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Abstract. We study ergodic properties of a class of Markov-modulated general birth-death pro-
cesses under fast regime switching. The first set of results concerns the ergodic properties of the
properly scaled joint Markov process with a parameter that is taken large. Under very weak hy-
potheses, we show that if the averaged process is exponentially ergodic for large values of the
parameter, then the same applies to the original joint Markov process. The second set of results
concerns steady-state diffusion approximations, under the assumption that the ‘averaged’ fluid limit
exists. Here, we establish convergence rates for the moments of the approximating diffusion process
to those of the Markov modulated birth-death process. This is accomplished by comparing the
generator of the approximating diffusion and that of the joint Markov process. We also provide
several examples which demonstrate how the theory can be applied.

1. Introduction

There has been a considerable amount of research on Markov-modulated birth-death processes.
The rate control problem for Markov-modulated single server queue has been addressed in [10,18,
24], while the scheduling control problem for Markov-modulated critically loaded multiclass many-
server queues has been considered in [4], in which exponential ergodicity under a static priority
rule is also studied. The papers [1, 14] address functional limit theorems for Markov-modulated
Markovian infinite server queues. See also the work on the functional limit theorem for Markov-
modulated compound Poisson processes in [22]. We refer the readers to [15, 25] for the study of
stability and instability for birth-death processes.

In this paper, we study a class of general birth-death processes with countable state space and
bounded jumps. Meanwhile, the transition rate functions of the birth-death process depend on
an underlying continuous time Markov process with finite state space. An asymptotic framework
is considered under which the Markov-modulated birth-death process is indexed by a scaling pa-
rameter n, with n getting large. The transition rate matrix of the underlying Markov process is
of order nα, α > 0, and the jump size of the birth-death process shrinks at a rate of nβ with
β := max{1/2, 1−α/2}. This scaling has been used in [1,4,14] for some special birth-death queueing
processes.

In this asymptotic framework, we first provide a sufficient condition for the scaled Markov-
modulated process to be exponentially ergodic. We show that if the ‘averaged’ birth-death process
satisfies a Foster-Lyapunov criterion for a certain class of Lyapunov functions, then the original
Markov-modulated process also has the same property. Next, we study steady-state approximations
of the Markov-modulated process. We construct diffusion models, and show that their steady-state
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moments approximate those of the joint Markov process with a rate n−(1/2∧α/2). This problem is
motivated by [11], in which steady-state approximations for a general birth-death process have been
considered. However, the problem is quite challenging in this paper, since we need to consider the
variabilities of the underlying Markov process, and the martingale argument in the above referenced
work cannot be applied. We also present some examples from queueing systems and show that the
assumptions presented are easy to verify.

The aforementioned result of exponential ergodicity is stated in Theorem 2.1. We consider a
large class of scaled Markov-modulated general birth-death processes, whose transition rate func-
tions have a linear growth around some distinguished point. The state processes are also centered
at this point. The increments of the transition rate functions are assumed to have affine growth.
This assumption is relaxed in Corollary 2.1, in which a stronger Foster-Lyapunov criterion is re-
quired instead. The technique of proofs for this set of results is inspired by [16], which studies
stochastic differential equations with rapid Markovian switching. We construct a sequence of Lya-
punov functions via Poisson equations associated with the extended generator of the background
Markov process. The technique employed for our results is more involved, since a class of Markov
processes under weak hypotheses is considered, and the scaling parameter affects the state and
background processes at the same time. In the study of ergodicity of a Markov-modulated mul-
ticlass M/M/n + M queue under a static priory scheduling policy in [4, Theorem 4], the authors
observe an effect of ‘averaged’ Halfin-Whitt regime, and also use a technique similar in spirit to
the method in [16]. In this paper, we consider a more general model which includes the one in
[4, Theorem 4] as a special case. In Example 3.2, we also present that the result in [4, Theorem 4]
holds under some weaker condition, and its proof may be simplified a lot following the approach as
in Corollary 2.1. In Corollary 2.2 and Remark 2.4, we emphasize that the result in this part can be
applied in the study of uniformly exponential ergodicity of Markov-modulated multiclass M/M/n
queues with positive safety staffing.

The main result on steady-state approximations is stated in Theorem 2.2. Here, we first construct
‘averaged’ diffusion models, which capture the variabilities of the state process and the underlying
Markov process at the same time. In these diffusion models, the variabilities of the state process
are asymptotically negligible at a rate n1−2β when α < 1, while the variabilities of the underlying
process are asymptotically negligible at a rate n1−α when α > 1 (see Proposition A.1). The gap
between the moments of the steady state of the approximating diffusion models and those of the
joint Markov process shrinks at rate of nα/2∧1/2.

The result in Theorem 2.2 extends the results of [11] to Markov-modulated birth-death processes.
The proofs in [11] rely on the gradient estimates of solutions of a sequence of Poisson equations
associated with diffusions and a martingale argument. Under a uniformly exponential ergodicity
assumption for the diffusion models, the gradient estimates we used for the Poisson equation are
the same as those found in [11]. However, the martingale argument is difficult to apply in obtaining
Theorem 2.2. On the other hand, the proof of [4, Lemma 8] concerning the convergence of mean
empirical measures for Markov-modulated multiclass M/M/n+M queues uses a martingale argu-
ment, but considers only compactly supported smooth functions. The analogous argument cannot
be used in this paper, since we need to consider a class of general birth-death processes and the
Lyapunov functions are unbounded. So we develop a new approach by exploring the structural
relationship between the generator of the joint Markov process and that of the diffusion models
in Lemma 5.1. This is accomplished by matching the second order derivatives associated with the
covariance of the underlying Markov process using the solutions of Poisson equations which involve
the difference between the coefficients of the original state process and those of the ‘averaged’ dif-
fusion models. In Lemma 5.2, we also provide some crucial estimates for the residual terms arising
from the difference of the two generators.
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Stability of switching diffusions has been studied extensively. Exponential stability for nonlinear
Markovian switching diffusion processes has been studied in [19], while p-stability and asymptotic
stability for regime-switching diffusions have been addressed in [17]. For an underlying Markov
process with a countable state space, the stability of regime-switching diffusions has been considered
in [23]. In these studies, the state and background Markov processes are unscaled, and there is no
‘averaged’ system. Under fast regime switching, we observe an ‘averaged’ effect, and study how the
ergodic properties of the ‘averaged’ system are related to those of the original system.

1.1. Organization of the paper. The notation used in this paper is summarized in the next
subsection. In Section 2, we describe the model of Markov-modulated general birth-death processes.
We present the results of exponential ergodicity and steady-state approximations in Sections 2.1
and 2.2, respectively. Section 3 contains some examples from queueing systems. Section 4 is
devoted to the proofs of Theorem 2.1, and Corollaries 2.1 and 2.2. The proofs of Theorem 2.2
and Corollary 2.3 are given in Section 5. Proposition A.1 concerning the diffusion limit is given in
Appendix A.

1.2. Notation. We let N and Z+ denote the set of natural numbers and the set of nonnegative
integers, respectively. Let Rd denote the set of d-dimensional real vectors, for d ∈ N. The Euclidean
norm and inner product in Rd are denoted by | · | and 〈 · , · 〉, respectively. If a = (a1, . . . , an) is an

ordered n-tuple, then |a| := (
∑n

i=1 a
2
i )

1/2. For x ∈ Rd, xT denotes the transpose of x. We denote

the indicator function of a set A ⊂ Rd by 1A. The minimum (maximum) of a, b ∈ R is denoted by
a ∧ b (a ∨ b), and a± := 0 ∨ (±a). We let e denote the vector in Rd with all entries equal to 1, and
ei denote the vector in Rd with the ith entry equal to 1 and other entries equal to 0. The closure
of a set A ⊂ Rd is denoted by Ā. The open ball of radius r in Rd, centered at x ∈ Rd, is denoted
by Br(x).

For a domain D ⊂ Rd, the space Ck(D) (C∞(D)) denotes the class of functions whose partial
derivatives up to order k (of any order) exist and are continuous, and Ckb (D) stands for the functions

in Ck(D), whose partial derivatives up to order k are continuous and bounded. The space Ck,1(D)
is the class of functions whose partial derivatives up to order k are Lipschitz continuous. We let

[f ]2,1;D := sup
x,y∈D,x6=y

∣∣∇2f(x)−∇2f(y)
∣∣

|x− y|

for a domain D ⊂ Rd and f ∈ C2,1(D). For a nonnegative function f ∈ C(Rd), we use O(f)

to denote the space of function g ∈ C(Rd) such that supx∈Rd
|g(x)|

1+f(x) < ∞. By a slight abuse of

notation, we also let O(f) denote a generic member of this space. Given any Polish space X , we
let P(X ) denote the space of probability measures on X , endowed with the Prokhorov metric.
For µ ∈ P(X ) and a Borel measurable map f : X 7→ R, we often use the simplified notation
µ(f) :=

∫
X f dµ.

2. Model and Results

Let Q = [qij ]i,j∈K, with K := {1, . . . , k◦}, be an irreducible stochastic rate matrix, and

π := {π1, . . . , πk◦} (2.1)

denote its (unique) invariant probability distribution. We fix a constant α > 0. For each n ∈ N ,
let Jn denote the finite-state irreducible continuous-time Markov chain with state space K and
transition rate matrix nαQ. In addition, for each n ∈ N and k ∈ K, let Xn ⊂ Rd be a countable set,
with no accumulation points in Rd, and Rnk =

[
rnk (x, y)

]
x,y∈Xn be a stochastic rate matrix which

gives rise to a nonexplosive, irreducible, continuous-time Markov chain.
The transition matrices {Rnk} satisfy the following structural assumptions.
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Hypothesis 2.1. There exist positive constants m0, N0, and C0, such that the following hold for
all x ∈ Xn, n ∈ N, and k ∈ K.

(a) Bounded jumps. It holds that rnk (x, x+ z) = 0 for |z| > m0.

