and weekly horizon are proposed and integrated into one model

that creates bed assignments based on current (fixed) bed availability and bed requests. The

objective function is a sum of various cost functions and a deviation from target occupancy levels.

Methodologically, our approach is inspired by the price-directed routing and control used in man-

ufacturing. For example, Roundy et al. (1991) develop a price-directed methodology for machine

scheduling in a job shop. Other applications of price-directed approaches can be found in revenue

management (Simpson 1989, Williamson 1992, Talluri and van Ryzin 1998), vehicle dispatching

(Gans and van Ryzin 1999), logistics networks (Adelman 2007), restless bandits problems (Bert-

simas and Niño-Mora 2000), remnant inventory control (Adelman and Nemhauser 1999, Rajgopal

et al. 2009), and the economic lot scheduling problem (Adelman and Barz 2014). These approaches

differ from classic price-directed methods, such as the Dantzig-Wolfe decomposition (Dantzig and

Wolfe 1960), as the dual prices are not used to solve a problem instance, but instead to design

control policies for the underlying dynamic system.
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Figure 2 Timeline of evens – decisions are indicated in gray while external events are indicated in white.

In practice, highly dynamic and stochastic control problems cannot be solved to optimality

due to the “curse of dimensionality” (Bellman 1957). Thus, price-directed approaches seek to

(periodically) estimate the global system dynamics through a steady-state model from which they

derive static dual prices of resources and then use the dual prices to dictate the local operational

decisions. Hospitals fit the description of highly dynamic and stochastic systems with complex

interactions between the sources of supply (staff and beds) and demand (patients from various

units). As such, our approach uses the global system defined by the ICU-downstream network

with expected supply and demand parameters to estimate the relative values of the downstream

resources. These values are then used to guide the individual operational decisions of staffing and

patient allocation through a practical acuity-based policy.

3. Model

We consider the decisions of determining the number and location of beds added through flexible

staffing (i.e., beyond the regular baseline staffing), together with the transfer and allocation of ICU

patients to downstream units. We first describe the environment and factors considered by the

decision maker, followed by a formal presentation of the mathematical model.

3.1. Decision Environment

We consider a general setting in which a decision maker determines the transfer and allocation of

ICU patients to downstream units by utilizing operational beds available through baseline staffing

(matching expected demand) and flexible staffing (short-notice on-call or temporary personnel

called when surges in demand occur). Specifically, the decisions in each time period can be sub-

divided in two stages: (i) staffing and (ii) patient allocation. Note that we model an environment

in which physical beds are already available, thus the first-stage decisions are to staff the existing

beds. Figure 2 illustrates a timeline of decisions. This timeline can represent a day or half day

(as in our computational experiments) but the model is independent of the specific choice of time

epochs. Daily or twice daily discharge/transfer decisions are common practice in hospitals (Chan

et al. 2017).

The stage-one decisions represent an important feature of our decision environment – the use of

flexible staffing for capacity expansion downstream. In our setting, (some) downstream units may

allow for additional bed staffing to better meet ICU transfer demand when the number of baseline
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staffed beds becomes insufficient. Studies have shown that lack of beds at the downstream general

wards is one of the most common reasons for delayed discharge of ICU patients (Levin et al. 2003,

Lin et al. 2009). In particular, the additionally staffed beds at a given unit can treat incoming

patients from the same set of ICUs as determined by the existing network. As staffing requires

planning and lead time, we assume a “budget” measuring the maximum number of additional beds

that can be staffed is available in each decision period. This value may be calculated based on a

monetary flexible staffing budget that is a fraction of the whole-hospital budget. Throughout the

rest of the work, we make the following assumption:

Assumption 1. The flexible staffing cost at downstream units is linear in the number of beds

staffed beyond baseline capacity.

For our modeling purposes (and as is common practice), we assume the flexible staffing cost is

proportional to the number of operational beds beyond baseline staffing in a given time period. This

is a reasonable assumption given that the required staff per bed is fixed, usually state mandated

and department specific. In particular, the downstream staffing cost function is mainly governed

by the financial cost associated with scheduling additional personnel. Note that while nurses are

generally hired to work in a given unit, floating among units may sometimes be necessary and

economical but has been associated with certain negative outcomes (Bates 2013, Hendren 2011,

O’Connor and Dugan 2017). Hence, we model the flexible staffing decisions with the inherent cost

of on-call personnel, i.e., using the on-call nurses from the given unit rather than redeploying

(floating) regularly scheduled nurses from other units.

At the stage-two decision making, each ICU provides a request for the maximum number of

patients they would like to transfer downstream, i.e., the number of patients who are medically

ready to be transferred. As discussed in the Introduction, patients staying at ICU while awaiting

transfer is viewed as unproductive occupancy, i.e., it is not medically necessary for patients to

occupy those beds (Hall 2012). Such holdups could lead to blocking of incoming ICU patients and

temporary diversions – generally viewed as inefficiencies and negative factors for patient through-

put, health outcomes, and quality of service (de Bruin et al. 2010, Green 2005, Hall 2012).

Remark. We assume ICU patients are ordered based on acuity and ready patients are selected

for downstream transfer based on this ordering.

An important consequence of the two-stage decisions is the access to ICU beds for incoming

patients. As ICU patients usually require immediate care, it is generally not possible to make the

newly arriving patients queue for beds (Bai et al. 2018). In practice, those patients may be rerouted

to other facilities; however, the different ICUs within a hospital tend to be specialized (e.g., cardiac,

surgical, neonatal, etc.) and as such, may not be able to serve all incoming patients. Similarly, staff
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training at downstream units may prevent certain units from accepting unmet demand for other

units. We assume that patients who cannot be admitted are routed to other facilities and are not

modeled in our problem setting.

Assumption 2. Arrivals at ICUs and downstream units are admitted as long as there are beds

available. New patient arrivals who cannot be admitted are diverted (i.e., lost to the system).

3.2. Dynamic Model Formulation

In this section we formalize a multi-period discrete-time dynamic model for the ICU-downstream

patient transfer problem with flexible staffing. Table 1 presents a summary of the notation used.

Let I represent the set of ICUs and let J represent the set of downstream units (DSUs). Further

let C̄i be the number of staffed beds at ICU i. As we consider two types of staffing downstream,

let D̄j be the baseline capacity and let D̄′j be flexible staffing capacity in unit j ∈J . The network

of feasible patient routes forms a bipartite graph G = (I ∪J ,E) with edges between the sets I and

J such that for all i∈ I and j ∈J , the sets J (i)⊆J and I(j)⊆I denote the set of downstream

units to which patients from ICU i can be transferred and the set of ICUs from which patients can

be admitted at downstream unit j, respectively. In particular, we have J (i) = {j ∈ J | (i, j) ∈ E}

and I(j) = {i∈ | (i, j)∈ E}.

Parameters Decision variables

I set of ICUs dtj number of beds made available with
C̄i staffed beds at ICU i flexible staffing at DSU j at time t
J set of DSUs xt

ij number of patients transferred from
D̄j baseline capacity at DSU j ICU i to DSU j at time t
D̄′j flexible staffing capacity at DSU j
J (i) set of feasible DSUs for ICU i
I(j) set of feasible ICUs for DSU j
T time horizon
P t

i occupied beds at ICU i at time t
Qt

j occupied baseline beds at DSU j at time t

Q
′t
j occupied flexible staffing beds at DSU j at time t

Ct
i transfer requests from ICU i at time t

νt number of additional beds that may be staffed
given available personnel

Table 1 Notation summary.

Given a time horizon T = {1,2, . . .}, let Pt = {P t
i | i ∈ I} be the set of patient populations at

each ICU at the beginning of time period t. Let Qt = {Qt
j | j ∈ J } and Q′t = {Q′tj | j ∈ J } be the

sets of patients at each downstream unit occupying baseline and additional (flexible staffing) beds,

respectively, at the beginning of time period t. Let Ct = {Ct
i | i∈ I} represent all the ICU transfer

requests, i.e., the number of ready patients at time t as determined by their healthcare team. Let

νt be the total number of personnel available for additional bed staffing at period t, normalized for
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the required bed-staff ratio. For any given period t in the time horizon T , we define the system’s

state and dynamics as follows:

(i) State of the system: St = (Pt,Ct,Qt,Q′t, νt) contains the information available to the decision

maker at the given time period.

