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Abstract. We study marked Hawkes processes with an intensity process which has a non-stationary
baseline intensity, a general self-exciting function of event “ages” at each time and marks. The
marks are assumed to be conditionally independent given the event times, while the distribution of
each mark depends on the event time, that is, time-varying. We first observe an immigration-birth
(branching) representation of such a non-stationary marked Hawkes process, and then derive an
equivalent representation of the process using the associated conditional inhomogeneous Poisson
processes with stochastic intensities. We consider such a Hawkes process in the high intensity
regime, where the baseline intensity gets large, while the self-exciting function and distributions of
the marks are unscaled, and there is no time-scaling in the scaled Hawkes process. We prove func-
tional law of large numbers and functional central limit theorems (FCLTs) for the scaled Hawkes
processes in this asymptotic regime. The limits in the FCLTs are characterized by continuous Gauss-
ian processes with covariance structures expressed with convolution functionals resulting from the
branching representation. We also consider the special cases of multiplicative self-exciting functions,
and an indicator type of non-decomposable self-exciting functions (including the cases of “ceasing”
and “delayed” reproductions as well as their extensions with varying reproduction rates), and study
the properties of the limiting Gaussian processes in these special cases.

1. Introduction

Hawkes processes were introduced in [24, 25, 27]. They have a self-exciting intensity process that
depends on its entire history, and can capture positive auto-correlation, clustering effects and over-
dispersion in the counting/arrival processes. They have been widely used in various applications,
for example, finance (see the recent reviews in [2, 26]), seismology [39], neuron science [36, 37, 9],
internet traffic and queueing [32, 13, 21, 8]. It is usually assumed that the baseline intensity function
is constant, and the self-exciting function is a function of the “age” of an event (elapsed time of
each event). In some studies, the self-exciting function can depend on some exogenous randomness,
that is, random “marks” associated with each event, see for example [7, 5, 31, 28]. This is natural
in many applications, since the “marks” carried with each event can affect the intensity process,
besides the “age” of each event. They are similar to the “noises” in shot noise processes (see, e.g.,
[44, 45, 46, 35] and references therein). The marks are all assumed to be i.i.d. in the existing
literature. However, the marks may be dependent across events as well as dependent on the event
times. In this paper, we focus on a particular dependent structure where the marks are conditionally
independent given the event times while their distributions depend on the associated event times,
that is, a time-varying distribution.

Such non-stationarity may appear in many practical systems. For one example, in [39], a marked
Hawkes process is used to model earthquake occurrences and residual analysis, where the marks are
magnitude of each occurrence. The distributions of the magnitudes may depend on the epochs of
each occurrence. For another example, the effect of random forces on a damped harmonic oscillator
can be modeled by a marked Hawkes process (or shot noise process [48]), where the forces can have
a conditional Gaussian distribution with mean zero and covariance matrix that depends on the time
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of random force occurrence; see for example [44, Section 3.1.3] where such non-stationary shot noise
processes are used. As commented in [7], the marks can be used to model the signals propagating
along nervous fibers, where the signal activities could be stimulated externally, and their forces
might have different distributions at their occurrences. In [34], a marked Hawkes process is studied
where the marks are stochastic processes themselves and the impact of the marks is modeled to
depend on the event times. Such marked Hawkes process has potential applications in neural
activities [37]. In individual-based stochastic epidemic models [17, 19, 42, 43, 18], each individual
is associated with a random force of infectivity, and the total infectivity force may be modeled as
marked Hawkes process, where the marks represent the infectivity forces, which very likely depend
on the time of infection.

Specifically, we consider a non-stationary marked Hawkes process N = {N(t) : t ≥ 0} with an
intensity process

λ(t) = λ0(t) +

N(t)
∑

j=1

H(t− τj, Zj(τj)), t ≥ 0, (1.1)

where λ0 : R+ → R+ is a deterministic positive function representing the baseline intensity, {τj :

j ∈ N} are the event times of the process N , H(t, z) : R+ × R
d → R+, d ≥ 1, is the exciting

function, and Zj(τj)’s (or Zj’s for brevity) are the marks associated with the jth event time τj. We
assume that given the sequence of the event times {τj : j ∈ N}, the marks {Zj} are independent
and the distribution of each mark Zj depends on the associated event time τj (independent of the
other event times), that is,

P(Zj(τj) ≤ z|τj = u, τj′ , ∀j′ ≤ j) = Fu(z), z ∈ R
d
+ , u ≥ 0 . (1.2)

Note that the non-stationarity of the process N arises from three sources: the non-stationary
initial intensity function λ0(·), the non-stationary distribution of the marks Zj(·), and the exciting
function H. Such non-stationary distributions of variables Zj(·) in (1.2) have been assumed for
noises in shot noise processes [44, 45]. However, Hawkes processes with such marks are much more
challenging to analyze.

The self-exciting function H(t, z) can take any general form. We also discuss two types of special

models in Section 3. The first type is a multiplicative function H(t, z) = H̃(t)z for z ∈ R+ (or more

generally, H(t, z) = H̃(t)G̃(z) for z ∈ R
d), which is the usual model studied in the literature, see

Section 3.1. The special case where H̃(t) ≡ 1, self-exciting with marks only, is also discussed. The
second type is an indicator-type non-decomposable self-exciting function: H(t, z) = H01(0 ≤ t < z),
or H(t, z) = H01(t ≥ z) for some constant H0 > 0 and z ∈ R+, which we refer to as the cases of
“ceasing” or “delayed” reproductions (using the terminology in the migration-brith representation),
respectively. These two cases have constant reproduction rate, so we also extend them to allow
the rates to be time-varying, depending on the “ages” of the individuals. In particular, we have
introduced non-decomposable self-exciting functions: H(t, z) = H̃(t)1(0 ≤ t < z) and H(t, z) =

H̃(t)1(t ≥ z) for a measurable and locally integrable function H̃ : R+ → R+. In addition, a more
general non-decomposable self-exciting function can take effect only over a random period of time,
where the mark z = (z1, z2) ∈ R

2
+ and H(t, z) = H(t, (z1, z2)) = H̃(t)1(z1 ≤ t < z2), and where z2

and z1 represent the “ceasing” and the “delay” time in the reproduction, respectively (here (z2−z1)
can be regarded as the “active” reproduction period). These models are studied in detail in Section
3.2. To the best of our knowledge, Hawkes processes with such self-exciting functions have not been
studied in the literature.

In [27], Hawkes and Oakes gave an immigration-birth (branching) representation of linear Hawkes
processes, which has become a very useful tool to study the properties of the Hawkes processes.
Our first result is to observe that the immigration-birth representation also holds in our new model
setup (Section 2.1). As a consequence, we provide an equivalent representation for the Hawkes
process using the conditional (inhomogeneous) Poisson processes in the branching description. It
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gives a natural decomposition of the Hawkes process to facilitate the proofs of the functional limit
theorems.

Since the exact analysis is prohibitive, we establish the functional law of large numbers (FLLN)
and functional central limit theorems (FCLT) for the non-stationary marked Hawkes process N . We
consider the high intensity asymptotic regime, in which the baseline intensity gets large (λn0 (t)/n →
λ̄0(t) as the scaling parameter n → ∞), while the self-exciting function H and the distributions
of the “marks”, Fs(·) are unscaled/fixed. The process Nn, indexed by the scaling parameter n,
has the associated event time τnj . We then consider the LLN and CLT scalings of the process Nn,

with N̄n = n−1Nn and N̂n =
√
n(N̄n − E[N̄n]). The asymptotic regime is clearly different from

the conventional scaling regime where both time t and space are scaled simultaneously, because of
the dependence of the self-exciting function on the “age” of each event. Most of the scaling limits
for Hawkes processes are in this conventional asymptotic regime. For example, Barcry et al. [1]
studied the stationary Hawkes process (no marks), and obtained Brownian motion limits in the
FCLT, and Horst and Xu [28] studied the Hawkes processes with time-varying baseline intensity
and i.i.d. marks, and proved Gaussian white noise limits. See Remarks 2.5 and 2.8 for further
discussions and comparisons of the scaling limits in these two regimes. The only works concerning
the large intensity regime are done in [21] and [20]. In [21], a linear stationary Hawkes process
(with no marks) is studied, and FCLT is proved with a Gaussian limit process with a particular
covariance structure. That is used to model the arrival process of infinite-server queues, which may
have many practical applications. (A potential application of the large intensity regime in biology
is to model chemical kinetics where the synthesis of molecules occurs in large numbers, see, e.g.,
[14] with a Cox process as the arrivals for an infinite-server tandem queueing model while Hawkes
process could be potentially used.) In [20], Gao and Zhu recently proved limit theorems and large
deviations for nonlinear Hawkes processes (with no marks) in the asymptotic regime with a large
intensity function and a small exciting function (which is equivalent to the large intensity regime
in the linear case) and the limiting process is a semimartingale Gaussian process. However, the
approaches of proving weak convergence in [21] and [20] rely critically on the stationarity property
of the process, using the stationary version of the Hawkes process, and cannot be extended to the
non-stationary setting.

We focus on the proofs of the FCLT. We first show that the limiting Gaussian processes are well
defined and have continuous sample paths. The covariance functions are expressed using convolution
functionals, which is also natural from the branching representation of the Hawkes process. We
also discuss the particular covariance properties of the limiting Gaussian processes in the special
models of multiplicative and indicator-type non-decomposable self-exciting functions in Section 3.
For models with multiplicative self-exciting functions, in the special case with a constant baseline
intensity and no marks, we show that N̂(t + h) − N̂(h) as h → ∞ converges in distribution to a

stationary Gaussian process N̂◦ which can be characterized via a stochastic integral with respect
to a two-sided Brownian motion. We prove that the covariance function of this limit N̂◦ is in fact
equivalent to that established in [21], although the expressions appear to take very different forms
(see Proposition 3.1). We also study the corresponding properties and scaling limits of Hawkes
processes with indicator-type non-decomposable self-exciting functions.

Non–stationarity brings substantial challenges in proving the weak convergence and analyzing the
limit processes. The existing work on Hawkes processes relies heavily upon the convenient represen-
tations of the processes, see, e.g., the simple integral representation of the auxiliary processes in the
decomposition of the centered Hawkes processes in Remark 2.4 and the associated martingales that
can be constructed. We therefore must start from the immigration-birth branching representation
and derive the representations of the Hawkes processes and decompositions using the conditional
Poisson processes with stochastic intensities in the branching description. In particular, the sub-
processes are represented via stochastic Volterra integrals with respect to martingales constructed
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from those conditional Poisson processes, and have complicated dependence structures. We then
prove their weak convergence by checking the convergence of finite dimensional distributions and
verifying the tightness criterion with the modulus of continuity directly. The proof of tightness
for the model appears very challenging, for which requires to establish some nontrivial maximal
inequalities and moment bounds for the oscillation of the subprocesses within small time-interval.

There are other relevant papers on scaling limits of (marked) Hawkes processes. In [31], CLT
and large deviations results are obtained for Hawkes processes with i.i.d. marks. Gao and Zhu
[23, 22] consider a linear Markovian Hawkes process with an exponential exciting function and with
a constant baseline intensity and no marks, and prove CLTs and large deviations and studied large
time asymptotic in the regime where the initial intensity is large. Zhu [51] also proves FCLT for
nonlinear Hawkes processes using Poisson embedding, and obtains a Brownian limit process. Jaisson
and Rosenbaum [29, 30] established FCLTs when the exciting functions have light and heavy tails.
There have also been recent works on mean-field limits for Hawkes processes [15, 10, 9, 11]. These
are all in the usual asymptotic regime with both time and space scalings.

1.1. Organization of the paper. We give some notation used in the paper in the next subsection.
We first provide the immigration-birth representation, and the resulting equivalent representations
in Sections 2.1 and 2.2. We give the assumptions on the model, describe the high intensity regime
and summarize the functional limit theorems in Section 2.3. We discuss the special case of multi-
plicative self-exciting functions in Section 3.1, and then introduce the special case of indicator-type
non-decomposable self-exciting functions in Section 3.2, including the “ceasing” and “delayed” re-
production cases with constant or varying rates, as well as the more general model with both “de-
layed” and “ceasing” scenarios, i.e., a random active reproduction duration. The well-definedness
of the Hawkes process is studied in Section 4. The proofs of the functional limit theorems are given
in Section 5. The proofs about the limiting Gaussian processes in the special cases are given in
Section 6.

1.2. Notation. All random variables and processes are defined in a common complete probability
space

(

Ω,F , {Ft}t≥0,P
)

. Throughout the paper, N denotes the set of natural numbers. R(R+)
denotes the space of real (nonnegative) number. Let D = D(R+,R) denote R-valued function space
of all càdlàg functions on R+. For z ∈ R

d, |z| denotes the Euclidean norm. (D, J1) denotes space
D equipped with Skorohod J1 topology, see [4], which is complete and separable. Let C be subset
of D for continuous functions. D× C denotes the product space endowed with the weak Skohorod
topology [50]. L2(P)

(

L4(P)
)

denotes the space of random variables with finite 2nd (4th) moment.

For integrable function f : R → R, its L1 norm is denoted by ||f ||1. Notations → and ⇒ (→h and
⇒h) mean convergence of real numbers and convergence in distribution(with respect to parameter
h), respectively. Additional notation is introduced in the paper whenever necessary.

2. The Model and Results

2.1. Immigration-birth representation. To facilitate the analysis, we present an immigration-
birth representation for the non-stationary Hawkes process N described in (1.1) with chronological
levels, which is the key to our results and proofs. The representation is a direct generalization of
that presented first by Hawkes and Oakes in [27]. The existence and uniqueness of the process are
discussed after introducing Assumption 1. As is expected, the immigration and birth processes will
be conditional inhomogeneous Poisson processes.

Immigrants: Let N1(t) = sup{j ≥ 1 : τ1j ≤ t} be the counting process of the first genera-
tion, which represents “immigrants” without extant parents in the process, and follows an
inhomogeneous Poisson process with baseline intensity λ0(·). The mark associated with
the jth immigrant at time τ1j is denoted by Z1j .
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Birth property: For an individual (point) immigrated/born into the system at time τ , a
mark Z is associated and its distribution depends on the occurrence time of τ , given by

P
(

Z ∈ dz
∣

∣τ = s
)

= Fs(dz) ∀z ∈ R
d. (2.1)

The individual produces children independently, which follows an inhomogeneous Poisson
process with an intensity function H(t− τ, Z). Here, (t− s) is the “age” of the individual
at the current time t given the birth time τ = s ≤ t.

Descendants: Given the lth generation, the collection of children (points) produced by this
generation is called the (l+1)th generation and denoted by Nl+1. The birth time and mark
associated to the jth newborn in the lth generation are denoted by τlj and Zlj . Let

Gl(t) := σ
{

Nl(s), Zlj : 0 ≤ s ≤ t, j ≤ Nl(t)
}

= σ
{

τlj, Zlj : j ≤ Nl(t)
}

be the natural filtration generated by (Nl, Zl), and Fl(t) :=
∨

l≥k≥1 Gk(t) represents the

information produced by the generations 1 to l up to time t. Let Gl := Gl(∞) represent
the information produced by the generation l up to time +∞, and Fl := Fl(∞) represent
the information produced by the generations 1 to ℓ up to time +∞. By the birth property,
given the filtration {Fl(t)}t≥0, Nl+1 is a simple and conditional (inhomogeneous) Poisson
process with the intensity process

λl(t) :=

Nl(t)
∑

j=1

H(t− τlj, Zlj) ∈ Gl(t). (2.2)

Clearly, Nl+1 is independent of Fl−1 conditioning on Gl. In other words, conditioning on
Fl,

∑

j≥1 δ(τ(l+1)j ,Z(l+1)j) is a Poisson random measure with intensity λl(t)Ft(dz)dt, where

δx stands for the Dirac point mass at x (see, e.g., [3, Chapter O.5]).
Hawkes process: Let N(t) =

∑

l≥1Nl(t) for t ≥ 0. Then N is a point process with intensity
process:

λ(t) =
∑

l≥0

λl(t) = λ0(t) +
∑

τlj≤t

H(t− τlj, Zlj)

= λ0(t) +
∑

τj≤t

H(t− τj, Zj) ∈ F∞(t),

where {τj} are the resorting of {τlj , l, j ≥ 1} representing the occurrence times of N and
{Zj} are the associated marks. The distribution of Zj depends on τj and is given by (2.1).
Thus, this expression of the intensity process coincides with that defined in (1.1). Here
F∞(t) represents the information produced by all the generations up to time t using the
notation above.

Let H(t, z) be the self-exciting function in (1.1). For t, s > 0 and k ≥ 1, define

G(t, s) :=

∫

Rd

H(t− s, z)Fs(dz) and Gk+1(t, s) :=

∫ t

0
G(t, u)Gk(u, s)du,

ψ(t, s) :=
∑

k≥1

Gk(t, s) = G(t, s) +

∫ t

0
G(t, u)ψ(u, s)du,

φt(s, z) := 1t(s) +

∫ t

0

(

1 +

∫ t

0
ψ(u, v)du

)

H(v − s, z)dv,

(2.3)

where 1t(s) := 1(s ≤ t). Since H(t, s) = 0 for t < s, Gk(t, s) = 0 for all k ≥ 1. For the nontrivial
case t ≥ s > 0, there is an intuitive interpretation of the quantities above. For an individual (point)
born to the system at time s, since H(t − s, z) is the production rate at time t contributed by
the individual (point) with mark z, G(t, s) can be regarded as the expected rate of production
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contributed by the individual (point) to its 1st latter generation, and Gk(t, s) can be regarded as
the expected contribution to its kth latter generation, which is produced by its (k − 1)th latter
generation. Thus, ψ(t, s) is the expected reproduction rate at time t of all the descendent of
the individual (point) born at s. The integral representation of ψ(t, s) is known as the Volterra
equation with kernel G, and can be simply derived by summing on both sides of equation for Gk

over k = 1, 2, · · · . It can also be derived by conditioning on the information of the last generation.
Finally, φt(s, z) is the expected number of members in the family of the point originated from
the point born at s and associated with a mark value z, counting itself as well. Therefore by
conditioning on the immigrant process N1, we have

E
[

λ(t)
]

= λ0(t) +

∫ t

0
ψ(t, u)λ0(u)du.

Noticing that infinite sums are used for the auxiliary functions, we first give a sufficient condition
for their well–definednesses,

Assumption 1. Assume that H(t, z) = 0,∀t < 0, z ∈ R
d. For any T > 0, the following hold:

(i) For some locally integrable and measurable function ϕT ≥ 0,
∫

Rd

H2(t− s, z)Fs(dz) ≤ ϕ2
T (t− s) ∀s, t ∈ [0, T ].

(ii) The function ϕT above is locally square integrable, that is,
∫ T
0 ϕ2

T (t)dt <∞.

Remark 2.1. Under Assumption 1(i), we will have for every T > 0

G(t, s) ≤ ϕT (t− s) for all t, s ∈ [0, T ]

which is locally integrable in t > 0. One can find from (2.3) that t → ψ(t, s) is the well-defined
and locally integrable solution to the Volterra equation with kernel G and ψ(t, s) = 0 if t < s by
definition. Moreover, the representation above shows that (N,λ) is well-defined and finite with
probability one. Therefore, by the Lemma in [27], N is the unique orderly point process on R+ with
the conditional intensity process (1.1). Assumption 1(i) will be assumed throughout the paper.

Remark 2.2. Assumption 1 is not strong. For the case of H(t, z) being a bounded function, both
the assumption always holds, for example, when H(t, z) = 1(0 < t ≤ z),∀t, z ≥ 0 considered in
Section 3.2 and referred to as “ceasing” reproduction. In Section 3.1, we also consider the case of
multiplicative function H(t, z) = H̃(t)z, ∀t, z ≥ 0. In this case,

∫

R+

H2(t− s, z)Fs(dz) = H̃2(t− s)

∫

R+

z2Fs(dz).

It is sufficient to assume that H̃ is locally square integrable on R+ and sups∈[0,T ]

∫

R+
z2Fs(dz) <∞,

that is, the second moment of the marks is locally bounded. If we further assume Fs = F for some
c.d.f. F on [0,∞), that is, in the i.i.d. case of one dimensional marks, letting m1 = E[Z] =
∫∞
0 zF (dz), then we have

G(t, s) = m1H̃(t− s), Gk(t, s) = mk
1H̃

∗k(t− s), ψ(t, s) =
∑

k≥1

mk
1H̃

∗k(t− s) = ψ(t− s),

φt(s, z) = 1t(s) +
z

m1

∫ t

0
ψ(u− s)du = 1t(s) +

z

m1
· ψ ∗ 1(t− s)

where H̃∗k denotes the kth self-convolution of H̃.

Example 2.1. We give an example of the non-stationary c.d.f. Ft(·) that may be applicable to
model ‘environmental’ or ‘seasonal’ effects. Suppose there exists a sequence of deterministic times
0 = T0 < T1 < · · · < Tk = T < ∞ and the corresponding c.d.f.’s F(i)(·), i = 1, . . . , k, such that for
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t ∈ [Ti−1, Ti) and for each i = 1, . . . , k, Ft(·) = F(i)(·). It is possible that some of the F(i)(·)’s are
common (for instance, in periodic settings), but not all.