(b) Finitely many jumps. The cardinality of the set Znk(x) := {z ∈ Rd : rnk (x, x + z) > 0} does
not exceed N0.

(c) Incremental affine growth. It holds that∣∣rnk (x, x+ z)− rnk (x′, x′ + z)
∣∣ ≤ C0

(
n
α/2 + |x− x′|

)
.

(d) There exists some distinguished element xn∗ ∈ Rd such that

rnk (x, x+ z) ≤ C0(n1∨α/2 + |x− xn∗ |) .

Hypothesis 2.1 is assumed throughout the paper without further mention. We refer the readers
to Examples 3.1 to 3.3 for examples of verification of the conditions in (c) and (d).

Remark 2.1. The element xn∗ ∈ Xn in part (d) plays an important role in the analysis. For queueing
models, xn∗ may be chosen as steady state of the ‘average’ fluid, referred to solutions of (2.20) later.

Consider the stochastic rate matrix Sn on Xn ×K whose elements are defined by

sn
(
(x, i), (y, j)

)
:=


rni (x, y) if i = j ,

nαqij if x = y ,

0 otherwise ,

for x, y ∈ Xn and i, j ∈ K. This defines a nonexplosive, irreducible Markov chain (Xn, Jn), where
Jn is as described in the preceding paragraph.

In order to simplify some algebraic expressions, we often use the notation r̃nk (x, z) = rnk (x, x+z).

Definition 2.1. Let β := max{1/2, 1 − α/2} be fixed. With xn∗ as in Hypothesis 2.1 (d), we define
the scaled process

X̂n :=
Xn − xn∗

nβ
.

The state space of X̂n is given by

X̂n := {x̂n(x) : x ∈ Xn} ,

where x̂ = x̂n(x) := n−β(x− xn∗ ) for x ∈ Rd.

Naturally, (X̂n, Jn) is a Markov process, and its extended generator is given by

L̂nf(x̂, k) = Lnkf(x̂, k) +Qnf(x̂, k) , (x̂, k) ∈ X̂n ×K , (2.2)

for f ∈ Cb(Rd ×K), where

Lnkf(x̂, k) :=
∑

z∈Zn(x)

r̃nk (nβx̂+ xn∗ , z)
(
f(x̂+ n−βz, k)− f(x̂, k)

)
,

Qnf(x̂, k) :=
∑
`∈K

nαqk`
(
f(x̂, `)− f(x̂, k)

)
=
∑
`∈K

nαqk`f(x̂, `) .
(2.3)

It is clear that L̂nf and Lnkf are well defined for f ∈ Cb(Rd), by viewing f as a function on Rd×K
which is constant with respect to its second argument.

Throughout the paper, x and x̂ are generic elements of Xn (or Rd) and X̂n, respectively.
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2.1. Exponential ergodicity. In this subsection, we provide a sufficient condition for the joint

process (X̂n, Jn) to be exponentially ergodic. We refer the reader to [20] for the definition of expo-
nential ergodicity and the relevant Foster–Lyapunov criteria. We introduce the following operator,
which corresponds to the generator of the ‘averaged’ process.

Definition 2.2. Let

r̄n(x, z) :=
∑
k∈K

πkr̃
n
k (x, z) ,

with πk as in (2.1), and

Zn := ∪x∈Xn ∪k∈K Znk(x) . (2.4)

We define Ln : Cb(R
d ×K) 7→ Cb(R

d ×K) by

Lnf(x̂, k) :=
∑
z∈Zn

r̄n(nβx̂+ xn∗ , z)
(
f(x̂+ n−βz, k)− f(x̂, k)

)
, (x̂, k) ∈ X̂n ×K , (2.5)

and f ∈ Cb(Rd ×K).

In the following theorem, we show that if Ln satisfies a Foster–Lyapunov inequality with a

suitable Lyapunov function, then the original joint process (X̂n, Jn) is exponential ergodic. The
proof is given in Section 4.

A function f : Rd 7→ R+ is called norm-like if f(x)→∞ as |x| → ∞; see, for example, [20, Section
1.3].

Theorem 2.1. Suppose that there exist a sequence of nonnegative norm-like functions {Vn ∈
C(Rd) : n ∈ N}, n0 ∈ N, and some positive constants ε0, C, C1, C2, not depending on n such that

(1 + |x|)
∣∣Vn(x+ y)− Vn(x)

∣∣ ≤ C|y|
(
1 + Vn(x)

)
,(

1 + |x|2
) ∣∣Vn(x+ y + z

)
− Vn(x+ y)− Vn(x+ z) + Vn(x)

∣∣ ≤ C|y||z|
(
1 + Vn(x)

)
,

(2.6)

for any y, z ∈ B0(ε0) \ {0}, x ∈ Rd and n ∈ N, and

LnVn(x̂) ≤ C1 − C2Vn(x̂) ∀ x̂ ∈ X̂n , ∀n > n0 . (2.7)

Then, there exist functions V̂n ∈ C(Rd×K), and positive constants Ĉ1, Ĉ2, and n1 ∈ N, such that,
for all n ≥ n1, we have

1

2

(
Vn(x̂)− 1

)
≤ V̂n(x̂, k) ≤ 3

2
Vn(x̂) +

1

2
∀ (x̂, k) ∈ X̂n ×K , (2.8)

and

L̂nV̂n(x̂, k) ≤ Ĉ1 − Ĉ2V̂n(x̂, k) ∀ (x̂, k) ∈ X̂n ×K , ∀n > n1 . (2.9)

As a consequence, (X̂n, Jn) is exponentially ergodic for all n > n1, and its invariant probability
distributions are tight.

Remark 2.2. It follows from the proof of Theorem 2.1 that Ĉ2 can be selected arbitrarily close to
C2, so the rates of convergence of the ‘averaged’ system and the Markov modulated one become
asymptotically close.

Remark 2.3. A sufficient condition for a function Vn ∈ C2,1(Rd) to satisfy (2.6) is

|∇Vn(x)| ≤ c
1 + Vn(x)

1 + |x|
, and |∇2Vn(x)|+

[
Vn
]
2,1;Bε(x)

≤ c
1 + Vn(x)

1 + |x|2
∀x ∈ Rd , (2.10)

for some fixed positive constants ε and c.
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In the next corollary, we relax the incremental growth hypothesis in Hypothesis 2.1 (c). Its proof
is contained in Section 4. In Example 3.2, we show that this result can be applied in the study of
exponential ergodicity for Markov-modulated M/M/n+M queues.

We replace Hypothesis 2.1 (c) by the following weaker assumption.

Assumption 2.1. Suppose that Hypothesis 2.1 (a), (b) and (d) are satisfied, and r̃nk can be de-
composed into

r̃nk (x, z) = φnk(x, z) + ψnk (x, z) , x ∈ Xn , z ∈ Znk(x) ,

where φnk(x, z) and ψnk (x, z), k ∈ K, are locally bounded functions on Xn × Zn. In addition, using
without loss of generality the same constant, there exist δ1, δ2 ∈ [0, 1] such that

|ψnk (x, z)− ψnk (y, z)| ≤ C0

(
n
α/2 + |x− y|δ1

)
∀ k ∈ K , ∀x, y ∈ Xn , ∀ z ∈ Zn , (2.11)

and
|ψnk (x, z)| ≤ C0

(
n1∨α/2 + |x− xn∗ |δ2

)
∀ k ∈ K , ∀ (x, z) ∈ Xn × Zn , (2.12)

with xn∗ ∈ Rd as in Hypothesis 2.1 (d), and for n ∈ N.

Corollary 2.1. Grant Assumption 2.1. Let Gnk : Cb(R
d ×K) 7→ Cb(R

d ×K) be defined by

Gnk f(x̂, k) :=
∑
z∈Zn

(
φnk(nβx̂+ xn∗ , z) + ψ̄n(nβx̂+ xn∗ , z)

)(
f(x̂+ n−βz, k)− f(x̂, k)

)
(2.13)

for (x̂, k) ∈ X̂n × K and f ∈ Cb(Rd × K), and with xn∗ as in Assumption 2.1, where ψ̄n(x, z) :=∑
k∈K πkψ

n
k (x, z). Suppose that (2.6) holds with the second inequality replaced by(

1 + |x|1+δ2
) ∣∣Vn(x+ y + z

)
− Vn(x+ y)− Vn(x+ z) + Vn(x)

∣∣ ≤ C|y||z|
(
1 + Vn(x)

)
,

where δ2 is as in Assumption 2.1, and there exist n2 ∈ N and some positive constants C1 and C2

such that
GnkVn(x̂) ≤ C1 − C2Vn(x̂) ∀ (x̂, k) ∈ X̂n ×K , ∀n > n2 . (2.14)

Then, the results in (2.8) and (2.9) hold.

In the following corollary, we show that under some stronger assumptions on the transition rate
functions and the scaling parameters, (2.6) can be weakened. Its proof is given in Section 4.

Corollary 2.2. Grant parts (a) and (b) of Hypothesis 2.1, and suppose that rnk satisfies∣∣rnk (x, x+ z)− rnk (x′, x′ + z)
∣∣ ≤ C0

(
1 + |x− x′| ∧ n

)
, (2.15)

and
rnk (xn∗ , x

n
∗ + z) ≤ C0n . (2.16)

If in the assumptions of Theorem 2.1 we replace (2.6) by∣∣Vn(x+ y)− Vn(x)
∣∣ ≤ C|y|

(
1 + Vn(x)

)
,∣∣Vn(x+ y + z

)
− Vn(x+ y)− Vn(x+ z) + Vn(x)

∣∣ ≤ C|y||z|
(
1 + Vn(x)

)
,

(2.17)

then, provided β and α satisfy 2β + α > 2, the conclusions of the theorem still hold.

Note that (2.17) is satisfied for exponential functions.