(ii) Decision variables: dt = {dtj ∈Z+ | j ∈J } determines the number of additional beds available

through flexible staffing at time period t (first-stage decisions) and xt = {xtij ∈ Z+ | i ∈ I, j ∈
J (i)} determines the patient transfer allocation from ICUs to DSUs at time t (second-stage

decisions). Decisions are made before the exogenous information on new patient arrivals and

future staff availability is revealed and must satisfy the following constraints:

dtj ≤ D̄′j −Q′tj ∀j ∈J , (1a)∑
j∈J

dtj ≤ νt, (1b)∑
j∈J (i)

xtij ≤Ct
i ∀i∈ I, (1c)∑

i∈I(j)

xtij ≤ D̄j −Qt
j + dtj ∀j ∈J . (1d)

Constraints (1a) and (1b) limit the number of additional beds that can be staffed by the

physical capacity at each unit (D̄′j less the currently occupied beds Q′tj ) and the total available

staff (νt). Constraints (1c) state that no more than the number of ready patients is transferred

out of each ICU. Finally, Constraints (1d) state that a DSU accepts no more patients than its

available beds (D̄j less the currently occupied baseline capacity beds Qt
j) plus any additional

beds available through flexible staffing.

(iii) Exogenous information: After decisions have been made, the following information is revealed:

Ati for all i ∈ I representing the new patient arrivals at each ICU; f ti ∈ [0,1] representing the

fraction of current patients ready to be transferred; `tj and `′tj ∈ [0,1] representing the fraction

of current patients at the regularly staffed and additionally staffed beds to be discharged; and

Bt
j representing the external demand for beds at DSU j. In our case, flexible staffing beds

are only used to accommodate ICU transfers and not external demand. Finally, the value

f tν ∈ [0,1] is revealed, representing the fraction of on-call personnel available for flexible staffing

of additional downstream beds in the upcoming time period.

(iv) Transition function: Let Xt(St) = (dt,xt) represent the decisions taken at time period t given

state St. After decisions have been made and the exogenous information described above has

been observed, the system transitions to the next state St+1 = (Pt+1,Ct+1,Qt+1,Q′t+1, νt+1)

as follows:

P t+1
i =

(
P t
i −

∑
j∈J (i)

xtij +Ati

)
∧ C̄i ∀i∈ I, (2a)
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Ct+1
i = f tiP

t+1
i ∀i∈ I, (2b)

Qt+1
j =Qt

j +

∑
i∈I(j)

xtij − dtj

− `tjQt
j + B̃t

j ∀j ∈J , (2c)

B̃t
j =

(
D̄j −

∑
i∈I(j)

xtij + dtj

)
∧Bt

j ∀j ∈J , (2d)

Q′t+1
j =Q′tj + dtj − `′tjQ′tj ∀j ∈J , (2e)

νt+1 = f tννmax. (2f)

Equation (2a) specifies that patient population at each ICU i ∈ I in period t+ 1 is updated

by subtracting the transfers and adding the new arrivals, so as not to exceed capacity. Equa-

tion (2b) updates the transfer requests as a fraction of the number of patients at each unit.

Equation (2c) updates the baseline capacity patient population at each downstream unit

j ∈J by adding the newly incoming ICU patients (less those occupying flexible staffing beds),

subtracting the number of discharged patients, and adding the number of admitted external

patient arrivals B̃t
j. The number of external patients that can be admitted is determined by

Equation (2d), i.e., not to exceed the total availability or the total demand. Next, Equation (2e)

updates the patient population at additionally staffed beds by adding the newly transferred

patients to the previous period’s population and subtracting the discharged patients. Finally,

Equation (2f) sets the available on-call staff as the revealed random fraction of the maximum.

(v) Optimality criterion: We define the contribution function R(St,Xt(St)) as the reward from

taking decisions Xt(St) = (dt,xt) when in state St. Specifically, we define the function as

R(St,Xt(St)) =
∑
i∈I

Ui

 ∑
j∈J (i)

xtij

−∑
j∈J

Wj(d
t
j),

to represent the total of a clinical benefit function, Ui(·), of ready ICU patients transferred out

less the cost of flexible staffing. Note that we use a function of the total number of patients

transferred (rather than the absolute total number of transferred patients) in order to allow

for fair resource sharing among the ICUs and improved patient throughput. Details on our

choice for the functions Ui follow in Section 3.3.

For a given discount factor η, Bellman’s equations are:

Vt(St) = max
Xt

{
R(St,Xt(St)) + η

∑
s′∈S

P(St+1 = s′ |St,Xt)Vt+1(s′)

}
,

or, equivalently,

Vt(St) = max
Xt
{R(St,Xt(St)) + ηEVt+1(St+1 |St,Xt)} .
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While the finite-horizon settings may be of interest for certain applications, we will focus on an

infinite horizon (with possible variability due to the day of the week), seeking to capture the system

dynamics on a global scale. Thus, removing the time dimension and letting V (s) = limt→∞ Vt(St),

the steady-state optimality equations are defined by

V (s) = max
X

{
R(s,X (s)) + η

∑
s′∈S

P(s′ |s,X )V (s′)

}
,

for each state s ∈ S. For any realistic instances, the problem will have extremely large state and

action spaces defined by the combinations of possible occupancies, ready patients, available staff,

flexible staffing utilization, and patient allocation from ICU to downstream beds. As such, exact

approaches are impractical. Hence, we focus on analyzing the stationary model counterpart from

which we derive relative values of the downstream resources, capturing the global system dynamics.

We then embed these values in intuitive and practical policies for the local (daily) operational

decisions of flexible staffing and patient allocation. Thus, our approach seeks to capture enough of

the system dynamics while maintaining computational tractability.

3.3. Contribution Function

In stating the optimality criterion in Section 3.2, we indicate the need to define a function measuring

the number of ready patients allocated downstream that is “equitable” towards the ICUs, as many

of the downstream resources are likely to be shared between multiple units. To fit these needs, we

measure the clinical benefit of patients transferred out of a specific ICU with the function Ui(·).

Specifically, an increasing and concave function ensures that transferring more patients from the

ready list (up to the requested maximum) is always better, but the marginal increase in value is

decreasing. Concavity further ensures the existence of a global maximum and is suitable in resource-

sharing environments, as the system will favor distribution of resources among units as opposed to

favoring a single unit with the highest benefit. Finally, concave functions are also consistent with

risk-averse behavior (Kimball 1993, Clark and Oswald 1998), making benefit functions with these

properties suitable for models involving patients’ health, i.e., while potentially blocking access to

new arrivals, patients are safer at ICU due to the higher nurse-to-patient ratio. While we do not

impose additional requirements on the functional form of Ui(·) in the model, distinction between

the benefit functions of the various ICUs i∈ I can be achieved by including parameters calibrated

with the expected arrivals at each unit. Such parameters can further incentivize the model to

prioritize ICUs according to expected patient influx and consequently reduce incoming patient

blocking and diversions in the long run. This approach is illustrated in our numerical study.

The second term of the optimality criterion measures and subtracts the cost of flexible staffing

of additional beds at the downstream units. Consistent with Assumption 1, we define W (·) to



Valeva et al.: Acuity-Based Allocation of ICU-Downstream Beds with Flexible Staffing
14 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

be a linear function of the number of additional beds staffed, i.e., we let Wj(dj) = βjdj for each

unit j ∈ J and given cost coefficients βj > 0. To balance the objective terms or prioritize patient

transfers over staffing costs, the coefficients βj may need to be appropriately scaled.

4. Stationary Model Analysis

While we do not explicitly solve the multi-period problem defined in Section 3.2, we analyze its

stationary counterpart (relaxing the future expected value term) to derive practical insights, and

easy-to-implement rules and policies. Omitting the time indexing and defining Dj and D′j as the

(expected) number of available baseline and flexible staffing beds, respectively, we summarize the

decisions by the following model:

max
∑
i∈I

Ui(x)−
∑
j∈J

Wj(d) (3a)

s.t. dj ≤D′j ∀j ∈J , (3b)∑
j∈J

dj ≤ ν, (3c)∑
j∈J (i)

xij ≤Ci ∀i∈ I, (3d)∑
i∈I(j)

xij ≤Dj + dj ∀j ∈J , (3e)

d,x∈Z+. (3f)

The objective (3a) maximizes the contribution function, consistent with the optimality criterion

defined in Section 3.2. Note that for brevity, we write the two terms of the objective as func-

tions of the decision variables x and d. Constraints (3b)-(3c) limit the number of beds available

through flexible staffing, both by the number of physical beds and the available personnel. Con-

straints (3d) bound the transfers out of ICUs by the transfer requests for medically ready patients.

