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Abstract. The generalized fractional Brownian motion is a Gaussian self-similar process whose

increments are not necessarily stationary. It appears in applications as the scaling limit of a shot

noise process with a power law shape function and non-stationary noises with a power-law variance

function. In this paper we study sample path properties of the generalized fractional Brownian

motion, including Hölder continuity, path differentiability/non-differentiability, and functional and

local Law of the Iterated Logarithms.

1. Introduction

We consider the generalized fractional Brownian motion (GFBM) X := {X(t) : t ∈ R+} defined

via the following (time-domain) integral representation:

{X(t)}t∈R
d
=

{
c

∫
R

(
(t− u)α+ − (−u)α+

)
|u|−γ/2B(du)

}
t∈R

, (1.1)

where

γ ∈ [0, 1), α ∈
(
− 1

2
+
γ

2
,

1

2
+
γ

2

)
, (1.2)

and c = c(α, γ) ∈ R+ is the normalization constant. Here, B(du) is a Gaussian random measure on

R with the Lebesgue control measure du. It is shown in [19, Proposition 5.1] that the process X is

a continuous mean-zero Gaussian process with X(0) = 0, and has the self-similarity property with

Hurst parameter

H = α− γ

2
+

1

2
∈ (0, 1). (1.3)

This process arises as the scaling limit of the so-called power-law non-stationary shot noise

processes which have the shot shape function of power-law with parameter α and the non-stationary

noise distributions with a power-law variance function of parameter γ. This is established in Pang

and Taqqu [19]. With i.i.d. (stationary) noises, the scaled power-law shot noise processes converge

to the standard FBM, see, e.g., [20, Chapter 3.4] and [14]. Note that the power-law in the shot

shape function captures the long range dependence while the power-law in the non-stationary
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noises captures the dispersions of their variabilities, and thus does not contribute to the long range

dependence.

The GFBM X in (1.1) is a natural generalization of the standard FBM, since it preserves the

same long range dependence structure as FBM, while the power-law perturbation of the (Brownian)

Gaussian random measure not only introduces non-stationarity (in the increments) but also preserves

the important self-similarity property.

There are three parameters, H, α and γ and two relations (1.2)-(1.3). Eliminating α yields

the following representation of the self-similar process X with Hurst parameter H ∈ (0, 1) and

(scale/shift) parameter γ ∈ (0, 1):

{X(t)}t∈R
d
=

{
c

∫
R

(
(t− u)

H− 1
2

+ γ
2

+ − (−u)
H− 1

2
+ γ

2
+

)
|u|−γ/2B(du)

}
t∈R

. (1.4)

Evidently when γ = 0, this becomes the standard FBM BH :

{BH(t)}t∈R
d
=

{
c

∫
R

(
(t− u)

H− 1
2

+ − (−u)
H− 1

2
+

)
B(du)

}
t∈R

. (1.5)

Although one may think of |u|−γ/2 as a time change of the Brownian motion which introduces

non-stationarity increments, we observe from the representation in (1.4) that for a given Hurst

parameter value H ∈ (0, 1), the parameter γ also shifts the exponents in (t − u)
H− 1

2
+ − (−u)

H− 1
2

+

by the positive amount γ
2 ∈ (0, 1

2). For instance, for H = 1
4 , the exponent in the FBM BH is

H − 1
2 = −1

4 , but with γ = 3
4 , that exponent in the process X becomes H − 1

2 + γ
2 = 1

8 . For another

instance, for H = 3
4 , the exponent in the FBM BH is H − 1

2 = 1
4 , but with γ = 3

4 , the exponent in

the process X becomes H − 1
2 + γ

2 = 5
8 . We see that the positive shift in the exponent makes the

function (t− u)
H− 1

2
+ γ

2
+ − (−u)

H− 1
2

+ γ
2

+ smoother than (t− u)
H− 1

2
+ − (−u)

H− 1
2

+ . On the other hand,

the function |u|−γ/2 has the opposite effect, making the paths “rougher”. It is then interesting to

ask how the parameter γ affects the path properties of the GFBM.

To answer this question, we focus on the sample path properties of the GFBM X, Hölder

continuity, path differentiability/non-differentiability, and functional and local Law of Iterated

Logarithms (FLIL and LLIL, respectively). In Theorem 3.1, we prove that the paths of the process

X are Hölder continuous with parameter H − ε for ε > 0. In Theorems 5.1, 6.1 and 6.2, we prove

the functional Law of Iterated Logarithm (FLIL) and LLIL as well as an LLIL for the composition

of the GFBM X with itself, which again, depends only on the Hurst parameter H. These are

somewhat surprising results, indicating that the nice path properties of Hölder continuity, FLIL

and LLIL are preserved by the construction of the GFBM X in (1.1) and (1.4), and are not being

affected by the parameter γ.
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On the other hand, the differentiability of the paths of the GFBM X is affected by the parameter

γ. It is well known that the FBM BH is non-differentiable for H ∈ (0, 1). In Theorem 4.1, we

show that if the parameters (α, γ) are in the region {α ∈ (1/2, 1/2 + γ/2), γ ∈ (0, 1)}, leading to

H ∈ (1/2, 1), the paths of X are differentiable, while in the rest of parameter ranges, the paths

of X are non-differentiable. It is interesting to observe that for H ∈ (1/2, 1), there are distinct

path differentiability properties in the two regions distinguished by α > 1/2 (differentiable) and

α ≤ 1/2 (non-differentiable). In addition, we show that when α > 1/2, the paths of the GFBM X is

once continuously differentiable but not twice (with probability one), and we derive the first-order

derivative. These results are distinct from the non-differentiability property of the FBM BH .