Given the immigrant-birth representation, we further define for k ≥ l ≥ 1 and t ≥ 0,

Ykl(t) := E
[

Nk+1(t)
∣

∣Fl

]

− E
[

Nk+1(t)
∣

∣Fl−1

]

,

Xl(t) := Nl(t)−
∫ t

0
λl−1(s)ds, Yl(t) :=

∑

k≥l

Ykl(t),

X(t) :=
∑

l≥1

Xl(t) and Y (t) :=
∑

l≥1

Yl(t),

(2.4)

and Ml(t) := Xl(t) + Yl(t), where we understand that P(·|F0(t)) = P(·|F0) = P(·). It is clear that
Yl(t) ∈ Fl(t) and Xl is a {Fl(t)}t≥0-martingale under measure P(·|Fl−1). From the immigration-
birth representation, for the (l−1)th generation, Xl can be taken as its impact to its son generation,
that is, the lth generation, and Ykl can be taken as its impact to the (k+1)th future generation with
(k + 2− l) ≥ 2, and then, Yl can be taken as its cumulated impact to the system with generation
cap larger than 2. Thus, the centered Hawkes process N can be rewritten as

N(t)− E[N(t)] =
∑

l≥1

(

Xl(t) + Yl(t)
)

=
∑

l≥1

Ml(t) = X(t) + Y (t), t ≥ 0. (2.5)

One can check in (2.5) directly that

Ml(t) = E[N(t)|Fl]− E[N(t)|Fl−1], t ≥ 0. (2.6)

These processes play an important role in the proof of weak convergence below.

Proposition 2.1. Under Assumption 1(i), for every t ≥ 0 and l ∈ N, Xl(t), Yl(t), Ml(t), X(t)
and Y (t) are well-defined variables in L2(P).

Proof. We refer the proof to Proposition 4.2 where the stochastic processes X,Xl ∈ D and Y, Yl ∈ C

for all l ∈ N, and Yl satisfies a simplified equation. �

Remark 2.3. Under Assumption 1(i), since G(t, s) and ϕT (t−s) are locally integrable in t ∈ [0, T ],
ΦT (t) :=

∑

k≥1 ϕ
∗k
T (t) is well-defined and locally integrable on [0, T ]. If, in addition, Assumption

1(ii) holds, then ΦT ∈ L2[0, T ]. These are shown in Lemma 4.1. This implies the well-posedness
and finiteness of Uf(s) in (2.7) for every f on a compact set of [0,∞) (see Corollary 4.1). Thus,
the equivalent representations of Yl and Y below in (2.14) and (2.15) are well-defined. We refer to
Section 4 for further discussions on the well-definedness of the Hawkes process.

We shall see from the proofs of the FCLTs that Assumption 1(ii) is only a technical condition
for the weak convergence results. In addition, despite of the dependency among the chronological
level l, condition (ii) also ensures that the correlated terms will not be too singular.

2.2. Equivalent representations. Before proceeding, we provide simplified expressions for Yl
and Y defined in (2.4), and which are well-defined under Assumption 1(i). Note that we focus on
the weak convergence on finite interval. Let H be the self-exciting function in (1.1), and Bb,c be the
collection of bounded measurable functions vanishing outside a compact set of [0,∞). For every
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f ∈ Bb,c, we define

Hf(s, z) :=
∫ ∞

0
f(u)H(u− s, z)du =

∫ ∞

0
f(s+ u)H(u, z)du,

Gf(s) :=
∫

Rd

Hf(s, z)Fs(dz) =

∫ ∞

0
f(u)G(u, s)du

Gk+1f(s) := G(Gkf)(s) =

∫ ∞

0
f(u)Gk+1(u, s)du for k ≥ 1,

Uf(s) :=
∑

k≥0

Gkf(s) = f(s) +
∑

k≥1

Gkf(s) = f(s) +

∫ ∞

0
f(u)ψ(u, s)du.

(2.7)

Since f ∈ Bb,c above is assumed to be 0 outside a compact set, all the integrals above are actually

integrating on finite intervals, and U1t(·),HU1t(·, z) ∈ Bb,c for all t > 0, z ∈ R
d.

For a test function f , Hf(s, z) can be taken as the cumulated effect of points generated directly
by the individual (s, z) in the representation under f . Actually, given the individual (s, z), since it
produces new points following a Poisson point process, say {E(t), t ≥ 0}, with intensity H(t−s, z)dt,
we have from compensation formula that, c.f. [3, O.5],

E

[

∑

0≤t<∞
f(E(t))

]

=

∫ ∞

0
f(t)H(t− s, z)dt = Hf(s, z).

If f = 1t(·) for some t > 0, then H1t(s, z) is the expected number of points produced by (s, z) over
[0, t]. And similar to the previous interpretations, Gf(s),Gkf(s) and Uf(s) can be taken as the
cumulated effect to the first generation, kth later generation and all the family originated from the
point born at s. With understanding that G0f(s) = f(s), we have

HUf(s, z) =
∫ ∞

0

(

f(v) +

∫ ∞

0
f(u)ψ(u, v)du

)

H(v − s, z)dv,

and φt(s, z) defined in (2.3) can be rewritten as

φt(s, z) = 1t(s) +HU1t(s, z) (2.8)

where 1t(s) = 1(s ≤ t).
Let Nl and λl be the processes defined in (2.2). Define for every f ∈ Bb,c,

λlf :=

∫ ∞

0
f(t)λl(t)du =

∞
∑

j=1

∫ ∞

0
f(t)H(t− τlj, Zlj)dt =

∞
∑

j=1

Hf(τlj, Zlj) ∈ Gl, (2.9)

and λ0f :=

∫ ∞

0
λ0(t)f(t)dt. The second identity above in (2.9) follows from Fubini’s theorem.

The summation term can be regarded as the cumulated Hf -effect with respect to points generated
by Nl. Noticing that the test function f vanishes outside a compact set, saying [0, T ], we have
Hf(τlj, Zlj) = 0 for j > Nl(T ), which implies that the summation term is in fact a finite sum. We
obtain the following results on λlf .

Lemma 2.1. Under Assumption 1(i), for every f, g ∈ Bb,c and l ≥ k ≥ 0,

E
[

λlf
∣

∣Fk

]

= λkGl−kf, (2.10)

and

Cov(λlf, λlg) =
l
∑

k=1

∫ ∞

0
Gl−k

(

∫

Rd

(

HGk−1f(·, z)HGk−1g(·, z)
)

F·(dz)
)

(s)λ0(s)ds, (2.11)

where G0f(s) = f(s) and
∑0

k=1 = 0 by convention.
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Proof. We refer the proof to Proposition 4.1 and its discussion. The finiteness of identities under
Assumption 1(i) are ensured from Lemma 4.1. �

Now, recall 1t(s) in (2.3), and observe that using (2.9), we can rewrite
∫ t

0
λk(s)ds =

∫ ∞

0
λk(s)1

(

s ∈ (0, t]
)

ds = λk1t.

Thus, by (2.10), we have for k ≥ l ≥ 1,

E
[

Nk+1(t)
∣

∣Fl

]

= E
[

E
[

Nk+1(t)
∣

∣Fk

]
∣

∣Fl

]

= E
[

λk1t
∣

∣Fl

]

= λlGk−l1t.

Therefore, the expression of Ykl(t) in (2.4) can be rewritten as

Ykl(t) = λlGk−l1t − E
[

λlGk−l1t
∣

∣Gl−1

]

, (2.12)

and the process Yl in (2.4) can be rewritten as

Yl(t) =
∑

k≥l

Ykl(t) = λlU1t − E
[

λlU1t
∣

∣Gl−1

]

. (2.13)

Moreover, they are clearly simpler and equivalent representations of our interested processes.
Since U1t(s) is the expected number over [0, t] of points from the family originated from the

point born at time s counting itself as well, the expected number of points in the system of the
(l + 1)th and the later generation will be

E

[

∑

k≥l

Nk+1(t)
∣

∣

∣
Fl

]

= E

[Nl+1(t)
∑

j=1

U1t(τ(l+1)j)
∣

∣

∣
Fl

]

=

∫ ∞

0
U1t(s)λl(s)ds = λlU1t.

Thus Yl in (2.13) is the difference of the expectations under Fl and Fl−1, and can be taken as
the impact only contributed by (l − 1)th generation as discussed in (2.4). By further looking at
the information generated by λl, the last identity above can be written as the partial sum of
HU1t(τlj , Zlj) as shown in (2.9), where HU1t(s, z) is understood as the expected number of strictly
later points originated from the point born at (s, z) over [0, t]. Thus,

Yl(t) =

∫ t

0

∫

Rd

HU1t(s, z)
(

Nl(ds, dz) − λl−1(s)Fs(dz)ds
)

, (2.14)

which can also be checked from Fubini’s theorem, where Nl(ds, dz) is the conditional Poisson
random measure with intensity λl−1(s)Fs(dz)ds as introduced in the representation, and then

Y (t) =

∫ t

0

∫

Rd

HU1t(s, z)
(

N(ds, dz)− λ(s)Fs(dz)ds
)

, (2.15)

where N(ds, dz) =
∑

l≥1Nl(ds, dz) is the marked Hawkes process.

Remark 2.4. In the case of H(t, z) = H(t), that is, a Hawkes process without marks, we have
G(t, s) = H(t− s) and ψ(t, s) = ψ(t− s), abusing notation with the same ψ, where ψ(t) satisfies

ψ(t) = H(t) +

∫ t

0
H(t− u)ψ(u)du.

Thus, HU1t(s, z) =
∫ t
0 ψ(u− s)du =

∫ t−s
0 ψ(u)du and by Fubini’s theorem,

Y (t) =

∫ t

0

∫ t

0
ψ(u− s)du

(

N(ds)− λ(s)ds
)

=

∫ t

0
ψ(t− s)X(s)ds

which appears in Lemma 4 in [1].
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2.3. Functional limit theorems. We consider a sequence of the non-stationary marked Hawkes
processes Nn indexed by n in the high intensity asymptotic regime, where the baseline intensity
gets large, in the order O(n), while the self-exciting function and the marks’ distributions are fixed.
The stochastic intensity for Nn in the nth system is given by

λn(t) = λn0 (t) +

Nn(t)
∑

j=1

H(t− τnj , Z
n
j (τ

n
j )), (2.16)

where the marks’ distribution is given by

P
(

Zn
j (τ

n
j ) ∈ dz

∣

∣τnj = u, τnj′ , ∀j′ ≤ j
)

= Fu(dz), u > 0, z ∈ R
d.

Using the representation (2.4) and (2.13), we define the following diffusion-scaled processes

X̂n
l (t) :=

1√
n

(

Nn
l (t)− E

[

Nn
l (t)

∣

∣F
n
l−1

]

)

,

Ŷ n
l (t) :=

1√
n

(

λnl U1t − E
[

λnl U1t
∣

∣F
n
l−1

]

)

,

M̂n
l (t) := X̂n

l (t) + Ŷ n
l (t) =

1√
n

(Nn
l
(t)

∑

j=1

φt(τ
n
lj, Z

n
lj)− E

[Nn
l
(t)

∑

j=1

φt(τ
n
lj , Z

n
lj)
∣

∣

∣
F

n
l−1

])

,

(2.17)

for φt defined in (2.3) and λnl f defined in (2.9), where Fn
l = σ

{

τnlj, Z
n
lj , j ≥ 1

}

and

λnl (t) :=

Nn(t)
∑

j=1

H(t− τnlj , Z
n
lj(τ

n
lj)).

Let

X̂n(t) :=
∑

l≥1

X̂n
l (t), Ŷ n(t) :=

∑

l≥1

Ŷ n
l (t), t ≥ 0.

Thus, we have the diffusion-scaled process N̂n

N̂n(t) :=
1√
n

(

Nn(t)− E[Nn(t)]
)

=
∑

l≥1

M̂n
l (t) =

∑

l≥1

(

X̂n
l (t) + Ŷ n

l (t)
)

= X̂n(t) + Ŷ n(t), (2.18)

where applying Lemma 2.1,

E
[

Nn(t)
]

=
∑

l≥1

E
[

Nn
l (t)

]

= λn01t +
∑

l≥1

E
[

λnl 1t
]

= λn01t +
∑

l≥1

λn0Gl1t = λn0U1t. (2.19)

We make the following assumptions on the baseline intensity and the marks’ distributions. Let
λ̄n0 (t) := n−1λn0 (t).

Assumption 2. Assume that for some locally integrable function λ̄0 on [0,∞),

sup
t∈[0,T ]

∣

∣λ̄n0 (t)− λ̄0(t)
∣

∣→ 0 as n→ ∞.

Assumption 3. For every T > 0,

(i) the family
{

z →
∫ T
0 H(t, z)dt

}

is locally bounded on R
d, that is, for all K > 0

sup
|z|≤K

∫ T

0
H(t, z)dt <∞;
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(ii)
(

1 +

∫ T

0
H(t− s, z)dt

)2
is uniformly integrable with respect to {Fs}s∈[0,T ], that is,

lim
K→∞

sup
s∈[0,T ]

∫

|z|>K

(

1 +

∫ T

0
H(t− s, z)dt

)2
Fs(dz) = 0.

Now, we are ready to present the FWLLN and FCLT for the non-stationary marked Hawkes
process Nn with stochastic intensity λn defined in (2.16).

Theorem 2.1. Under Assumptions 1 and 2, we have

N̄n :=
1

n
Nn ⇒ N̄ in (D, J1) as n→ ∞,

where

N̄(t) :=

∫ t

0
U1t(u)λ̄0(u)du =

∫ t

0

(

1 +

∫ t

0
ψ(v, u)dv

)

λ̄0(u)du, t ≥ 0,

with U1t(u) given in (2.7) and ψ(u, v) defined in (2.3).

Remark 2.5. For the Hawkes process with i.i.d. marks, similar to Remark 2.2, we have reduced
forms for our auxiliary functions, that is,

G(t, s) =

∫

Rd

H(t− s, z)F (dz) = G(t− s),

ψ(t, s) = ψ(t− s) = G(t− s) +

∫ t

0
G(t− u)ψ(u − s)du.

where ψ is the renewal density with respect to G. (Here we abuse notation using the same ψ, see
also Remark 2.4.) If λ̄0(·) ≡ λ̄0 is a constant function, then

N̄(t) = λ̄0

∫ t

0

(

1 +

∫ t

0
ψ(v − u)dv

)

du = λ̄0

∫ t

0

(

1 + 1 ∗ ψ(u)
)

du

by change of variable.
If the stability condition is satisfied, that is,

||G||1 =

∫ ∞

0
G(t)dt =

∫ ∞

0

∫

Rd

H(t, z)F (dz)dt < 1, (2.20)

we obtain the following result for the limit function N̄(t):

1

n
N̄(nt) → λ̄0t

(

1 + ||ψ||1
)

=
λ̄0t

1− ||G||1
, (2.21)

uniformly in t ∈ [0, T ] P-a.s. as n → ∞. Note that ||G||1 is the expected number of descendants
a point can produce, and ||G||1 < 1 is also referred to as the subcritical condition from branching
theory point of view, under which 1 + 1 ∗ ψ(u) → 1

1−||G||1 as u→ ∞.

We recall the FLLN limit in [1], where Hawkes processes without marks are considered, that
is, H(t, z) = H(t), and in addition, λ0(·) ≡ λ̄0. It is shown that under the stability condition
||H||1 :=

∫∞
0 H(t)dt ∈ (0, 1),

sup
t∈[0,T ]

∣

∣

∣

∣

1

n
N(nt)− λ̄0 t

1− ||H||1

∣

∣

∣

∣

→ 0 as n→ ∞, (2.22)

almost-surely and in L2(P). We observe that the limit coincides with that in (2.21) since without
marks, ||H||1 = ||G||1. It is also worth mentioning the LLN result in [31] that, for the Hawkes
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process with stationary marks of a common distribution F (dz) and with λ0(·) ≡ λ̄0, under the
stability condition in (2.20), almost-surely and in L2(P),

1

t
N(t) → λ̄0

1− ||G||1
as t→ ∞.

We first prove the following theorem for the convergence of {(X̂n
l , Ŷ

n
l ), l ≥ 1} and (X̂n, Ŷ n) in

the decomposition of N̂n.

Theorem 2.2. Under Assumptions 1, 2 and 3, for each l ≥ 1,

(

X̂n
l , Ŷ

n
l

)

⇒
(

X̂l, Ŷl
)

in D× C as n→ ∞,

where the convergence is in the weak Skohorod topology on the product space D×C, and
(

X̂l, Ŷl
)

is
a continuous Gaussian process of mean zero and covariance functions: for t, s ≥ 0,

Cov(X̂l(t), X̂l(s)) =

∫ ∞

0
Gl−1

(

1t(·)1s(·)
)

(u)λ̄0(u)du

Cov(X̂l(t), Ŷl(s)) =

∫ ∞

0
Gl−1

(

1t(·)GU1s(·)
)

(u)λ̄0(u)du

Cov(Ŷl(t), Ŷl(s)) =

∫ ∞

0
Gl−1

(

∫

Rd

HU1t(·, z)HU1s(·, z)F·(dz)
)

(u)λ̄0(u)du.

In addition, the joint distribution of (X̂n
l , Ŷ

n
l )l≥1 converges to that of (X̂l, Ŷl)≥1, where {

(

X̂l, Ŷl
)

, l ≥
1} are independent over l. As a consequence, for each l ≥ 1,

M̂n
l = X̂n

l + Ŷ n
l ⇒ M̂l = X̂l + Ŷl in (D, J1) as n→ ∞,

and
(

X̂n, Ŷ n
)

⇒
(

X̂, Ŷ
)

in D× C as n→ ∞

where X̂ =
∑

l≥1 X̂l and Ŷ =
∑

l≥1 Ŷl, and (X̂, Ŷ ) is a continuous Gaussian process of mean zero
and covariance functions: for t, s ≥ 0,

Cov(X̂(t), X̂(s)) =

∫ ∞

0
U
(

1t(·)1s(·)
)

(u)λ̄0(u)du,

Cov(X̂(t), Ŷ (s)) =

∫ ∞

0
U
(

1t(·)GU1s(·)
)

(u)λ̄0(u)du,

Cov(Ŷ (t), Ŷ (s)) =

∫ ∞

0
U
(

∫

Rd

HU1t(·, z)HU1s(·, z)F·(dz)
)

(u)λ̄0(u)du.

(2.23)

For a test function f ∈ Bb,c, we have by the definition of Uf in (2.7) and ψ in (2.3) that

∫ ∞

0
Uf(u)λ̄0(u)du =

∫ ∞

0

(

f(u) +

∫ ∞

0
f(v)ψ(v, u)dv

)

λ̄0(u)du

=

∫ ∞

0
f(u)

(

λ̄0(u) +

∫ u

0
ψ(u, v)λ̄0(v)dv

)

du

(2.24)

where Fubini’s theorem and the fact ψ(u, v) = 0 for v > u is applied. Therefore we obtain the
following expressions for the covariance functions above.
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Remark 2.6. The integrals in Theorem 2.2 above are actually integrating on u ∈ [0, t∧s]. Applying
(2.24), the covariance functions in (2.23) can be rewritten as

Cov(X̂(t), X̂(s)) =

∫ t∧s

0

(

λ̄0(u) +

∫ u

0
ψ(u, v)λ̄0(v)dv

)

du,

Cov(X̂(t), Ŷ (s)) =

∫ t

0

(

∫ s

0
ψ(w, u)dw

)(

λ̄0(u) +

∫ u

0
ψ(u, v)λ̄0(v)dv

)

du,

Cov(Ŷ (t), Ŷ (s)) =

∫ t∧s

0

(

∫

Rd

HU1t(u, z)HU1s(u, z)Fu(dz)
)(

λ̄0(u) +

∫ u

0
ψ(u, v)λ̄0(v)dv

)

du,

where by definition

HU1t(u, z) =
∫ t

0

(

1 +

∫ t

0
ψ(w, v)dw

)

H(v − u, z)dv.