Similarly, Constraints (3e) bound the total number of patients admitted at downstream units by

their respective number of available beds.

A solution to model (3) gives the steady-state rates of flexible staffing at downstream units and

patient allocation from ICUs to wards. As it is a stationary model, it requires time-independent

parameter estimates for the number of available personnel for flexible staffing (ν), number of

available baseline and flexible staffing beds in each downstream unit (Dj and D′j), and number of

ready patients in each ICU (Ci).

Nevertheless, a solution to (3) could be used to guide daily decisions by determining the best

assignment of flexible staffing beds and patient allocation using the current values of staff (νt),

number of available beds in each downstream unit (Dt
j and D

′t
j ), and number of ready patients
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in each ICU (Ct
i ). As it is a non-linear optimization model with integer variables, it can be refor-

mulated and solved with integer programming methods (e.g., through a commercial solver). We

provide details on the reformulation in the e-companion and use the solution of (3) as a comparator

in our numerical study. We call the policy of solving model (3) at each decision epoch with a com-

mercial solver the static policy. A major limitation of this policy is that it requires all parameters

(νt,Dt
j,D

′t
j ,C

t
i ) to be known before a solution can be obtained. While it may be easy to check

downstream bed availability, upstream information on the number of ready patients from all units

may be more difficult to obtain due to different timing of rounds, processing of discharges, and the

likely frequent change in health status of ICU patients. Thus, any delays or disruptions can easily

render a solution infeasible.

4.1. Subproblem Decomposition

Instead of solving the primal model (3), we propose a dual approach that allows us to interpret

the values of the downstream bed resources. Note that model (3) is a non-linear integer program,

whose linear programming (LP) relaxation is a convex program. Because the dual of a non-linear

integer program (or its integer reformulation or convex relaxation) is generally not computation-

ally tractable (Geoffrion 1971), we first decompose the relaxation of model (3) into an upstream

and downstream subproblems and then analyze the LP dual of the downstream subsystem only.

We subsequently embed the downstream dual values in an operational decision making policy.

Decomposing the problem allows us to analyze the downstream subsystem of staffing and routing

decisions and obtain interpretable duals of the individual resources (referred to as the DSU bed

values). The resulting policy requires less information than the static policy (the total number of

ready ICU patients Ci is not needed), does not require frequent optimization, and is robust to

disruptions and delays, i.e., decisions can be made on a rolling basis as beds are requested using

only the number of available staff and the number of available downstream beds.

Given that the clinical benefit function Ui(·) associated with each ICU is a function of the total

number of patients transferred out (as discussed in Section 3.3), regardless of their particular

routing downstream, we reformulate model (3) by introducing variables y = {yi | i∈ I,0≤ yi ≤Ci}

to represent the total patient flow out of unit i. Further, let x = {xij | i ∈ I, j ∈ J (i)} denote the

flow from ICU to baseline capacity beds downstream and let z = {zij | i ∈ I, j ∈ J (i)} denote the

flow from ICU to the additional (flexible staffing) beds. Note that this defines dj =
∑

i∈I(j) zij, i.e.,

the total number of incoming ICU patients allocated to the additional (flexible staffing) beds at

unit j. Thus, the relaxed model (3) can be equivalently restated as

max
∑
i∈I

Ui(yi)−
∑
j∈J

βj
∑
i∈I(j)

zij (4a)
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s.t.
∑
j∈J (i)

(xij + zij) = yi ∀i∈ I, (4b)

yi ≤Ci ∀i∈ I, (4c)∑
i∈I(j)

xij ≤Dj ∀j ∈J , (4d)∑
i∈I(j)

zij ≤D′j ∀j ∈J , (4e)∑
i∈I

∑
j∈J (i)

zij ≤ ν, (4f)

x,y,z≥ 0. (4g)

Seeking to decompose the model in the x,y, and z variables, we introduce Lagrange multipliers

λ= {λi | i∈ I} only for the coupling constraints (4b). We obtain

L(x,y,z,λ) =
∑
i∈I

Ui(yi)−
∑
j∈J

βj
∑
i∈I(j)

zij +
∑
i∈I

λi

 ∑
j∈J (i)

(xij + zij)− yi


=
∑
i∈I

(Ui(yi)−λiyi) +
∑
i∈I

∑
j∈J (i)

(λixij + (λi−βj)zij) .

Note that L(x,y,z,λ) is separable in the variables y and (x,z). The dual function then is q1(λ) +

q2(λ), where

q1(λ) = max
0≤y≤C

{∑
i∈I

(Ui(yi)−λiyi)

}
, q2(λ) = max

x,z≥0

∑
i∈I

∑
j∈J (i)

(λixij + (λi−βj)zij)
∣∣∣ (4d), (4e), (4f)

 .

The dual function returns the optimal multipliers λ which we later use in deriving staffing and rout-

ing policies. This representation allows us to decompose model (4) into the following subproblems:

max
∑
i∈I

(Ui(yi)−λiyi) (5a)

s.t. 0≤ yi ≤Ci ∀i∈ I, (5b) and

max
∑
i∈I

∑
j∈J (i)

(λixij + (λi−βj)zij) (6a)

s.t.
∑

i∈I(j)

xij ≤Dj ∀j ∈J , (6b)

∑
i∈I(j)

zij ≤D′j ∀j ∈J , (6c)

∑
i∈I

∑
j∈J (i)

zij ≤ ν, (6d)

x,z≥ 0. (6e)

Note that the coefficients λ can be obtained by solving the resulting dual optimization problem

min
λ
q1(λ) + q2(λ). (7)
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Here, the ICU subproblems (5) determines how many patients to transfer out, regardless of their

routing, and the downstream subproblem (6) determines how to staff additional beds and route

patients. This decomposition results in |I| individual ICU subproblems, each of which consists of

maximizing a concave function over a closed interval, and a single network subproblem, routing

the flows of ICU patients to the downstream resources consisting of baseline capacity beds and

additional (flexible staffing) beds. Note that the Lagrange multipliers λ can be found numerically

using a subgradient algorithm (see the e-companion).

Proposition 4.1 There exists a vector λ such that the solutions y to the subproblems (5) with yi =∑
j∈J (i)(xij + zij) are optimal for the network subproblem (6). Furthermore, (x,y,z) are optimal

for the system model (4).

4.2. Downstream Capacity Planning and Policy Derivation

Seeking to derive relative values of the downstream resources in order to guide the decisions in the

two stages, we next focus on analyzing the network subproblem (6). Note that (6) is an LP whose

dual is given by

min
∑
j∈J

(Djuj +D′jvj) + νw (8a)

s.t. uj ≥ λi ∀i∈ I, j ∈J (i), (8b)

vj +w≥ λi−βj ∀i∈ I, j ∈J (i), (8c)

u,v,w,≥ 0, (8d)

where u= {uj | j ∈J } and v = {vj | j ∈J } represent the shadow prices on the baseline and flexible

staffing beds, respectively, and w represents the shadow price of additional personnel. Thus, by

knowing the vector of Lagrange multipliers λ and solving the dual model (8), the bed manager

can obtain the relative values of beds at the various downstream units and how they contribute

to the system objective of maximizing clinical benefit less staffing costs. The values of u and

v can be obtained in polynomial time without explicitly solving the LP (see details in the e-

companion). Thus, using the information on the values of beds at the various downstream units, we

propose a weighted randomized acuity-based policy for guiding the first- and second-stage decisions

(Algorithm 1).

The acuity-based policy uses the values of the DSU beds together with the current occupancies

at units in determining the flexible staffing and routing of patients. The motivation is to choose

from the available beds in a strategic way, based on values derived from the stationary model

which uses both the network topology and the expected arrivals encoded in the clinical benefit

function. In the first stage, the policy prioritizes beds with high value v∗j at DSUs with more
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Algorithm 1: Acuity-based policy

Input: ICU-DSU network current state and values of λ, u∗, and v∗ in the steady state

Output: Staffing and allocation assignments

1 While on-call personnel is available or a budget threshold is not reached, choose a unit j with

probability
v∗j D̄

′
j∑

k∈J v
∗
k
D̄′

k
and add a flexible staffing bed.