It is worth mentioning that all these properties of the standard FBM BH rely critically on the

stationary increment property, i.e., the familiar elegant covariance function and the second moment of

its increment (see (2.1) and (2.2)). The proofs of these properties are relatively straightforward, and

have become standard textbook materials [20]. However, for the GFBM X in (1.1), non-stationary

increments result in a rather complicated covariance function (see (2.3)). For the proof of the Hölder

continuity, we provide a useful decomposition of the increment of the GFBM X, and then evaluate

their increments separately. This decomposition may turn out to be useful in other purposes. For the

other properties, we draw upon some important results that were established for general Gaussian

processes (some with self-similarity properties), for example, the (non)differentiability property by

Yeh [24], FLIL by Taqqu [21], and local LIL and compositions of certain Gaussian processes with

itself by Arcones [1]. For the GFBM X in (1.1), due to its non-stationary increment property and

the particular structure of its covariance function, it is challenging to verify some of the technical

conditions imposed in these results. The proofs of the non-differentiability and FLIL rely critically

upon the Hölder continuity property we establish.

We also remark that the GFBM X in (1.1) is different from the so-called Brownian semi-

stationary (BSS) processes introduced by Barndoff-Nielsen and Schmiegel [5], which was used to

study volatility/intermittency inference problems in financial markets. The process was introduced

to circumvent the non-semimartingale issues on the inference problems concerning the underlying

volatility process based on realized quadratic variation (see the multi-power variation for BSS process

in [4]). However, their assumptions on the spot intermittency process exclude functions of the type

|u|−γ/2 as we assume (see, for example, equation (4.7) in [4]).

FBMs have been recently used to study “rough” volatility [12, 8, 16]. On the other hand,

non-stationary increments have been well recognized in various financial data, see, e.g., [7, 18]. The
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GFBM X in (1.1) and the path properties studied in this paper may be useful in the study of

“rough” volatility.

We start in the next section with some preliminary results on basic properties of the GFBM X.

The Hölder continuity, differentiability/non-differentiability, FLIL and LLIL results are stated and

proved in Sections 3, 4, 5 and 6, respectively.

2. Some preliminaries

A striking distinction from the standard FBM is the non-stationary increment property. Recall

that the standard FBM BH with the Hurst index H has the covariance function: for s, t ∈ R+,

E
[
BH(s)BH(t)

]
=

1

2
c2(t2H + s2H − |t− s|2H), (2.1)

and the second moment of its increment:

E
[
(BH(s)−BH(t))2

]
= c2|t− s|2H . (2.2)

This stationary increment property plays the fundamental role in proving many properties of FBM

and the associated processes, for example, stochastic integrals with respect to FBM.

For the GFBM X in (1.1) the covariance function Ψ between X(s) and X(t) and the second

moment function Φ of its increment X(s)−X(t) are given, respectively, by

Ψ(s, t) := Cov(X(s), X(t)) = E[X(s)X(t)]

= c2

∫
R

( (
(t− u)α+ − (−u)α+

) (
(s− u)α+ − (−u)α+

) )
|u|−γdu,

= c2

∫ s

0
(t− u)α(s− u)αu−γdu+ c2

∫ ∞
0

((t+ u)α − uα)((s+ u)α − uα)u−γdu, (2.3)

Φ(s, t) := E
[
(X(s)−X(t))2

]
= c2

∫
R

(
(t− u)α+ − (s− u)α+

)2
|u|−γdu

= c2

∫ t

s
(t− u)2αu−γdu+ c2

∫ s

0
((t− u)α − (s− u)α)2u−γdu

+ c2

∫ ∞
0

((t+ u)α − (s+ u)α)2u−γdu, 0 ≤ s ≤ t. (2.4)

When γ = 0, the GFBM X in (1.1) becomes the standard FBM with the covariance function

(2.1) and stationary second moments (2.2) of increments.

For standard FBM BH , we usually distinguish two cases: H ∈ (0, 1
2) and H ∈ (1

2 , 1), which

corresponds to the exponents in (1.5) being negative and positive, respectively. However, for the

GFBM X, we distinguish the following two cases:

H ∈
(

0,
1− γ

2

)
and H ∈

(
1− γ

2
, 1

)
, for γ ∈ [0, 1),
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Figure 1. The set of parameters (γ, α) given in (1.2) is shown in the shaded area.
The boundary points are not included in (1.2). The dotted lines corresponding to
the Hurst parameters H = 0, 0.5, 1 are plotted, respectively. The thick line segment
corresponds to the FBM with H ∈ (0, 1) and γ = 0. In the neighborhood of the
point γ = 1 , α = 0 , the Hurst index is close to 0 .

which correspond to the exponents in (1.4) being negative or positive. Note that γ can be very close

1, in which case the interval
(1−γ

2 , 1
)

in the second scenario becomes very close to (0, 1), the whole

range of the Hurst parameter H. The two cases can be also written in terms of α and γ:

α ∈
(
−1− γ

2
, 0

)
and α ∈

(
0,

1 + γ

2

)
, for γ ∈ [0, 1).

Remark 2.1 (The role of γ). We highlight the following on the role of the parameter γ:

(i) When γ ∈ (0, 1), the increment is not second-order stationary, that is, Φ(s, t) is not a

function of |s− t|.

(ii) Var(c−1X(t)) = c−2Ψ(t, t) = t2H is decreasing in γ and increasing α (where c = c(α, γ) ∈ R+

is the normalization parameter in Lemma 2.1).

(iii) Flexibility for Hurst parameter H: Figure 2 illustrates the range of α and γ for the Hurst

parameter H ∈ (0, 1). The middle dotted line corresponds to the value H = 0.5 (including

the special cases (α = 0, γ = 0) and (α ≈ 0.5, γ ≈ 1)), instead of the single value H = 0.5

in the case of BM; see further discussions in Remark 2.2. For α ≈ 0 and γ ≈ 1, the Hurst

parameter H can be arbitrarily close to zero, while for α ≈ −0.5 and γ ≈ 0 (which is close

to the FBM case), the same is also true.