Theorem 2.3. Under Assumptions 1, 2 and 3,

N̂n ⇒ N̂ in (D, J1) as n→ ∞, (2.25)

where N̂ := {N̂ (t), t ≥ 0} is a centered continuous Gaussian process with covariance function R̂:

R̂(t, s) = Cov
(

N̂(t), N̂ (s)
)

=

∫ ∞

0
U
(
∫

Rd

φt(·, z)φs(·, z)F·(dz)

)

(u)λ̄0(u)du, (2.26)

for t, s,≥ 0, where φt(·, ·) is defined in (2.3), see also (2.8). The limit N̂ can be written as a

sum of mutually independent continuous Gaussian processes M̂l := {M̂l(t), t ≥ 0}l≥1, that is,

N̂ =
∑

l≥1 M̂l, where M̂l has mean zero and covariance function, for t, s ≥ 0

R̂l(t, s) = Cov
(

M̂l(t), M̂l(s)
)

=

∫ ∞

0
Gl−1

(
∫

Rd

φt(·, z)φs(·, z)F·(dz)

)

(u)λ̄0(u)du. (2.27)

From the immigration-birth representation presented in Section 2.1, the covariance function R̂
in (2.26) can be understood as follows. The total Gaussian noise, the difference between N and its
expectation, is the superposition of independent and small Gaussian noises caused directly by the
point/individual of every generation originated from the immigration process, where each Gaussian
noise is proportional to the size of the family that the point generates, and depends on the mark
associated with the point, despite of their dependencies over generations. M̂l is exactly the small
Gaussian noises contributed by lth generation as expected from the construction and discussion.

Remark 2.7. Applying (2.24) the covariance functions above can also be written as

R̂l(t, s) =

∫ t∧s

0

(

∫

Rd

φt(u, z)φs(u, z)Fu(dz)
)(

∫ u

0
G∗(l−1)(u, v)λ̄0(v)dv

)

du

R̂(t, s) =

∫ t∧s

0

(

∫

Rd

φt(u, z)φs(u, z)Fu(dz)
)(

λ̄0(u) +

∫ u

0
ψ(u, v)λ̄0(v)dv

)

du

(2.28)

which are integrals on [0, t ∧ s], and we understand
∫ u
0 G

∗0(u, v)λ̄0(v)dv = λ̄0(u).

Remark 2.8. Following the notations in Remark 2.5, Theorem 1 in [1] shows that for the Hawkes
process without marks, under the stability condition (similar to (2.20) without marks),

1√
n

(

N(nt)− E
[

N(nt)
]

)

⇒
(

λ̄0
(1− ||H||1)3

)1/2

W (t) (2.29)
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in D with the Skorokhod J1 topology as n→ ∞, where W is a standard Brownian motion. Theorem
2 in [31] shows that for the Hawkes process with stationary marks,

1√
t

(

N(t)− λ̄0t

1− ‖G‖1

)

⇒ N

(

0,
λ̄0
(

1 + σ2H,Z

)

(1− ‖G‖1)3
)

, (2.30)

where σ2H,Z = Var(
∫∞
0 H(t, Z)dt) and Z is a variable with c.d.f. F . It is evident that if there are

no marks, then σ2H,Z = 0 and the variance formula
λ̄0(1+σ2

H,Z
)

(1−‖G‖1)3 coincides with λ̄0
(1−||H||1)3 .

We note the main difference in the two scaling regimes lie in the role of the function H. In the

conventional regime the scaling of the intensity process λ(t) in (1.1) involves
∫ nt
0 H(nt−s, z)ds and

λ0(·) ≡ λ̄0, while in the large intensity regime, it scales λ0(t) by λn0 (t) such that λn0 (t)/n → λ̄0(t),

without any scaling on the integral
∫ t
0 H(t−s, z)ds. (This is similar to the scaling limits of shot noise

processes, see [45].) The former appears to concern the stationarity behavior. This is confirmed by

the following property: the variance function of the limit N̂(t) in (2.26) satisfies

1

t
R̂(t, t) →

λ̄0(1 + σ2H,Z)

(1− ||G||1)3
, as t→ ∞, (2.31)

which coincides with the variance of the normal limit in (2.30). It should be an easy extension of
the result in (2.29) in [1] that for the Hawkes process with stationary marks, under the stability
condition in (2.20),

1√
n

(

N(nt)− E
[

N(nt)
]

)

⇒
(

λ̄0(1 + σ2H,Z)

(1− ||H||1)3
)1/2

W (t) (2.32)

in D with the Skorokhod J1 topology as n → ∞. It remains open to show the FCLT for the non-
stationary Hawkes process with time-varying marks in the conventional regime.

We also remark that in the limit theorems under the conventional scaling regime, as we see above,
the stability condition in (2.20) plays a critical role, with or without marks. Without this condition,
no FLLN or FCLT as in (2.22) and (2.29) can be proved. However, for the FLLN and FCLT in
the high intensity regime, no such a stability condition is required.

We next provide a brief proof of the claim in (2.31). For the diffusion-scaled limit N̂ after large
intensity limit in Theorem 2.3, if Fs = F and ||G||1 < 1, that is, Hawkes process with stationary
marks and stability condition in (2.20), we already have in Remark 2.5 that

G(t, s) = G(t− s) and ψ(t, s) = ψ(t− s).

Thus, φt(s, z) defined in (2.3) is also a function of (t − s), and abusing notation, we denote it as
φ(t− s, z). Then, for t ≥ s > 0,

φt(s, z) = φ(t− s, z) = 1 +

∫ t

0
H(u− s, z)du+

∫ t

0
du

∫ u

0
ψ(u− v)H(v − s, z)dv

= 1 +

∫ t−s

0
H(u, z)du +

∫ t−s

0
du

∫ u

0
ψ(u− v)H(v, z)dv

t→∞−−−→ 1 +

∫ ∞

0
H(u, z)du +

∫ ∞

0
du

∫ u

0
ψ(u − v)H(v, z)dv

= 1 +
(

1 + ||ψ||1
)

∫ ∞

0
H(v, z)dv = 1 +

∫∞
0 H(u, z)du

1− ||G||1
(2.33)
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where Fubini’s theorem is applied and 1 + ||ψ||1 = 1
1−||G||1 under the stability condition (2.20).

Plugging into (2.28), the covariance function R̂ in (2.26) reads

R̂(t, t) =

∫ t

0

(

∫

Rd

(

φt(v, z)
)2
Fv(dz)

)(

λ̄0(v) +

∫ v

0
ψ(v, u)λ̄0(u)du

)

dv

= λ̄0

∫ t

0
E
[

φ2(t− v, Z)
](

1 + 1 ∗ ψ(v)
)

dv

= t · λ̄0
∫ 1

0
E
[

φ2(tv, Z)
](

1 + 1 ∗ ψ(t(1 − v))
)

dv

where the identities Fv(dz) = F (dz), φt(s, z) = φ(t− s, z) and ψ(u, v) = ψ(u− v) are applied in the
second line, and change of variable is applied in the last line. Letting t → ∞, we have from (2.33)
and the fact 1 + ||ψ||1 = 1

1−||G||1 that (2.31) holds.

3. Special Models

In this section, we illustrate with various examples the covariance structures of the Gaussian
limit process. We consider the special cases of the multiplicative self-exciting function and the indi-
cator type of non-decomposable self-exciting function. We will discuss the corresponding sufficient
conditions for Assumptions 1 and 3 in these cases. We also study some asymptotic properties of
the limiting Gaussian processes.

3.1. Multiplicative self-exciting function. We consider H(t, z) = H̃(t)G̃(z),∀t > 0, z ∈ R
d

being a multiplicative function, where H̃ : R+ → R+ and G̃ : Rd → R+ are measurable functions.
By change of variable, the problem with R

d-valued marks in this setting is equivalent to that with
R+-valued marks. Therefore, w.l.o.g., we assume in this subsection that H(t, z) = H̃(t)z for z ∈ R+,

H̃ : R+ → R+ and {Fs, s ≥ 0} is a sequence of distributions on R+. We assume that ∀T > 0,
∫ T

0
H̃2(u)du <∞ and lim

K→∞
sup

s∈[0,T ]

∫

z>K
z2Fs(dz) = 0.

Denote by m1,s =
∫∞
0 zFs(dz) and m2,s =

∫∞
0 z2Fs(dz). Assumptions 1 and 3 hold by taking

ϕT (t − s) = H̃(t − s)
(

sup
u∈[0,T ]

m2,u

)1/2
, where the second locally uniformly integrable condition

above implies sup
u∈[0,T ]

m2,u <∞. Recalling Gk and ψ defined in (2.3), and noticing that H̃(u− v) =

0 = Gk(u, v) = ψ(u, v) for u < v, we have G(t, s) = m1,sH̃(t− s),

Gk+1(t, s) = m1,s

∫ t

s
Gk(t, u)H̃(u− s)du,

ψ(t, s) = m1,s

(

H̃(t− s) +

∫ t

s
ψ(t, u)H̃(u− s)du

)

,

(3.1)

which means given a new point born at s, the reproduction rate of the point depends on the “age”
of the point (t− s) and is proportional to the value of the mark.

Corollary 3.1. (X̂, Ŷ ) in Theorem 2.2 has the following representations

X̂(t) =W1(t) and Ŷ (t) =

∫ t

0

(

∫ v

0

ψ(v, u)

m1,u
W2(du)

)

dv, (3.2)

and the limit N̂ is given by

N̂(t) =W1(t) +

∫ t

0

(

∫ v

0

ψ(v, u)

m1,u
W2(du)

)

dv.
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Here (W1,W2) is a two-dimensional Gaussian process such that for all a, b ∈ R and t, s ≥ 0

E
[

(aW1(t) + bW2(t))(aW1(s) + bW2(s)
]

=

∫ t∧s

0

(

a2 + 2abm1,u + b2m2,u

)

(

λ̄0(u) +

∫ u

0
ψ(u, v)λ̄0(v)dv

)

du.
(3.3)

Proof. We have from Remark 2.6 and (3.1) that

HU1t(s, z) = z

∫ t

0
H̃(u− s)du+ z

∫ t

0
ψ(u, v)du

∫ u

0
H̃(v − s)dv =

z

m1,s

∫ t

0
ψ(u, s)du.

Thus, the covariance functions for
(

X̂, Ŷ
)

in Theorem 2.2 are given by, for t, s > 0

Cov(X̂(t), X̂(s)) =

∫ ∞

0
1t(u)1s(u)

(

λ̄0(u) +

∫ u

0
ψ(u, v)λ̄0(v)dv

)

du,

Cov(X̂(t), Ŷ (s)) =

∫ ∞

0
1t(u)

(

∫ s
0 ψ(v, u)dv

m1,u

)

m1,u

(

λ̄0(u) +

∫ u

0
ψ(u, v)λ̄0(v)dv

)

du,

Cov(Ŷ (t), Ŷ (s)) =

∫ ∞

0

(

∫ t
0 ψ(v, u)dv

m1,u

)(

∫ s
0 ψ(v, u)dv

m1,u

)

m2,u

(

λ̄0(u) +

∫ u

0
ψ(u, v)λ̄0(v)dv

)

du,

applying Remark 2.6. The representation follows from the integrals

X̂(t) =

∫ ∞

0
1t(u)W1(du) and Ŷ (t) =

∫ ∞

0

( 1

m1,u

∫ t

0
ψ(v, u)dv

)

W2(du), (3.4)

and the fact that ψ(u, v) = 0 for u < v. To see why the Itô integrals in the representations are
meaningful, by definition, we have for all a, b ∈ R and u ≥ 0,

(

a2 + 2abm1,u + b2m2,u

)

=

∫ ∞

0
(a+ bz)2Fu(dz) ≥ 0,

and thus, (W1,W2) in (3.3) is a well-defined Gaussian process and has independent increments. �

If the marks has an identical distribution, that is, Fs = F as in Remarks 2.2 and 2.5, the
covariance functions for (X̂, Ŷ ) in Theorem 2.2 can be simplified to

Cov
(

X̂(t), X̂(s)
)

= λ̄0 ∗ 1(t ∧ s) + λ̄0 ∗ ψ ∗ 1(t ∧ s),

Cov
(

X̂(t), Ŷ (s)
)

=

∫ t

0
ψ ∗ 1(s − u)

(

λ̄0(u) + ψ ∗ λ̄0(u)
)

du,

Cov
(

Ŷ (t), Ŷ (s)
)

=
m2

m2
1

∫ t∧s

0
ψ ∗ 1(t− u)ψ ∗ 1(s − u)

(

λ̄0(u) + ψ ∗ λ̄0(u)
)

du,

(3.5)

where ψ(u) =
∑

k≥1m
k
1H̃

∗k(u).

Remark 3.1. In general, Hawkes process N does not have the Markov property, and neither has its
Gaussian limit N̂ . Even in the exponential case, the Hawkes process N(t) itself is not Markovian.

But intensity process λ(t) is Markovian, so is the pair (N(t), λ(t)). If H̃(t) = eβt for some β ∈ R,
it can be checked that

Gk(t, s) = eβ(t−s) m1,s

(k − 1)!

(

∫ t

s
m1,udu

)k−1
and ψ(t, s) = m1,s exp

(

∫ t

s

(

β +m1,u

)

du
)

.

The desired limit process can be written as

N̂(t) =W1(t) +

∫ t

0

(

e
∫ u

0
(β+m1,r)dr

∫ u

0
e−

∫ v

0
(β+m1,r)drW2(dv)

)

du,
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where (W1,W2) is defined in Corollary 3.1. By the independent increments of (W1,W2), the deriv-

ative of Ŷ in (3.2) satisfies

d
˙̂
Y (t) = (β +m1,t)

˙̂
Y (t)dt+W2(dt)

which is an Ornstein–Uhlenbeck (OU) process driven by the continuous Gaussian noise W2. There-

fore, it is necessarily that
˙̂
Y is a Markov process but not time homogenous, and so will be (N̂ ,

˙̂
Y ).

If we further assume λ̄0(t) = eβt for the same β and i.i.d. marks, that is Fs = F , then

λ̄0(t) +

∫ t

0
ψ(t, s)λ̄0(s)ds = e(β+m1)t.

Let (B1, B2) be two–dimensional Brownian motion with

E
[

(aB1 + bB2(t))(aB1(s) + bB2(s))
]

= (a2 + 2abm1 + b2m2)
(

t ∧ s
)

.

We have from the covariance function (3.3),

W1(t) =

∫ t

0
eαuB1(du) and W2(t) =

∫ t

0
eαuB2(du),

for (W1,W2) defined in Corollary 3.1 where we write α :=
β +m1

2
for simplicity. Therefore,

N̂(t) =

∫ t

0
eαuB1(du) +

∫ t

0
e2αu

(

∫ u

0
e−αvB2(dv)

)

du.

One can check directly that e−αt
(

N̂(t),
˙̂
Y (t)

)

satisfies

d

(

e−αtN̂(t)

e−αt ˙̂Y (t)

)

=

(

−α 1
0 α

)

(

e−αtN̂(t)

e−αt ˙̂Y (t)

)

dt+

(

B1(dt)
B2(dt)

)

,

which is a time-homogenous Markov process of OU type. We also refer the reader to the linear
Markovian Hawkes process studied in the literature (see, e.g., [38, 22, 23] and [12, Exercise 7.2.5]).

3.1.1. Stationary limit associated with the limiting Gaussian process. Recall the limiting Gaussian
process N̂ in Theorem 2.3. In this subsection, we are interested in the stationary limit

N̂◦(t) := lim
h→∞

(

N̂(t+ h)− N̂(h)
)

, t ≥ 0, (3.6)

as well as the other limit processes X̂ and Ŷ . Here we assume that

(i) Fs(dz) = δ1(dz) is a degenerate distribution at 1;
(ii) λ̄0(s) ≡ λ̄0 is a constant function on [0,∞) for some constant λ̄0 > 0; and

(iii) ||H̃||1 =
∫ ∞

0
H̃(u)du < 1.

The last condition (iii) is referred to as the stability condition in the literature, see for example,
[1, 2, 6]. Under condition (iii), there is a unique stationary version of the Hawkes process, whose
realizations of point sets are invariant under simultaneous shifts of their time arguments. Recalling
the intuitive interpretation of U1t in (2.3), we have in this special case,

lim
t→∞

U1t(s) =
1

1− ||H̃||1
for every s > 0, that is, every family is finitely numbered.

Since N̂ is a Gaussian process, the limit N̂◦, if it exists, must also be a Gaussian process, and
hence, we only need to check the limits of the covariance functions in Theorem 2.2. We show the
following convergence result and characterize the limit processes as an Itô integral with respect
to a two-sided Brownian motion. It is worth noting that the covariance function of N̂◦(t) in
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(3.9) coincides with the result in Theorem 2 of [21] (in particular, our expression of the covariance

function of N̂◦ (3.9) is equivalent to the second expression in (3.10) given in [21]). It is no surprising
since the Hawkes process tends to stationarity as the reference point goes to infinity. The model
setup in [21] starts from stationarity at time zero and the proof technique relies heavily on the
process in stationarity. The proof of the following proposition is given in Section 6.1. In the proof
of the equivalence of the covariance function of the limit process between our expression (3.9) and

the expression (3.10) given in [21], an expression for φ̂ in (3.11) in terms of the renewal density ψ
in (2.3) is found, and where ψ in this case (with m1 = 1 under the above condition (i)) is given by

ψ(s + u, s) = ψ(u) = H̃(u) + ψ ∗ H̃(u), for s, u > 0. (3.7)

Proposition 3.1. Let N̂ be the scaled limit process in Theorem 2.3. We have for all t ≥ 0,

(

N̂(t+ h)− N̂(h)
)

⇒h N̂
◦(t)

d
=W (t) +

∫ ∞

−∞

(

∫ t

0
ψ(u − v)du

)

W (dv), (3.8)

as h→ ∞, where W = {W (t), t ∈ R} is a two-sided Brownian motion with W (0) = 0 and variance
λ̄0

1−||H̃||1
. The covariance function of the process N̂◦ is given by

Cov
(

N̂◦(t), N̂◦(s)
)

=
λ̄0

1− ||H̃ ||1

∫

R

(

1t(v) +

∫ t

0
ψ(u− v)du

)(

1s(v) +

∫ s

0
ψ(u− v)du

)

dv (3.9)

= λ̄0

(

∫ t∨s

t∧s
du

∫ t∧s

0
φ̂(u− v)dv +K(t ∧ s)

)

, (3.10)

where φ̂ : [0,∞) → [0,∞) is defined as a function satisfying the integral equation:

φ̂(t) =
H̃(t)

1− ||H̃ ||1
+

∫ ∞

0
H̃(t+ u)φ̂(u)du +

∫ t

0
H̃(t− u)φ̂(u)du, (3.11)

and K(t) is given by

K(t) =
t

1− ||H̃ ||1
+ 2

∫ t

0

∫ u

0
φ̂(u− v)dvdu.

We also have for t ≥ 0, as h→ ∞,

(

X̂(t+ h)− X̂(h)
)

⇒h X̂
◦(t)

d
=W (t),

(

Ŷ (t+ h)− Ŷ (h)
)

⇒h Ŷ
◦(t)

d
=

∫ ∞

−∞

(

∫ t

0
ψ(u− v)du

)

W (dv).
(3.12)

3.1.2. The case where H̃ ≡ 1, self-exciting with marks only. The condition (iii), ||H||1 < 1, in
the previous discussion is crucial in deriving stability, under which the family originated from a
newborn is finite. In this subsection, we consider the case that H(t, z) = z and λ̄0(·) ≡ λ̄0. In this
case the stability condition fails to hold, the point (s, z) in the system will produce new points in
every exponential distributed time with parameter λ̄0z, which makes the family infinite. That may
be the reason why this special case has never been considered in the literature (to the best of our
knowledge). It can be checked that neither the FLLN and FCLT holds in the conventional scaling
regime as in (2.22) and (2.29). However, in the large intensity regime, the FLLN and FCLT we
have established apply to this setting. We next discuss what the limits simplify to in this special
case.

First, we have from Remark 3.1 for all t ≥ s ≥ 0,

G(t, s) = m1,s and ψ(t, s) = m1,s exp
(

∫ t

s
m1,udu

)

, (3.13)
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which gives

1 +

∫ t

s
ψ(t, u)du = exp

(

∫ t

s
m1,udu

)

. (3.14)

Therefore, applying Theorem 2.1,

N̄(t) = λ̄0

∫ t

0
exp

(

∫ u

0
m1,vdv

)

du. (3.15)

In the case of stationary marks, we obtain N̄(t) = λ̄0
m1

(em1t − 1). It is clear that unlike (2.21), we
have

1

n
N̄(nt) → λ̄0 exp

(

∫ ∞

0
m1,udu

)

as n→ ∞, which is finite if and only if
∫∞
0 m1,udu <∞.

We can also characterize N̂ as follows whose proof is given in subsection 6.1.

Corollary 3.2. Let η(t) :=

∫ t

0
m1,udu for t > 0. Then the covariance for N̂ is given by

R̂(t, s) = λ̄0

∫ t∧s

0
eη(u)du+ λ̄0

∫ t

0
eη(v)dv

∫ s

0
eη(v

′)dv′
∫ v∧v′

0
m2,ue

−η(u)du,

+ λ̄0

∫ s

0
eη(u)η(t ∧ u)du+ λ̄0

∫ t

0
eη(u)η(s ∧ u)du.

(3.16)

If further the mark is stationary and we have m1,u = m1 and m2,u = m2, then

R̂(t, s) = λ̄0
m2 −m2

1

m2
1

(em1(t∧s) − 1

m1
−
(

em1t + em1s
)

(t ∧ s)
)

+ λ̄0
m2

m3
1

(

em1(t+s) − em1(t∨s)
)

.