2 For a given ICU i∈ I, choose a unit j ∈J (i) with probability
Dj/u

∗
j∑

k∈J (i)Dk/u
∗
k

while∑
k∈J (i)Dk > 0. If

∑
k∈J (i)Dk = 0, choose a unit j ∈J (i) with probability

D′j/u
∗
j∑

k∈J (i)D
′
k
/u∗

k
while∑

k∈J (i)D
′
k > 0. Allocate a patient from i to the chosen unit j.

available unstaffed beds D̄′j. In the second stage, the policy prioritizes beds with low relative value

(by taking the inverse of u∗j ), saving the higher-value beds for future transfers. The goal is to (i)

ensure “high-value” beds (as measured by the optimal dual variable values) are staffed and available

and (ii) route patients in a “fair” manner by considering current occupancies at units. The global

dynamics captured refer to the network topology with resource sharing and the expected arrivals

at ICUs (represented in the stationary model), while the local dynamics captured are the current

bed occupancies and staff availability (represented in the daily decision-making policy). Thus, the

policy aims to improve efficiency by ensuring bed availability to patients in need, either incoming

to ICUs or seeking transfer downstream.

Our acuity-based approach is inspired by Mandelbaum et al. (2012), who use a similar

randomized-most-idle (RMI) policy in determining transfers from an emergency department to

wards, corresponding to the second-stage decisions in our case. However, their policy considers

equal values of beds, i.e., uj = 1 for all j ∈J . Their allocation policy measures fairness by “idleness

ratios”, while ours can be regarded as a “fair” policy with “weighted idleness ratios”. Moreover,

while they do not consider flexible staffing, a generalized version of the RMI policy incorporating

the first-stage decisions is obtained by setting vj = 1 and staffing beds at unit j with probability
D̄′j∑

k∈J D̄
′
k
. This will be used in the numerical experiments to compare with our “weighted” policy.

We note that calculating the DSU bed values requires all the parameters in the stationary model,

i.e., expected number of ICU transfer requests, expected DSU bed availabilities, and expected staff

availability. The bed values may be periodically recalibrated, if changes in expected demand are

observed. Once the DSU bed values are known, the policy requires only the current number of

available beds in the downstream units. Hence, it can be applied either with full knowledge of the

number of ready patients from all ICUs or with partial knowledge as transfer requests arrive (i.e.,

on a rolling basis).

While a deterministic policy is more intuitive, the probabilistic policy is advantageous in a

stochastic environment where transfer decisions need to be made before information on incoming
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patients is available. A probabilistic policy is also preferable when seeking to achieve fairness in

the number of patients routed to the various downstream units. The proposed acuity-based policy

can be implemented in a simple decision support tool that chooses units with the appropriate

probabilities, i.e., through a software using random sampling. In particular, in the first stage, a nurse

is assigned to a unit chosen from the available pool based on sampling with assigned probabilities.

Similarly, in the second stage, a patient is assigned to a unit chosen from the available feasible

units based on random sampling with assigned probabilities as above.

5. Numerical Study

We conduct several numerical studies that demonstrate the performance of the proposed acuity-

based policy. We first offer a basic illustrative example and later analyze a large-scale simulation

calibrated with historic hospital data. In running the subgradient algorithm (see the e-companion

for details) throughout all instances, we set the initial λ(0) = 0.1, the step size α(k) = 0.01√
k

and

maximum number of iterations K = 1000. Classical convergence results show that for the dimin-

ishing step size and step length rules, the algorithm is guaranteed to converge to the optimal value

(Bertsekas 1999). Furthermore, while we do not use the optimal Polyak step size, as it requires

knowledge of the optimal function value, we experimentally calibrate the step size and number

of iterations for our instances. Specifically, our computational experiments showed no significant

improvement beyond 1000 iterations of the algorithm.

5.1. Illustrative Example

We first consider a simple network and a single decision period. The network consists of two ICUs

and three downstream units, so that ICU A is connected to downstream units 2 and 3 and ICU

B is connected to all downstream units (see Figure 3). Note that even this simple network is not

amenable to queuing analyses in the literature. We assume that the number of ready to transfer

patients is 7 for ICU A and 5 for ICU B. We further assume that UA(y) = 1− exp(−0.1y) and

UB(y) = 1− exp(−0.01y). Note that functions of the form Ui(y) = 1− exp(−aiy) are concave and

range between 0 and 1. We assume that the coefficient ai is proportional to the expected arrivals

at unit i. In this example, ICU A has a higher expected patient influx and thus UA(y)≥ UB(y).

We let the downstream capacities be D̄1 = 15, D̄2 = 25, and D̄3 = 10 for baseline (regularly staffed)

beds, and D̄′1 = 2, D̄′2 = 3, and D̄′3 = 2 for additional beds (available for contingent staffing). We

set the flexible staffing cost of βj = 0.001 for all j = 1,2,3. Note that while we choose identical

cost of flexible staffing for simplicity, the model does not preclude us from having different βj

for the different units j. Finally, there are sufficient on-call personnel to staff five additional beds

throughout the downstream units, i.e., ν = 5.
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Figure 3 Illustrative example network with two ICUs (A and B on the left) and three downstream units (1, 2,

and 3 on the right).

For the stationary model, we consider downstream occupancy of ≈ 75% so that the baseline

capacity beds available to accept patients are D1 = 4,D2 = 6, and D3 = 3. We assume that all beds

beyond baseline capacity are unoccupied and available for flexible staffing (i.e., D′j = D̄′j for all

j = 1,2,3). The subgradient algorithm with the above input returns coefficients λA = 0.030 and

λB = 0.009. The optimal dual values of the downstream beds are u2 = u3 >u1 and v2 = v3 > v1 (see

Table 2). Those can be obtained by using Algorithm 4 in the e-companion.

A B

λi 0.030 0.009
w∗ 0.008

(a)

1 2 3

u∗j 0.009 0.030 0.030
v∗j 0 0.021 0.021

(b)

Table 2 Summary of Lagrange multipliers and dual values for the illustrative example.

According to the generalized RMI policy, additional beds will be staffed at downstream units in

order [2,1,3] or [2,3,1] (see probabilities in Table 3). Here, unit 2 is prioritized due to its highest

number of available beds (3/7) followed by units 1 and 3 which each have 2/7 beds available. The

acuity-based policy would instead select downstream units in order [2,3] for flexible staffing. The

policy thus captures the intuition that DSU 1 can only accommodate patients from ICU B, so extra

staffed beds there are likely to be needed less. In the allocation stage, the generalized RMI policy

would transfer patients out of ICU A to downstream units by priority order of [2,3], while patients

out of ICU B would be routed to units in order of [2,1,3]. The acuity-based policy would similarly

route patients out of ICU A to downstream units by priority order [2,3], however, patients out of

ICU B would be transferred to units by priority order [1,2,3]. Note that DSU 1 can only be utilized

by patients from ICU B, so giving it higher priority means that beds at DSUs 2 and 3 can remain

available for patients out of ICU A, which in this example also has higher expected demand.

5.2. Large-Scale Instances

Next, we turn our attention to testing the proposed policy in a more realistic setting using a

simulation calibrated with historic hospital transfer data.
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1 2 3

(i) staffing 0.286 0.429 0.286
(ii) allocation

A 0 0.667 0.333
B 0.308 0.462 0.231

(a) Generalized RMI

1 2 3

(i) staffing 0 0.600 0.400
(ii) allocation

A 0 0.667 0.333
B 0.597 0.269 0.134

(b) Acuity-based

Table 3 Probabilities of flexible staffing per unit and patient transfer allocation from ICU do downstream units.

5.2.1. Data and Network Topology We use hospital data containing anonymized patient

admissions and discharge timestamps during an 80-months period from a major academic hospital.