Remark 2.4. The transition rates of multiclass M/M/n queues, that is, the model in Example 3.2
with no abandonment (γi(k) ≡ 0), satisfy (2.15) and (2.16). Uniform exponential ergodicity of this
model (with spare capacity, or equivalently, positive safety staffing) is established in [2] using expo-
nential Lyapunov functions. Thus, we may use exponential Lyapunov functions in (2.7), and take
advantage of the results in [2] to establish exponential ergodicity of Markov-modulated multiclass
M/M/n queues with positive safety staffing using the Lyapunov functions in [2]. We leave it to
the reader to verify that for α ≥ 1, we can in fact establish uniform exponential ergodicity over all
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work-conserving scheduling policies. For α < 1 the discontinuity allowed in the policies need to be
restricted.

Extending this to the classes of multiclass multi-pool models studied in [12] is also possible.

2.2. Steady-state approximations. Here, we use a function ξnz (x, k) for (x, z) ∈ Rd × Rd and
k ∈ K which interpolates the transition rates in the sense that

ξnz (x, k) = rnk (x, x+ z) if x, x+ z ∈ Xn .

Recall the definition of Zn in (2.4). It is clear that for z /∈ Zn we may let ξnz ≡ 0. Thus

Zn =
{
z ∈ Rd : ∃x, k such that ξnz (x, k) > 0} .

This of course also implies that

ξnz (x, k) = 0 if |z| > m0 (2.18)

by Hypothesis 2.1 (a).
We let I := {1, . . . , d}, and define

Ξn(x, k) :=
∑
z∈Zn

z ξnz (x, k) ,

Γnij(x, k) :=
∑
z∈Zn

zizjξ
n
z (x, k) , i, j ∈ I ,

(2.19)

for (x, k) ∈ Rd ×K.
We impose the following structural assumptions on the function ξn.

Assumption 2.2. The following hold.

(i) The cardinality of the set {z ∈ Rd : ξnz (x, k) > 0} does not exceed Ñ0.

(ii) For each n ∈ N, there exists xn∗ ∈ Rd satisfying∑
k∈K

πkΞ
n(xn∗ , k) = 0 . (2.20)

(iii) The function ξnz is uniformly Lipschitz continuous in its first argument, that is, there exists

some positive constant C̃ such that

|ξnz (x, k)− ξnz (y, k)| ≤ C̃|x− y| ∀ k ∈ K , ∀x, y ∈ Rd , ∀ z ∈ Zn , (2.21)

for all n ∈ N. In addition, using without loss of generality the same constant, we assume
that

max
z∈Rd

ξnz (xn∗ , k) ≤ C̃n ∀ k ∈ K , ∀n ∈ N . (2.22)

(iv) The matrix Γn(xn∗ , k) is positive definite, and

1

n
Γn(xn∗ , k) −−−→

n→∞
Γ̄(k) , (2.23)

where Γ̄(k) is also a positive definite d× d matrix, for all k ∈ K.

We note here that the nondegeneracy hypothesis in Assumption 2.2 (iv) is used in Lemma 5.3 to
derive gradient estimates of the solution of a Poisson equation.

Remark 2.5. Equation (2.21) is of course much stronger than Hypothesis 2.1 (c). This is needed
for the results in this section which rely on certain Schauder estimates for solutions of the Poisson
equation for the generator of an approximating diffusion equation.
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Let {Anz : z ∈ Zn} be a family of independent unit rate Poisson processes, independent of Jn,

and Ãnz (t) := Anz (t)− t. Then, the d-dimensional process Xn(t) is governed by the equation

Xn(t) = Xn(0) +
∑
z∈Zn

z Anz

(∫ t

0
ξnz
(
Xn(s), Jn(s)

)
ds

)

= Xn(0) +Mn(t) +

∫ t

0
Ξn
(
Xn(s), Jn(s)

)
ds ,

where

Mn(t) :=
∑
z∈Zn

z Ãnz

(∫ t

0
ξnz
(
Xn(s), Jn(s)

)
ds

)
.

Note that Mn(t) is a local martingale with respect to the filtration

Fnt := σ

{
Xn(0), Jn(s), Ãnz

(∫ t

0
ξnz
(
Xn(s), Jn(s)

)
ds

)
,

∫ t

0
ξnz
(
Xn(s), Jn(s)

)
ds : z ∈ Zn, s ≤ t

}
.

The locally predictable quadratic variation of Mn satisfies

〈Mn〉(t) =

∫ t

0
Γn
(
Xn(s), Jn(s)

)
ds , t ≥ 0 ,

where the function Γn = [Γnij ] : R
d ×K 7→ Rd×d is given in (2.19).

By (2.21), it is evident that given xn(0) ∈ Rd, there exists a unique solution xn(t) satisfying

xn(t) = xn(0) +
∑
k∈K

πk

∫ t

0
Ξn(xn(s), k) ds .

We refer to this as the nth ‘averaged’ fluid model.
In this section, the scaled process is defined as in Definition 2.1, with the exception that xn∗ ∈ Rd

is specified in Assumption 2.2. Note that in the extended generator in (2.2) and (2.3) we may

replace r̃nk (nβx̂+ xn∗ , z) by ξnz (nβx̂+ xn∗ , k). It is evident from (2.24), that X̂n satisfies

X̂n(t) = X̂n(0) + M̂n(t) +

∫ t

0
Ξ̂n
(
X̂n(s), Jn(s)

)
ds , (2.24)

where

M̂n :=
Mn

nβ
, and Ξ̂n(x̂, k) :=

Ξn(nβx̂+ xn∗ , k)

nβ
, (x̂, k) ∈ Rd ×K . (2.25)

The locally predictable quadratic variation of M̂n is given by

〈M̂n〉(t) =

∫ t

0
Γ̄n
(
X̂n(s), Jn(s)

)
ds , t ≥ 0 ,

with

Γ̄n(x̂, k) :=
1

n2β
Γn(nβx̂+ xn∗ , k) , (x̂, k) ∈ Rd ×K . (2.26)

We next introduce a sequence of processes that approximate X̂n. Let Ŷ n be the strong solution
to the Itô d-dimensional stochastic differential equation (SDE)

dŶ n(t) = b̄n
(
Ŷ n(t)

)
dt+ σndW (t) , (2.27)

with Ŷ n(0) = y0, where W (t) is a d-dimensional standard Brownian motion,

b̄ni (ŷ) :=
∑
k∈K

πkΞ̂
n
i (ŷ, k) , ŷ ∈ Rd , i ∈ I ,
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with Ξ̂n defined in (2.25). The diffusion matrix σn is characterized as follows. Let

Υ := (Π−Q)−1 −Π (2.28)

denote the deviation matrix corresponding to the transition rate matrix Q [7]. Let Θn = [θnij ] be
defined by

θnij := 2
∑
`∈K

∑
k∈K

Ξni (xn∗ , k)Ξnj (xn∗ , `)

nα+2β
πkΥk` , i, j ∈ I , (2.29)

and

ān(x) = [ānij ](x) :=
∑
k∈K

πkΓ̄
n(x, k) , x ∈ Rd .

Then, by Assumption 2.2 (iv), and using the spectral decomposition, σn satisfies

Σn := (σn)Tσn = ān(0) + Θn . (2.30)

The generator of Ŷ n denoted by An is given by

Anf(x) =
∑
i∈I

b̄ni (x) ∂if(x) +
1

2

∑
i,j∈I

Σn
ij ∂ijf(x) , f ∈ C2(Rd) . (2.31)

We borrow the following definitions from [11]. We say that a function f ∈ C2(Rd) is sub-
exponential if f ≥ 1 and there exists some positive constant c such that

|∇f(x)|+
∣∣∇2f(x)

∣∣ ≤ c ec|x| ∀x ∈ Rd ,

and

sup
{z : |z|≤1}

f(x+ z)

f(x)
≤ c ∀x ∈ Rd .

We also let Bx denote the open ball around x ∈ Rd of radius (1 + |x|)−1, and define

‖f‖C0,1(Bx) := sup
y∈Bx
|f(x)|+ sup

y,z∈Bx

|f(y)− f(z)|
|y − z|

, f ∈ C0,1(Rd) .

The following assumption concerning the ergodic properties of Ŷ n plays a crucial role in the
proofs for steady-state approximations.

Assumption 2.3. There exist a sub-exponential norm-like function V ∈ C2(Rd), a positive con-
stant κ, and an open ball B such that

AnV(x) ≤ 1B(x)− κV(x) ∀x ∈ Rd , ∀n ∈ N .

We continue with the main result of this section. Its proof is given in Section 5. Let νn ∈ P(Rd)

denote the steady-state distribution of Ŷ n.

Theorem 2.2. Grant Assumptions 2.2 and 2.3. Assume that (X̂n, Jn) is ergodic, and its steady-
state distribution πn ∈ P(Rd ×K) satisfies

lim sup
n→∞

∫
Rd×K

V(x̂)(1 + |x̂|)5πn(dx̂,dk) < ∞ . (2.32)

Then, for any f : Rd 7→ R such that ‖f‖C0,1(Bx) ≤ V(x), and α > 0, we have

|πn(f)− νn(f)| = O

(
1

nα/2∧1/2

)
. (2.33)
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Theorem 2.2 concerns the gap between the moments of the marginal distribution of the steady-
state X̂n and those of νn. The order of the function in (2.32) is determined by the estimates in
Lemma 5.2, and the gradient estimates of the solutions to the Poisson equation in Lemma 5.3. In
the following corollary, we provide a sufficient condition for (2.32). We give its proof in Section 5.
In Section 3, we show that this sufficient condition holds in many examples.

Corollary 2.3. Grant Assumption 2.2. Let V and Ṽ be two sub-exponential functions in C2(Rd)
satisfying Assumption 2.3 such that

V(x)(1 + |x|5) ≤ Ṽ(x) , (2.34)

and

(1 + |x|)
(
|∇Ṽ(x)|+

∣∣∇2Ṽ(x)
∣∣)+ (1 + |x|2)

[
Ṽ
]
2,1;Bm0/nβ

(x)
≤ CṼ(x) , (2.35)

for some positive constant C and any x ∈ Rd, and with m0 as in (2.18). Then (2.32) holds for V.
As a consequence, (2.33) holds.