(iv) Roughness of paths: Hölder continuity, FLIL and LLIL hold with the Hurst parameter

H as for the standard FBM BH . However, the GFBM X is differentiable when α ∈

(1/2, 1/2 + γ/2) and γ ∈ (0, 1) (resulting H ∈ (1/2, 1)), while it is non-differentiable when

α ∈ (−1/2 + γ/2, 1/2] and γ ∈ (0, 1) (resulting H ∈ (0, 1)).
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Remark 2.2. Although the FBM BH becomes a standard BM when H = 1/2, this is not the case

for the GFBM X. The values of α and γ corresponding to the case H = 1/2 lie in the line α− γ
2 = 0

for γ ∈ [0, 1). The GFBM X only becomes a standard BM in the special case γ = 0. This is due to

the fact that the process X does not have stationary increments if γ > 0. For γ ∈ (0, 1) and α = γ
2 ,

the process X provides an example of a H-self-similar Gaussian process with Hurst parameter

H = 1/2 which is not a BM. We remark that there are H-self-similar processes with H = 1/2, that

may not be Gaussian, see [3]. It is clear that when H = 1/2 and 2α = γ > 0, the process X is not a

martingale with respect to the filtration FB(s) := σ{B(u), u ≤ s}, s ∈ R generated by the BM B,

because for every s < t,

E[X(t)−X(s) | FB(s)] = E
[ ∫

R
((t− u)α+ − (s− u)α+)|u|−αB(du)

∣∣∣FB(s)
]

=

∫ s

−∞
((t− u)α − (s− u)α)|u|−αB(du) 6= 0.

It is worth mentioning the work on “fake” Brownian motions constructed from martingales in

[11, 13].

Remark 2.3. In [19, Sections 5.1 and 5.2], generalized FBMs are stated in a more general form

with the additional terms involving (t−u)α−− (−u)α− in the integrands. This can be treated similarly

with additional terms, and so we focus on the representations of X in (1.1).

2.1. The normalization constant c = c(α, γ). With the increments

B̃(t) := B(−t)−B(0) , t ≥ 0, (2.5)

independent of the increments B(t)−B(0) , t ≥ 0 , we obtain

c−1X(t) =

∫
R

(
(t− u)α+ − (−u)α+

)
|u|−γ/2B(du)

=

∫ t

0
(t− u)α|u|−γ/2B(du) +

∫ ∞
0

[(t+ v)αv−γ/2 − vα−γ/2]B̃(dv)

(d)
=

(∫ 1

0
(1− v)αv−γ/2B(dv) +

∫ ∞
0

[(1 + v)αv−γ/2 − vα−γ/2]B̃(dv)

)
· tα−

γ
2

+ 1
2 ,

(2.6)

where the last equality is a distributional identity from the scaling property of Brownian motion,

and
(d)
= denotes “equal in distribution”. Thus, one can express the constant c in terms of Beta and

Gamma functions as follows.

Lemma 2.1. With

c = c(α, γ) := κ(α, γ)−1/2, (2.7)

and

κ(α, γ) := Beta(1− γ, 2α+ 1) +
( Γ(1− γ)

Γ(−2α)
− 2Γ(1 + α− γ)

Γ(−α)

)
Γ(−1− 2α+ γ), (2.8)
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the GFBM X(t) in (1.1) is then normalized:

Var(X(t)) = t2α−γ+1 = t2H , t ≥ 0. (2.9)

Proof. By the distributional identity (2.6) and the Itô isometry of stochastic integral, we obtain

Var(c−1X(t)) = E[c−2X2(t)]

= t2α−γ+1 ·
(∫ 1

0
(1− v)2αv−γdv +

∫ ∞
0

[(1 + v)αv−γ/2 − vα−γ/2]2dv

)
= κ t2H ,

(2.10)

where the last equality can be verified by Mathematica. �

Remark 2.4 (Integrability). In (2.10) the indefinite integral over the infinite interval (0,∞) appears.

Its integrability is verified under the condition (1.2) by direct calculation. As discussed above, we

consider the two cases 0 < α < (1 + γ)/2 and −(1− γ)/2 < α < 0 for a gamma γ ∈ (0, 1).

Indeed, if 0 < α < (1 + γ)/2 , then u 7→ (1 + u)α − uα is a decreasing function in (0,∞) and by

Taylor expansion, (1 + u)α − uα ≤ αuα−1 for every u > 0 , and hence, the indefinite integral in

(2.10) is integrable:∫ ∞
0

[(1 + u)α − uα]2u−γdu =
(∫ 1

0
+

∫ ∞
1

)
[(1 + u)α − uα]2u−γdu

≤
∫ 1

0
u−γdu+

∫ ∞
1

α2u2(α−1)−γdu =
1

1− γ
+

α2

1 + γ − 2α
=: c1 <∞.

(2.11)

Similarly, if −(1− γ)/2 < α < 0 , then set α̃ := −α ∈ (0, 1/2) , γ̃ := −2α+ γ ∈ (0, 1). Rewriting

the indefinite integral in (2.10) in terms of α̃ and γ̃, we obtain∫ ∞
0

[(1 + u)α − uα]2u−γdu =

∫ ∞
0

[(1 + u)−α − u−α]2

u−2α(1 + u)−2α
u−γdu

≤
∫ ∞

0
[(1 + u)α̃ − uα̃]2 u−γ̃du ≤ 1

1− γ̃
+

α̃2

1 + γ̃ − 2α̃
<∞ ,

(2.12)

where we used (2.11) with α, γ being replaced by α̃, γ̃ in the second inequality. If α = 0 , the

indefinite integral in (2.10) is 0. Thus, under the condition (1.2), the GFBM X is well defined.