The dataset contains 19,882 patient IDs and 91,878 transfer records. We consider the units labeled

ICU and aggregate the units labeled Ward, Clinic, or Stepdown into our layer of downstream

units. Based on the patient ID number, we calculate the number of transfers between each pair

of units and remove the one ICU which has no historic transfers to any of the downstream units

and the 13 downstream units with no historic transfers from ICU. We infer the capacities of units

by calculating the maximum concurrent occupancy and remove the six downstream units with

inferred capacity of less than 10 beds. Thus, we consider 17 ICUs and 28 downstream units with

capacities ranging between 20–39 for ICUs and 10–59 for DSUs.

We infer four different network topologies, ensuring that an ICU is connected to at least one

downstream unit. A summary of the number of links and average node degree of the networks is

provided in Table 4 (also see the e-companion for graphic illustrations). Specifically, network N28

Number Average ICU Average DSU
Network of links node degree node degree

N28 28 1.647 1.000
N28* 28 1.647 1.000
N37 37 2.176 1.321
N60 28 3.529 2.143

Table 4 Summary of network topologies used for the data-driven instances.

builds links based on the frequency of transfers between units. For a given ICU i, we order the

downstream units in descending order of number of transfers they accepted from i. We then build

links going down the list until we have the DSUs that accepted 30% of ICU i’s transfer volume.

Network N37 builds links in a similar manner, adding links from the most frequently utilized units

until 40% of the total volume is reached. Network N60 builds a link (i, j) if there were at least

100 historic transfers from ICU i to DSU j. Finally, network N28* was not created using historic

transfers, but rather with an integer programming model to build the minimum number of links

that connect all ICU to at least one DSU and establish a feasible flow for all patients while seeking
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a target occupancy of ≤ 80% downstream. Note that none of the networks are trees as they are

not connected. Furthermore, N28, N37, and N60 all contain cycles. Network N28* is acyclic and

hence represents a forest of trees.

5.2.2. Implementation Similar to the illustrative example, we use the exponential functions

Ui(y) = 1− exp(−aiy) and set ai proportional to the mean arrival rate per day calculated from

the data. Specifically, if µatk represents the arrival rate at unit k on day t, we set ati := 0.1µatk for

each day of the week so that t = 1 represents Monday and t = 7 represents Sunday. The scaling

ensures adequate differentiation in the range of the Ui functions. We further set the cost of flexible

staffing to βj = 0.001 for the units j with additional beds available. Note that the approach will

use additional beds if the value λ from admitting an ICU patient at a downstream bed is greater

than the cost of the bed β. Given that we start with small initial λ and use diminishing step

size, we keep β close to zero as well. If additional beds are available, we assume their number is

30% (rounded down to the nearest integer) of the inferred base capacity at each unit. Staffing is

assumed to be at ν = 100 (note that
∑

j∈J D
′
j = 190), so that not all extra beds can be staffed, and

location of the flexible staffing beds is important.

We first calculate the values λ for each ICU and the bed values u, v for each DSU separately

for each day of the week (Monday–Sunday) based on expected values of the input parameters. We

then simulate patient arrivals and discharges during a 26-week time horizon. We set the initial

occupancy (beginning of Monday) for each ICU to be a random value between 10–100% of capacity

and for each downstream unit a random value between 50–100% of capacity. Additionally, we set

the initial bed occupancy at the additionally staffed beds at downstream units to be a random value

between 0–100% of the number of beds. To aggregate the patient arrival distributions from the

historic data, we estimate the arrivals in each particular day of the week and calculate the average,

µatk for each day of the week t and each unit k ∈ I ∪J . We sample arrivals from Poisson(3µatk ) for

each ICU and DSU. Here, we augment the mean parameter to simulate a high demand setting. We

sample ICU transfer requests and DSU discharges from Poisson(3µdtk ) based on historic discharge

rates, where the average discharge rates µdtk are calculated similar to the average arrival rates µatk .

Note that calculating the DSU bed values requires all the parameters in the stationary model,

i.e., expected number of ICU transfer requests, expected DSU bed availabilities, and expected staff

availability. Once the DSU bed values are known, the policy requires only the current number of

available beds in the downstream units. While we use full knowledge of all transfer requests in the

simulation study, in order to have a meaningful comparison with the stationary policy which does

require full information, the acuity-based policy can also be applied on a rolling basis as transfer

requests arrive, i.e., only requiring current DSU bed availabilities. We note that bed values can
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be periodically recalibrated, if needed. For the simulation, we calculate and use DSU bed values

for each day of the week (based on expected demand Monday–Sunday). While we use day of the

week to distinguish bed values, finer discretizations may also be used, e.g., by hour of the day,

simply by solving for the uj and vj values at the appropriate time intervals. For instance, Shi et al.

(2016) show time-varying waiting times in emergency departments sensitive to time of the day

discharges. Although more computationally intensive, we expect that a finer discretization would

show similar or better performance to the daily discretization we use (see the last section of the

Numerical Study for results). Due to the random aspect of the proposed policy (staff and patients

are allocated to units with a given probability), we run the 26-week period simulation 100 times

and report averaged results. At each decision epoch, flexible staffing is first determined based on

the first-stage rule of the acuity-based policy. Next, in making the second-stage transfer decisions,

the decision maker orders the ICUs in descending order by the expected arrival rate and transfers

one patient from each unit in the list using the DSU probability according to the policy. Ready

patients are updated and she iterates over the list until no more patients or no more available beds

remain. Patients are transferred to baseline capacity beds first and to additionally opened beds

second, after no more of the former are available.

We compare the performance of the acuity-based policy to three other policies: a deterministic

policy, a static policy, and a generalized RMI policy. The deterministic heuristic policy seeks to staff

(in the first stage) and “guard” (in the second stage) the most in-demand beds. In particular, for

a given network, we define Priority(j) :=
deg(j)

Dj

to determine how in-demand a given DSU is. The

numerator represents the degree of the DSU node in the graph, i.e., the number of ICUs that are

connected to the particular ward, while the denominator represents the number of available beds.

In the first stage, we make staffing decision moving from highest priority to lowest. In the second

stage, we make allocation decision moving from lowest priority to highest. For instance, if two units

j and k have the same node degree but unit k has more available beds than unit j (Dj ≤Dk),

then Priority(j)≥Priority(k), so unit j will be prioritized for flexible staffing while unit k will be

prioritized for patient allocation. Conversely, if two units j and k have the same number of available

beds but unit k is connected to more ICUs (deg(j) ≤ deg(k)), then Priority(j) ≤ Priority(k), so

unit k is prioritized for flexible staffing while unit j is prioritized for patient allocation.

The static policy, as described in Section 4, uses an optimization model at each stage and as such

is a more computationally intensive option. Moreover, it requires information on all ready patients

from all ICUs in order to obtain a feasible solution. As a result, it is more sensitive to disruptions

and delays as patients cannot be trarnsferred on a rolling basis.

Finally, the generalized RMI policy, as introduced in Section 4.2, uses equal weights for all

downstream beds and is analogous to the policy proposed by Mandelbaum et al. (2012) for patient



Valeva et al.: Acuity-Based Allocation of ICU-Downstream Beds with Flexible Staffing
24 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

transfers from a single emergency department to multiple general wards. Similar to the acuity-

based policy, we run the 26-week period simulation for the generalized RMI policy 100 times and

report averaged results. We furthermore follow the same ordering of ICUs (based on expected

demand) and downstream beds (allocating to baseline before flexible staffing beds) as in running

the acuity-based policy.

5.2.3. Results and Discussion Figure 4 offers a comparison in ICU lost arrivals (i.e., patients

diverted to other facilities due to lack of available beds) for the four network topologies between

the acuity-based and deterministic policies. The values shown are averages for each day of the

week, measuring lost arrivals as percentage of total arrivals (recall that we simulate a high-demand

scenario, hence the high percentages of patient diversions). We can see that clearly the acuity-

based policy outperforms the deterministic policy by reducing the number of lost arrivals among

all network topologies and days of the week. The acuity-based policy offers statistically significant

reduction in the number of diverted patients in all cases.
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Figure 4 Seven day patient flow simulation for four network topologies depicting average (among all ICU for

each day) lost ICU arrivals (diverted patients) for the deterministic and acuity-based policies with 95%

confidence intervals.
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Figure 5 Seven day patient flow simulation for four network topologies depicting average (among all ICU for each

day) lost ICU arrivals (diverted patients) for the static and acuity-based policies with 95% confidence

intervals.