3. Examples

In this section, we demonstrate how the results of Section 2 can be applied through examples.

Example 3.1 (Markov-modulated M/M/∞ queue). We consider a process given by

Xn(t) := Xn(0) +An1

(∫ t

0
nλ
(
Jn(s)

)
ds

)
−An−1

(∫ t

0
µ
(
Jn(s)

)
Xn(s) ds

)
,

where An−1 and An1 are mutually independent unit rate Poisson processes, independent of Jn, for
n ∈ N. We assume that λ(k) > 0 and µ(k) > 0, for k ∈ K. We let

xn∗ = n

∑
k∈K πkλ(k)∑
k∈K πkµ(k)

. (3.1)

Recall that X̂n = n−β(Xn − xn∗ ), and then X̂n = {x̂n(x) : x ∈ Z+}. It is evident that λ(k) and
µ(k)x satisfy Hypothesis 2.1 (c) and (d). Let λ̄ :=

∑
k∈K πkλ(k) and µ̄ :=

∑
k∈K πkµ(k). By

Definition 2.2, we obtain

Lnf(x̂) = nλ̄
(
f(x̂+ n−β)− f(x̂)

)
+ µ̄ (nβx̂+ xn∗ )

(
f(x̂− n−β)− f(x̂)

)
∀ x̂ ∈ X̂n . (3.2)

Let V(x) = |x|m, for x ∈ R, with even integer m ≥ 2. It is clear that

|x̂± n−β|m − |x̂|m = ±n−βm(x̂)m−1 + O(n−2β)O(|x̂|m−2) . (3.3)

Thus we obtain from (3.1) and (3.2) that

LnV(x̂) = nλ̄
(
|x̂+ n−β|m − |x̂|m − n−βm|x̂|m−1

)
+ µ̄nβx̂

(
|x̂− n−β|m − |x̂|m

)
+ µ̄xn∗

(
|x̂− n−β|m − |x̂|m +mn−β|x̂|m−1

)
= λ̄O(n1−2β)O(|x̂|m−2) + µ̄

(
−|x̂|m + O(n−β)O(|x̂|m−1) + O(n1−2β)O(|x̂|m−2)

)
≤ C1 − C2V(x̂) ∀ x̂ ∈ X̂n ,

for some positive constants C1 and C2, where in the second equality we use (3.3), and in the last line
we apply Young’s inequality. It is straightforward to verify that V(x) satisfies (2.10). Therefore,

the assumptions in Theorem 2.1 hold, and (X̂n, Jn) is exponentially ergodic for all large enough n.
Next we verify the assumptions in Corollary 2.3. The equation in (2.20) becomes∑

k∈K
πkΞ

n(xn∗ , k) =
∑
k∈K

πknλ(k)−
∑
k∈K

πkµ(k)xn∗ = 0 . (3.4)
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Note that xn∗ in (3.1) is the unique solution to (3.4). Recall the representation of Ŷ n in (2.27). In
this example, it follows by (3.4) that

b̄n(x) = n−βµ̄xn∗ − n−βµ̄(nβx+ xn∗ ) = −µ̄x ∀x ∈ R ,
and

ān(0) = n−2β(nλ̄+ µ̄xn∗ ) = n1−2β2λ̄ .

Let V(x) = κ+ |x|m, with κ ≥ 1 for some integer m ≥ 2. We choose some κ̃ ≥ 1 such that

Ṽ(x) := κ̃
(
1 + |x|5+m

)
≥ V(x)(1 + |x|5) ∀x ∈ R .

Then, Assumptions 2.2 and 2.3 are satisfied. Indeed, by the discussion following Theorem 3.1 of

[11], if Ṽ ∈ C3(Rd) in Corollary 2.3, we may replace (2.35) by

(1 + |x|)
(
|∇Ṽ(x)|+

∣∣∇2Ṽ(x)
∣∣)+ (1 + |x|2)

∣∣∇3Ṽ(x)
∣∣ ≤ CṼ(x) , (3.5)

for some positive constant C and any x ∈ Rd, where ∇3 := ∂3

∂x
η1
1 ···∂x

ηd
d

with a multi-index (η1, . . . , ηd)

satisfying
∑d

i=1 ηi = 3. Then, it is straightforward to check that Ṽ chosen above satisfies (3.5).
Thus, the result in Corollary 2.3 follows.

The following example concerns Markov-modulated multiclass M/M/N+M queues. Exponential
ergodicity for these queues under a static priority scheduling policy has been studied in [4, Theorem
4], which treats a special case of the model considered in this paper. Here we show that by using
the result in Corollary 2.1, the proof of [4, Theorem 4] is simplified a lot. We also extend the
results in [4, Theorem 4 and Lemma 3] to include a larger class of scheduling policies such that the
Markov-modulated queues have exponential ergodicity.

Example 3.2. [Markov-modulated multiclass M/M/N +M queues] We consider a d-dimensional
birth-death process {Xn(t) : t ≥ 0}, with state space Zd+, given by

Xn
i (t) := Xn

i (0) +Anei

(∫ t

0
nλi
(
Jn(s)

)
ds

)
−An−ei

(∫ t

0

(
µi
(
Jn(s)

)
zni (Xn(s)) + γi

(
Jn(s)

)(
Xn
i (s)− zni (Xn(s))

))
ds

)
for i ∈ I := {1, . . . , d}, where {Anei , A

n
−ei : i ∈ I} are mutually independent unit rate Poisson

processes, independent of Jn, and zn is the static priority policy defined by

zni (x) := xi ∧
(
n−

i−1∑
j=1

xj

)+

∀ i ∈ I .

We assume that {λi(k), µi(k), γi(k) : i ∈ I, k ∈ K} are strictly positive, and the system is critically
loaded, that is,

∑
i∈I ρi = 1 with ρi := λ̄i/µ̄i. Equation (2.20) becomes∑

k∈K
πkΞ

n
i (xn∗ , k) = nλ̄i − µ̄izni (xn∗ )− γ̄i(xn∗,i − zni (xn∗ )) = 0 ∀ i ∈ I ,

which has a unique solution xn∗ = nρ with ρ = (ρ1, . . . , ρd).
We first establish exponential ergodicity and verify Assumption 2.1. Let

ψnei(x, k) = nλi(k) , ψn−ei(x, k) = nρiµi(k) ,

and

φn−ei(x, k) = µi(k)(zni (x)− nρi) + γi(k)(xi − zni (x))

for i ∈ I and (x, k) ∈ Rd×K. Then, ψ̄nei(x) = nλ̄i and ψ̄n−ei(x) = nρiµ̄i = nλ̄i. It is evident that the
functions ψnei and ψn−ei satisfy (2.11) and (2.12). Note that zni (x) ≤ xi, and thus Hypothesis 2.1 (d)
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is satisfied. Let Vζ,m(x) :=
∑

i∈I ζi|xi|m for x ∈ Rd, even integer m ≥ 2, and a positive vector

ζ ∈ Rd to be chosen later. Recall Gnk in (2.13). It is straightforward to verify that

GnkVζ,m(x̂) = n−β
∑
i∈I
−φn−ei(n

βx̂+ nρ, k)λi|x̂i|m−1

+ n−2β
∑
i∈I

(
2nλ̄i + φn−ei(n

βx̂+ nρ, k)
)
O(|x̂i|m−2) .

Since infi,k{µi(k), γi(k)} > 0, it follows by [3, Lemma 5.1] that there exist some positive vector λ,
n0 ∈ N, and positive constants C1 and C2 such that

GnkVζ,m(x̂) ≤ C1 − C2Vζ,m(x̂) , (x, k) ∈ X̂n ×K , n ≥ n0 . (3.6)

Therefore, the result in Corollary 2.1 follows. We remark that the claim in Corollary 2.1 holds for
any work-conserving scheduling policy satisfying (3.6), since there is no continuity assumption on
φn−ei . This extends the results of [4, Theorem 4 and Lemma 3]. Indeed the proofs of these results
can be simplified a lot following the approach above, since we only need to consider the constant
functions ψnei and ψn−ei in x.

Next we focus on steady-state approximations for this example. It is straightforward to verify
that the coefficients in (2.27) take the form

b̄ni (x) = − µ̄i
nβ
(
zni (nβx+ xn∗ )− zni (xn∗ )

)
− γ̄i
nβ
(
nβxi − (zni (nβx+ xn∗ )− zni (xn∗ ))

)
, i ∈ I , (3.7)

and

ānii(0) =
1

n2β

(
nλ̄i + µ̄iz

n
i (xn∗ ) + γ̄i

(
xn∗,i − zni (xn∗ )

)
= n1−2β2λ̄i , ∀ i ∈ I ,

and that ānij(0) = 0 for i 6= j. We let Vζ,m(x) = κ+
∑

i∈I ζi|xi|m for some positive vector ζ ∈ Rd,
an even integer m ≥ 2, and κ ≥ 1. We choose κ̃ ≥ 1 such that

Ṽζ,m(x) := κ̃
(
1 +

∑
i∈I

ζi|x|6+m
)
≥ Vζ,m(x)(1 + |x|5) ∀x ∈ Rd .

Repeating the calculation in [3, Lemma 5.1], it follows that there exist some positive vector ζ ∈ Rd
and some positive constants c1 and c2 such that

〈b̄n(x),∇Vζ,m(x)〉 ≤ c1 − c2Vζ,m(x) ∀x ∈ Rd .

It follows directly by Young’s inequality that there exists some positive constant c3 such that∣∣∇2Vζ,m(x)
∣∣ ≤ c3 −

c2

2
Vζ,m(x) ∀x ∈ Rd .

The same holds for Ṽζ,m. Thus, we have verified Assumption 2.3. Since zni is Lipschitz continuous,
it is evident that Assumption 2.2 holds. An easy calculation shows that (3.5) holds. As a result,
Corollary 2.3 follows.