For the standard FBM BH , we have Var(c−1BH(t)) = t2H , which is increasing in H for each

t > 0, and is also increasing in t for each H. It is clear that the same properties hold for the process

X. In addition, we observe that Var(X(t)) is decreasing in γ for each t > 0.

Remark 2.5 (Standard FBM). By the recursion formula of the gamma function, when γ = 0

and α ∈ (−1/2, 1/2), it is the standard FBM BH and the constant κ in (2.8) is reduced to

κ = Γ(1 + α)Γ(1− 2α)/[(1 + 2α) · Γ(1− α)].
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2.2. Generalized Riemann-Liouville (R-L) FBM. A special model is the generalized Riemann-

Liouville (R-L) FBM, introduced in Remark 5.1 in [19]. It is defined by

X(t) = c

∫ t

0
(t− u)αu−γ/2B(du), t ≥ 0, (2.13)

where B(du) is a Gaussian random measure on R with the Lebesgue control measure du and

c ∈ R, γ ∈ [0, 1), α ∈
(
− 1

2
+
γ

2
,

1

2
+
γ

2

)
.

Such a process is also a continuous self-similar Gaussian process with Hurst parameter H =

α− γ
2 + 1

2 ∈ (0, 1). Equivalently, given the Hurst parameter H ∈ (0, 1) and a parameter γ ∈ [0, 1),

the process X in (2.13) can be represented as

X(t) = c

∫ t

0
(t− u)H−

1
2

+ γ
2 u−

γ
2B(du), t ≥ 0. (2.14)

When γ = 0, this becomes the standard R-L FBM:

BH(t) = c

∫ t

0
(t− u)H−

1
2B(du), t ≥ 0. (2.15)

This process was introduced by Lévy ([15], see also Chapter 6 in [20]; modulo some constant scaling).

When H = 1/2, i.e., α = γ
2 for γ ∈ [0, 1),

X(t) = c

∫ t

0
(t/u− 1)γ/2B(du) = c

∫ t

0
(t/u− 1)αB(du), t ≥ 0. (2.16)

If γ = 0, then X(t) = cB(t) is a Brownian motion, but if γ = 2α ∈ (0, 1), the increment can be

rewritten as

X(t)−X(s) = c

∫ s

0
((t− u)α − (s− u)α)u−αB(du) +

∫ t

s
(t− u)αu−αB(du) , 0 ≤ s < t ,

indicating the non-stationarity of its increments.

The process X in (2.13) has the covariance function

Ψ(s, t) = E[X(s)X(t)] = c2

∫ s

0
(s− u)α(t− u)αu−γdu, (2.17)

and the second moment of its increment

Φ(s, t) = E[(X(t)−X(s))2] = c2

∫ t

s
(t− u)2αu−γdu+ c2

∫ s

0
|(t− u)α − (s− u)α|2u−γdu, (2.18)

for 0 ≤ s ≤ t.

We also have the variance

Var(c−1X(t)) =

∫ t

0
(t− u)2αu−γdu

= t2α−γ+1

∫ 1

0
(1− v)2αv−γdv = t2α−γ+1Beta(1− γ, 2α+ 1).
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Thus, with normalization constant c = c(α, γ) =
(
Beta(1− γ, 2α+ 1)

)−1/2
, we have Var(X(t)) =

t2α−γ+1 = t2H for t ≥ 0. It is clear that with this normalization factor, we have Var(X(t)) increasing

in α and decreasing in γ for each fixed t > 0.

3. Hölder continuity

In this section we prove the Hölder continuity property of the GFBM X in (1.1). For convenience,

we assume from now on that the GFBM X is normalized with c = c(α, γ) given in (2.7).

Recall that for FBM BH with Hurst parameter H ∈ (0, 1), by self-similarity, we have

E
[
|BH(t)−BH(s)|p

]
= |t− s|pHE

[
|BH(1)|p

]
for any p > 0. Then the Hölder continuity property follows from applying the Kolmogorov-Centsov

continuity criterion. Namely, the FBM BH admits a version whose sample paths are almost surely

Hölder continuous of order strictly less than H.

Due to the lack of stationary increments, the proof of the Hölder continuity property of the

GFBM X requires a delicate study of the second moment of the increment.

Theorem 3.1. For every T > 0 , there exists a positive constant CT such that the covariance

function Φ in (2.4) satisfies Φ(s, t) ≤ CT |s− t|2H for 0 < s < t ≤ T , and hence, by Kolmogorov-

Centsov continuity criterion, the sample path t 7→ X(t) of the Gaussian process X in (1.1) is

almost surely α0 -Hölder continuous for 0 ≤ t ≤ T with 0 < α0 < H = (2α− γ + 1)/2 .

Proof. When γ = 0 , it is the case of FBM with Hurst index α+ 1/2 ∈ (1/2, 1) , and the result

of Hölder continuity is known. Thus, let us consider the case with c = 1 and γ 6= 0. First, let us

decompose X(t)−X(s) from (2.6) into three independent components C1, C2, C3:

X(t)−X(s) =

∫
R

(
(t− u)α+ − (−u)α+

)
|u|−γ/2B(du)−

∫
R

(
(s− u)α+ − (−u)α+

)
|u|−γ/2B(du)

=: C1 + C2 + C3 ,

(3.1)

where

C1 :=

∫ s

0
[(t− u)α − (s− u)α]u−γ/2B(du) ,

C2 :=

∫ t

s
(t− u)α|u|−γ/2B(du) ,

C3 :=

∫ 0

−∞

(
(t− u)α+ − (−u)α+

)
|u|−γ/2B(du)

=

∫ ∞
0

[(t+ u)α − (s+ u)α]u−γ/2B̃(du)

(3.2)

with B̃ being given in (2.5). Thus, we have

Φ(s, t) = E
[
(X(t)−X(s))2

]
= E

[
C2

1 + C2
2 + C2

3

]
,
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and hence, we shall evaluate squared expectation of these three terms separately. It is worth noting

that all the three summands are basically of the same order (all are less than or equal to C|t− s|2H

for some C > 0).

• (Evaluation of C1 ). By the change of variables with u = s−(t−s)v and v = xw , x = s/(t−s)

for every s, t with 0 < s < t ≤ T , we have

E[C2
1 ] =

∫ s

0
|(t− u)α − (s− u)α|2u−γdu

=

∫ s/(t−s)

0
(t− s)2α+1−γ

( s

t− s
− v
)−γ

((1 + v)α − vα)2dv

= (t− s)2H
(∫ 1

0
(1− w)−γ((1 + xw)α − (xw)α)2x1−γ dw

)∣∣∣
x=s/(t−s)

.