Motivated by the previous stationary limit in Proposition 3.1, we are also interested in the limit
of (3.6) for the example in this subsection. The proof is also given in subsection 6.1.

Proposition 3.2. (i) If η(∞) <∞ and
∫∞
0 m2,vdv <∞, we have

(

N̂(t+ h)− N̂(h)
)

⇒h B
(

λ̄0e
η(∞) · t

)

+ t ·
(

λ̄0e
2η(∞)

∫ ∞

0
m2,ve

−η(v)dv
)1/2

· ξ , (3.17)

where ξ is a standard normal variable, independent of the standard Brownian motion B.

(ii) If η(∞) = ∞ and
∫∞
0 m2,ve

−η(v)dv <∞, letting k(t) be the unique solution to
∫ k(t)
0 eη(u)du =

t for all t > 0, we have

(

N̂(k(t+ h))− N̂(k(h))
)

⇒h B(λ̄0t) + t ·
(

λ̄0

∫ ∞

0
m2,ve

−η(v)dv
)1/2

· ξ, (3.18)

where ξ is a standard normal variable, independent of the standard Brownian motion B.
In particular, if Fu = F for some common distribution function F on R+, then we can

take k(t) = ln(tm1)
m1

where m1 =
∫∞
0 zF (dz) so that the limit above reads

(

N̂(k(t+ h)) − N̂(k(h))
)

⇒h B(λ̄0t) + t ·
( λ̄0m2

m1

)1/2
· ξ. (3.19)
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3.2. Indicator-type non-decomposable self-exciting functions. In this subsection, we con-
sider an indicator-type non-decomposable self-exciting function H, where the associated functions
are denoted similarly with subscripts.

More specifically, we firstly take H(t, z) = H−(t, z) := H01(t ∈ [0, z)) for t, z ∈ R+. By scaling
the functions and the process, without loss of generality, we take H0 = 1. Recall the immigration-
birth representation of the Hawkes process N in Section 2.1. The process Nl+1(t) is the number of
children (points) produced in the (l+1)th generation with the intensity process λl(t) given in (2.2),
that is,

λl(t) =

Nl(t)
∑

j=1

1(0 ≤ t− τlj < Zlj). (3.20)

This may be interpreted that the birth rate of individuals in the lth generation is only positive if
their “age” t− τlj is less than Zlj . Thus, the marks Zlj can be regarded as a random threshold of
the age of individuals at which they will stop reproducing. Thus, the model can be regarded as
an immigration-birth model with “ceasing” reproduction. It can be found that Assumption 1 are
always satisfied. We only need to assume the locally tightness of {Fu(·), u ≥ 0}, that is

lim
K→∞

sup
u∈[0,T ]

∫

|z|>K
Fu(dz) = 0 for every T > 0,

to satisfy Assumption 3.
Then we take H(t, z) = H+(t, z) := 1(t ≥ z) for t, z ∈ R+ under the same condition above, thus

λl(t) =

Nl(t)
∑

j=1

1(t− τlj ≥ Zlj). (3.21)

This may be interpreted that the birth rate of individuals in the lth generation is only positive if
their “age” t− τlj is greater than or equal to Zlj. Thus, the marks Zlj can be regarded as a random
threshold of the age of individuals at which they will start reproducing. Thus, the model can be
regarded an immigration-birth model with “delayed” reproduction.

For the last, we further take H(t, z) = H(t, (z1, z2)) = H̃(t)1(z1 ≤ t < z2) for t ≥ 0 and
z = (z1, z2) ∈ R

2
+ being a two-dimensional mark, which is referred to as the case of varying

reproduction rates with the presence of “ceasing” and “delayed” reproduction, that is,

λ(t) = λ0(t) +

N(t)
∑

k=1

H̃(t− τk)1(Z
(1)
k ≤ t− τk < Z

(2)
k ). (3.22)

In additional to the locally tightness of {Fu(·), u ≥ 0}, we further assume the reproduction function

H̃ being locally squared integrable to satisfy Assumptions 1 and 3. Since z1 and z2 representing
the lower and the upper bound of age for reproduction, we always understand P

(

Z2 > Z1 ≥ 0
∣

∣τ =

s
)

= 1 for all s > 0 for the mark’s distribution in (2.1).
The phenomenon of delayed and/or ceasing reproduction is common in biology, see, e.g., [41, 33,

16, 40]. The nonstationarity of the thresholds representing the delay or ceasing can be because of
seasonal birth or environmental effects [47, 49]. There might be potential applications of Hawkes
processes with such immigration-birth representations of delayed and/or ceased reproductions in
biological or population dynamics.

Example 3.1. In these models, the marks are associated with the ‘age’ thresholds of delayed and/or
creasing reproductions. The piece-wise type of non-stationary distributions Ft(·) described in Ex-
ample 2.1 can be clearly used in this setting to capture seasonal birth or environmental effects. We

describe another type of non-stationarity: assume that Zk(τk) =
∫ τk+Z∗

k
τk

ζ(u)du where ζ(·) is a de-

terministic function. Suppose that Z∗
k ’s are iid with c.d.f. F . Then the distribution of Zk(τk) given
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τk = t is Ft(z) = F
( ∫ t+z

t ζ(u)du
)

. One may interpret that the aging process is at a time-varying
speed ζ(·), so that the realized ‘delay’ or ‘ceasing’ thresholds have a non-stationary distribution.

3.2.1. The case of “ceasing” reproduction. In this case, H−(v − u, z) = 1
(

v ∈ [u, u + z)
)

for all

v, u, z > 0. Recalling Gk and ψ defined in (2.3), we have G−(t, s) = F c
s (t− s) for t > s > 0, and

ψ−(t, s) :=
∑

k≥1

Gk
−(t, s) = F c

s (t− s) +

∫ t

s
ψ−(t, u)F

c
s (u− s)du.

It follows from Remark 2.6 that for t > u > 0 and z > 0,

HU1t(u, z) =
∫ t

0

(

1 +

∫ t

0
ψ−(w, v)dw

)

1(z > v − u)1(v ≥ u)dv.

Corollary 3.3. The covariance functions of (X̂, Ŷ ) are given by

Cov
(

X̂(t), X̂(s)
)

=

∫ t∧s

0

(

λ̄0(u) +

∫ u

0
ψ−(u, v)λ̄0(v)dv

)

du,

Cov(X̂(t), Ŷ (s)) =

∫ t

0

(

∫ s

0
ψ−(w, u)dw

)(

λ̄0(u) +

∫ u

0
ψ−(u, v)λ̄0(v)dv

)

du,

and

Cov(Ŷ (t), Ŷ (s)) =

∫ t

0
dv

∫ s

0
dv′
(

1 +

∫ t

0
ψ−(w, v)dw

)(

1 +

∫ s

0
ψ−(w, v

′)dw
)

×
∫ v∧v′

0
F c
u

(

(v ∨ v′)− u
)

(

λ̄0(u) +

∫ u

0
ψ−(u,w)λ̄0(w)dw

)

du.

In the case of i.i.d. marks, that is Fs = F for all s > 0, we have G−(t, s) = F c(t− s),

ψ−(t, s) = ψ−(t− s) = F c(t− s) + ψ− ∗ F c(t− s) for t > s > 0,

and ψ− is the renewal density corresponding to F c (which can be regarded as an improper proba-
bility density function F c). Then

Cov
(

X̂(t), X̂(s)
)

= λ̄0 ∗ 1(t ∧ s) + λ̄0 ∗ ψ− ∗ 1(t ∧ s),

Cov(X̂(t), Ŷ (s)) =

∫ t

0

(

ψ− ∗ 1(s − u)
)(

λ̄0(u) + ψ− ∗ λ̄0(u)
)

du,

Cov(Ŷ (t), Ŷ (s)) =

∫ t

0
dv

∫ s

0
dv′
(

1 + ψ− ∗ 1(t− v)
)(

1 + ψ− ∗ 1(s− v′)
)

×
∫ v∧v′

0
F c
(

(v ∨ v′)− u
)(

λ̄0(u) + ψ− ∗ λ̄0(u)
)

du.

In the following, similar to Proposition 3.1, we present the asymptotic behavior of N̂ at infinity,
with time scaled down by the speed of N̄ in Theorem 2.1.

Proposition 3.3. Assume that λ̄0(t) ≡ λ̄0 for some constant λ̄0 > 0. Let m1 =
∫∞
0 ydF (y) and

m2 =
∫∞
0 y2dF (y). The following hold.

(i) If m1 ∈ (0, 1), then we have

N̄(t+ h)− N̄(h) →h
λ̄0

1−m1
t,

N̂(t+ h)− N̂(h) ⇒h W1(t) +W2(t),
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where
(

W1,W2

)

is a two-dimensional Gaussian process such that

Cov
(

W1(t),W1(s)
)

=
λ̄0

1−m1
t ∧ s,

Cov
(

W1(t),W2(s)
)

=
λ̄0

1−m1

∫ t

0
du

∫ s

0
ψ−(v − u)dv,

Cov
(

W2(t),W2(s)
)

=
λ̄0

1−m1

∫ t

−∞
dv

∫ s

−∞
dv′
∫ ∞

|v−v′|
F c(u)du

×
(

1(v ≥ 0) +

∫ t

0
ψ−(w − v)dw

)(

1(v′ ≥ 0) +

∫ s

0
ψ−(w − v′)dw

)

.

(ii) If m1 = 1 and m2 <∞, then we have

N̄
(
√
t+ h

)

− N̄(
√
h) →h

λ̄0
m2

t,

N̂
(
√
t+ h

)

− N̂(
√
h) ⇒h

√

λ̄0
m2

B(t) +

√

λ̄0
m2

t× ξ,

where ξ is a standard normal variable, independent of the standard Brownian motion B.

(iii) If m1 > 1, letting ρ− > 0 be the constant such that

∫ ∞

0
e−ρ−yF c(y)dy = 1, and defining

f(ρ−) := ρ2−
∫∞
0 ye−ρ−yF c(y)dy, then we have

N̄
( ln(t+ h)

ρ−

)

− N̄
( lnh

ρ−

)

→h
λ̄0

f(ρ−)
t,

N̂
( ln(t+ h)

ρ−

)

− N̂
( lnh

ρ−

)

⇒h

√

λ̄0
f(ρ−)

B(t) +

√

λ̄0
f(ρ−)

t× ξ,

where ξ is a standard normal variable, independent of the standard Brownian motion B.

3.2.2. The case of “delayed” reproduction. In this case, H+(v−u, z) = 1
(

v ≥ z+u
)

for all u, v, z > 0.
We have G+(t, s) = Fs(t− s), and

ψ+(t, s) :=
∑

k≥1

Gk
+(t, s) = Fs(t− s) +

∫ t

s
ψ+(t, u)Fs(u− s)du,

for t > s > 0. It follows from Remark 2.6 that for t > u > 0 and z > 0,

HU1t(u, z) =
∫ t

0

(

1 +

∫ t

0
ψ+(w, v)dw

)

1(z ≤ v − u)dv.

Corollary 3.4. The covariance functions of (X̂, Ŷ ) are given by

Cov
(

X̂(t), X̂(s)
)

=

∫ t∧s

0

(

λ̄0(u) +

∫ u

0
ψ+(u, v)λ̄0(v)dv

)

du,

Cov(X̂(t), Ŷ (s)) =

∫ t

0

(

∫ s

0
ψ+(w, u)dw

)(

λ̄0(u) +

∫ u

0
ψ+(u, v)λ̄0(v)dv

)

du,

and

Cov(Ŷ (t), Ŷ (s)) =

∫ t

0
dv

∫ s

0
dv′
(

1 +

∫ t

0
ψ+(w, v)dw

)(

1 +

∫ s

0
ψ+(w, v

′)dw
)

×
∫ v∧v′

0
Fu

(

(v ∧ v′)− u
)

(

λ̄0(u) +

∫ u

0
ψ+(u,w)λ̄0(w)dw

)

du.
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In the case of i.i.d. marks, that is Fs = F for all s > 0, we have G+(t, s) = F (t− s),

ψ+(t, s) = ψ+(t− s) = F (t− s) + ψ+ ∗ F (t− s) for t > s > 0,

and ψ+ is the renewal density corresponding to F (which can be regarded as an improper probability
density function). Then

Cov
(

X̂(t), X̂(s)
)

= λ̄0 ∗ 1(t ∧ s) + λ̄0 ∗ ψ+ ∗ 1(t ∧ s),

Cov(X̂(t), Ŷ (s)) =

∫ t

0

(

ψ+ ∗ 1(s− u)
)(

λ̄0(u) + ψ+ ∗ λ̄0(u)
)

du,

Cov(Ŷ (t), Ŷ (s)) =

∫ t

0
dv

∫ s

0
dv′
(

1 + ψ+ ∗ 1(t− v)
)(

1 + ψ+ ∗ 1(s− v′)
)

×
∫ v∧v′

0
F
(

(v ∧ v′)− u
)(

λ̄0(u) + ψ+ ∗ λ̄0(u)
)

du.

(3.23)

We also have the following asymptotic behavior of N̂ along with N̄ .

Proposition 3.4. Assume that λ̄0(t) ≡ λ̄0 for some constant λ̄0 > 0. Let ρ+ be the constant such

that

∫ ∞

0
e−ρ+yF (y)dy = 1 and define f(ρ+) := ρ2+

∫∞
0 ye−ρ+yF (y)dy. Then we have

N̄
( ln(t+ h)

ρ+

)

− N̄
( lnh

ρ+

)

→h
λ̄0

f(ρ+)
t,

N̂
( ln(t+ h)

ρ+

)

− N̂
( lnh

ρ+

)

→h

√

λ̄0
f(ρ+)

B(t) +

√

λ̄0
f(ρ+)

√

∫∞
0 e−2ρ+yF (y)dy

1−
∫∞
0 e−2ρ+yF (y)dy

t× ξ,

where ξ is a standard normal variable, independent of the standard Brownian motion B.

3.2.3. Varying reproduction rates in the cases of “ceasing” and “delayed” reproductions. In both
cases of “ceasing” and “delayed” reproductions above, the reproduction rates are assumed to be
constant H0 during the active reproduction periods. However, the reproduction rates may depend
on the “ages” of individuals during the active reproduction periods. Specifically, the self-exciting
function H is given by H(t, z) = H̃(t)1(t ∈ [0, z)) and H(t, z) = H̃(t)1(t ≥ z) for a nonneg-

ative measurable function H̃ : R+ → R+, respectively, in the cases of “ceasing” and “delayed”
reproductions. Thus, the intensity processes λl(t) in (3.20) and (3.20) in the immigration-birth
representations are, respectively, given by

λl(t) =

Nl(t)
∑

j=1

H̃(t− τlj)1(0 ≤ t− τlj < Zlj), (3.24)

and

λl(t) =

Nl(t)
∑

j=1

H̃(t− τlj)1(t− τlj ≥ Zlj). (3.25)

There may be many possibilities for the function H̃, representing the varying nature of the reproduc-
tion rate as the “age” increases. The limit processes (X̂, Ŷ ) in Theorem 2.2 have covariance func-

tions as given in Remark 2.6. In the case of “ceasing” reproduction with H(t, z) = H̃(t)1(t ∈ [0, z)),

we have G(t, s) = H̃(t− s)F c
s (t− s) for t > s,

ψ(t, s) = H̃(t− s)F c
s (t− s) +

∫ t

s
ψ(t, u)H̃(u− s)F c

s (u− s)du,
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and

HU1t(u, z) =
∫ t

0

(

1 +

∫ t

0
ψ(w, v)dw

)

H̃(v − u)1(v ∈ [u, u+ z))dv.

Thus, the covariance functions Cov(X̂(t), X̂(s)) and Cov(X̂(t), Ŷ (s)) are as given in Remark 2.6
using the function ψ(t, s) above, while the covariance function

Cov
(

Ŷ (t), Ŷ (s)
)

=

∫ t

0
dv

∫ s

0
dv′
(

1 +

∫ t

0
ψ(w, v)dw

)(

1 +

∫ t

0
ψ(w, v′)dw

)

×
∫ v∧v′

0
H̃(v − u)H̃(v′ − u)F c

u

(

(v ∨ v′)− u
)

(

λ̄0(u) +

∫ u

0
ψ(u, v)λ̄0(v)dv

)

du.

Similarly for the case of “delayed” reproduction.

A more general model is a Hawkes process N(t) with the following intensity process:

λ(t) = λ0(t) +

N(t)
∑

k=1

H̃(t− τk)1(Z
(1)
k ≤ t− τk < Z

(2)
k ), t ≥ 0. (3.26)

Here we assume that the pairs
{(

Z
(1)
k , Z

(2)
k

)

, k ∈ N
}

are i.i.d. random vectors on R
2
+ with P

(

Z
(2)
k >

Z
(1)
k

)

= 1. We denote by F (dz1, dz2) the joint c.d.f. of
(

Z
(1)
k , Z

(2)
k

)

and F1 and F2 the associated

marginal c.d.f. In this model, the indicator function 1(Z
(1)
k ≤ t − τk < Z

(2)
k ) means that the self-

exciting function H̃ takes effects only when the “age” t− τk of the event k is bigger than or equal

to Z
(1)
k and less than Z

(2)
k . The variable Z

(1)
k can be regarded as the “delay” for the event k to

take effect while Z
(2)
k can be regarded as the threshold of the “age” of the event k to stop exciting.

Then, it is evident that Z
(2)
k −Z

(1)
k can be regarded as the active exciting duration for the event k.

For this general model, we have for t ≥ 0,

H
(

t, (z1, z2)
)

= H̃(t)1(z1 ≤ t < z2) = H̃(t)
(

1(z1 ≤ t)− 1(z2 ≤ t)
)

,

ψ(t+ s, s) = ψ(t) = H̃(t)
(

F1(t)− F2(t)
)

+

∫ t

0
ψ(t− u)H̃(u)

(

F1(u)− F2(u)
)

du.

Proposition 3.5. Let (X̂, Ŷ ) be associated the limit Gaussian process of Hawkes with intensity in

(3.26). Then the covariance functions of (X̂, Ŷ ) are given by the following: for t, s ≥ 0,

Cov(X̂(t), X̂(s)) =

∫ t∧s

0

(

λ̄0(u) + ψ ∗ λ̄0(u)
)

du ,

Cov(X̂(t), Ŷ (s)) =

∫ t

0
1 ∗ ψ(s − u)

(

λ̄0(u) + ψ ∗ λ̄0(u)
)

du ,

Cov
(

Ŷ (t), Ŷ (s)
)

=

∫ t

0
dv

∫ s

0
dv′
(

1 + ψ ∗ 1(t− v)
)(

1 + ψ ∗ 1(s − v′)
)

∫ v∧v′

0

[

(

λ̄0(u) + ψ ∗ λ̄0(u)
)

× H̃(v − u)H̃(v′ − u)
(

F1(v ∧ v′ − u)− F (v ∧ v′ − u, v ∨ v′ − u)
)

]

du.

4. Well-definedness of the processes X,Y and N

Since the sub-processes are defined related to inhomogeneous Poisson process with independent
marks, we first give the following characterization, which is a direct result of the exponential
formula for Poisson random measure, see for example [3, Chapter O.5]. As a consequence, the
well-posedness and finiteness statements in the previous sections are ensured under Assumption
1(i), which is assumed throughout the paper.
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Proposition 4.1. Let (A,Z) be a marked Poisson process on the product space R+ × R
d with

characteristic measure µ(s)dsFs(dz). Let {τj , Zj ; j ≥ 1} be the occurrence times and the associated

marks. For any bounded measurable function f(s, z) on R+ ×R
d such that f(s, z) = 0 for all large

s > 0 and z ∈ R
d, we have for all θ ∈ R,

E

[ ∞
∑

j=1

f(τj, Zj)

]

=

∫ ∞

0

∫

Rd

f(s, z)µ(s)dsFs(dz),

Var

( ∞
∑

j=1

f(τj, Zj)

)

=

∫ ∞

0

∫

Rd

f2(s, z)µ(s)dsFs(dz),

E

[

exp

(

iθ

∞
∑

j=1

f(τj, Zj)

)]

= exp

(
∫ ∞

0

∫

Rd

(

eiθf(s,z) − 1
)

µ(s)dsFs(dz)

)

.

(4.1)

Let g(s, z) be another bounded measurable function, we have

Cov

( ∞
∑

j=1

f(τj, Zj),
∞
∑

j=1

g(τj , Zj)

)

=

∫ ∞

0

∫

Rd

f(s, z)g(s, z)µ(s)dsFs(dz). (4.2)

For any f ∈ Bb,c, recalling λlf in (2.9) and Hf in (2.7), since {Nl, Zlj , j ≥ 1} fulfills the condition
of Proposition 4.1 under P(·|Fl−1), we obtain

E[λlf
∣

∣Fl−1] =

∫ ∞

0

∫

Rd

Hf(s, z)λl−1(s)dsFs(dz) =

∫ ∞

0
λl−1(s)Gf(s)ds = λl−1Gf ∈ Gl−1,

which gives (2.10) in Lemma 2.1. Moreover, (2.11) follows from the following

Var(λlf) =

l
∑

k=1

E

[(

E
[

λlf
∣

∣Fk

]

− E
[

λlf
∣

∣Fk−1

]

)2]

=
l
∑

k=1

E

[
∫ ∞

0
λl−k(s)ds

∫

Rd

Fs(dz)
(

HGk−1f(s, z)
)2
]

=

l
∑

k=1

∫ ∞

0
Gl−k

(

∫

Rd

(

HGk−1f
)2
(·, z)F·(dz)

)

(s)λ0(s)ds.