When d = 1, (2.20) becomes∑
k∈K

πkΞ
n(xn∗ , k) = nλ̄− µ̄

(
xn∗ ∧ n

)
− γ̄
(
xn∗ − n)+ = 0 ,

which can be solved directly without the critically loaded assumption. It is straightforward to verify
that (3.7) becomes

b̄n(x) = −µ̄
(
(x+ n−βxn∗ ) ∧ n1−β − n−βxn∗ ∧ n1−β)− γ̄((x+ n−βxn∗ − n1−β)+ − n−β(xn∗ − n)+

)
.

Repeating the procedure as above, we establish Corollary 2.3.
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Example 3.3 (Markov-modulated M/PH/n+M queues). We assume that all customers start ser-
vice in phase-1, and there are d phases. Given Jn = k, the probability getting phase-j after finishing
service in phase-i is denoted by pij(k). Let Xn

1 denote the total number of customers including in
service and queue in phase-1, and Xn

i , for i 6= 1, denotes the number of customers in service in
phase-i. We refer reader to [8] for a detailed description of the model without Markov modulation,
and to [26] for an application of Markov-modulated phase-type distributions in queueing. Then,
(2.19) becomes{

Ξn1 (x, k) = nλ(k)− µ1(k)
(
x1 − (〈e, x〉 − n)+

)
− γ(k)

(
〈e, x〉 − n

)+
Ξni (x, k) = −µi(k)xi +

∑
j 6=i,j 6=1 pji(k)µj(k)xj + p1i(k)µ1(k)

(
x1 − (〈e, x〉 − n)+

)
for i 6= 1 ,

and (2.20) becomes{
nλ̄− µ̄1

(
xn∗,1 − (〈e, xn∗ 〉 − n)+

)
− γ̄
(
〈e, xn∗ 〉 − n

)+
= 0 ,

−µ̄ixn∗,i +
∑

j 6=i,j 6=1 p̄jiµ̄jx
n
∗,j + p̄1iµ̄1

(
xn∗,1 − (〈e, xn∗ 〉 − n)+

)
= 0 for i 6= 1 ,

where γ̄ =
∑

k∈K πkγ(k), and p̄ij =
∑

k∈K πkpij(k). Here, eT = (1, . . . , 1) as defined in Section 1.2.

Assume that λ̄ = 1. Note that {Ξni : i ∈ I} are piecewise linear functions in their first argument. It
is straightforward to verify that Hypothesis 2.1 and Assumption 2.2 are satisfied. We get xn∗ = nρ,
where

ρ :=
M̄−1e1

eTM̄−1e1
, and M̄ := (I − P̄T) diag(µ̄) ,

with the identity matrix I and P̄ := [p̄ij ]. The coefficients in (2.27) satisfy

b̄n(x) = −M̄x+
(
M̄ − γ̄I

)
e1〈e, x〉+ ,

ānii(0) =

{
n1−2β

(
1 + µ̄1ρ1

)
, if i = 1 ,

n1−2β
(∑

j 6=i,j 6=1 p̄jiµ̄jρj + µ̄iρi + µ̄1ρ1p̄1i

)
, if i 6= 1 ,

and

ānij(0) = n1−2β
(
p̄ijµ̄iρi + p̄jiµ̄jρj

)
, i 6= j .

By [5, Theorem 3.5] (see also [9, Theorem 3]), there exists a function Ṽ satisfying the assumption
in Corollary 2.3. In analogy to [5, Theorem 3.5], we can show that there exists a function V(x) =

〈x,Rx〉m/2, for m ≥ 2 and some positive definite matrix R, satisfying the conditions in Theorem 2.1.

4. Proofs of Theorem 2.1 and Corollaries 2.1 and 2.2

The range of the transition matrix Q is the subspace ∆ := {y ∈ Rk◦ :
∑

k∈K πkyk = 0}. As

shown in [13, Theorem 3.5], if v and u are any vectors in Rk◦ satisfying πTv 6= 0 and uTe 6= 0, then
the matrix Q+ vuT is nonsingular and

T :=
(
Q+ vuT

)−1
(4.1)

is a generalized inverse of Q, that is, it satisfies QT Q = Q. This of course means that

QT y = y for all y ∈ ∆ . (4.2)

We also need the following definition.

Definition 4.1. Recall (2.3) and Definition 2.2. Let L̆nk := Ln −Lnk . This operator takes the form

L̆nkf(x̂, k) :=
∑
z∈Zn

r̆nk (nβx̂+ xn∗ , z)
(
f(x̂+ n−βz, k)− f(x̂, k)

)
, (x̂, k) ∈ X̂n ×K ,
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for f ∈ Cb(Rd ×K), where

r̆nk (x, z) := r̄n(x, z)− r̃nk (x, z) , (x, k) ∈ Xn ×K .

Proof of Theorem 2.1. Let T = [Tk`]k,`∈K be as defined in (4.1).

Ṽn(x̂, k) :=
1

nα

∑
`∈K
Tk` L̆n` Vn(x̂) , (x̂, k) ∈ X̂n ×K . (4.3)

Then,

QnṼn(x̂, k) = L̆nkVn(x̂) ∀ (x̂, k) ∈ X̂n ×K , (4.4)

by (4.2).
We define

V̂n(x̂, k) := Vn(x̂) + Ṽn(x̂, k) , (x̂, k) ∈ X̂n ×K . (4.5)

By Hypothesis 2.1 (c) and (d), we have

r̃nk (nβx̂+ xn∗ , z) ≤ C0(n1∨α/2 + nβ|x̂|) ∀ (x̂, k) ∈ X̂n ×K , ∀ z ∈ Zn , ∀n ∈ N , (4.6)

We choose N1 large enough so that m0 ≤ ε0N
β
1 , with m0 as defined in Hypothesis 2.1 (a). By

Hypothesis 2.1 (a) and (b), (2.6) and (4.6), we have∣∣L̆nkVn(x̂)
∣∣ ≤ N0C0(n1∨α/2 + nβ|x̂|)Cm0

1 + Vn(x̂)

nβ(1 + |x̂|)
(4.7)

for all n ≥ N1. Therefore, since α+β− 1 ≥ α/2 for α > 0, it follows by (4.5)–(4.7) that there exists
n1 ∈ N, n1 ≥ N1, such that (2.8) holds.

Recall the definitions in (2.2), (2.3), and (2.5). We have

LnVn(x̂) = LnkVn(x̂) + L̆nkVn(x̂) = LnkVn(x̂) +QnṼn(x̂, k)

by (4.4). Therefore, since QnVn(x̂) = 0, we obtain

L̂nV̂n(x̂, k) = LnkVn(x̂) + Lnk Ṽn(x̂, k) +QnṼn(x̂, k)

= LnVn(x̂) + Lnk Ṽn(x̂, k) ∀ (x̂, k) ∈ X̂n ×K .
(4.8)

We define the function

Gnk(x̂, z) := r̆nk
(
nβx̂+ xn∗ , z

)(
Vn(x̂+ n−βz)− Vn(x̂)

)
.

It is straightforward to verify, using (4.3), that

Lnk Ṽn(x̂, k) =
∑
h∈Zn

r̃nk (nβx̂+ xn∗ , h)
(
Ṽn(x̂+ n−βh, k)− Ṽn(x̂, k)

)
=

1

nα

∑
h,z∈Zn

r̃nk (nβx̂+ xn∗ , h)
∑
`∈K
Tk`
(
Gn` (x̂+ n−βh, z)−Gn` (x̂, z)

)
.

(4.9)

On the other hand, it follows by Hypothesis 2.1 (c), and a triangle inequality, that

|Gnk(x̂+ n−βh, z)−Gnk(x̂, z)| ≤ 2C0(n
α/2 + |h|)

∣∣Vn(x̂+ n−βz)− Vn(x̂)
∣∣

+
∣∣r̆nk (nβx̂+ xn∗ + h, z)

∣∣ ∣∣Vn(x̂+ n−βz + n−βh)

− Vn(x̂+ n−βh)− Vn(x̂+ n−βz) + Vn(x̂)
∣∣ (4.10)

for all h, z ∈ Zn. As in (4.6) , we have

|r̆nk (nβx̂+xn∗ +h, z)| ≤ C0(n1∨α/2 +nβ|x̂|+ |h|) ∀ (x̂, k) ∈ X̂n×K , ∀h, z ∈ Zn , ∀n ∈ N . (4.11)
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By (2.6) and Hypothesis 2.1 (a), we have ∣∣Vn(x̂+ n−βz)− Vn(x̂)
∣∣ ≤ Cm0

1 + Vn(x̂)

nβ(1 + |x̂|)
,

∣∣Vn(x̂+ n−βz + n−βh)− Vn(x̂+ n−βh)− Vn(x̂+ n−βz) + Vn(x̂)
∣∣ ≤ Cm2

0

1 + Vn(x̂)

n2β(1 + |x̂|2)

(4.12)

for all h, z ∈ Bm0 , x̂ ∈ X̂n, and n ∈ N. Hence, using (4.9) together with the estimates in (4.6) and
(4.10)–(4.12), Hypothesis 2.1 (a) and (b), we obtain

Lnk Ṽn(x̂, k) ≤ N0C0Cm0

∑
k,k′∈K

|Tk`|
(

2(n
α/2 +m0)(n1∨α/2 + nβ|x̂|) 1 + Vn(x̂)

nα+β(1 + |x̂|)

+N0C0m0(n1∨α/2 + nβ|x̂|)(n1∨α/2 + nβ|x̂|+m0)
1 + Vn(x̂)

nα+2β(1 + |x̂|2)

)
.