Figure 5 offers a similar comparison in ICU lost arrivals between the acuity-based and static

policies. While this policy ensures that as many as possible of the ready patients are transferred

at each period and takes into account the expected arrivals at ICUs as measured by the objective

function, it makes decisions that are optimal in the current time period and do not consider the

overall value of beds at different units, as captured by the DSU dual values. The acuity-based

policy offers statistically significant reduction in the number of diverted patients in all days in

N28*, all days except Tuesday in N37, and all days except Saturday in N60. The reduction for N28

is only significant for Monday. Thus, our proposed acuity-based policy offers an easy-to-implement

and competitive approach to making flexible staffing and allocation decisions in complex ICU-

downstream networks without requiting optimization. We emphasize that as a major practical

advantage, the acuity-based policy does not require solving an integer program in each decision

epoch as the static policy does (see the e-companion for details). Furthermore, the acuity-based

policy can be applied with partial information, i.e., as ICU patients become ready, they can be

transferred one by one using the allocation rules of Stage II. On the other hand, the static policy



Valeva et al.: Acuity-Based Allocation of ICU-Downstream Beds with Flexible Staffing
26 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

requires full information on all ready patients from all ICUs, making it more difficult to implement

in large-scale hospital networks and sensitive to disruptions and/or changes in number of ready

patients, available beds, or available personnel.
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Figure 6 Seven day patient flow simulation for four network topologies depicting average (among all ICU for

each day) lost ICU arrivals (diverted patients) for the generalized RMI and acuity-based policies with

95% confidence intervals.

Figure 6 similarly illustrates the ICU lost arrivals comparing the generalized RMI policy and

the proposed acuity-based policy. The acuity-based policy offers statistically significant reduction

in the number of diverted patients in four out of seven days in N28, N37, and N60, and in all seven

days in N28*. Noticeably, the reduction is higher in networks N28* and N60 compared to networks

N28 and N37. A rationale behind this observation is that N28 and N37 use a smaller number of

DSUs, meaning that more downstream units are shared and thus, DSUs are less distinguishable

from each other. In particular, the dual values of downstream beds are likely to be similar to each

other, rendering the weighting in the policy less significant. Network N60, on the other hand, offers

more differentiation among units due to the higher number of links and the higher number of DSUs

available to accept incoming ICU patients. Finally, network N28* offers distinction between units
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Figure 7 Average number of admitted and discharged patients by unit type and day of the week.

due to the algorithm used to create it, i.e., seeking equatable distribution of patient demand among

units, resulting in more varied dual values of the downstream beds. As the generalized RMI policy

is the most competitive to the acuity-based policy, a constructive future research direction is to

further characterize network types for which one policy is preferable over the other.

While the proposed acuity-based policy is most valuable for high-demand settings, as illustrated

by the computational experiments, sensitivity analyses for lower demand settings confirm that

it outperforms the deterministic policy in all cases and remains competitive to the static and

generalized RMI policies. Note that in cases where there is sufficient capacity to meet all demand,

flexible staffing and strategic patient allocation have little to no benefit. Details on the results of

the sensitivity analyses with lower demand settings are provided in the e-companion.

An interesting observation from the computational experiments is that the acuity-based policy

has a more pronounced advantage on weekends. Turning our attention to the original data used to

calibrate our simulation, we summarize the average number of patients admitted and discharged

by unit type and day of the week in Figure 7. Overall, both admissions and discharges are lower

on weekends relative to weekdays. We observe, however, that downstream units have notably more

admissions than discharges on weekends. This pattern is likely to cause downstream congestions on

weekends and, as shown in the sensitivity analyses, the acuity-based policy is especially valuable in

congested systems by strategically staffing and utilizing downstream beds. While a more in-depth

analysis is needed to fully understand why the acuity-based policy has a particular advantage on

weekends, the observations from this work could be useful in future studies of the “weekend effect”

in hospitals, i.e., the higher mortality in patients admitted on weekend (Pauls et al. 2017).

Finally, as a probabilistic policy is generally less interpretable and might face resistance to

implementation, the probabilities calculated in the acuity-based policy can be used as priority

values to assign bed staffing and patient allocation in a deterministic fashion. This approach is
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formalized in Algorithm 2. Figure 8 illustrates the absolute difference between means in ICU lost

arrivals between the (probabilistic) acuity-based policy and the dual-based deterministic policy.

The negative values for three out of the four network topologies indicate that the probabilistic

acuity-based policy offers a statistically significant reduction in the percentage of ICU lost arrivals

when compared to the dual-based deterministic one. While we recommend the probabilistic acuity-

based policy as it outperforms the determinsitic one in most cases, the reductions are small, and

thus a dual-based deterministic version using the previously derived dual values u∗j and v∗j is a

viable alternative.

Algorithm 2: Dual-based policy

Input: ICU-DSU network current state and values of λ, u∗, and v∗ in the steady state

Output: Staffing and allocation assignments

1 While on-call personnel is available or a budget threshold is not reached, select a unit

j = arg max
{

v∗j D̄
′
j∑

k∈J v
∗
k
D̄′

k

}
and add a flexible staffing bed.

2 For a given ICU i∈ I, if
∑

k∈J (i)Dk > 0, select a unit j = arg max
{

Dj/u
∗
j∑

k∈J (i)Dk/u
∗
k

}
. If∑

k∈J (i)Dk = 0, select a unit j = arg max
{

D′j/u
∗
j∑

k∈J (i)D
′
k
/u∗

k

}
while

∑
k∈J (i)D

′
k > 0. Allocate a

patient from i to the selected unit j.
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Figure 8 Difference between means of % lost ICU arrivals (relative to all ICU arrivals) in four network topologies

for the (probabilistic) acuity-based policy and the dual-based deterministic policy with 95% confidence

intervals.

5.3. Parameter Calibration

Seeking further performance improvement, we conduct several additional experiments in which we

modify the frequency of decision making. In particular, the above experiments assume decisions
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are made once a day. We devise a scenario in which decisions are made twice a day, morning and

afternoon. Here, we sample new arrival rates and find optimal λ and dual bed values for each half

day and apply the acuity-based policy twice a day, i.e., patients are admitted and discharged twice

a day. For the sake of comparison with the once-a-day decision making, we sum the total number of

diverted patients per day (see Figure 9). We can see the the more frequent decision making offers

advantages in all networks by reducing the number of diverted patients on average by 1.9%-4.2%.

The reduction is statistically significant in all illustrated cases except for one instance.

Mo Tu We Th Fr Sa Su
46

47

48

49

50

51

52

%
 o

f t
ot

al
 a

rri
va

ls

N28 Average ICU lost arrivals

Mo Tu We Th Fr Sa Su

23

24

25

26

27

28

29

%
 o

f t
ot

al
 a

rri
va

ls

N28* Average ICU lost arrivals

Mo Tu We Th Fr Sa Su
40

41

42

43

44

45

46

47

%
 o

f t
ot

al
 a

rri
va

ls

N37 Average ICU lost arrivals

Twice-daily Acuity-based
Mo Tu We Th Fr Sa Su

29

30

31

32

33

34

35

%
 o

f t
ot

al
 a

rri
va

ls

N60 Average ICU lost arrivals

Figure 9 Seven day patient flow simulation for four network topologies depicting average (among all ICU for

each day) lost ICU arrivals (diverted patients) for the acuity-based policy applied twice daily and daily

with 95% confidence intervals.

Another practical consideration is the planning for on-call personnel available for flexible staffing.

While the presented model assumes the budget is a known parameter (ν in constraint (3c)),

determining an appropriate budget likely requires a whole-hospital model that considers multiple

sub-systems competing for resources (e.g., funds allocation). The presented model focuses on the

ICU-downstream network only, hence it does not capture the entire hospital’s budgeting consider-

ations. Nevertheless, the model and the resulting acuity-based policy can be used for conducting
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sensitivity analyses to budget fluctuations. Specifically, adding more flexible staffing beds will

increase total utility as long as it is the bounding parameter. This will be beneficial up to the point

when either physical capacity is reached or demand is less than the supply of downstream beds.