Lemma 4.1. Let G and H be defined in (2.7) and ϕT be the function in Assumption 1(i).

(i) Under Assumption 1(i), for every nonnegative f, g ∈ Bb[0, T ], we have

Gkf(s) ≤
∫ T

0
f(u)ϕ∗k

T (u− s)du,

∫

Rd

Hf(s, z)Hg(s, z)Fs(dz) ≤
(
∫ T

0
f(u)ϕT (u− s)du

)(
∫ T

0
g(u)ϕT (u− s)du

)

for all s ∈ [0, T ] and k ≥ 1, where ϕ∗k
T denotes the kth convolution of ϕT . The function

ΦT (t) :=
∑

k≥1 ϕ
∗k
T (t) is a well-defined integrable function on [0, T ].

(ii) If, in addition, Assumption 1(ii) holds, then ΦT ∈ L2[0, T ].

Proof. Since f ∈ Bb[0, T ], we have Gf(s) =
∫ T
0 f(u)G(u, s)du =

∫ T
0 f(u)

∫

Rd H(u − s, z)Fs(dz).
Under Assumption 1(i), applying the Cauchy–Schwarz inequality, we have

Gf(s) ≤
∫ T

0
f(u)du

(
∫

Rd

H2(u− s, z)Fs(dz)

)1/2

≤
∫ T

0
f(u)ϕT (u− s)du.

The inequality for Gkf is proved by induction and the fact that H(u− v, z) = 0 for u < v.
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Similarly, we have from Fubini’s theorem and the Cauchy–Schwarz inequality that
∫

Rd

Hf(s, z)Hg(s, z)Fs(dz) =

∫ T

0

∫ T

0
f(u)g(v)dudv

(
∫

Rd

H(u− s, z)H(v − s, z)Fs(dz)

)

≤
∫ T

0

∫ T

0
f(u)g(v)dudvϕT (u− s)ϕT (v − s)

=

(
∫ T

0
f(u)ϕT (u− s)du

)(
∫ T

0
g(u)ϕT (u− s)du

)

.

Denoting by ϕδ,T (t) = e−δtϕT (t) for δ > 0, such that
∫ T
0 e−δuϕT (u)du = p < 1. It is true that

∫ T
0 ϕT (t)dt <∞ if and only if

∫ T
0 ϕδ,T (t)dt <∞, and ϕ∗k

T (t) = eδtϕ∗k
δ,T (t) for k ≥ 1. Thus,

∫ T

0
ϕ∗k
T (t)dt ≤ eδT

∫ T

0
ϕ∗k
δ,T (t)dt ≤ eδT pk,

and
∫ T

0
ΦT (t)dt =

∫ T

0

∑

k≥1

ϕ∗k
T (t)dt ≤ eδT

p

1− p
<∞.

Therefore, ΦT is well defined and integrable on [0, T ].
If, in addition, Assumption 1(ii) holds, that is, ϕT ∈ L2[0, T ], then for every k, l ≥ 1, we have

∫ T

0
ϕ
∗(k+1)
T (t)ϕ

∗(l+1)
T (t)dt =

∫ T

0

∫ T

0
ϕ∗k
T (s)dsϕ∗l

T (r)dr

∫ T

0
ϕT (t− s)ϕT (t− r)dt

≤
(
∫ T

0
ϕ∗k
T (s)ds

)(
∫ T

0
ϕ∗l
T (r)dr

)(
∫ T

0
ϕ2
T (t)dt

)

where ϕT (u) = 0 for u < 0 is used in the first identity, and the Cauchy–Schwarz inequality is
used in the second line. Here the inequality also holds for k, l ≥ 0 with the understanding that
∫ T
0 ϕ∗0

T (u)du = 1. The square integrability of ΦT is thus proved by Fubini’s theorem. �

Applying Lemma 4.1(i) and using Proposition 4.1, we have the following estimation for test
functions in Bb[0, T ] under Assumption 1(i), which will be used to prove the well-posedness in
Proposition 4.2.

Corollary 4.1. Under Assumption 1(i), for every nonnegative f, g ∈ Bb[0, T ], we have

Uf(s) =
∑

l≥0

Glf(s) ≤ f(s) +

∫ T

0
f(u)ΦT (u− s)du.

Thus, Uf ∈ Bb[0, T ] is well defined. Applying Lemma 4.1(i) to (2.10) and (2.11), we obtain

E
[

λlf
]

≤
∫ T

0
λ0(u)du

(
∫ T

0
f(v)ϕ∗l

T (v − u)dv

)

=

∫ T

0
f(u)ϕ∗l

T ∗ λ0(u)du,

Cov(λlf, λlg) ≤
l
∑

k=1

∫ T

0

(
∫ T

0
f(v)ϕ∗k

T (v − u)dv

∫ T

0
g(v)ϕ∗k

T (v − u)dv

)

ϕ
∗(l−k)
T ∗ λ0(u)du,

(4.3)

where we understand that ϕ∗0
T ∗ λ0(u) = λ0(u) and the inequalities above hold for all l ≥ 0.

With Lemmas 2.1 and 4.1, we can then prove Proposition 2.1, but we like to give a more detailed
version as follows.

Proposition 4.2. Under Assumption 1(i), Yl,Ml,X, Y in (2.4) are well-defined stochastic pro-
cesses, X ∈ D and Y, Yl ∈ C for all l ∈ N, and Yl can be written as (2.13).
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Proof. Applying Corollary 4.1 to (2.13) directly, we see that λlU1t is well-defined for every l ≥ 0.
Moreover, for 0 ≤ s < t ≤ T , let 1s,t(u) = 1t(u)− 1s(u) = 1(u ∈ (s, t]), we have

0 ≤ GU1t(u)− GU1s(u) = GU1s,t(u) ≤
∫ ∞

0
1s,t(v)ΦT (v − u)dv =

∫ t

s
ΦT (v − u)dv.

Thus, t→ GU1t(u) is uniformly equicontinuous on [0, T ], which shows

Yl(t) =

∫ ∞

0
λl(u)

(

GU1t(u) + 1t(u)
)

du−
∫ ∞

0
λl−1(u)GU1t(u)du

is actually the difference of two increasing and continuous functions.
Applying Fubini’s theorem, we have from (4.3),

E

[

∑

l≥1

∫ T

0
λl(u)du

]

=
∑

l≥1

E
[

λl1T
]

≤
∫ T

0
ΦT ∗ λ0(u)du <∞,

which gives P-a.s.
∑

l≥1

∫ T
0 λl(u)du is finitely valued. Thus,

∑

l≥1 λlU1t is well-defined as well as

Y (t) for every t ∈ [0, T ], and Y ∈ C by the same reasoning above.
On the other hand, since E

[

Xl(t)
∣

∣Fl−1

]

= 0, we have for every t ∈ [0, T ],

E

[(

∑

l≥1

Xl(t)
)2]

=
∑

l≥1

E
[

X2
l (t)

]

=
∑

l≥1

E
[

λl−11t
]

≤
∫ t

0

(

λ0(u) + ΦT ∗ λ0(u)
)

du,

which shows that X(t) =
∑

l≥1Xl(t) in L2(P). Since X2
l is an {Fl(t)}t≥0-submartingale under

P(·|Fl−1), by applying Doob’s maximal inequality, we have

ε2P
(

max
t∈[0,T ]

X2
l (t) > ε2

)

≤ E
[

X2
l (T )

]

= E
[

λl−11T
]

≤
∫ T

0
ϕ
∗(l−1)
T ∗ λ0(u)du ≤ eδT pl−1

∫ T

0
λ0(u)du

for δ > 0 and p ∈ (0, 1) defined in the proof of Lemma 4.1. Let θ ∈ (p1/2, 1). We then obtain

P

(

sup
t∈[0,T ]

∣

∣

∣

∣

∑

l≥m

Xl(t)

∣

∣

∣

∣

≥ ε

)

≤ P

(

∑

k≥0

sup
t∈[0,T ]

∣

∣Xm+k(t)
∣

∣ ≥
∑

k≥0

εθk

1− θ

)

≤
∑

k≥0

P

(

sup
t∈[0,T ]

∣

∣Xm+k(t)
∣

∣ ≥ εθk

1− θ

)

≤ pm−1

(

(

1− θ

ε

)2

eδT
∫ T

0
λ0(u)du ·

∑

k≥0

(pθ−2)k

)

. (4.4)

Applying the Borel–Cantelli lemma, we conclude that X is the limit of
∑m

l=1Xl a.s.-P under the
uniform topology and thus X ∈ D. �

5. Proofs of the functional limit theorems

This section is dedicated to the proofs of our main results. Throughout this section, T > 0 is a
fixed constant, we focus on the interval [0, T ] and always assume t, s ≤ T . We write ϕ(t) = ϕT (t)
and ΦT (t) = Φ(t) in Assumption 1 for this T , and further define ϕ(t) = 0 for t < 0 w.l.o.g., that is

∫

Rd

H2(t− s, z)Fs(dz) ≤ ϕ2(t− s) for all t, s ∈ [0, T ].
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We mainly focus on proving the FCLT for N̂n, Theorem 2.2 and 2.3, and the FWLLN for N̄ ,
Theorem 2.1 is proved thereafter. Recalling the identities for the pre-limit process N̂n in (2.18)

N̂n(t) =
∑

l≥1

M̂n
l (t) =

∑

l≥1

(

X̂n
l (t) + Ŷ n

l (t)
)

= X̂n(t) + Ŷ n(t)

and their definitions in (2.17), as well as H,G,U ,1t and φt defined in (2.7) and (2.3), it holds

that 1t(·),Gk1s(·),U1t(·) ∈ Bb[0, T ]. Instead of working on N̂ directly, our proof starts from the

convergence of subprocess M̂n
l = X̂n

l +Ŷ
n
l in Section 5.1, and then the convergence of N̂n = X̂n+Ŷ n

in Section 5.2, which is defined as the infinite sum of the subprocesses. Since X̂n
l and Ŷ n

l are highly
dependent but have nice path property as shown in Proposition 4.2, it is more convenient to work
on the tightness of

(

X̂n
l , Ŷ

n
l

)

, and so is the joint discussion over l ∈ N. Specifically, the proof of

the convergence of the processes N̂n proceeds in the following steps:

Step 1: The existence of the limit Gaussian processes M̂l, N̂ and X̂l, Ŷl with sample paths in C

(Lemmas 5.1 and 5.2). Given their covariance functions in (2.26) and (2.27), it is sufficient
to check their joint continuities.

Step 2: The convergence of finite dimensional distributions of M̂n
l to M̂l, and N̂

n to N̂ , respectively

(Lemmas 5.3 and 5.6). To overcome the dependency of M̂n
l among l ∈ N, the convergence

is proved under conditional probability.
Step 3: Verifying the tightness criterion with the modulus of continuity as in [4, Theorem13.3]

and completing the proofs (Lemmas 5.5 and 5.9, respectively). With the presence of non-
stationary distribution marks, the noises captured by Y can only be expressed as an integral
with respect to a martingale as stated in Section 2.2. This is in contrast with the stationary
case seen in Remark 2.4, where the process Y is expressed as a simple integral functional
of X. To tackle this challenge, we must investigate the moments of the increments of the
associated processes directly.

5.1. Convergence of the bracket processes. Notice that under Assumption 2,

sup
n

∫ T

0
λ̄n0 (u)du <∞ and sup

t∈[0,T ]

∣

∣

∣

∣

∫ t

0
λ̄n0 (u)du −

∫ t

0
λ̄0(u)du

∣

∣

∣

∣

→ 0,

and λ̄n0 and λ̄0 are deterministic functions. In the following, we understand that λ̄0(u) = 0 for
u < 0.

Lemma 5.1. Let R̂, R̂l be defined in (2.26) and (2.27). Under Assumption 1(i), for any δ > 0,

∑

l≥1

sup
|t−t′|≤δ,|s−s′|≤δ

t,t′,s,s′∈[0,T ]

∣

∣

∣
R̂l(t

′, s′)− R̂l(t, s)
∣

∣

∣
≤ 2

(

1 +

∫ T

0
Φ(u)du

)3

sup
t∈[0,T ]

∫ t

t−δ
λ̄0(u)du. (5.1)

If, in addition, Assumption 2 holds, there exist continuous modifications of the centered Gaussian
processes {M̂l, l ∈ N} and N̂ with covariance functions {R̂l, l ∈ N} and R̂, respectively.

Proof. Recalling the covariance functions R̂l, R̂ of the limit processes M̂l, N̂ , their existence as
Gaussian processes follows from the consistency condition for the Gaussian distributional property.
To prove M̂l, N̂ ∈ C, it is sufficient to check the inequalities in the lemma.

For every 0 ≤ t < t′ ≤ T and s ∈ [0, T ], we have by definition (2.3) that
(

φt′(v, z) − φt(v, z)
)

φs(v, z) =
(

1t,t′(v) +HU1t,t′(v, z)
)(

1s(v) +HU1s(v, z)
)

where 1t,t′(v) := 1t′(v)− 1t(v) = 1(v ∈ (t, t′]). Applying Lemma 4.1(i), we have

0 ≤
∫

Rd

(

φt′(v, z) − φt(v, z)
)

φs(v, z)Fv(dz)
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≤
(

1t,t′(v) +

∫ T

0
1t,t′(u)Φ(u− v)du

)(

1s(v) +

∫ T

0
1s(u)Φ(u− v)du

)

≤
(

1t,t′(v) +

∫ T

0
1t,t′(u)Φ(u− v)du

)(

1 +

∫ T

0
Φ(u)du

)

.

Therefore, for t, t′, s, s′ ∈ [0, T ] with t′ > t and s′ > s, we have from the inequality above that

R̂l(t
′, s′)− R̂l(t, s) = R̂l(t

′, s′)− R̂l(t, s
′) + R̂l(t, s

′)− R̂l(t, s)

≤
(

1 +

∫ T

0
Φ(u)du

)
∫ T

0
1t,t′(u)

(

ϕ∗(l−1) ∗ λ̄0(u) + Φ ∗ ϕ∗(l−1) ∗ λ̄0(u)
)

du

+

(

1 +

∫ T

0
Φ(u)du

)
∫ T

0
1s,s′(u)

(

ϕ∗(l−1) ∗ λ̄0(u) + Φ ∗ ϕ∗(l−1) ∗ λ̄0(u)
)

du

≤
(

1 +

∫ T

0
Φ(u)du

)2(∫ T

0
ϕ∗(l−1)(u)du

)(

sup
v∈[0,T ]

∫ T

0

(

1s,s′(u) + 1t,t′(u)
)

λ̄0(u− v)du

)

for every l ≥ 2, where we make use of the fact in the last inequality that for f, g, h ≥ 0,
∫ T

0
h(u)f ∗ g(u)du ≤

∫ T

0
f(u)du sup

v∈[0,T ]

∫ T

0
h(u)g(u − v)du,

and the inequality also holds for the case l = 1 with
( ∫ T

0 ϕ∗(0)(u)du
)

understood as 1. Similarly
for the other cases of (t, t′, s, s′). Summing over l ∈ N proves the inequality (5.1). �

Lemma 5.2. For the covariance functions for X̂l, Ŷl in Theorem 2.2, under Assumption 1(i), for
every δ > 0 and s, s′, t, t′ ∈ [0, T ] with |s′ − s| ∨ |t′ − t| ≤ δ,

∣

∣

∣
E
[

X̂l(t
′)X̂l(s

′)
]

− E
[

X̂l(t)X̂l(s)
]

∣

∣

∣
≤ 2

(
∫ T

0
ϕ∗(l−1)(u)du

)

× sup
v∈[0,T ]

∫ v

v−δ
λ̄0(u)du ,

∣

∣

∣
E
[

Ŷl(t
′)Ŷl(s

′)
]

− E
[

Ŷl(t)Ŷl(s)
]

∣

∣

∣
≤ 2

(
∫ T

0
Φ(u)du

)2(∫ T

0
ϕ∗(l−1)(u)du

)

× sup
v∈[0,T ]

∫ v

v−δ
λ̄0(u)du.

Thus we conclude the existence of continuous sample paths of (X̂l, Ŷl), summing over l = 1, 2, · · ·
also proves that for the processes (X̂, Ŷ ).

Proof. The inequality for the covariance functions for X̂l and Ŷl can be derived following the same
procedure as the proof of Lemma 5.1. Under Assumption 1(i), we have from Lemma 4.1 that
∑

l≥1

∫ T
0 ϕ∗(l−1)(u)du <∞ which gives the assertion for (X̂, Ŷ ). �

To prove the convergence of the finite-dimensional distributions of M̂n
l , the continuity theorem

for characteristic functions is used. Noticing that applying Proposition 4.1 to (2.17), the covariance

function of M̂n
l (t) is given by, for s, t ≥ 0,

R̂n
l (t, s) := E

[

M̂n
l (t)M̂

n
l (s)

]

= E
[

E
[

M̂n
l (t)M̂

n
l (s)

∣

∣F
n
l−1

]]

=

∫ ∞

0
Gl−1

(

∫

Rd

φt(·, z)φs(·, z)F·(dz)
)

(u)λ̄n0 (u)du→ R̂l(t, s)
(5.2)

where R̂l is defined in (2.27), as n→ ∞ under Assumption 2.

Lemma 5.3. Under Assumptions 1(i), 2 and 3, the finite-dimensional distributions of the processes

M̂n
l converge to those of M̂l, and the limit processes {M̂l, l ≥ 1} are mutually independent.



30 BO LI AND GUODONG PANG

Proof. We consider first the limit distribution of M̂n
l (t0) at fixed t0 ∈ [0, T ], l ≥ 1. We need the

following inequalities:
∣

∣eu − ev
∣

∣ ≤ |u− v| for all complex numbers u, v with ℜ(u),ℜ(v) ≤ 0, (5.3)

|eiu − 1− iu
∣

∣ ≤ 1

2
|u|2 and

∣

∣

∣
eiu − 1− iu+

u2

2

∣

∣

∣
≤ 1

6
|u|3, for all u ∈ R. (5.4)

Applying Proposition 4.1 to M̂n
l in (2.17), we have for all θ ∈ R,

E

[

exp(iθM̂n
l (t0)

)

∣

∣

∣
F

n
l−1

]

= exp

(
∫ T

0

∫

Rd

(

e
iθ√
n
φt0 (s,z) − 1− iθ√

n
φt0(s, z)

)

Fs(dz)λ
n
l−1(s)ds

)

.

Making use of (5.4), for every K̃1 > 0, we obtain that there are complex numbers θ1, θ2 with
|θ1|, |θ2| ≤ 1, such that

e
iθ√
n
φt0(s,z) − 1− iθ√

n
φt0(s, z)

= − θ2

2n
φ2t0(s, z) + θ1

θ2

n
φ2t0(s, z)1(|z| > K̃1) +

θ2
6

θ3

n3/2
φ3t0(s, z)1(|z| ≤ K̃1).

Further applying (5.3) and (5.2) gives P
(

·
∣

∣Fn
l−1

)

-a.s.
∣

∣

∣

∣

E
[

exp(iθM̂n
l (t0)

)
∣

∣F
n
l−1

]

− exp
(

− θ2

2
R̂n

l (t0, t0)
)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ T

0

∫

Rd

(

e
iθ√
n
φt0(s,z) − 1− iθ√

n
φt0(s, z)

)

Fs(dz)λ
n
l−1(s)ds +

θ2

2
R̂n

l (t0, t0)

∣

∣

∣

∣

≤ θ2

2

∣

∣

∣

∣

∫ T

0

(

∫

Rd

φ2t0(s, z)Fs(dz)
)

λ̄nl−1(s)ds − R̂n
l (t0, t0)

∣

∣

∣

∣

+ θ2
∫ T

0

∫

|z|>K̃1

φ2t0(s, z)Fs(dz)λ̄
n
l−1(s)ds

+
|θ|3
6

1√
n

∫ T

0

∫

|z|≤K̃1

φ3t0(s, z)Fs(dz)λ̄
n
l−1(s)ds

=:
θ2

2
In1 + θ2In2 +

|θ|3
6
In3 .

Therefore, given the fact (5.2) under Assumption 2, we only need to show that Ink (k = 1, 2, 3)

goes to zero as n→ ∞. Notice that under Assumption 1(i), for some K̃2 > 0,

φt0(s, z) ≤ K̃2

(

1 +

∫ T

0
H(t− s, z)dt

)

for all s ∈ [0, T ], z ∈ R
d. (5.5)

For l = 1, In1 = 0 by definition. For l ≥ 2, we have from Lemma 2.1 that

E
[

(In1 )
2
]

=
1

n2
Var

(

λnl−1

(
∫

Rd

φ2t0(·, z)F·(dz)

))

.