(4.13)

Using the property β = max{1/2, 1 − α/2}, we deduce from (4.13) that for any ε > 0 there exists
some constant C◦(ε) such that

Lnk Ṽn(x̂, k) ≤ C◦(ε) + εVn(x̂) ∀ (x̂, k) ∈ X̂n ×K , ∀n ∈ N . (4.14)

Therefore, choosing ε = 1
2C2, and using (2.7), (2.8), (4.8), and (4.14), we obtain

L̂nV̂n(x̂, k) ≤ C1 + C◦
(
C2/2

)
+

1

6
C2 −

1

3
C2V̂n(x̂, k) ∀ (x̂, k) ∈ X̂n ×K , ∀n > n1 .

This completes the proof. �

Proof of Corollary 2.1. Recall Gnk in (2.13), and let Ğnk := Gnk − Lnk . Then, Ğnk takes the form

Ğnk f(x̂, k) =
∑
z∈Zn

ψ̆nk (nβx̂+ xn∗ , z)
(
f(x̂+ n−βz, k)− f(x̂, k)

)
, (x̂, k) ∈ X̂n ×K ,

for f ∈ Cb(Rd ×K), where

ψ̆nk (x, z) := ψ̄n(x, z)− ψnk (x, z) , k ∈ K , (x, z) ∈ Xn × Zn .

Compare it to Definition 4.1. We let

Ṽn(x̂, k) :=
1

nα

∑
`∈K
Tk` Ğn` Vn(x̂) , (x̂, k) ∈ X̂n ×K .

As in (4.4), we have

QnṼn(x̂, k) = ĞnkVn(x̂) , (x̂, k) ∈ X̂n ×K .
In analogy to (4.8), we get

L̂nV̂n(x̂, k) = GnkVn(x̂) + Lnk Ṽn(x̂, k) , (x̂, k) ∈ X̂n ×K .

In obtaining an estimate for Lnk Ṽn(x̂, k), the proof is the same to that of Theorem 2.1 by replacing

r̆n with ψ̆n, and using (2.11) and (2.12). Applying (2.11) and (2.12) again, we may show (2.8).
Then, the claim in (2.9) follows by (2.14). �

Proof of Corollary 2.2. We only present some crucial estimates that are different from those in the
proof of Theorem 2.1. Indeed, it follows by (2.15) and (2.16) that

r̃nk (nβx̂+ xn∗ , z) ≤ C0(1 + n) , r̆nk (nβx̂+ xn∗ , z) ≤ C0(1 + n) , (4.15)

and ∣∣r̆nk (nβ(x̂+ n−βh) + xn∗ , z)− r̆nk (nβx̂+ xn∗ , z)
∣∣ ≤ C0(1 + |h| ∧ n) . (4.16)
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for some positive constant C0. By Hypothesis 2.1 (a) and (b), (2.17) and (4.15), (4.7) becomes∣∣L̆nkVn(x̂)
∣∣ ≤ N0C0(1 + n)Cm0

1 + Vn(x̂)

nβ
(4.17)

for all large n. Using (2.17) and (4.15)–(4.17), and together with Hypothesis 2.1 (a) and (b), (4.13)
becomes

Lnk Ṽn(x̂, k) ≤ N0C0Cm0

∑
k,k′∈K

|Tk`|
(

2(1 +m0)(1 + n)
1 + Vn(x̂)

nα+β

+N0C0m0(1 + n)(1 + n)
1 + Vn(x̂)

nα+2β

)
.

(4.18)

Since α+ 2β > 2 implies α+ β > 1, then it follows by (4.18) that (4.14) holds for all large n. The
rest of the proof is the same to that of Theorem 2.1. �

5. Proofs of Theorem 2.2 and Corollary 2.3

We need to introduce some additional notation to facilitate the proofs. Recall the definitions of

Ξ̂n, Γ̄n, b̄n, and ān in (2.25)–(2.27) and (2.30), respectively. For f ∈ C2(Rd) and n ∈ N, let

ğn1 [f ](x, k) :=
∑
i∈I

(
b̄ni (x)−

(
Ξ̂ni (x, k)− Ξ̂ni (0, k)

))
∂if(x)

+
1

2

∑
i,j∈I

(
ānij(x)− Γ̄nij(x, k)

)
∂ijf(x) ,

(5.1)

and

ğn2 [f ](x, k) :=
1

nα+2β

∑
z

∑
h∈K

(∑
l∈K

πlξ
n
z (nβx+ xn∗ , l)Υlh

− ξnz (nβx+ xn∗ , k)Υkh

)∑
j∈I

Ξnj (xn∗ , h)
∑
i∈I

zi∂ijf(x) ,

(5.2)

with Υ as defined in (2.28). It follows by the identity∑
k∈K

(∑
l∈K

πlξ
n
z (nβx+ xn∗ , l)Υlh − ξnz (nβx+ xn∗ , k)Υkh

)
≡ 0 ,

that
∑

k∈K πkğ
n
2 [f ](x, k) = 0. It is clear that

∑
k∈K πkğ

n
1 [f ](x, k) = 0. Recall the matrix T in (4.1)

and (4.2). We define

gni [f ](x, k) :=
1

nα

∑
`∈K
Tk` ğni [f ](x, `) , i = 1, 2 , (5.3)

and thus

Qngni [f ](x, k) = ğni [f ](x, k) , i = 1, 2 . (5.4)

For f ∈ C2(Rd) and n ∈ N, let

gn3 [f ](x, k) :=
1

nα+β

∑
h∈K

∑
j∈I

Ξnj (xn∗ , h)Υkh ∂jf(x) . (5.5)

Note that the function gn3 [f ] corresponds to the covariance of the background Markov process Jn.
We let gn[f ] denote the sum of the above functions, that is,

gn[f ](x, k) := gn1 [f ](x, k) + gn2 [f ](x, k) + gn3 [f ](x, k) , (x, k) ∈ Rd ×K . (5.6)

To keep the algebraic expressions in the proofs manageable, we adopt the notation introduced
in the following definition.
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Definition 5.1. We define the operators [Dnz ]0 and [Dnz ]1j , j ∈ I, by

[Dnz ]0f(x) := f(x+ n−βz)− f(x)− n−β
∑
i∈I

zi∂if(x)− n−2β
∑
i,j∈I

zizj∂ijf(x) ,

[Dnz ]1jf(x) := ∂jf(x+ n−βz)− ∂jf(x)− n−β
∑
i∈I

zi∂ijf(x) ,

for f ∈ C2(Rd) and z ∈ Zn. In addition, we define

Rn1 [f ](x̂, k) :=
∑
z

ξnz (nβx̂+ xn∗ , k) [Dnz ]0f(x̂) ,

Rn2 [f ](x̂) :=
1

2

∑
i,j∈I

∑
k∈K

πk
(
Γ̄nij(x̂, k)− Γ̄nij(0, k)

)
∂ijf(x̂) ,

Rn3 [f ](x̂, k) :=
1

nα+2β

∑
i,j∈I

∑
h∈K

∑
l∈K

(
Ξni (xn∗ + nβx̂, l)− Ξni (xn∗ , l)

)
Ξnj (xn∗ , h)πlΥlh∂ijf(x̂) ,

Rn4 [f ](x̂, k) :=
1

nα+β

∑
z

∑
h∈K

ξnz (nβx̂+ xn∗ , k)Υkh

∑
j∈I

Ξnj (xn∗ , h)[Dnz ]1jf(x̂) ,

Rn5 [f ](x̂, k) := Lnk gn1 [f ](x̂, k) ,

Rn6 [f ](x̂, k) := Lnk gn2 [f ](x̂, k) .

The following lemma establishes a useful identity involving the generator of (X̂n, Jn) in (2.2)

and that of Ŷ n in (2.31) and the operators Rni in Definition 5.1.

Lemma 5.1. Under Assumption 2.2 (ii), we have

L̂nf(x̂) + L̂ngn[f ](x̂, k) = Anf(x̂) +
6∑
i=1

Rni [f ](x̂, k) , (x̂, k) ∈ X̂n ×K , f ∈ C2(Rd) . (5.7)

Proof. By (2.2) we have

L̂ngn[f ](x̂, k) =
3∑
i=1

(
Lnkgni [f ](x̂, k) +Qngni [f ](x̂, k)

)
, (5.8)

and L̂nf(x̂) = Lnkf(x̂) for any f ∈ C2(Rd).
We first show that

Lnkf(x̂) +Qngn1 [f ](x̂, k) +Qngn3 [f ](x̂, k)

=
∑
i∈I

b̄ni (x̂)∂if(x̂) +
1

2

∑
i,j∈I

ānij∂ijf(x̂) +Rn1 [f ](x̂, k) +Rn2 [f ](x̂) . (5.9)

Using (2.3) and (5.5), we obtain

Qngn3 [f ](x̂, k) =
∑
h∈K

∑
`∈K

qk`Υ`h

∑
j∈I

Ξnj (xn∗ , h)

nβ
∂jf(x̂) . (5.10)

Since QΥ = Π− I, where I denotes the identity matrix, it follows by (2.20) that∑
h∈K

∑
`∈K

qk`Υ`hΞnj (xn∗ , h) =
∑
h∈K

πhΞnj (xn∗ , h)− Ξnj (xn∗ , k) = −Ξnj (xn∗ , k) , (5.11)
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where in the second equality we use Assumption 2.2 (ii). Thus, by (5.10) and (5.11), we have

Qngn3 [f ](x̂, k) =
∑
j∈I
−

Ξnj (xn∗ , k)

nβ
∂jf(x̂) =

∑
j∈I
−Ξ̂nj (0, k) ∂jf(x̂) . (5.12)

By (2.3) and a standard identity, we obtain

Lnkf(x̂) =
∑
z∈Zn

ξnz (nβx̂+ xn∗ , k)

(∑
i∈I

n−βzi∂if(x̂) +
∑
i,j∈I

n−2βzizj∂ijf(x̂) + [Dnz ]0f(x̂)

)
=
∑
i∈I

Ξ̂ni (x̂, k)∂if(x̂) +
∑
i,j∈I

Γ̄nij(x̂, k)∂ijf(x̂) +Rn1 [f ](x̂, k) .
(5.13)

Thus (5.9) follows from (5.1), (5.4), (5.12), and (5.13).
Next, we show that

Lnk gn3 [f ](x̂, k) +Qngn2 [f ](x̂, k) =
1

2

∑
i,j∈I

θnij∂ijf(x̂) +Rn3 [f ](x̂, k) +Rn4 [f ](x̂, k) . (5.14)

We have

Lnk gn3 [f ](x̂, k) =
1

nα+β

∑
z

ξnz (nβx̂+ xn∗ , k)
∑
h∈K

∑
j∈I

Ξnj (xn∗ , h)Υkh

(
∂jf(x̂+ n−βz)− ∂jf(x̂)

)
by (2.3). It is clear that

∂jf(x̂+ n−βz)− ∂jf(x̂) = n−β
∑
i∈I

zi∂ijf(x̂) + [Dnz ]1jf(x̂) ,

and ∑
z

ziξ
n
z (nβx̂+ xn∗ , k) = Ξni (xn∗ , k) +

(
Ξni (xn∗ + nβx̂, k)− Ξni (xn∗ , k)

)
.