6. Conclusions

This paper focuses on the management of patient transfers from ICUs to downstream units with

flexible staffing. The goal in studying this problem is to derive practical policies that can improve

efficiency in the process and reduce unproductive occupancy and blocking of incoming ICU patients

by ensuring ready patients are transferred on time and downstream resources are utilized strate-

gically. We propose a dynamic multi-period model utilizing both baseline and flexible staffing at

downstream units. Using analysis of its stationary counterpart, we propose a method to derive

downstream bed values that we embed in a practical policy for determining both the staffing and

allocation decisions. Our numerical studies, calibrated with historical hospital data, indicate that

the acuity-based policy can reduce the number of ICU patient diversions when compared to a

deterministic policy, a static period-by-period optimization policy, and a generalized randomized-

most-idle policy in networks with various topologies. The proposed methodology is significant as

it allows us to model complex and diverse networks (not limited to tree structures), which often

arise in healthcare settings. Moreover, the demonstrated reduction in the number of ICU patient

diversions is significant for both patient safety and outcomes as well as quality of service. Sensi-

tivity analyses demonstrate that the proposed policy is most valuable in high-demand scenarios

where strategic use of existing resources and flexible staffing is needed the most. In the extreme

surge circumstances caused by the COVID-19 onslaught, there has been extensive discussion on

ethical and fair assignment of resources, in particular, ICU beds (Robert et al. 2020, Vergano et al.

2020). Difficult decisions are unavoidable consequences of exceptional system strains. Approaches

such as the one we propose may contribute to offset the delay of these very real decisions.

While we focus on seeking to improve efficiency in the transfer of ICU patients by measuring

ICU clinical benefit of the total number of ready patients allocated to downstream units, other

considerations of interest to hospital management can be embedded in future work extensions.

For example, demand-driven discharge to units of intermediate care is sometimes indicated when

incoming critical patients are in need of ICU beds (Chan et al. 2012, Hosseinifard et al. 2014).

Thus, an alternative ICU objective may be to not only transfer ready patients before demand is

realized, but to also determine threshold values of demand-driven discharge in the case of bed

shortage. Furthermore, patient readmission that often results from premature discharge is a highly

undesirable occurrence, with negative consequences both for the patient’s safety and the hospital’s

perceived quality of service (Rosenberg and Watts 2000, Rosenberg et al. 2001). Discharge deci-

sions with readmissions were studied by Chan et al. (2012) who incorporate a predictive model of
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the readmission risk. Thus, risk models of readmission and patient ranking can be embedded in

future extensions of our decision model and policy derivation, seeking to minimize the number of

discharged patients requiring ICU readmission. Further theoretical contributions can be made in

exploring asymptotic optimality in specific network structures or parameter conditions.
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EC.1. Algorithmic Details

In our implementation of the subgradient algorithm, the dual optimization problem (7) is the

master problem in dual decomposition when seeking to determine the optimal λ. Given λ, we

can evaluate the dual function by solving the subproblems (5) and (6) in Section 4.1. Here, the

Lagrange multiplier λi represents the per-patient priority coefficient for an ICU transfer out of unit

i. Specifically, higher λi means patients from ICU i are prioritized in the allocation subproblem.

Note that the subproblem maximizing ICU clinical benefit can be solved analytically and inde-

pendently for each ICU i. In solving the dual problem, the master problem sets the coefficients

λ, then each ICU determines the total flow or rate of patient transfers. At the same time, the

network determines the allocation of flow to downstream units. In the network subproblem, the

value from directing flow to units within baseline capacity is λi, while the value from directing flow

to units using additionally staffed beds is λi − βj, depending on both the patients’ origin i and

destination j. Finally, the dual decomposition master problem adjusts the priority coefficients in

order to bring the supply of downstream beds into consistency with demand from ICU requests.

Algorithm 3 formalizes this subgradient approach.

Algorithm 3: Subgradient algorithm for minimizing the dual function

Input: Initial λ(0), step size α(k), maximum number of iterations K

Output: Estimates of λ∗

1 for i∈ I do

2 Calculate initial subgradient g
(0)
i ←

∑
j∈J (i)(x

(0)
ij + z

(0)
ij )− y(0)

i

3 qbest← q(λ(0))

4 for k= 1,2, . . . ,K do
5 λ(k)←λ(k−1)−α(k)g(k−1)

6 Solve the subproblems with λ(k) to obtain x(k),y(k),z(k),d(k)

7 for i∈ I do

8 Calculate the subgradient g
(k)
i ←

∑
j∈J (i)(x

(k)
ij + z

(k)
ij )− y(k)

i

9 if q(λ(k))< qbest then
10 qbest← q(λ(k))

Here, gi represents the violation of the coupling flow balance constraints. In particular, if gi <

0, then ICU i seeks to transfer out more patients than can be routed, so the coefficient λi is

increased. If, on the other hand, gi > 0, then ICU i sends less patients than what the network can
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route, so the coefficient λi is decreased. With this priority adjustment, the algorithm lets the ICU

subproblems decrease/increase the number of patients they seek to transfer, bringing the values

closer to what is feasible for the network to allocate. This process is analogous to the tatonnement

process in economics, which is the natural tendency of free competition markets to balance supply

and demand through price adjustment (Walker 1987). We use a diminishing step size α(k) → 0

which makes progress towards the minimum more likely at each iteration. To counteract the slow

progress at iterations associated with diminishing step size rules, we also require
∑∞

k=0α
(k) =∞.

This guarantees that λ(k) does not converge to a non-stationary point. The presented algorithm uses

a fixed number of iterations K; however, alternative stopping criteria may be used (see Bertsekas

(1999) for more details on subgradient algorithms).

Algorithm 4 finds the optimal value of the dual variables u,v,w in model (8). In particular, the

shadow prices of base capacity beds u only appear in constraints (8b) which are binding, as we are

minimizing the objective with non-negative coefficients and variables. To find the shadow price of

additional personnel w∗, we consider the downstream units in descending order of maxi∈I(j){λi−
βj}. We create a list L, where for each j in the ordered list of downstream units, we add D′j items

of value max{0,maxi∈I(j){λi − βj}}. Then, w∗ is the value at position ν + 1 in L. If ν + 1> |L|,
then w∗ = 0.

Algorithm 4: Bed values (shadow prices) at downstream units

Input: Network G, capacities D and D′, coefficients λ and β

Output: Optimal values u∗,v∗,w∗

1 for j ∈J do
2 u∗j ←max{0,maxi∈I(j){λi}}
3 Ĵ ← list of units j ∈J in descending order of maxi∈I(j){λi−βj}

4 L← [ ] empty list

5 for j ∈ Ĵ do
6 for l= 1, . . . ,D′j do
7 L←L+ max{0,maxi∈I(j){λi−βj}}

8 if ν+ 1≤ |L| then
9 w∗←L[ν+ 1]

10 else if ν+ 1> |L| then
11 w∗← 0

12 for j ∈J do
13 v∗j ←max{0,maxi∈I(j){λi−βj}−w∗}

Proposition EC.1.1 Algorithm 4 gives the optimal values of the variables in model (8), i.e., the

dual shadow prices of the downstream resources in model (6).
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EC.2. Proofs of Propositions

We restate the propositions previously introduced and follow each with a proof.

Proposition 4.1 There exists a vector λ such that the solutions y to the subproblems (5) with yi =∑
j∈J (i)(xij + zij) are optimal for the network subproblem (6). Furthermore, (x,y,z) are optimal

for the system model (4).

Proof. Model (4) is a concave maximization problem over a convex set, meaning that the KKT

conditions are necessary and sufficient. Hence, there exists a tuple (x∗,y∗,z∗,p,q,r, s, t) satisfying

the following conditions:

[Stationarity] U ′(y∗i )− pi− qi = 0 if y∗i > 0,

≤ 0 if y∗i = 0 ∀i∈ I,

pi− rj = 0 if x∗ij > 0,

≤ 0 if x∗ij = 0, ∀i∈ I, j ∈J ,

−βj + pi− sj − t= 0 if z∗ij > 0,

≤ 0 if z∗ij = 0 ∀j ∈J ,

[Primal Feasibility]
∑
j∈I(j)

(x∗ij + z∗ij) = y∗i ∀i∈ I,

y∗i ≤Ci ∀i∈ I,∑
i∈I(j)

x∗ij ≤Dj ∀j ∈J ,∑
i∈I(j)

z∗ij ≤D′j ∀j ∈J ,∑
i∈I

∑
j∈J (i)

z∗ij ≤ ν,

[Dual Feasibility] q,r, s, t≥ 0,

[Complementary Slackness] qi(y
∗
i −Ci) = 0 ∀i∈ I

rj

∑
i∈I(j)

x∗ij −Dj

= 0 ∀j ∈J ,

sj

∑
i∈I(j)

z∗ij −D′j

= 0 ∀j ∈J ,

t

∑
i∈I

∑
j∈J (i)

z∗ij − ν

= 0.