Further applying (4.3), (5.5) and Lemma 4.1(i) gives

E
[

(In1 )
2
]

≤ 1

n2

l−1
∑

k=1

∫ T

0

(
∫ T

0

(
∫

Rd

φ2t0(t, z)Ft(dz)

)

ϕ∗k(t− s)dt

)2

ϕ∗(l−1−k) ∗ λn0 (s)ds

≤ K̃4
2

n2

(

1 +

∫ T

0
ϕ(t)dt

)4 l−1
∑

k=1

∫ T

0

(
∫ T

0
ϕ∗k(t− s)dt

)2

ϕ∗(l−1−k) ∗ λn0 (s)ds
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= O

(

1

n2

∫ T

0
λn0 (s)ds

)

.

For In2 , we have from (5.5),
∫

|z|>K̃1

φ2t0(s, z)Fs(dz) ≤ K̃2
2

∫

|z|>K̃1

(

1 +

∫ T

0
H(t− s, z)dt

)2

Fs(dz),

which goes to zero as K̃1 → ∞ by Assumption 3(ii), and uniformly in s ∈ [0, T ]. This means that

for all ε > 0, we can take K̃1 > 0 such that

E
[

In2
]

≤ εE
[

λ̄nl−11T
]

≤ ε

∫ T

0
ϕ∗(l−1) ∗ λ̄n0 (t)dt.

For In3 , we have from (5.5) that under Assumption 3(i),

sup
t∈[0,T ],|z|≤K̃1

|φt0(t, z)| <∞.

Thus, we have

E
[

In3
]

≤ sup
t∈[0,T ],|z|≤K̃1

|φ3t0(t, z)|√
n

E
[

λ̄nl−11T
]

≤ sup
t∈[0,T ],|z|≤K̃1

|φ3t0(t, z)|√
n

(
∫ T

0
ϕ∗(l−1) ∗ λ̄n0 (u)du

)

.

Therefore, we have shown that as n→ ∞, in probability, for l ≥ 1,

E

[

exp(iθM̂n
l (t0)

)

∣

∣

∣
F

n
l−1

]

⇒ exp

(−θ2
2
R̂l(t0, t0)

)

.

For the convergence of the finite dimensional distributions of M̂n
l , it is sufficient to consider the

characteristic function of the linear combinations of {M̂n
l (t), t ∈ [0, T ]} over a finite number of

t. The proof above stays the same but replacing 1t0 by the corresponding linear combinations of
{1t(s), t ∈ [0, T ]}, which is always a bounded function in s and the corresponding Ink , k = 1, 2, 3

always converge to zero as n → ∞. Moreover, noticing that M̂n
l−1 ∈ Fn

l−1 and the limit is proved

by conditioning on Fn
l−1, we can also conclude the independency of the limit processes M̂l over l.

This finishes the proof. �

Following the same procedure, we can also have the convergence of finite-dimensional distribution
for (X̂n

l , Ŷ
n
l ) with M̂n

l replaced by the linear sum of X̂n
l and Ŷ n

l in the proof above.

Lemma 5.4. Under Assumptions 1(i), 2 and 3, the finite-dimensional distributions of the processes

(X̂n
l , Ŷ

n
l ) to those of (X̂l, Ŷl), which is the 2-dimensional Gaussian process with the desired covari-

ance functions in Theorem 2.2, and the limit processes {(X̂l, Ŷl), l ≥ 1} are mutually independent.

For the tightness of the auxiliary processes in Theorem 2.2, we mainly focus on that of (X̂n
l , Ŷ

n
l )

on the product space with weak topology, for which it is sufficient to check the tightness of each
component. Then, the tightness of M̂n

l in (D, J1) follows from the identity M̂n
l = X̂n

l + Ŷ n
l in (2.17)

and the fact Ŷ n
l ∈ C shown in Proposition 4.2. Recall the modules of continuity

ω′′(X, δ) := sup
s<r<t≤s+δ
s,r,t∈[0,T ]

∣

∣X(t)−X(r)
∣

∣ ∧
∣

∣X(r)−X(s)
∣

∣ and ω(Y, δ) := sup
s<t≤s+δ
s,t∈[0,T ]

∣

∣Y (t)− Y (s)
∣

∣,

for X ∈ D, Y ∈ C. In the proof, we always assume 0 ≤ s < r < t ≤ T .
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Lemma 5.5. Under Assumption 1, for every l ∈ N, there exists some constant Kl > 0, independent
of λ̄n0 , so that for all ε > 0 and δ > 0,

P
(

ω′′(X̂n
1 , δ) ≥ ε

)

≤ K1

ε4

(
∫ T

0
λ̄n0 (u)du

)

sup
t∈[0,T ]

(
∫ t

t−2δ
λ̄n0 (u)du

)

,

P
(

ω′′(X̂n
l+1, δ) ≥ ε

)

≤ Kl+1δ

ε4

(

1 +

∫ T

0
λ̄n0 (u)du

)2

,

P

(

ω(Ŷ n
l , δ) ≥ ε

)

≤ Klδ

ε2

(
∫ T

0
λ̄n0 (u)du

)

.

(5.6)

Proof. We follow the idea from the maximal inequality in [4, Theorem 10.3].

For the increment of Ŷ n
l in (5.6), we considering an arbitrary [a, b] ⊂ [0, T ], and let Dk be the

set of dyadic rationals tkj = a+ (b− a) j
2k
, 0 ≤ j ≤ 2k on [a, b], and D = ∪k≥1Dk be a dense subset

of [a, b]. By the continuity of Ŷ n
l , we have

sup
s<t

s,t∈[a,b]

∣

∣Ŷ n
l (t)− Ŷ n

l (s)
∣

∣ = sup
s<t

s,t∈D

∣

∣Ŷ n
l (t)− Ŷ n

l (s)
∣

∣ ≤ 2
∑

k≥1

sup
2k(t−s)=b−a

s,t∈Dk

∣

∣Ŷ n
l (t)− Ŷ n

l (s)
∣

∣, (5.7)

similar to the last inequality at [4, page 109]. This can also be understood from the fact that every

s, t ∈ [a, b] can be uniquely approximated by
∑

k≥1 sk and
∑

k≥1 tk with sk, tk ∈
{

0, (b−a)
2k

}

, and
the inequality above follows from the triangle inequality.

Applying Proposition 4.1 and Lemma 4.1(i) to (2.17), we have

E
[(

Ŷ n
l (t)− Ŷ n

l (s)
)2∣
∣F

n
l−1

]

=
1

n

∫ T

0

∫

Rd

(

HU1s,t(u, z)
)2
Fu(dz)λ

n
l−1(u)du

≤
∫ T

0

(
∫ T

0
1s,t(v)Φ(v − u)dv

)2

λ̄nl−1(u)du

≤ (t− s)

∫ T

0

∫ T

0
1s,t(v)Φ

2(v − u)λ̄nl−1(u)dudv

where the Cauchy–Schwarz inequality is applied in the last inequality. Further applying Corollary
4.1, we have

E
[(

Ŷ n
l (t)− Ŷ n

l (s)
)2] ≤ (t− s)

∫ T

0
1s,t(u)Φ

2 ∗ ϕ∗(l−1) ∗ λ̄n0 (u)du. (5.8)

Summing over all choices of (s, t) = (tk(j−1), tkj), we have for k ≥ 1,

P

(

sup
2k(t−s)=b−a

s,t∈Dk

∣

∣Ŷ n
l (t)− Ŷ n

l (s)
∣

∣ ≥ ε

)

≤ b− a

2kε2

∫ T

0
1a,b(u)Φ

2 ∗ ϕ∗(l−1) ∗ λ̄n0 (u)du. (5.9)

Finally, for θ ∈ (1/
√
2, 1), we have from (5.7) that

P

(

sup
s<t

s,t∈[a,b]

∣

∣Ŷ n
l (t)− Ŷ n

l (s)
∣

∣ ≥ ε

)

≤ P

(

∑

k≥1

sup
2k(t−s)=b−a

s,t∈Dk

∣

∣Ŷ n
l (t)− Ŷ n

l (s)
∣

∣ ≥ ε(1− θ)

2θ

∑

k≥1

θk

)

≤
(

∑

k≥1

(b− a)

2kθ2k
4θ2

ε2(1− θ)2

)

∫ T

0
1a,b(u)Φ

2 ∗ ϕ∗(l−1) ∗ λ̄n0 (u)du
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=
4(b− a)θ2

ε2(2θ2 − 1)(1− θ)2

∫ T

0
1a,b(u)Φ

2 ∗ ϕ∗(l−1) ∗ λ̄n0 (u)du. (5.10)

Then, (5.6) for Ŷ n
l is proved by applying [4, Theorem 7.4].

For the increment of X̂n
l in (5.6), noticing that Nn

l is an inhomogeneous Poisson process with
intensity λnl−1 under P(·|Fn

l−1), we have

E
[

(X̂n
l (t)− X̂n

l (r))
2(X̂n

l (r)− X̂n
l (s))

2
∣

∣F
n
l−1

]

=
1

n2

∫ t

r
λnl−1(u)du

∫ r

s
λnl−1(u)du ≤ 1

n2

(
∫ t

s
λnl−1(u)du

)2

=
(

λ̄nl−11s,t
)2
.

(5.11)

The inequality (5.6) for X̂n
1 is classical by applying [4, Theorem 10.4].

For l ≥ 2, applying the Cauchy–Schwarz inequality and (4.3), we have

(

λn0Gl−11s,t
)2 ≤ (t− s)

(
∫ T

0
λn0 (v)dv

)(
∫ T

0
λn0 (v)dv

∫ T

0
1s,t(u)

(

ϕ∗(l−1)(u− v)
)2
du

)

,

Var(λl−11s,t) ≤ (t− s)

l−1
∑

k=1

∫ T

0

∫ T

0
1s,t(u)

(

ϕ∗k(u− v)
)2
ϕ∗(l−1−k) ∗ λ0(v)dvdu.

This implies that

E
[(

λ̄nl−11s,t
)2] ≤ (t− s)

(
∫ T

0
λ̄n0 (v)dv

)(
∫ T

0
1s,t(u)

(

ϕ∗(l−1)
)2 ∗ λ̄n0 (u)dv

)

+
(t− s)

n

(
∫ T

0
1s,t(u)

l−1
∑

k=1

(

ϕ∗k)2 ∗ ϕ∗(l−1−k) ∗ λ̄n0 (u)du
)

.

Then, the probability bound for the maximal value of
∣

∣X̂n
l (t) − X̂n

l (r)
∣

∣ ∧
∣

∣X̂n
l (r) − X̂n

l (s)
∣

∣ over

all choose of adjacent triples (s, r, t) ∈ Dk ⊂ [a, b] (that is, t− r = r− s = (b−a)
2k

) can thus be found,

similar to (5.9). And the maximal inequalities for X̂n
l in (5.6) is derived similar to the proof of [4,

Theorem 10.3]. This completes the proof. �

5.2. Convergence of the Hawkes processes. In this subsection, we focus on the infinite sum
processes N̂n =

∑

l≥1 M̂
n
l , X̂

n =
∑

l≥1 X̂
n
l and Ŷ n =

∑

l≥1 Ŷ
n
l in (2.18). Notice that X̂n

l , Ŷ
n
l , M̂

n
l

are not independent over l, and X̂n ∈ D, Ŷ n ∈ C proved in Proposition 4.2. In the proof of the
convergence of finite–dimensional distribution, Lemmas 5.3 and 5.4 are applied. However, in the
proof of tightness, Lemma 5.5 cannot be applied directly, since the modules of continuity ω′′ is not
sub-additive in D. We have to calculate and estimate the fourth moment of X̂n.

Lemma 5.6. Under Assumption 1(i), 2 and 3, the finite–dimensional distribution of the process

N̂n converges to that of N̂ .

Proof. Consider first the limit distribution of
∑

l≥1 M̂
n
l (t0) for fixed t0 ∈ [0, T ], where we make use

of [4, Theorem 3.2] by showing that

∑

l≥1

M̂n
l (t0) = lim

m→∞

m
∑

l=1

M̂n
l (t0) ⇒n

∑

l≥1

M̂l(t0) = lim
m→∞

m
∑

l=1

M̂l(t0).

To this end, we only need to check the following facts:

m
∑

l=1

M̂n
l (t0) ⇒n

m
∑

l=1

M̂l(t0) ⇒m N̂(t0), (5.12)
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lim
m→∞

lim sup
n

P

(

∣

∣

∣

∞
∑

l=m

M̂n
l (t0)

∣

∣

∣
≥ ε

)

= 0 for each ε > 0. (5.13)

For every m ∈ N and θ ∈ R, by conditioning we have

E

[

exp

( m
∑

l=1

iθM̂n
l (t0)

)]

− exp

(

− θ2

2

m
∑

l=1

R̂n
l (t0, t0)

)

=

m
∑

k=1

E

[

exp

(

iθ

k−1
∑

l=1

M̂n
l (t0)−

θ2

2

m
∑

l=k+1

R̂n
l (t0, t0)

)(

e−iθM̂n
k
(t0) − e−

θ2

2
R̂n

k
(t0,t0)

)]

=
m
∑

k=1

E

[

eiθ
∑k−1

l=1 M̂n
l
(t0)
(

E
[

eiθM̂
n
k
(t0)
∣

∣F
n
k−1

]

− e−
θ2

2
R̂n

k
(t0,t0)

)

e−
θ2

2

∑m
l=k+1 R̂

n
l
(t0,t0)

]

where we understand that
∑m

l=m+1 =
∑0

l=1 = 0. This also gives

∣

∣

∣
E

[

eiθ
∑m

l=1 M̂
n
l
(t0)
]

− e−
θ2

2

∑m
l=1 R̂

n
l
(t0,t0)

∣

∣

∣
≤

m
∑

k=1

E

[∣

∣

∣
E
[

eiθM̂
n
k
(t0)
∣

∣F
n
k−1

]

− e−
θ2

2
R̂n

k
(t0,t0)

∣

∣

∣

]

.

Notice that we have actually shown in the proof of Lemma 5.3 that, as n→ ∞,

E

[
∣

∣

∣
E
[

exp
(

iθM̂n
l (t0)

)∣

∣F
n
l−1

]

− exp
(

− θ2

2
R̂n

l (t0, t0)
)

∣

∣

∣

]

→ 0.

The first condition (5.12) is thus proved by applying Assumption 2 to the deterministic function

m
∑

l=1

R̂n
l (t0, t0) =

∫ T

0

m
∑

l=1

Gl−1

(
∫

Rd

φ2t0(·, z)F·(dz)

)

(s)λ̄n0 (s)ds

→n

∫ T

0

m
∑

l=1

Gl−1

(
∫

Rd

φ2t0(·, z)F·(dz)

)

(s)λ̄0(s)ds

→m

∫ T

0
U
(
∫

Rd

φ2t0(·, z)F·(dz)

)

(s)λ̄0(s)ds = R̂(t0, t0).

On the other hand, since E
[

M̂n
l (t0)

∣

∣Fn
k−1

]

= 0 for l ≥ k ≥ 1, it is straightforward that

E

[( ∞
∑

l=m

M̂n
l (t0)

)2]

=
∞
∑

l=m

E

[

(

M̂n
l (t0)

)2
]

=
∑

l≥m

E

[

λ̄nl−1

(
∫

Rd

φ2t0(·, z)F·(dz)

)2]

≤ K̃4
2

(

1 +

∫ T

0
ϕ(u)du

)4(∫ T

0

∑

l≥m

ϕ∗(l−1)(u)du

)(
∫ T

0
λ̄n0 (u)du

)

where K̃2 is the constant defined in (5.5). This proves (5.13).
Similar to the end of the proof of Lemma 5.3, for the convergence of finite dimensional distribu-

tions of N̂n, it is sufficient to consider the linear span of {N̂n(t), t ∈ [0, T ]}, and the proof above
stays the same with 1t0 replaced by the associated linear combination of {1t(s), s ∈ [0, T ]}. This
completes the proof. �

Lemma 5.7. Under Assumption 1(i), 2 and 3, the finite–dimensional distribution of the processes

(X̂n, Ŷ n) converges to that of (X̂, Ŷ ).

To prove the tightness of (X̂n, Ŷ n) and N̂n, we need the moments for X̂n in (2.17).
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Lemma 5.8. Under Assumption 1(i), for 0 ≤ s < r < t ≤ T , we have

E

[

(

X̂n(t)− X̂n(r)
)2(

X̂n(r)− X̂n(s)
)2
]

=
∑

k≥0

E

[

λ̄nk1s,r · λ̄nk1r,t + λ̄nkGU1s,r · λ̄nk1r,t + λ̄nk1s,r · λ̄nkGU1r,t
]

+ n−1
∑

k≥0

E

[

λ̄nk
(

1s,r · GU1r,t
)

+ 2λ̄nk
(

1s,r · GU
(

1s,r · GU1r,t
))

]

= Jn
1 + Jn

2 .

(5.14)

Proof. We start from showing that X̂n(t) ∈ L4(P) for all t ∈ [0, T ].

Let ϕδ(u) = e−δuϕ(u) for δ > 0 such that
∫ T
0 ϕδ(u)du = p < 1 as in the proof of Lemma 4.1.

Then
∫ t
0 ϕ

∗l(u)du =
∫ t
0 e

δuϕ∗l
δ (u)du ≤ pleδt for all l ≥ 1 and t ∈ [0, T ]. Therefore, applying (4.3),

we obtain

E
[

λnl 1t
]

≤
∫ t

0

(
∫ t

v
ϕ∗l(u− v)du

)

λn0 (v)dv ≤ pl
∫ t

0
eδ(t−v)λn0 (v)dv,

Var
(

λnl 1t
)

≤
l
∑

k=1

∫ t

0

(
∫ t

w

(
∫ t

v
ϕ∗k(u− v)du

)2

ϕ∗(l−k)(v − w)dv

)

λn0 (w)dw

≤
l
∑

k=1

pl+k

(
∫ t

0
e2δ(t−u)λn0 (u)du

)

≤ pl
p

1− p

(
∫ t

0
e2δ(t−u)λn0 (u)du

)

,

where the two inequalities also hold for the trivial case l = 0. On the other hand, since Nn
l (t) is

Poisson distributed with parameter λnl−11t under P(·|Fn
l−1) for every l ≥ 1,

n2E
[

(X̂n
l (t))

4
]

= E

[

λnl−11t + 3
(

λnl−11t
)2
]

= E
[

λnl−11t
]

+ 3E2
[

λnl−11t
]

+ 3Var
(

λnl−11t
)

.

Plugging the inequalities into the identity above gives

E
[

(X̂n
l (t))

4
]

≤ pl−1

n2

(

∫ t

0
eδ(t−v)λn0 (v)dv+3

(
∫ t

0
eδ(t−v)λn0 (v)dv

)2

+
3p

1− p

(
∫ t

0
e2δ(t−v)λn0 (v)dv

)

)

.

Further applying Hölder’s inequality, we have

E
[

(X̂n(t))4
]

≤ E

[

∑

l≥1

(

q−l/4X̂n
l (t)

)4

]

(

∑

l≥1

ql/3
)3

<∞

for q ∈ (p, 1) by making use of the inequalities above, which proves X̂n(t) ∈ L4(P).
Now, we are ready to prove (5.14) from the identity

E

[

(

X̂n(t)− X̂n(r)
)2(

X̂n(r)− X̂n(s)
)2
]

= lim
m→∞

E

[

( m
∑

l=1

X̂n
l (t)− X̂n

l (r)

)2( m
∑

l=1

X̂n
l (r)− X̂n

l (s)

)2
]

= lim
m→∞

∑

1≤i,i′,j,j′≤m

Kn(i, i′, j, j′)

where for i, i′, j, j′ ∈ N,

Kn(i, i′, j, j′) := E

[

(X̂n
i (t)− X̂n

i (r))(X̂
n
i′ (t)− X̂n

i′ (r))(X̂
n
j (r)− X̂n

j (s))(X̂
n
j′(r)− X̂n

j′(s))
]

.

Since Nn
l is a conditional Poisson process under P(·|Fn

l−1), it can be checked that

Kn(i, i′, j, j′)
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=







E
[

(X̂n
i (t)− X̂n

i (r))
2(X̂n

j (r)− X̂n
j (s))

2
]

if i = i′ and j = j

E
[

(X̂n
i (t)− X̂n

i (r))
2(X̂n

j (r)− X̂n
j (s))(X̂

n
j′(r)− X̂n

j′(s))
]

if i = i′ > j ∨ j′ and j 6= j′

0 otherwise

For the non-trivial cases, the following results hold from Proposition 4.1 and Lemma 2.1.

(i) For i = j ≥ 1, we have already shown in (5.11) that

Kn(i, i, i, i) = E
[

λ̄ni−11s,r · λ̄ni−11r,t
]

.