Therefore, (5.14) follows by combining these identities with (5.2) and (5.4).
Hence, we obtain (5.7) by adding (5.8), (5.9), and (5.14), and using the definitions of Rni [f ] for

i = 5, 6. This completes the proof. �

The following lemma provides needed estimates for Rn5 and Rn6 .

Lemma 5.2. Under Assumption 2.2 (i)–(iii), there exists some positive constant C such that∣∣Rn5 [f ](x̂, k)
∣∣ ≤ C

[(
1

nα
|x̂|+ 1

nα+β−1

)
|∇f(x̂)|+

(
1

nα+β
|x̂|+ 1

nα+2β−1

)∣∣∇2f(x̂)
∣∣

+

(
1

nα−β
|x̂|2 +

1

nα−1
|x̂|
)

max
z∈Zn

{
|∇f(x̂+ n−βz)−∇f(x̂)|

}
+

(
1

nα
|x̂|2 +

1

nα+β−1
|x̂|+ 1

nα+2β−2

)
max
z∈Zn

∣∣∇2f(x̂+ n−βz)−∇2f(x̂)
∣∣}] ,

(5.15)

and∣∣Rn6 [f ](x̂, k)
∣∣ ≤ C

[(
1

n2α+β−1
|x̂|+ 1

n2α+2β−2

) ∣∣∇2f(x̂)
∣∣

+

(
1

n2α−1
|x̂|2 +

1

n2α+β−2
|x̂|

+
1

n2α+2β−3

)
max
z∈Zn

∣∣∇2f(x̂+ n−βz)−∇2f(x̂)
∣∣] ,

(5.16)

for any (x̂, k) ∈ X̂n ×K.
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Proof. Recall the functions gn1 [f ] and gn2 [f ] in (5.3). It follows by (2.21) and (2.22) that

|ξnz (x, k)| ≤ C̃(|x− xn∗ |+ n) , (5.17)

and

|ξnz (x+ xn∗ , k)− ξnz (xn∗ , k)| ≤ C̃|x| , (5.18)

for (x, k) ∈ Rd × K, z ∈ Zn and n ∈ N. By Assumption 2.2 (i), and applying (2.20) and (5.18), it
is straightforward to verify that∣∣∣∣∣∑

k∈K
πkΞ̂

n(x̂, k)

∣∣∣∣∣ ≤ C̃Ñ0m0|x̂| ∀ x̂ ∈ Rd . (5.19)

Thus, by (5.18) and (5.19), we have∣∣b̄n(x̂)−
(
Ξ̂n(x̂, k)− Ξ̂n(0, k)

)∣∣ ≤ 2C̃Ñ0m0|x̂| ∀ (x̂, k) ∈ Rd ×K . (5.20)

Applying (5.17), we obtain∣∣ān(x̂)− Γ̄n(x̂, k)
∣∣ ≤ 2C̃Ñ0m

2
0

(
n−β|x̂|+ n1−2β

)
∀(x̂, k) ∈ Rd ×K , (5.21)

and ∣∣∣∣∣∑
l∈K

πlξ
n
z (nβx̂+ xn∗ , l)Υlh − ξnz (nβx̂+ xn∗ , k)Υkh

∣∣∣∣∣ ≤ C1

(
nβ|x̂|+ n

)
∀ x̂ ∈ Rd , (5.22)

and all k, h ∈ K and z ∈ Zn, for some positive constant C1. We have

|Ξn(xn∗ , k)| ≤ C̃Ñ0m0n ∀ k ∈ K , n ∈ N , (5.23)

by (2.22), and

|ξnz (nβx̂+ xn∗ , k)| ≤ C̃(nβ|x̂|+ n) ∀ (x̂, k) ∈ Rd ×K , z ∈ Zn , n ∈ N , (5.24)

by (5.17). From (2.21), we obtain∣∣Ξ̂n(x̂+ n−βz, k)− Ξ̂n(x̂, k)
∣∣ ≤ n−βC̃Ñ0m

2
0 , (5.25)

and ∣∣Γ̄n(x̂+ n−βz, k)− Γ̄n(x̂, k)
∣∣ ≤ n−2βC̃Ñ0m

3
0 , (5.26)

for (x̂, k) ∈ Rd×K, z ∈ Zn, and n ∈ N. Repeating similar calculations as in (4.10) and (4.13), and
applying (5.20), (5.21), and (5.24)–(5.26), we have∣∣Rn5 [f ](x̂), k

∣∣ ≤ C̃Ñ0m0

∑
k,`∈K

|Tk`|
(

2C̃Ñ0m
2
0

(nβ|x̂|+ n)

nα+β
|∇f(x̂)|

+ 2C̃Ñ0m0|x̂|
(nβ|x̂|+ n)

nα
max
z∈Zn

{
|∇f(x̂+ n−βz)−∇f(x̂)|

}
+ C̃Ñ0m

3
0

(nβ|x̂|+ n)

nα+2β
|∇2f(x̂)|

+ 2C̃Ñ0m
2
0

(
n−β|x̂|+ n1−2β

)
(nβ|x̂|+ n)

nα
max
z∈Zn

{
|∇f(x̂+ n−βz)−∇f(x̂)|

})
,

which establishes (5.15). The estimate for Rn6 in (5.16) obtained in a similar manner by applying
(2.21) and (5.22)–(5.24). This completes the proof. �

We borrow the following estimates for solutions to the Poisson equation for the operator An
from [11, Theorem 4.1] and the discussion following this theorem. Recall that νn is the steady-

state distribution of Ŷ n in (2.27).
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Lemma 5.3. Grant Assumption 2.2, and fix a function V in Assumption 2.3. Let f ∈ C0,1(Rd)
be such that ‖f‖C0,1(Bx) ≤ V(x) and νn(f) = 0. Then, the function unf ∈ C2(Rd) defined by

unf (x) :=

∫ ∞
0

Ex
[
f
(
Ŷ n(s)

)]
ds

is the unique (up to an additive constant) solution to the Poisson equation

Anu = −f . (5.27)

and satisfies

|∇unf (x)| ∈ O
(
(1 + |x|)V(x)

)
,

∣∣∇2unf (x)
∣∣ ∈ O

(
(1 + |x|2)V(x)

)
, (5.28)

and [
unf
]
2,1;Bm0√

n
(x)
∈ O

(
(1 + |x|3)V(x)

)
. (5.29)

In the following lemma, we consider the solution of the Poisson equation in (5.27), and establish
an estimate for the sum of terms Rni [unf ], i = 1, . . . , 6, given in Definition 5.1.

Lemma 5.4. Grant Assumption 2.2, and fix a function V in Assumption 2.3. Let f and unf be as
in Lemma 5.3. Then,

6∑
j=1

Rnj [unf ](x̂, k) = O

(
1

nα/2∧1/2

)
O
(
(1 + |x̂|5)V(x̂)

)
∀ (x̂, k) ∈ X̂n ×K . (5.30)

Proof. Note that

[Dnz ]0unf (x̂) = n−2β
∑
i,j∈I

zizj∂ij
(
unf (x̂+ εnx,z)− unf (x̂)

)
for εnx̂,z ∈

∏
i∈I [x̂i, x̂i + n−βzi]. Applying (4.6) and (5.29), we obtain

Rn1 [unf ](x̂, k) =
1

nβ
O
(
(1 + |x̂|4)V(x̂)

)
∀ (x̂, k) ∈ X̂n ×K . (5.31)

By (5.18), we have

|Γ̄nij(x̂, k)− Γ̄nij(0, k)| ≤ C̃Ñ0m
2
0n
−β|x̂| ∀ (x̂, k) ∈ X̂n ×K ,

and thus it follows by (5.28) that

Rn2 [unf ](x̂) =
1

nβ
O
(
(1 + |x̂|3)V(x̂)

)
. (5.32)

Applying Definition 5.1, (5.18), (5.23), and (5.28), we obtain

Rn3 [unf ](x̂, k) =
1

nα+β−1
O
(
(1 + |x̂|3)V(x̂)

)
∀ k ∈ K . (5.33)

Repeating the above procedure, and using Definition 5.1, (5.17), (5.23), and (5.29), we obtain

Rn4 [unf ](x̂, k) = O

(
1

nα+3β−2

)
O
(
(1 + |x̂|4)V(x̂)

)
∀ k ∈ K . (5.34)

It follows by Lemma 5.2, (5.28) and (5.29) that

Rn5 [unf ](x̂, k) = O

(
1

nα+β−1

)
O
(
(1 + |x̂|5)V(x̂)

)
, (5.35)

and

Rn6 [unf ](x̂, k) = O

(
1

n2α+3β−3

)
O
(
(1 + |x̂|5)V(x̂)

)
, (5.36)
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for all k ∈ K. On the other hand, when α > 1, β = 1
2 , α + β − 1 ≥ β and 2α + 3β − 3 ≥ β, and

when α ≤ 1, α+ β − 1 = 2α+ 3β − 3 = α/2 and α+ 3β − 2 = β. Then, by using (5.31)–(5.36), we
have shown (5.30). This completes the proof. �

Proof of Theorem 2.2. Without loss of generality, we assume that νn(f) = 0 (see [11, Remark 3.2]).
Recall the function gn in (5.6). Applying Lemma 5.1, it follows that

Eπn

[
unf
(
X̂n(T )

)
+ gn[unf ]

(
X̂n(T ), Jn(T )

)]
= Eπn

[
unf (X̂n(0)) + gn[unf ](X̂n(0), Jn(0))

]
+ Eπn

[∫ T

0
Anunf

(
X̂n(s)

)
ds

]
+

6∑
j=1

Eπn

[∫ T

0
Rnj [unf ]

(
X̂n(s), Jn(s)

)
ds

]
.