(3.3)

When 0 < α < (1 + γ)/2 , we have∫ 1

0
(1− w)−γ((1 + xw)α − (xw)α)2x1−γ dw

=

∫ 1

0
(1− w)−γwγ−1((1 + xw)α − (xw)α)2(xw)1−γ dw

≤ sup
y>0

{
((1 + y)α − yα)2y1−γ} · ∫ 1

0
(1− w)−γwγ−1dw

≤4 Beta(1− γ, γ) <∞ ,

(3.4)

where we used the inequality

sup
y>0

((1 + y)α− yα)2y1−γ ≤ max
{

sup
y≥1

((1 + y)α− yα)2y1−γ , sup
0<y≤1

((1 + y)α− yα)2y1−γ
}
≤ 4 . (3.5)

To verify (3.5), firstly we use (1 + y)α − yα ≤ α yα−1 , y > 0 , α > 0 to obtain

((1 + y)α − yα)2y1−γ ≤ α2y2(H−1) ≤ α2 < 1 for y ≥ 1 ,

and secondly, we evaluate

((1 + y)α − yα)2y1−γ ≤ (1 + y)2αy1−γ ≤ 4α ≤ 4 for 0 < y ≤ 1 ,

and then combine the inequalities.

Similarly, when −(1− γ)/2 < α < 0 , considering α̃ = −α, γ̃ = −2α+ γ < 1, as we derived in

(2.12), and also using a similar inequality to (3.5) (but now with α̃ and γ̃ , instead of α , γ ), we

obtain the upper bound for every x = s/(t− s) > 0 ,∫ 1

0
(1− w)−γ((1 + xw)α − (xw)α)2x1−γdw

=

∫ 1

0
(1− w)−γ

((1 + xw)α̃ − (xw)α̃)2

(1 + xw)2α̃(xw)2α̃
x1−γdw

≤
∫ 1

0
(1− w)−γw−2α̃((1 + xw)α̃ − (xw)α̃)2x1−γ̃dw
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=

∫ 1

0
(1− w)−γwγ−1((1 + xw)α̃ − (xw)α̃)2(xw)1−γ̃dw

≤ sup
y>0

{
((1 + y)α̃ − yα̃)2y1−γ̃} · ∫ 1

0
(1− w)−γwγ−1dw

≤ 4 Beta(1− γ, γ) <∞ . (3.6)

Thus, combining (3.4)–(3.6) with (3.3), we claim that there exists a positive constant c3 such that

E[C2
1 ] ≤ c3(t− s)2H . (3.7)

• (Evaluation of C2 ). Similarly, for the second term in (3.1), by the change of variables with

u = (t− s)v + s and H = 2α− γ + 1 , we obtain for 0 ≤ s < t <∞ ,

E[C2
2 ] =

∫ t

s
(t− u)2αu−γdu ≤ (t− s)2α−γ+1

∫ 1

0
(1− v)2αv−γdv = c4|t− s|2H , (3.8)

where c4 := Beta(1 + 2α, 1− γ) . This holds for every α > −1/2 .

• (Evaluation of C3 ). For the third term C3 in (3.1), when 0 < α < (1 + γ)/2 , because of (2.11)

in Remark 2.4, we have with the constant c1 in (2.11), for s < t , with x := s/(t− s) > 0 ,∫ ∞
x

((1 + v)α − vα)2(v − x)−γdv

≤
∫ ∞
x

((1 + v − x)α − (v − x)α)2(v − x)−γdv

≤
∫ ∞

0
((1 + u)α − uα)2u−γdu ≤ c1. (3.9)

Similarly, when −(1− γ)/2 < α < 0 , again with α̃ = −α and γ̃ = −2α+ γ < 1 , for every s, t

with 0 < s < t and x := s/(t− s) > 0 , we have∫ ∞
x

((1 + v)α − vα)2(v − x)−γdv

=

∫ ∞
x

(1 + v)α̃ − vα̃)2

(1 + v)2α̃v−2α
· (v − x)−γdv

≤
∫ ∞
x

((1 + v)α̃ − vα̃)2 · (v − x)2α−γdv

≤
∫ ∞

0
((1 + u)α̃ − uα̃)2u−γ̃du <∞ , (3.10)

where we used (2.12) in the last part of inequalities.

Then for 0 < s < t, by changing the variables with u = (t− s)v − s and then using (3.9)-(3.10)

separately, we claim that there exists a positive constant c5 such that

E
[
C2

3

]
=

∫ ∞
0

[(t+ u)α − (s+ u)α]2u−γdu

= (t− s)2H

∫ ∞
s/(t−s)

[(1 + v)α − vα]2
(
v − s

t− s

)−γ
dv

≤ c5(t− s)2H .

(3.11)
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Combining these inequalities (3.7), (3.8), (3.11) with (3.1), we obtain the desired inequality,

because the second moments E[|X(t)|2] are finite as it is given in (2.9) and for 0 < s < t < T ,

Φ(t, s) ≤ (c3 + c4 + c5) · |t− s|2α−γ+1 . (3.12)

Since X is a zero-mean Gaussian process, X(t) − X(s) is a Gaussian random variable with

mean 0 and variance Φ(s, t) , and hence, its 2p -th moment ( p ≥ 1 ) can be evaluated by

E[|X(t)−X(s)|2p] ≤ cp[Φ(t, s)]p ≤ cpCp|t− s|(2α−γ+1)p

for some positive constant cp which depends on p . Then applying the Kolmogorov-Centsov

continuity criterion (e.g., Theorem 1.2.1 of Revuz & Yor (1991)), we conclude that the sample

paths of the GFBM X in (1.1) is α0 -Hölder continuous on every finite interval [0, T ] with

probability one for 0 < α0 < H = (2α− γ + 1)/2 . �

Remark 3.1. When γ is close to 1 and α > 0, the Hurst parameter H can be chosen with H < 1/2.