(ii) For i > j ≥ 1, by conditioning on Fn
j ,

Kn(i, i, j, j) = E

[

λ̄ni−11r,t ·
(

X̂n
j (r)− X̂n

j (s)
)2
]

= E

[

λ̄nj Gi−j−11r,t ·
(

X̂n
j (r)− X̂n

j (s)
)2
]

.

On the other hand, applying Proposition 4.1, we have for θ1, θ2 ∈ R,

E

[

exp
(

iθ1
(

Nn
l (r)−Nn

l (s)− λnl−11s,r
)

+ iθ2λ
n
l f
)
∣

∣

∣
F

n
l−1

]

= E

[

exp

(Nn
l
(T )
∑

k=1

(

iθ11s,r(τ
n
lk) + iθ2Hf(τnlk, Zn

lk)
)

− iθ1λ
n
l−11s,r

)∣

∣

∣

∣

∣

F
n
l−1

]

= exp

(

∫ T

0

∫

Rd

(

eiθ11s,r(u)+iθ2Hf(u,z) − 1− iθ11s,r(u)
)

Fu(dz)λ
n
l−1(u)du

)

.

Taking derivatives ∂2

∂θ1∂θ2
, ∂3

∂2θ1∂θ2
and setting θ1 = θ2 = 0, we have

E
[

(Xn
l (r)−Xn

l (s)) · λnl f
∣

∣F
n
l−1] =

∫ T

0
λnl−1(u)1r,s(u)Gf(u)du = λnl−1

(

1r,s · Gf
)

,

E
[

(Xn
l (r)−Xn

l (s))
2 · λnl f

∣

∣F
n
l−1] = λnl−1

(

1r,s · Gf
)

+
(

λnl−11r,s
)

·
(

λnl−1Gf
)

,

(5.15)

Therefore, taking f(u) = Gi−j−11r,t(u) in the second identity in (5.15) gives

Kn(i, i, j, j) = E

[

λ̄nj−1Gi−j1r,t · λ̄nj−11s,r +
1

n
λ̄nj−1

(

1s,r · Gi−j1r,t
)

]

.

(iii) For j > i ≥ 1, by conditioning on Fn
i , we have

Kn(i, i, j, j) = E
[

(X̂n
i (t)− X̂n

i (r))
2 · λ̄ni Gj−i−11s,r

]

= E
[

λ̄ni−11r,t · λ̄ni−1Gj−i1s,r
]

,

where the conditionally independence between (X̂n
i (t)− X̂n

i (r)) and λ̄
n
i Gj−i−11s,r ∈ Fn

i (r)
is used in the second identity.

(iv) For i > j > j′, by conditioning on Fn
j and Fn

j′ successively, we have

E
[

(X̂n
i (t)− X̂n

i (r))
2(X̂n

j (r)− X̂n
j (s))(X̂

n
j′(r)− X̂n

j′(s))
]

= E
[

λ̄nj Gi−j−11r,t · (X̂n
j (r)− X̂n

j (s))(X̂
n
j′(r)− X̂n

j′(s))
]

= n−1/2
E
[

λ̄nj−1

(

1s,r · Gi−j1r,t
)

· (X̂n
j′(r)− X̂n

j′(s))
]

= n−1
E
[

λ̄nj′−1

(

1s,r · Gj−j′(1s,r · Gi−j1r,t
)]

,

where we make use of the first identity in (5.15) in the last two identities above.

Since Kn ≥ 0 for all choice of i, i′, j, j′, the formula in (5.14) is thus proved. �

Now, we are ready to prove the tightness of X̂n and Ŷ n, respectively, following the same idea
used in the proof of Lemma 5.5, and the tightness of N̂n = X̂n + Ŷ n follows from the fact Ŷ n ∈ C.
Notice the correlated terms appeared in (5.14), comparing to (5.11).
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Lemma 5.9. Under Assumption 1, there is K∞ > 0 for every ε, δ > 0,

P
(

ω′′(X̂n, δ) ≥ ε
)

≤ K∞
ε4

(

sup
t∈[0,T ]

∫ t

t−2δ

(

1 + λ̄n0 (u)
)

du

)(

∫ T

0

(

1 + λ̄n0 (u)
)

du

)

, (5.16)

P
(

ω(Ŷ n, δ) ≥ ε
)

≤ K∞δ
ε2

(

∫ T

0
λ̄n0 (u)du

)

. (5.17)

Proof. Let Jn
1 and Jn

2 be defined in (5.14).
Since 1s,r + 1r,t = 1s,t, we have

Jn
1 ≤

∑

k≥0

E

[

λ̄nk1s,t · λ̄nk1s,t + λ̄nkGU1s,r · λ̄nk1s,t + λ̄nk1s,t · λ̄nkGU1r,t
]

=
∑

k≥0

E
[

λ̄nk1s,t · λ̄nkU1s,t
]

=
∑

k≥0

(

E
[

λ̄nk1s,t
]

E
[

λ̄nkU1s,t
]

+Cov
(

λ̄nk1s,t , λ̄
n
kU1s,t

)

)

.

Applying Lemma 4.1(i) and the fact that GkU1s,t(u) ≤ U1s,t(u) for k ≥ 0, we have
∑

k≥0

E
[

λ̄nk1s,t
]

E
[

λ̄nkU1s,t
]

=
∑

k≥0

(

λ̄n0Gk1s,t · λ̄n0GkU1s,t
)

≤
(

λ̄n0U1s,t
)2 ≤

(
∫ T

0
1s,t(u)

(

λ̄n0 (u) + Φ ∗ λ̄n0 (u)
)

du

)2

.

(5.18)

Applying (4.3) and a similar fact that ϕ∗k(u) + ϕ∗k ∗ Φ(u) ≤ Φ(u) for k ≥ 1, we have
∑

k≥0

Cov
(

λ̄nk1s,t , λ̄
n
kU1s,t

)

=
∑

k≥1

Cov
(

λ̄nk1s,t , λ̄
n
kU1s,t

)

≤ 1

n

∑

k≥1

∫ T

0

(
∫ T

0
1s,t(u)ϕ

∗k(u− v)du

)(
∫ T

0
1s,t(u)Φ(u− v)du

)

(

λ̄n0 (v) + Φ ∗ λ̄n0 (v)
)

dv

≤ (t− s)

n

∫ T

0

(
∫ T

0
1s,t(u)Φ

2(u− v)du

)

(

λ̄n0 (v) + Φ ∗ λ̄n0 (v)
)

dv,

(5.19)

where the Cauchy-Schwarz inequality is applied in the last inequality under Assumption 1(ii).
On the other hand, applying Cauchy’s inequality,

∫ u

0
Φ(v)dv ≤ u1/2

(

∫ u

0
Φ2(v)dv

)1/2
≤ u1/2K̃3 ≤

1

2
for all u ≤ δ0,

where δ0 > 0 is a constant such that δ
1/2
0 K̃3 ≤ 1

2 and K̃3 = (
∫ δ0
0 Φ2(v)dv)1/2.

Applying Lemma 4.1(i), we obtain

1s,t(u)GU1s,t(u) ≤ 1s,t(u)

∫ T

0
1s,t(v)Φ(v − u)dv ≤ 1s,t(u)

(
∫ t−s

0
Φ(v)dv

)

which shows that for 0 < t− s ≤ δ0,

Jn
2 ≤ 1

n

(
∫ t−s

0
Φ(v)dv

)(

1 + 2

(
∫ t−s

0
Φ(v)dv

))

∑

k≥0

E
[

λ̄nk1s,t
]

≤ 2K̃3

n
(t− s)1/2

(
∫ T

0
1s,t(u)

(

λ̄n0 (u) + Φ ∗ λ̄n0 (u)
)

du

)

.

(5.20)

Thus, under Assumption 1, for all 0 ≤ s < r < t ≤ T with small (t− s), we have

E
[(

X̂n(t)− X̂n(r)
)2(

X̂n(r)− X̂n(s)
)2]
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≤
(
∫ T

0
1s,t(u)

(

λ̄n0 (u) + Φ ∗ λ̄n0 (u)
)

du

)2

+ 2K̃3(t− s)1/2
(
∫ T

0
1s,t(u)

(

λ̄n0 (u) + Φ ∗ λ̄n0 (u)
)

du

)

+ (t− s)

∫ T

0
1s,t(u)

(

Φ2 ∗ λ̄n0 (u) + Φ2 ∗ Φ ∗ λ̄n0 (u)
)

du. (5.21)

Now, for every small interval [a, b], we take Dk = {tkj, j = 0, 1, · · · , 2k} such that
(
∫ t

a

(

1 + λ̄n0 (u) + Φ ∗ λ̄n0 (u)
)

du

)
∣

∣

∣

∣

t=tkj

=
j

2k

∫ b

a

(

1 + λ̄n0 (u) + Φ ∗ λ̄n0 (u)
)

du.

Then Dk ⊂ Dk+1 and D = ∪k≥1Dk is a dense subset of [a, b]. Taking (t, r, s) = (tkj , tk(j−1), tk(j−2))
in (5.21) gives, for every ε > 0,

ε4P
(
∣

∣X̂n(t)− X̂n(r)
∣

∣ ∧
∣

∣X̂n(r)− X̂n(s)
∣

∣ ≥ ε
)

∣

∣

∣

(t,r,s)=(tkj ,tk(j−1),tk(j−2))

≤
(

∫ b
a (1 + λ̄n0 (u) + Φ ∗ λ̄n0 (u))du

2k−1

)2

+ 2K̃3

(

∫ b
a (1 + λ̄n0 (u) + Φ ∗ λ̄n0 (u))du

2k−1

)3/2

+

∫ b
a

(

1 + λ̄n0 (u) + Φ ∗ λ̄n0 (u)
)

du

2k−1

∫ T

0
1s,t(u)

(

Φ2 ∗ λ̄n0 (u) + Φ2 ∗ Φ ∗ λ̄n0 (u)
)

du.

Summing over all choices of j = 2, 3, · · · , 2k, we have

ε4P

(

sup
(s,r,t)=(tk(j−2),tk(j−1),tkj)

∣

∣X̂n(t)− X̂n(r)
∣

∣ ∧
∣

∣X̂n(r)− X̂n(s)
∣

∣ ≥ ε

)

≤ 2

( ∫ b
a

(

1 + λ̄n0 (u) + Φ ∗ λ̄n0 (u)
)

du
)2

2k−1
+ 4K̃3

( ∫ b
a (1 + λ̄n0 (u) + Φ ∗ λ̄n0 (u))du

)3/2

2
k−1
2

+ 2

∫ b
a

(

1 + λ̄n0 (u) + Φ ∗ λ̄n0 (u)
)

du

2k−1
×
∫ T

0
1a,b(u)

(

Φ2 ∗ λ̄n0 (u) + Φ2 ∗Φ ∗ λ̄n0 (u)
)

du.

(5.22)

Then similar to the derivation of (5.10), by taking θ ∈ (2−1/8, 1), we have for all small [a, b] ⊂ [0, T ],

P

(

sup
a≤s<r<t≤b

∣

∣X̂n(t)− X̂n(r)
∣

∣ ∧
∣

∣X̂n(r)− X̂n(s)
∣

∣ ≥ ε

)

≤ K∞
2ε4

(

∫ b

a

(

1 + λ̄n(u)
)

du

)2

for some K∞ depending on Φ but independent of λn0 and ε. This further gives (5.16) for X̂n.

For the increment of Ŷ n
l , since E

[

Ŷ n
l (t)

∣

∣Fn
k−1

]

= 0 for l ≥ k ≥ 1, it follows from (5.8) that

E
[

(Ŷ n(t)− Ŷ n(s))2
]

=
∑

l≥1

E
[

(Ŷ n
l (t)− Ŷ n

l (s))2
]

≤ (t− s)

∫ T

0
1s,t(u)

(

Φ2 ∗ λ̄n0 (u) + Φ2 ∗ Φ ∗ λ̄n0 (u)
)

du,

which further gives (5.17) for Ŷ n by the same reasoning for Ŷ n
l . This finishes the proof. �

5.3. Proof of Theorem 2.1. Assume Assumption 1 and 2 holds. Recalling the representation in
(2.18) and the expectation of Nn in (2.19), we have

(

N̄n(t)− λ̄0U1t
)

=
1√
n
X̂n(t) +

1√
n
Ŷ n(t) +

(

λ̄n0U1t − λ̄0U1t
)

.
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On the other hand, from the inequality (4.4), we already have for every ε > 0

P

(

sup
t∈[0,T ]

∣

∣

∣

1√
n
X̂n(t)

∣

∣

∣
≥ ε

)

= O

(

1

n2ε2

∫ T

0
λn0 (u)du

)

,

under Assumption 1(i). Since Ŷ n(0) = 0 by assumption and Ŷ n ∈ C, we have

lim
n→∞

P

(

sup
t∈[0,T ]

∣

∣Ŷ n(t)
∣

∣ <∞
)

= 1.

from (5.17) under Assumption 1. And under Assumption 2,

λ̄n0U1t − λ̄0U1t =
∫ T

0
U1t(u)

(

λ̄n0 (u)− λ̄0(u)
)

du⇒ 0

under uniform topology on [0, T ], as n→ ∞. The FWLLN for N̄n in Theorem 2.1 is thus proved.

6. Proofs for the special models

Since the Gaussian space is closed under weak convergence, the propositions on the Gaussian
limits of the special models in Section 3 are proved by following the same idea of checking the limits
of the covariance functions of the increments of

(

X̂, Ŷ
)

under suitable time scales. Firstly, we prove
that under the stability condition, the large intensity limit of a stationary Hawkes process coincides
with the stationary limit of the large intensity Hawkes process shown in [21]. Motivated by that,
we also prove the stationary limit of Gaussian process for the indicator-type non-decomposable
Hawkes process in Section 3.2.

6.1. Proof of Proposition 3.1, 3.2 and Corollary 3.2.

Proof of Proposition 3.1. By assumption, ψ in this model is defined from the renewal equation (3.7).
Applying Theorem 2.2 and Remark 2.6, it can be found that for t, s > 0

E
[(

X̂(t+ h)− X̂(h)
)(

X̂(s+ h)− X̂(h)
)]

=

∫ T

0
U
(

1h,t+h(·)1h,s+h(·)
)

(u)λ̄0(u)du =

∫ (t∧s)+h

h

(

λ̄0(u) + ψ ∗ λ̄0(u)
)

du

=λ̄0

∫ t∧s

0

(

1 + ψ ∗ 1(u+ h)
)

du→h=
λ̄0

1− ||H̃ ||1
(t ∧ s)

where we have used 1s,t(u) = 1t(u)−1s(u) = 1(u ∈ (s, t]), and the fact that ||f ∗ g||1 = ||f ||1 · ||g||1
in the last identity, Similarly, passing h→ ∞, we obtain

E
[(

X̂(t+ h)− X̂(h)
)(

Ŷ (s+ h)− Ŷ (h)
)]

=

∫ T

0
U
(

1h,t+h(·)GU1h,s+h(·)
)

(u)λ̄0(u)du

=

∫ T

0
1h,t+h(u)

∫ T

0
1h,s+h(v)ψ(v − u)dv

(

λ̄0(u) + ψ ∗ λ̄0(u)
)

du

= λ̄0

∫ t

0

(

1 + ψ ∗ 1(u+ h)
)

du

∫ s

0
ψ(v − u)dv →h

λ̄0

1− ||H̃||1

∫ t

0
dv

∫ s

0
duψ(u− v).

Since Fs(dz) = δ1(dz), we have Hf(s, z) = GUf(s) =
∫ T
0 f(u)ψ(u − s)du, thus

E
[(

Ŷ (t+ h)− Ŷ (h)
)(

Ŷ (s+ h)− Ŷ (h)
)]

=

∫ T

0
U
(

∫

R

HU1h,t+h(·, z)HU1h,s+h(·, z)F·(dz)
)

(u)λ̄0(u)du
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=

∫ t+h

h
dv

∫ s+h

h
dv′
∫ v∧v′

0
ψ(v − u)ψ(v′ − u)

(

λ̄0(u) + ψ ∗ λ̄0(u)
)

du

= λ̄0

∫ t

0
ψ(v − u)dv

∫ s

0
ψ(v′ − u)dv′

∫ v∧v′

−h

(

1 + ψ ∗ 1(u+ h)
)

du

→h
λ̄0

1− ||H̃||1

∫ t

0
dv

∫ s

0
dv′
(

∫ v∧v′

0
ψ(v − u)ψ(v′ − u)du

)

+
λ̄0

1− ||H̃ ||1

∫ t

0
dv

∫ s

0
dv′
(

∫ ∞

0
ψ(v + u)ψ(v′ + u)du

)

.

Given the covariance functions above, we can actually have an equivalent Itô integral formula
for the Gaussian process

(

X̂◦, Ŷ ◦). Let W be a two-sided Brownian motions with W (0) = 0 and

variance λ̄0

1−||H̃||1
. Letting h→ ∞, we have for t ≥ 0

(

X̂(t+ h)− X̂(h)
)

⇒h X̂
◦(t)

d
=W (t),

(

Ŷ (t+ h)− Ŷ (h)
)

⇒h Ŷ
◦(t)

d
=

∫ t

0

∫ t

0
ψ(u− v)duW (dv) +

∫ ∞

0

∫ t

0
ψ(u+ v)duW (−dv)

=

∫ ∞

−∞

(

∫ t

0
ψ(u− v)du

)

W (dv)

Here the finiteness of

∫ ∞

0

(

∫ t

0
ψ(u + v)du

)

W (−dv) follows from the completeness of Gaussian

distribution in L2(P) space that
∫ ∞

0

(
∫ t

0
ψ(u+ v)du

)2

dv ≤ ||ψ||1
∫ ∞

0

∫ t

0
ψ(u+ v)dudv ≤ t× ||ψ||21 <∞.

This gives the results in (3.12) and (3.8), and it is straightforward to derive the associated covariance

function (3.9). Actually, one can also have Itô expressions for
(

X̂l, Ŷl
)

.

We next prove the equivalent between (3.9) and (3.10). We first show that (3.9) is equal to K(t)
for the case t = s. For the integrals on the right hand side, we have

∫

R

(

1t(v) +

∫ t

0
ψ(u− v)du

)2
dv = t+ 2

∫ t

0
dv

∫ t

0
ψ(u− v)du+

∫

R

(

∫ t

0
ψ(u− v)du

)2
dv.

Applying the change of variables, we have
∫

R

(

∫ t

0
ψ(u− v)du

)2
dv = 2

∫ t

0
du

∫ u

0
du′
∫

R

ψ(u− v)ψ(u′ − v)dv

= 2

∫ t

0
du

∫ u

0
dv

∫ ∞

0
ψ(u− v + w)ψ(w)dw.

Plugging the identities above into (3.9) gives

E
[

N̂◦(t)N̂◦(t)
]

=
λ̄0

1− ||H̃||1

(

t+ 2

∫ t

0
du

∫ u

0
ψ(v)dv + 2

∫ t

0
du

∫ u

0
dv

∫ ∞

0
ψ(v + w)ψ(w)dw

)

=
λ̄0

1− ||H̃||1

(

t+ 2

∫ t

0
du

∫ u

0

(

ψ(v) +

∫ ∞

0
ψ(v + w)ψ(w)dw

)

dv
)

. (6.1)

Now, we take for t > 0,

κ(t) := ψ(t) +

∫ ∞

0
ψ(t+ u)ψ(u)du. (6.2)
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It can be checked directly that
∫ ∞

0
H̃(t+ u)

(

∫ ∞

0
ψ(u+ v)ψ(v)dv

)

du+

∫ t

0
H̃(t− u)

(

∫ ∞

0
ψ(u+ v)ψ(v)dv

)

du

=

∫ ∞

0
ψ(u)dv

(

∫ u

0
H̃(t+ u− v)ψ(v)dv

)

+

∫ ∞

0
ψ(v)dv

(

∫ t

0
H̃(t− u)ψ(u + v)du

)

=

∫ ∞

0
ψ(u)

(

H̃ ∗ ψ(t+ u)
)

du =

∫ ∞

0
ψ(u)ψ(t + u)du−

∫ ∞

0
ψ(u)H̃(t+ u)du,

where we make use of ψ = H̃ + H̃ ∗ ψ in the last identity. Similarly,
∫ ∞

0
H̃(t+ u)ψ(u)du +

∫ t

0
H̃(t− u)ψ(u)du =

∫ ∞

0
H̃(t+ u)ψ(u)du +

(

ψ(t)− H̃(t)
)

.

Therefore, κ satisfies the equation

κ(t) = H̃(t) +

∫ ∞

0
H̃(t+ u)κ(u)du +

∫ t

0
H̃(t− u)κ(u)du,

and φ̂(u) =
λ̄0

1− ||H̃ ||1
κ(u) in (3.11), and (6.1) equals to K(t). The case t = s is proved.