(5.37)

By Lemma 5.4, we have∣∣∣∣ 6∑
j=1

Eπn

[∫ T

0
Rnj [unf ]

(
X̂n(s), Jn(s)

)
ds

]∣∣∣∣
≤ O

(
1

nα/2∧1/2

)
Eπn

[∫ T

0

(
1 + V

(
X̂n(s)

)(
1 + |X̂n(s)|5

))
ds

]
= O

(
1

nα/2∧1/2

)
T

∫
Rd×K

(1 + V(x̂))(1 + |x̂|)5πn(dx̂,dk) .

(5.38)

Applying (5.6), (5.24), and (5.28), we obtain

|gn(x̂, k)| ≤ C1

(
1 + (1 + |x̂|3)V(x̂)

)
∀ (x̂, k) ∈ X̂n ×K , (5.39)

for some positive constant C1 and all large enough n. Since
∣∣unf ∣∣ ∈ O(V) by the claim in (22) of

[11], then it follows by (5.39) that∣∣∣Eπn

[
unf
(
X̂n(T )

)
+ gn[unf ]

(
X̂n(T ), Jn(T )

)]∣∣∣ ≤ C2

(
1 +

∫
Rd×K

V(x̂)(1 + |x̂|)3πn(dx̂, dk)

)
(5.40)

for some positive constant C2. It follows by (5.27) that

Eπn

[∫ T

0
Anunf

(
X̂n(s)

)
ds

]
= −Eπn

[∫ T

0
f
(
X̂n(s)

)
ds

]
= −Tπn(f) . (5.41)

Since πn is the stationary distribution, the bound in (5.40) also holds for the first term on the r.h.s.
of (5.37). Thus, applying (5.37), (5.38), (5.40), and (5.41), we obtain

T
∣∣πn(f)

∣∣ ≤ 2C2

(
1 +

∫
Rd×K

V(x̂)(1 + |x̂|)3πn(dx̂,dk)

)
+ O

(
1

nα/2∧1/2

)
T

∫
Rd×K

(1 + V(x̂))(1 + |x̂|)5πn(dx̂,dk) .

(5.42)

Therefore, dividing both sides of (5.42) by T and taking T →∞, and applying (2.32), we obtain

|πn(f)| = O

(
1

nα/2∧1/2

)
.

This completes the proof. �
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Proof of Corollary 2.3. We claim that for some positive constants C1, κ1, and κ2, a ball B, and a
sequence εn → 0, as n→∞, we have

L̂nṼ(x̂) + L̂ngn[Ṽ](x̂, k) = AnṼ(x̂) +
6∑
i=1

Rni [Ṽ](x̂, k)

≤ κ11B(x̂)− κ2Ṽ(x̂) + C1 + εnṼ(x̂) ∀ (x̂, k) ∈ X̂n ×K ,

(5.43)

Indeed the equality in (5.43) follows by Lemma 5.1. Following the calculation in the proof of
Lemma 5.4, and using (2.35), the inequality in (5.43) follows by Assumption 2.3 and Lemma 5.2.
By Assumption 2.2 and (2.35), we have

C2Ṽ(x̂)− C3 ≤ Ṽ(x̂) + gn[Ṽ](x̂, k) ≤ C3(Ṽ(x̂) + 1) ∀ (x̂, k) ∈ X̂n ×K , (5.44)

for some positive constants C2 and C3. Combining (5.43) and (5.44), we see that V (x̂, k) :=

Ṽ(x̂)+gn[Ṽ](x̂, k) satisfies L̂nV (x̂, k) ≤ κ31B′(x)−κ4V (x̂, k) for some positive constants κ3 and κ4,
and a ball B′. This together with (5.44) and the hypothesis in (2.34) implies (2.32), and completes
the proof. �

Appendix A. The diffusion limit

Proposition A.1 which follows, shows that under suitable assumptions, the processes X̂n in (2.24)

and Ŷ n in (2.27) have the same diffusion limit. This proposition is interesting in its own right.
Let (Dd,J1) denote the space of Rd-valued cádlág functions endowed with the J1 topology (see,

e.g., [6]).

Proposition A.1. Grant Assumption 2.2. In addition, suppose that X̂n(0)⇒ y0,

ξnz (xn∗ + nβx̂, k)− ξnz (xn∗ , k)

nβ
−−−→
n→∞

ξ̂z(x̂, k) ∀ (k, z) ∈ K × Zn , (A.1)

uniformly on compact sets in Rd, M̂n is a square integrable martingale, and

Ξn(xn∗ , k)

n
−−−→
n→∞

Ξ(k) ∈ Rd ∀ k ∈ K . (A.2)

Then, X̂n and Ŷ n have the same diffusion limit X̂ in (Dd,J1), and X̂ is the strong solution of the
SDE

dX̂(t) = b̄
(
X̂(t)

)
dt+ σαdW (t) ,

with X̂(0) = y0, where

b̄(x̂) :=
∑
k∈K

πk
∑
z

z ξ̂z(x̂, k) ,

(σα)Tσα :=


∑

k∈K πkΓ̄(k) , for α > 1 ,∑
k∈K πkΓ̄(k) + Θ , for α = 1 ,

Θ , for α < 1 ,

and Θ = [θij ] is defined by

θij := 2
∑
k,`∈K

Ξi(k)Ξj(`)πkΥk` , i, j ∈ I .

Proof. Recall that
∑

k∈K πkΞ
n(xn∗ , k) = 0 and Ξ̂n(0, k) = n−βΞn(xn∗ , k). Recall the representation

of X̂n in (2.24). By [21, Lemma 5.8], M̂n is stochastically bounded; see also the proof of [4, Theorem

2.1 (i)]. Since Ξ̂n is Lipschitz continuous by (2.21), it follows by the same argument in the proof
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[21, Lemma 5.5] that X̂n is stochastically bounded. Thus, applying [21, Lemma 5.9], n−1Xn

converges to the zero process in (Dd,J1). We write X̂n as

X̂n(t) = X̂n(0) +
∑
k∈K

∫ t

0

(
Ξ̂n(X̂n(s), k)− Ξ̂n(0, k)

)
1k
(
Jn(s)

)
ds+ M̂n(t)

+
∑
k∈K

Ξn(xn∗ , k)

n
n1−β

∫ t

0

(
1k
(
Jn(s)

)
− πk

)
ds .

(A.3)

Let Ŝn(t) and R̂n(t) be d-dimensional processes denoting the second and fourth terms on the
right-hand side of (A.3). It follows by [1, Proposition 3.2] and (2.23) that

R̂n ⇒

{
WR , for α ≤ 1 ,

0 , for α > 1 ,
in (Dd,J1) , (A.4)

as n → ∞, where WR is a d-dimensional Wiener process with the covariance matrix Θ. On the
other hand, we have

Ŝn(t) =
∑
k∈K

∫ t

0
n−

α/2
(
Ξ̂n(X̂n(s), k)− Ξ̂n(0, k)

)
d

(
n
α/2

∫ s

0

(
1k(J

n(u))− πk
)

du

)

+
∑
k∈K

πk

∫ t

0

(
Ξ̂n(X̂n(s), k)− Ξ̂n(0, k)

)
ds .

(A.5)

It follows by the convergence of n−1Xn to the zero process that n−α/2X̂n also converges to the
zero process uniformly on compact sets in probability. Note that, for some constant C, we have

|Ξ̂n(X̂n(s), k) − Ξ̂n(0, k)| ≤ C|X̂n(s)| for all s ≥ 0 by (2.21). It then follows by [1, Proposition
3.2] and [14, Theorem 5.2] that the first term on the right-hand side of (A.5) converges to the zero
process uniformly on compact sets in probability, as n→∞. See also the proofs of Lemma 4.4 in
[14] and Lemma 4.1 in [4]. It is clear by (A.1) that

hn(x̂) :=
∑
k∈K

πk
(
Ξ̂n(x̂, k)− Ξ̂n(0, k)

)
−→

∑
k∈K

πk
∑
z

z ξ̂z(x̂, k) (A.6)

uniformly on compact sets in Rd. Note that the function hn is Lipschitz continuous by (2.21). By
[21, Theorem 4.1] (see also [14, Lemma 4.1]), the integral mapping xn = Ψn(zn) : Dd → Dd defined
by

xn(t) = zn(t) +

∫ t

0
hn(xn(s)) ds ∀n ∈ N ,

is continuous in (Dd,J1). Thus, applying the continuous mapping theorem and using (A.3)–(A.6),
we obtain

X̂n ⇒ X̂ in (Dd,J1) .

Recall the definitions of Γ̄n and Θn in (2.25) and (2.29), respectively. As n → ∞, we have that
Γ̄n(0, k)→ Γ̄(k) when α ≥ 1, and Γ̄n(0, k)→ 0 when α < 1 by (2.23). Since β = max{1−α/2, 1/2}, it
then follows by (A.2) that Θn → Θ when α ≤ 1, and Θn → 0 when α > 1. It is then straightforward

to verify that Ŷ n ⇒ X̂ in (Dd,J1), as n → ∞. Therefore, X̂n and Ŷ n have the same diffusion
limit. �
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