Thus, Theorem 3.1 covers the whole range of H ∈ (0, 1) .

For the generalized R-L FBM X in (2.13), the same Hölder continuity property holds.

Remark 3.2. Consider X(t) =
∫ t

0 κ(t, u)B(du) , t ≥ 0 with a Volterra kernel κ(t, u) = (t −

u)αu−γ/2 . This process or similar processes have been recently studied by Yazigi (2015) [23]. By

Theorem 2.1 in [23], the Volterra kernel κ can be written as

k(t, u) = tH−1/2F (u/t) ; t ≥ 0 , 0 ≤ u ≤ t,

where H = α− γ/2 + 1/2 is the Hurst parameter, and F (v) = (1− v)αv−γ/2 and F (v) ≡ 0 for v > 1

(it is clear that F ∈ L2(R+, du), i.e.,
∫
R |F (u)|2du < ∞.) In the related work [2], necessary and

sufficient conditions are derived for Hölder continuity of such self-similar processes. The condition

involves the function Φ(s, t), and is closely related to the Fernique’s theorem on the continuity of

Gaussian processes. By Theorem 1 in [2], we obtain that there exist constant cε such that the

function Φ(s, t) in (2.18) satisfies

Φ(s, t)1/2 ≤ cε|t− s|H−ε, for all ε > 0.

On the other hand, the proof of Theorem 1 in [2] uses the Garsia-Rademich-Rumsey inequality

(see Lemma 2 in [2]), which unfortunately only holds on the finite time interval [0, T ]. We are unable

to prove the Hölder continuity property with that approach for the GFBM X(t) in (1.1).

Remark 3.3. For standard FBM BH , it is shown in Theorem 1.6.1 in [10] that the local Law of

Iterated Logarithm holds:

lim sup
t→0+

|BH(t)|
tH
√

log log t−1
= cH (3.13)
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with probability one for some appropriate constant cH > 0. This implies that BH cannot have

sample paths with Hölder continuity of order greater than H = α+ 1/2. For the GFBM X in (1.1),

we establish the local Law of Iterated Logarithm in Section 6, see Theorem 6.1. That result will

imply that the process X cannot have sample paths with Hölder continuity of order greater than

H = α− γ/2 + 1/2.

4. Path Differentiability

We prove the following differentiability/non-differentiability property of the sample paths of X.

For FBM BH with H ∈ (0, 1) , the path non-differentiability property was established in [17]; see

also [10, Proposition 1.7.1]. The proof of (4.1) for FBM BH uses its self-similarity and stationary-

increment properties, in particular, for t > s, the law of the ratio (BH(t)−BH(s)) / (t− s) is the

same as (t− s)H−1BH(1), and the probability of {|BH(1)| > at1−Hn } converges to zero where a > 0

is any positive constant and {tn} is any sequence decreasing to zero as n→∞. Distinct from the

standard FBM BH , the GFBM X has a region of parameters 1/2 < α < 1/2 + γ/2 and γ ∈ (0, 1),

which gives H ∈ (1/2, 1), in which its paths are differentiable, while in the rest of the parameter

regions of (α, γ), resulting H ∈ (0, 1), its paths are non-differentiable. Recalling Remark 2.2, in the

case of H = 1/2, we remark that the paths of X are non-differentiable regardless of whether X is a

Brownian motion (γ = 0) or not (γ ∈ (0, 1)).

Theorem 4.1. The following differentiability properties hold:

(i) If −1/2 + γ/2 < α ≤ 1/2 and γ ∈ (0, 1) (resulting in H ∈ (0, 1)), the GFBM X in (1.1) is

not mean square differentiable and does not have differentiable sample paths; In particular,

for every s ∈ R+,

lim sup
t→s

∣∣∣∣X(t)−X(s)

t− s

∣∣∣∣ = +∞ (4.1)

with probability one.

(ii) If 1/2 < α < 1/2 + γ/2 and γ ∈ (0, 1) (resulting in H ∈ (1/2, 1)), the sample path of X in

(1.1) is continuously differentiable once with derivative

dX(t)

dt
= c

∫ t

−∞
α(t− s)α−1|s|−γ/2dB(s) , t ≥ 0 , (4.2)

but not twice with probability one.

Proof. We firs prove part (i). We apply Theorem of Yeh [24] (see also its correction [25]). It

says that if a separable Gaussian process ξ = {ξ(t) : t ∈ [0, T ]} has mean zero, and satisfies the

Kolmogorov’s continuity condition, and the lower bound: for some α, a > 0,

E[|ξ(t)− ξ(s)|2] ≥ a|t− s|α, t, s ∈ [0, T ],
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then for λ > α/2 and for any t,

lim
s→0

sup
|ξ(t± s)− ξ(t)|

sλ
= +∞.

For the differentiability of sample paths of (1.1) we calculate a lower bound of Φ(s, t) in (2.4).

When γ ∈ (0, 1) , 0 < α < 1/2 , it follows from the calculation of Hölder continuity for 0 < s < t ,

Φ(s, t) ≥ c2

∫ t

s
(t− u)2αu−γdu

≥ c2

∫ (t+s)/2

s
(t− u)2αu−γdu

≥ c2

2α+ 1

( t+ s

2

)−γ
·
( t− s

2

)2α+1
.

Thus, if α < 1/2 with 2α + 1 < 2 , by the Theorem of Yeh [24], the sample paths are almost

nowhere differentiable in [0,∞) .