For the case t > s in (3.9), it is sufficient to check that
∫ t

s
du

∫ s

0
κ(u− v)dvdu =

∫

R

(

1s,t(v) +

∫ t

s
ψ(u− v)du

)(

1s(v) +

∫ s

0
ψ(u− v)du

)

dv

=

∫ t

s
du

∫ s

0
dvψ(u − v) +

∫ ∞

0

(

∫ t

s
ψ(u + v)du

)(

∫ s

0
ψ(u+ v)du

)

dv

+

∫ ∞

0

(

∫ t

s
ψ(u− v)du

)(

∫ s

0
ψ(u− v)du

)

dv. (6.3)

By the change of variables,
∫ ∞

0

(

∫ t

s
ψ(u+ v)du

)(

∫ s

0
ψ(u+ v)du

)

dv

=

∫ t

s
du

∫ s

0
dv

∫ ∞

0
ψ(u+ w)ψ(v + w)dw =

∫ t

s
du

∫ s

0
dv

∫ ∞

v
ψ(u− v + w)ψ(w)dw

and
∫ ∞

0

(

∫ t

s
ψ(u− v)du

)(

∫ s

v
ψ(u− v)du

)

dv

=

∫ t

s
du

∫ s

0
dv

∫ ∞

0
ψ(u− w)ψ(v − w)dw =

∫ t

s
du

∫ s

0
dv

∫ v

0
ψ(u− v + w)ψ(w)dw

where we make use of the fact that ψ(v−w) = 0 for v < w and u > v in the last identity. Recalling
κ in (6.2), the identity (6.3) is thus proved. This completes the proof. �

Proof of Corollary 3.2. Plugging (3.13) and (3.14) into Remark 2.6, we have

Cov
(

X̂(t), X̂(s)
)

= λ̄0

∫ t∧s

0
eη(u)du,

Cov
(

X̂(t), Ŷ (s)
)

= λ̄0

∫ t

0
eη(u)du

∫ s

0
dv1(v > u)m1,ue

η(v)−η(u) = λ̄0

∫ s

0
eη(v)η(t ∧ v)dv,

(6.4)
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noticing that ψ(v, u) = 0 for u > v. By the definition of HUf in (2.7), for t > u > 0,

HU1t(u, z) =
∫ t

0
H(v − u, z)dv +

∫ t

0

(

∫ t

0
ψ(w, v)dw

)

H(v − u, z)dv

= z
(

∫ t

u
dw +

∫ t

u
dw

∫ w

u
ψ(w, v)dv

)

= z

∫ t

u
eη(v)−η(u)dv (6.5)

by making use of (3.14). Therefore, the covariance functions of Ŷ in Remark 2.6 reads

Cov
(

Ŷ (t), Ŷ (s)
)

= λ̄0

∫ t∧s

0

(

∫ t

u
eη(v)−η(u)dv

)(

∫ s

u
eη(v

′)−η(u)dv′
)

m2,ue
η(u)du

= λ̄0

∫ t

0
eη(v)dv

∫ s

0
eη(v

′)dv′
∫ v∧v′

0
m2,ue

−η(u)du.

(6.6)

The covariance for N̂ follows from the identity N̂ = X̂ + Ŷ . �

Proof of Proposition 3.2. If
∫∞
0 m1,udu < ∞ and

∫∞
0 m2,vdv < ∞, for every t, s, h > 0, we have

from (6.4) that as h→ ∞,

Cov
(

(

X̂(t+ h)− X̂(h)
)

,
(

X̂(s+ h)− X̂(h)
)

)

= λ̄0

∫ (t∧s)+h

h
eη(u)du→ λ̄0e

η(∞)(t ∧ s)

and

Cov
(

(

X̂(t+ h)− X̂(h)
)

,
(

Ŷ (s+ h)− Ŷ (h)
)

)

= λ̄0

∫ s+h

h
eη(v)

(

η((t+ h) ∧ v)− η(v)
)

dv ≤ λ̄0e
η(∞)

(

η(∞) − η(h)
)

s→ 0.

For the covariance of Ŷ , we have from (6.6) that as h→ ∞,

Cov
(

(

Ŷ (t+ h)− Ŷ (h)
)

,
(

Ŷ (s+ h)− Ŷ (h)
)

)

= λ̄0

∫ t+h

h
eη(v)dv

∫ s+h

h
eη(v

′)dv′
∫ v∧v′

0
m2,ue

−η(u)du→
(

λ̄0e
2η(∞)

∫ ∞

0
m2,ue

−η(u)du
)

· t · s.

The limit above gives the limit in the first case.

On the other hand, suppose that

∫ ∞

0
m1,vdv = ∞. Let k be the function defined in Proposition

3.2, we have

k(t) ∧ k(s) = k(t ∧ s) and eη(k(t))k′(t) = 1 t > 0.

Similar to the calculations above, we have by change of variable

Cov
(

X̂(k(t+ h))− X̂(k(h)), X̂(k(s + h))− X̂(h)
)

= λ̄0

∫ k((t∧s)+h)

k(h)
eη(u)du = λ̄0

∫ (t∧s)+h

h
eη(k(u))k′(u)du = λ̄0(t ∧ s)

and

Cov
(

(

X̂(t+ h)− X̂(h)
)

,
(

Ŷ (s+ h)− Ŷ (h)
)

)

= λ̄0

∫ k(s+h)

k(h)
eη(v)

(

η(k(t + h) ∧ v)− η(v)
)

dv

≤ λ̄0
(

k(s + h)− k(h)
)

eη(∞)
(

η(∞)− η(k(h))
)

→ 0
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as h→ ∞, and for the covariance of Ŷ ,

Cov
(

(

Ŷ (t+ h)− Ŷ (h)
)

,
(

Ŷ (s + h)− Ŷ (h)
)

)

= λ̄0

∫ k(t+h)

k(h)
eη(v)dv

∫ k(s+h)

k(h)
eη(v

′)dv′
∫ v∧v′

0
m2,ue

−η(u)du

= λ̄0

∫ t+h

h
eη(k(v))k′(v)dv

∫ s+h

h
eη(k(v

′))k′(v′)dv′
∫ k(v∧v′)

0
m2,ue

−η(u)du

→
(

λ̄0

∫ ∞

0
m2,ue

−η(u)du
)

· t · s,

as h→ ∞, which gives the desired limit.
In the case of stationary mark Fs = F , we have m1,s = m1 and η(t) = m1t. Thus, all the

covariance functions above stays the same with k replaced by lnm1t
m1

, in which case eη(k(v))k′(v) = 1

for all v > 0 and
∫∞
0 m2,ue

−η(u)du = m2
m1

. This finishes the proof. �

6.2. Proofs of Propositions 3.3 and 3.4.

Proof of Proposition 3.3. It can be found from Theorem 2.1 that N̄ equals to the variance function
of X̂ in Theorem 2.2. Therefore, we only need to focus on the limits of the covariance functions of
the increments of

(

X̂, Ŷ
)

. Applying Theorem 2.2, for every t > r > 0 and s > r > 0,

Cov
(

X̂(t)− X̂(r), X̂(s)− X̂(r)
)

=

∫ t∧s

r

(

λ̄0(u) + ψ− ∗ λ̄0(u)
)

du,

Cov
(

X̂(t)− X̂(r), Ŷ (s)− Ŷ (r)
)

=

∫ t

r
du

∫ s

r
ψ−(v − u)dv

(

λ̄0(u) + ψ− ∗ λ̄0(u)
)

du.

(6.7)

and making use of the fact ψ−(w − v) = 0 for w < v, we obtain

Cov
(

Ŷ (t)− Ŷ (r), Ŷ (s)− Ŷ (r)
)

=

∫ t∧s

0

(

λ̄0(u) + ψ− ∗ λ̄0(u)
)

du
(

∫ ∞

0
HU1r,t(u, z)HU1r,t(u, z)F (dz)

)

=

∫ t

0
dv

∫ s

0
dv′
(

1(v ≥ r) +

∫ t

r
ψ−(w − v)dw

)(

1(v′ ≥ r) +

∫ s

r
ψ−(w − v′)dw

)

×
∫ v∧v′

0
F c
(

(v ∨ v′)− u
)(

λ̄0(u) + ψ− ∗ λ̄0(u)
)

du.

(6.8)

Recalling that ψ− is given by the renewal equation

ψ−(t) = F c(t) +

∫ t

0
ψ−(u)F

c(t− u)du,

our proof relies on the dominated convergence theorem and the renewal theorems.

Case (i). Assume that m1 ∈ (0, 1). Since F c ∗ 1(t) → m1 as t→ ∞, we have

λ̄0(t) + ψ− ∗ λ̄0(t) = λ̄0
(

1 + ψ− ∗ 1(t)
)

→ λ̄0
1−m1

as t→ ∞.

Applying the change of variables to (6.7), we have for s, t > 0,

Cov
(

X̂(t+ h)− X̂(h), X̂(s+ h)− X̂(h)
)

=

∫ t∧s

0

(

λ̄0(u+ h) + ψ− ∗ λ̄0(u+ h)
)

du→h
λ̄0

1−m1

(

t ∧ s
)



44 BO LI AND GUODONG PANG

and

Cov
(

X̂(t+ h)− X̂(h), Ŷ (s+ h)− Ŷ (h)
)

=

∫ t

0
du

∫ s

0
dvψ−(v − u)

(

λ̄0(u+ h) + ψ− ∗ λ̄0(u+ h)
)

→h
λ̄0

1−m1

∫ t

0

∫ s

0
ψ−(v − u)dvdu.

Similarly, applying the change of variables to the second identity in (6.8), we obtain

Cov
(

Ŷ (t+ h)− Ŷ (h), Ŷ (s+ h)− Ŷ (h)
)

=

∫ t

−h
dv

∫ s

−h

(

1(v ≥ 0) +

∫ t

0
ψ−(w − v)dw

)(

1(v′ ≥ 0) +

∫ s

0
ψ−(w − v′)dw

)

×
∫ v∧v′

−h
F c
(

(v ∨ v′)− u
)(

λ̄0(u+ h) + ψ− ∗ λ̄0(u+ h)
)

du

→h
λ̄0

1−m1

∫ t

−∞
dv

∫ s

−∞
dv′
∫ ∞

|v−v′|
F c(u)du

×
(

1(v ≥ 0) +

∫ t

0
ψ−(w − v)dw

)(

1(v′ ≥ 0) +

∫ s

0
ψ−(w − v′)dw

)

which is bounded by
m1λ̄0 · t · s
(1−m1)3

, and where we use the fact v ∨ v′ − v ∧ v′ = |v − v′|.
Case (ii). Assume that m1 = 1. Then ψ− is the renewal density of proper p.d.f. F c, we have from
Smith’s key renewal theorem and the elementary renewal theorem that

ψ−(t) = F c(t) + ψ− ∗ F c(t) →t

∫ ∞

0
F c(y)dy

/(

∫ ∞

0
yF c(y)dy

)

=
2m1

m2
=

2

m2
,

λ̄0(t) + ψ− ∗ λ̄0(t)
t

= λ̄0
1 + ψ− ∗ 1(t)

t
→t λ̄0

(

∫ ∞

0
yF c(y)dy

)−1
=

2λ̄0
m2

.

Applying the change of variables to (6.7) and the dominated convergence theorem, we obtain that
as h→ ∞,

Cov
(

X̂(
√
t+ h)− X̂(

√
h), X̂(

√
s+ h)− X̂(

√
h)
)

=

∫ t∧s

0

λ̄0(
√
u+ h) + ψ− ∗ λ̄0(

√
u+ h)

2
√
u+ h

du→ λ̄0
m2

(t ∧ s)

and

Cov
(

X̂(
√
t+ h)− X̂(

√
h), Ŷ (

√
s+ h)− Ŷ (

√
h)
)

=

∫ t

0

λ̄0(
√
u+ h) + ψ− ∗ λ̄0(

√
u+ h)

2
√
u+ h

du

(
∫

√
s+h

√
h

ψ−(v −
√
u+ h)dv

)

→ 0,

where we need the fact that, for u > 0,
∫

√
s+h

√
h

ψ−(v −
√
u+ h)dv =

∫ (
√
s+h−

√
u+h)+

0
ψ−(v)dv →h 0.

For the covariance of the increments for Ŷ in (6.8), the dominated convergence theorem is applied,
where we first show the boundedness of the function. For every u ≤

√
t+ h,

HU1√h,
√
t+h

(

u, z) =

∫

√
t+h

√
h

1(v ∈ [u, u+ z))dv +

∫

√
t+h

√
h

ψ−(w − v)dw

∫

√
t+h

0
1(v ∈ [u, u+ z))dv

≤
(
√
t+ h−

√
h
)(

1 +Mz
)

≤
√
t√
h

(

1 +Mz
)

,
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whereM denote an upper bound for ψ− given (6.2). Moreover, for fixed u ∈ (0, 1), z > 0, and every

h large enough so that
√
uh+ z <

√
h, we have from (6.2),

√
h · HU1√h,

√
t+h

(
√
uh, z

)

=
√
h

∫

√
t+h

√
h

dw

∫

√
uh+z

√
uh

ψ−(w − v)dv → t

2
z

2

m2
=

tz

m2
.

With the boundedness and the limits above, we are ready to obtain

Cov
(

Ŷ (
√
t+ h)− Ŷ (

√
h), Ŷ (

√
s+ h)− Ŷ (

√
h)
)

= λ̄0

∫ 1+ t∧s
h

0

1 + ψ− ∗ 1(
√
uh)√

h

du

2
√
u

(
∫ ∞

0
F (dz)

√
h · HU1√h,

√
t+h

(
√
uh, z)

×
√
h · HU1√h,

√
s+h

(
√
uh, z)

)

→h
tsλ̄0
m2

∫ 1

0

du

m2
=
λ̄0 · t · s
m2

2

.

Case (iii). Assume that m1 > 1. Recall that ρ− > 0 is the solution to

∫ ∞

0
e−ρ−yF c(y)dy = 1.

Then e−ρ−tψ−(t) is the renewal density of the proper p.d.f. e−ρ−yF c(y). Similar to (6.2) in Case
(ii), we have

e−ρ−tψ−(t) →t

(

∫ ∞

0
ye−ρ−yF c(y)dy

)−1
,

λ̄0(t) + ψ− ∗ λ̄0(t)
eρ−t

→t

(

ρ−

∫ ∞

0
ye−ρ−yF c(y)dy

)−1
.

To simplify notation, we denote by ln(t+1)
ρ−

= k(t) for t > 0. Then

∫ k(t)

0
ρ−e

ρ−udu = t and k′(t) =
(

ρ−e
ρ−u
)−1
∣

∣

∣

u=k(t)
∀t > 0.

Applying the change of variables to (6.7), as h→ ∞, we obtain

Cov
(

X̂(k(t+ h))− X̂(k(h)), X̂(k(s+ h))− X̂(k(h))
)

=

∫ t∧s

0

λ̄0(u) + ψ− ∗ λ̄0(u)
ρ−eρ−u

∣

∣

∣

u=k(v+h)
dv →h

λ̄0 · t ∧ s
ρ2−
∫∞
0 ye−ρ−yF c(y)dy

,

and

Cov
(

X̂(k(t+ h))− X̂(k(h)), Ŷ (k(s+ h))− Ŷ (k(h))
)

=

∫ t

0

λ̄0(u) + ψ− ∗ λ̄0(u)
ρ−eρ−u

∣

∣

∣

u=k(v+h)
dv

∫ k(s+h)

k(h)
ψ−(w − k(v + h))dw →h 0,

where for v ∈ (0, t) we have
∫ k(s+h)

k(h)
ψ−(w − k(v + h))dw =

∫ (k(s+h)−k(v+h))+

0
ψ−(w)dw →h 0

since k(s+ h)− k(h) →h 0.

For the covariance of Ŷ in (6.8), similar to the previous case, we first have

HU1k(h),k(t+h)(u, z)

=

∫ k(t+h)

k(h)
1(v ∈ [u, u+ z))dv +

∫ k(t+h)

k(h)
ψ−(w − v)dw

∫ k(t+h)

0
1(v ∈ [u, u+ z))dv
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≤
(

k(t+ h)− k(h)
)

+M

∫ k(t+h)

k(h)
eρ−(w−v)dw

∫ u+z

u
dv

= (k(t+ h)− k(h)) +
M

ρ2−
te−ρ−u

(

1− e−ρ−z
)

where M denotes an upper bound for e−ρ−tψ−(t). Moreover, for every u, z > 0 and h large enough,

HU1k(h),k(t+h)(u, z) = o(1) +

∫ t

0

ψ−(w − v)

ρ−eρ−(w−v)

∣

∣

∣

w=k(s+h)
ds

∫ u+z

u
dve−ρ−v

→h
t · e−ρ−u · (1− e−ρ−z)

ρ2−
∫∞
0 ye−ρ−yF c(y)dy

.

Therefore, we have from the change of variables and the dominated convergence theorem that

Cov
(

Ŷ (k(t+ h))− Ŷ (k(h)), Ŷ (k(s + h))− Ŷ (k(h))
)

=

∫ k((t∧s)+h)

0

(

λ̄0(u) + ψ− ∗ λ̄0(u)
)

∫ ∞

0
F (dz)

(

HU1k(h),k(t+h)(u, z)HU1k(h),k(s+h)(u, z)
)

→h
t× s

(

ρ2−
∫∞
0 ye−ρ−yF c(y)dy

)2

(

∫ ∞

0

(

λ̄0(u) + ψ− ∗ λ̄0(u)
)

e−2ρ−udu
)

∫ ∞

0

(

1− e−ρ−z
)2
F (dz)

=
λ̄0

ρ4−
( ∫∞

0 ye−ρ−yF c(y)dy
)2 × t× s

where we make use of the fact that
∫ ∞

0
e−szF (dz) = s

∫ ∞

0
e−syF (y)dy = 1− s

∫ ∞

0
e−syF c(y)dy.

This finishes the proof. �

Proof of Proposition 3.4. The proof follows the idea similar to Case (iii) in Proposition 3.3. Let ρ+

be the constant such that

∫ ∞

0
e−ρ+yF (y)dy = 1. Then we have

e−ρ+tψ+(t) →t

(
∫ ∞

0
ye−ρ+yF (y)dy

)−1

λ̄0(t) + ψ+ ∗ λ̄0(t)
eρ+t

→t

(

ρ+

∫ ∞

0
ye−ρ+yF (y)dy

)−1

,

from the renewal theorem. Let k(t) = ln(t+1)
ρ+

for t > 0. Similar to (6.7), we obtain

Cov
(

X̂(k(t+ h))− X̂(k(h)), X̂(k(s + h))− X̂(k(h))
)

=

∫ t∧s

0

λ̄0(u) + ψ+ ∗ λ̄0(u)
ρ+eρ+u

∣

∣

∣

∣

u=k(v+h)

dv →h
λ̄0 · t ∧ s

ρ2+
∫∞
0 ye−ρ+yF c(y)dy

,

and

Cov
(

X̂(k(t+ h))− X̂(k(h)), Ŷ (k(s+ h))− Ŷ (k(h))
)

=

∫ t

0

λ̄0(u) + ψ+ ∗ λ̄0(u)
ρ+eρ−u

∣

∣

∣

∣

u=k(v+h)

dv

∫ k(s+h)

k(h)
ψ+(w − k(v + h))dw →h 0.

For the covariance of Ŷ , similar to (6.8), we have

HU1k(h),k(t+h)(u, z) =

∫ k(t+h)

k(h)
1(z ≤ v − u)dv +

∫ k(t+h)

k(h)
ψ+(w − v)dw

∫ k(t+h)

0
1(z ≤ v − u)dv
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≤
(

k(t+ h)− k(h)
)

+M

∫ k(t+h)

k(h)
eρ+(w−v)dw

∫ k(t+h)

0
dv

≤
(

k(t+ h)− k(h)
)

+
Mt

ρ2+
.

For u < k(t+ h), making use of the fact ψ(w − v) = 0 for w < v, we have

HU1k(h),k(t+h)(u, z) = o(1) +

∫ k(t+h)

k(h)
dw

∫ w

u+z
ψ+(w − v)dv

= o(1) + e−ρ+(u+z)

∫ t

0

ψ ∗ 1(v − u− z)

ρ+eρ+(v−u−z)

∣

∣

∣

∣

v=k(s+h)

ds

→h
t · e−ρ+(u+z)

ρ2+
∫∞
0 ye−ρ+yF (y)dy

.

Therefore, applying the dominated convergence theorem, we obtain

Cov
(

Ŷ (k(t+ h)) − Ŷ (k(h)), Ŷ (k(s + h))− Ŷ (k(h))
)

→h
t× s

(

ρ2+
∫∞
0 ye−ρ+yF (y)dy

)2

(
∫ ∞

0

(

λ̄0(u) + ψ+ ∗ λ̄0(u)e−2ρ+u
)

du

)(
∫ ∞

0
e−2ρ+zF (dz)

)

=
λ̄0

ρ4+
( ∫∞

0 ye−ρyF (y)dy
)2

∫∞
0 e−2ρ+yF (y)dy

1−
∫∞
0 e−2ρ+yF (y)dy

× t× s.

This finishes the proof. �
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