Moreover, (x∗,y∗,z∗) solve model (4).
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The ICU model maximizes a concave function over a convex set, hence there exist multipliers γ

that satisfy the conditions:

[Stationarity] U ′(y∗i )−λi− γi = 0 if y∗i > 0,

≤ 0 if y∗i = 0 ∀i∈ I,

[Primal Feasibility] y∗i ≤Ci ∀i∈ I,

[Dual Feasibility] γ ≥ 0,

[Complementary Slackness] γi(y
∗
i −Ci) = 0 ∀i∈ I

and y∗ solve the ICU value-maximizing models.

Finally, the necessary and sufficient conditions for optimality of the network subproblem that

allocates ICU patient flows to downstream units state that exists a tuple (x∗,z∗,u,v,w) satisfying:

[Stationarity] λi−uj = 0 if x∗ij > 0,

≤ 0 if x∗ij = 0, ∀i∈ I, j ∈J ,

λi−βj − vj −w= 0 if z∗ij > 0,

≤ 0 if z∗ij = 0 ∀j ∈J ,

[Primal Feasibility]
∑
i∈I(j)

x∗ij ≤Dj ∀j ∈J ,∑
i∈I(j)

z∗ij ≤D′j ∀j ∈J ,∑
i∈I

∑
j∈J (i)

z∗ij ≤ ν,

[Dual Feasibility] u,v,w≥ 0,

[Complementary Slackness] uj

∑
i∈I(j)

x∗ij −Dj

= 0 ∀j ∈J ,

vj

∑
i∈I(j)

z∗ij −D′j

= 0 ∀j ∈J ,

w

∑
i∈I

∑
j∈J (i)

z∗ij − ν

= 0,

so that (x∗,z∗) solve the network allocation model.

Therefore, if λ = p and yi =
∑

j∈J (i)(xij + zij), then the solutions to the ICU subproblems y∗

and the solution to the network subproblem (x∗,z∗) comprise a solution to the system model (4).

The conditions identify γ = q, u= r, v = s, and w = t. �
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Proposition EC.1.1 Algorithm 4 gives the optimal values of the variables in model (8), i.e., the

dual shadow prices of the downstream resources in model (6).

Proof. Note that the shadow prices of regularly staffed beds only appear in constraints (8b)

which can be restated as uj ≥maxi∈I(j){λi} for all j ∈ J . Furthermore, as we are minimizing the

objective with non-negative coefficients and variables, it follows that (8b) are binding. Hence, line

2 of Algorithm 4 assigns the optimal shadow prices of regular beds u∗j .

If ν ≥
∑

j∈J D
′
j, there is no value in adding more personnel as there are not enough beds to be

staffed. Hence, lines 10-11 of Algorithm 4 correctly assign w∗← 0.

If ν <
∑

j∈J D
′
j, there is at least one extra downstream bed that may be staffed. According

to the objective function of model (6), the contribution of an additional operational bed at unit

j is max{0,maxi∈I(j){λi − βj}}. The maximizing objective ensures that the ν beds with highest

contribution are already staffed. Hence, the value of additional staff is equal to the highest value of

max{0,maxi∈I(j){λi−βj}} after removing the first ν values at the corresponding units. Therefore,

the ordering of the contributions in L of Algorithm 4 guarantees the value of w∗ is assigned correctly.

Given w∗ and the fact that vj are non-negative, it follows that constraints (8c) can be restated as

vj ≥max{0,maxi∈I(j){λi− βj}−w∗}. As the coefficients of vj are non-negative in a minimization

objective, it follows that (8c) are binding and lines 12-13 make the correct assignment of v∗j . �

EC.3. Network Illustrations

Figure EC.1 illustrates the topology of the networks used in the large-scale numerical instances.

EC.4. Static Policy

We provide details on the linearizing reformulation of model (3) in order to obtain the static policy

used for comparison with the proposed acuity-based policies in the numerical studies. For each

i∈ I, let uki :=Ui(k) for k= 1,2, . . . ,Ci. Let xij, zij ∈Z+ represent the patient allocations from i to

j to baseline capacity and flexible staffing beds, respectively (as before). We redefine the variables

yik ∈ {0,1} to indicate if the total number of patients transferred out of unit i is equal to k.

max
∑
i∈I

Ci∑
k=0

uki yik−
∑
j∈J

βj
∑
i∈I(j)

zij (EC.1a)

s.t.
∑
j∈J (i)

xij + zij =

Ci∑
k=0

kyik ∀i∈ I, (EC.1b)

Ci∑
k=0

yik = 1 ∀i∈ I, (EC.1c)∑
i∈I(j)

xij ≤Dj ∀j ∈J , (EC.1d)
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Figure EC.1 Illustrations of the network topologies used in the numerical studies.

∑
i∈I(j)

zij ≤D′j ∀j ∈J , (EC.1e)∑
j∈J

∑
i∈I(j)

zij ≤ ν (EC.1f)

xij, zij ∈Z+ ∀i∈ I, j ∈J , (EC.1g)

yik ∈ {0,1} ∀i∈ I, k ∈ {1,2, . . . ,Ci}. (EC.1h)

The objective function (EC.1a) calculates the total clinical benefit of ICU transfers less cost of

staffing (as in (4a)). Constraints (EC.1b) ensure the number of patients allocated downstream

equals the number of patients transferred out of ICU. Constraints (EC.1c) ensure exactly one

number of total patients to transfer is chosen for each ICU. Constraints (EC.1d)-(EC.1f) enforce

the bed capacity and staffing limitations at downstream units.
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EC.5. Sensitivity Analyses

In order to provide insights on the proposed acuity-based policy’s performance in other demand

scenarios, we conduct several additional experiments. We test the policies in a medium demand sce-

nario, where we sample arrivals from Poisson(2µatk ) and ICU transfer requests and DSU discharges

from Poisson(2µdtk ) based on historic discharge rates. Similarly, we simulate a low (or baseline)

demand scenario where we sample arrivals from Poisson(µatk ) and ICU transfer requests and DSU

discharges from Poisson(µdtk ). All remaining parameters are kept as described in Section 5.2.2.
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Figure EC.2 Medium Demand Setting: Seven day patient flow simulation for four network topologies depicting

average (among all ICU for each day) lost ICU arrivals (diverted patients) with 95% confidence

intervals.

Figure EC.2 shows a comparison in the number of diverted patients for all tested policies in

the medium demand setting. Notably, the deterministic policy performs the worst, as before. The

acuity-based policy performs similarly to the generalized RMI and the static policies. Moreover,

the acuity-based policy appears to have a slight advantage over the generalized RMI policy.

Next, Figure EC.3 shows a comparison in the number of diverted patients for all tested policies

in the low demand setting. We observe overall lower average numbers of diverted patients for all
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Figure EC.3 Low Demand Setting: Seven day patient flow simulation for four network topologies depicting

average (among all ICU for each day) lost ICU arrivals (diverted patients) with 95% confidence

intervals.

network topologies. Once again, the deterministic policy performs the worst. Here, the acuity-

based policy performs similarly to the generalized RMI policy. The static policy appears to have

an advantage in many of the cases. The lower variation in demand makes it more likely that a

myopic solution like the one provided by the static policy is optimal for the system. Nevertheless,

the acuity-based policy remains competitive in many cases. More importantly, it is robust to

disruptions and delays in relaying information which can easily render a solution obtained from

the static policy infeasible.

These experiments confirm the intuition that the acuity-based policy is most valuable in high-

demand settings. The high variation in expected arrivals and discharges makes flexible staffing and

strategic patient allocation significantly more important for ensuring increased patient throughput.

While the deterministic policy is the easiest to implement, its overall performance leads us to

recommend the implementation of at least the generalized RMI when expecting medium or baseline-

level demand.
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