Similarly, when α = 1/2 and γ ∈ (0, 1) , we may compute directly for 0 < s < t < T

Φ(s, t) ≥ c2

∫ t

s
(t− u)u−γdu

= c2

(
t(t1−γ − s1−γ)

1− γ
− t2−γ − s2−γ

2− γ

)
≥ c2

(1− γ)(2− γ)
· (t− s)2−γ ,

since for every t < T , the function

h(s) :=
t(t1−γ − s1−γ)

1− γ
− t2−γ − s2−γ

2− γ
− (t− s)2−γ

(1− γ)(2− γ)
, 0 ≤ s ≤ t

of s is nonnegative. Indeed, it has the first derivative

h′(s) =
t− s
1− γ

(
(t− s)−γ − (1− γ)s−γ

)
and h has a maximum at s0 := (1 + (1− γ)−1/γ)−1 t with minima at h(0) = 0 = h(t) . Thus, if

α = 1/2 , γ ∈ (0, 1) with 2− γ < 2 , again by the Theorem of Yeh [24], the sample paths are almost

nowhere differentiable in [0,∞) . Therefore, we conclude that the GFBM X is almost nowhere

differentiable in the parameter set α ≤ 1/2 , γ ∈ (0, 1) .

Next we prove part (ii). If α > 1/2 , then the process X is a semimartingale of finite variation

with the following representation

X(t) = c

∫ t

0

(∫ t

−∞
α(r − s)α−1

+ |s|−γ/2dB(s)
)

dr, t ≥ 0.

This follows from a stochastic version of Fubini theorem (Theorem 4.6 of [6]), because for 0 < r < t,

the stochastic integral

hr,t :=

∫ t

−∞
α(r − s)α−1

+ |s|−γ/2dB(s) =

∫ r

−∞
α(r − s)α−1|s|−γ/2dB(s)
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is well defined. Indeed, we have∫ t

−∞
(r − s)2(α−1)

+ |s|−γds =

∫ r

−∞
(r − s)2(α−1)

+ |s|−γds

=

∫ r

0
(r − s)2(α−1)s−γds+

∫ 0

−∞
(r − s)2(α−1)|s|−γds

= r2H
(∫ 1

0
(1− u)2(α−1)u−γdu+

∫ ∞
0

(1 + u)2(α−1)u−γdu
)
<∞ .

Since (r, t) 7→ hr,t does not depend on t , we claim the sample path of X is differentiable with

its derivative dX(t)/dt = cht,t , t ≥ 0 almost surely. However, t 7→ ht,t is not differentiable with

probability one, because of a similar reasoning. Indeed, for s < t,∫ t

s
(t− u)

2(α−1)
+ u−γdu ≥

( t+ s

2

)−γ
·
( t− s

2

)2(α−1)+1
,

and hence, by applying the result from [24] again, we see 2(α− 1) + 1 < 2 or equivalently, α < 3/2 ,

the sample path of h is not differentiable with probability one.

Consequently, the sample paths of X are continuously differentiable once but not twice almost

surely for the fixed parameter α ∈ (1/2, (1 + γ)/2) . �

5. Functional Law of Iterated Logarithm

In this section we establish the functional Law of Iterated Logarithm (FLIL) of the GFBM X in

(1.1). We refer to [21] and [22] for the FLIL of FBM. We apply Theorem A1 in [21] to prove the

FLIL for the process X. We first introduce some notation and terminology.

Let C[0, T ] be the space of continuous functions. Recall the covariance function Ψ in (2.3), which

is shown to be continuous in [19]. Let H(Ψ) be the reproducing kernel Hilbert space (RKHS) with

Ψ as the reproducing kernel. It is defined as the completion of the vector space spanned by the

functions Ψ(s, ·), s ∈ [0, T ], and endowed with the scalar product〈∑
i

ciΨ(si, ·),
∑
j

c′jΨ(s′j , ·)
〉

=
∑
i

∑
j

cic
′
jΨ(si, s

′
j).

Let K :=
{
h ∈ H(Ψ) : 〈h, h〉1/2 ≤ 1

}
be the unit ball of H(Ψ). The FLIL in general states that

(a) a certain sequence of functions zn of C[0, T ] is contained in an ε-neighborhood of K when

n is large (another way to say this, is that this sequence is relatively compact as n→∞,

namely that {zn} contains a converging subsequence to an element of K), and

(b) the functions that are limiting points of the sequence {zn} fill up the set K.

Let d(·, ·) be the sup-norm distance in C[0, T ], and C{zn} represents the cluster set (the set of the

limit points) of the sequence {zn}.
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The same properties in (5.1) and (5.2) below hold for the FBM BH . They are stated in Corollary

A1 in [21], applying Theorem A1 with the reproducing kernel ΓH(s, t) = E
[
BH(s)BH(t)

]
in (2.1),

and K equal to the unit ball of H(ΓH).

Theorem 5.1. Let K be the unit ball of the RKHS H(Ψ) with the covariance kernel Ψ in (2.3).

The GFBM X in (1.1) satisfies

lim
n→∞

d

(
X(nt)

(2n2H log log n)1/2
,K

)
= 0, a.s. (5.1)

and

C
{

X(nt)

(2n2H log logn)1/2

}
= K, a.s. (5.2)

where H = α− γ/2 + 1/2.

Proof. It is clear that Ψ(t, t) is strictly increasing in t. We check the three conditions (C-1), (C-2)

and (C-3) in Theorem A1 in [21], that is,

(C-1)

lim
r→∞

sup
0≤s,t≤T

∣∣∣∣E[X(rs)X(rt)]

r2HL(r)
−Ψ(s, t)

∣∣∣∣ = 0. (5.3)

(C-2) There is a nonnegative, strictly increasing and continuous function φ on R+ satisfying∫∞
1 φ(e−u

2
)du <∞ such that

E
[
(X(rs)−X(rt))2

]
≤ φ2(|s− t|)r2HL(r), s, t ≥ 0, r ≥ 0. (5.4)

(C-3)

lim
n→∞,m/n→∞

E

[
X(ms)

mHL1/2(m)

X(ns)

nHL1/2(n)

]
= 0 (5.5)

We take L(·) ≡ 1.

For (C-1), for r > 0 and s < t, we have

E[X(rs)X(rt)] = Ψ(rs, rt) = r2α−γ+1Ψ(s, t), (5.6)

which immediately implies that

sup
0≤s,t≤T

∣∣∣∣E[X(rs)X(rt)]

r2H
−Ψ(s, t)

∣∣∣∣ = 0.

Thus, (5.3) holds.

For (C-2), as shown in Theorem 3.1 for the Hölder continuity property, for r > 0 and s < t, we

have

E
[
(X(rs)−X(rt))2

]
≤ CT |s− t|2Hr2H ,
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for some constant CT > 0. Let φ(t) = CT t
2H for t ∈ [0, T ]. It is clear that φ(·) is a nonnegative,

strictly increasing and continuous function satisfying
∫∞

1 φ(e−u
2
)du = CT

∫∞
1 e−2Hu2 < ∞ since

H ∈ (0, 1). This verifies the condition (C-2).

For (C-3), for s < t, and for m > n > 0 satisfying m/n→∞ (noting that mt > ns), we have

Ψ(ns,mt) = c2

∫ ns

0
(mt− v)α(ns− v)αv−γdv

+ c2

∫ ∞
0

((mt+ u)α − uα)((ns+ u)α − uα)u−γdu. (5.7)

The first integral term is equal to∫ s

0
(mt− nu)α(ns− nu)α(nu)−γndu =

∫ s

0
mα

(
t− n

m
u
)α

nα+1−γ(s− u)αu−γdu.

Dividing by mHnH , we obtain( n
m

)(1−γ)/2
∫ s

0

(
t− n

m
u
)α

(s− u)αu−γdu→ 0

as n,m→∞ and n/m→ 0.

The second integral term in (5.7), we have

mαnα
∫ ∞

0
((t+ u/m)α − (u/m)α)((s+ u/n)α − (u/n)α)u−γdu

= mαnα
∫ ∞

0

[(
t+

n

m
r
)α
−
( n
m
r
)α]

[(s+ r)α − rα]n−γr−γndr.

Dividing by mHnH , we obtain( n
m

)(1−γ)/2
∫ ∞

0

[(
t+

n

m
r
)α
−
( n
m
r
)α]

[(s+ r)α − rα] r−γdr → 0

as n,m→∞ and n/m→ 0.

Thus, for s < t,

lim
n→∞,m/n→∞

E

[
X(ns)

nH
X(mt)

mH

]
= lim

n→∞,m/n→∞

1

nHmH
Ψ(ns,mt) = 0.

For the case s > t, we can switch s and t above in (5.7), and note that we can let m >> n such

that mt > ns. Then the same argument will follow. Therefore we have verified (5.5) in Condition

(C-3). This completes the proof. �

6. Local law of the iterated logarithms

For FBM BH , the local Law of Iterated Logarithm states that with probability one,

lim sup
u→0+

|BH(ut)|
uH
√

log log u−1
= cH

for all t ∈ (0, T ], as in [1]. See the equivalent expression in (3.13). For Gaussian processes, Arcones

[1] has established a useful criterion to prove the local law of the iterated logarithm in Theorem 4.1.

We apply that to prove the following for the GFBM X in (1.1).
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Theorem 6.1. For the GFBM X in (1.1), if α > 0 , with probability one,

lim sup
u→0+

|X(ut)|
uH
√

log log u−1

exists for all t ∈ (0, T ].

Proof. We check the nine conditions in [1, Theorem 4.1]. Here we consider the interval [0, T ] and

use natural pseudometric ρ(s, t) =
√
E[(X(s)−X(t))2] =

√
Φ(s, t). Let τ(u) = u and w(u) = uH .

Condition (i) is evident and condition (ix) is clear since Φ(s, t) is continuous. For (v), ([0, T ], ρ) is

totally bounded, since ρ(0, T ) < ∞. It is clear that the conditions in (vii) and (viii) holds since

these functions are continuous. Condition (ix) holds since Φ(s, t) is continuous.

For (ii), by the scaling identity of the covariance in (5.6), we obtain

E

[
X(τ(u)s)X(τ(u)t)

w(u)2

]
= E

[
X(us)X(ut)

u2H

]
= Ψ(s, t).

For (iii), we shall show that for each m ≥ 1, each ε > 0, each t1, . . . , tm ∈ (0, T ] and each

λ1, . . . , λm ∈ R,

lim
r→1−

lim sup
u→0+

sup
v:ue−(log u−1)r≤v≤ue−(log u−1)ε

m∑
j,k=1

λjλkE

[
X(utj)X(vtk)

w(u)w(v)

]
≤ 0. (6.1)

For r > 0, let ϕ(u) := ue−(log u−1)r < u. Note that ϕ(u)/u = e−(log u−1)r → 0 as u→ 0+ and for

u > 0, ϕ(u)/u = e−(log u−1)r → u as r → 1−. Consider for t > s,

E

[
X(ut)X(ϕ(u)s)

uHϕ(u)H

]
=

1

uHϕ(u)H
Ψ(ut, ϕ(u)s),

where Ψ(·, ·) has two terms as in (2.3). By the change of variables from v to θϕ(u)s, we have

1

uHϕ(u)H

∫ ϕ(u)s

0
(ut− v)α(ϕ(u)s− v)αv−γdv (6.2)

≤ 1

uHϕ(u)H

∫ ϕ(u)s

0
(ut)α(ϕ(u)s− v)αv−γdv

=
(ut)α(ϕ(u)s)α−γ+1

uHϕ(u)H

∫ 1

0
(1− θ)αθ−γdθ

= (ts)H
(
s

t
· ϕ(u)

u

)(1−γ)/2

· Beta(α+ 1, 1− γ)→ 0 as u→ 0 + .

This corresponds to the first term of Ψ(·, ·) in (2.3). Similarly, by α-Hölder continuity of function

x→ xα , α > 0 , we have (ut+ v)α − vα ≤ (ut)α and hence, again by the change of variables, we

have

1

uHϕ(u)H

∫ ∞
0

((ut+ v)α − vα)((ϕ(u)s+ v)α − vα)v−γdv (6.3)

≤ 1

uHϕ(u)H

∫ ∞
0

(ut)α(ϕ(u)s)α−γ+1((1 + θ)α − θα)θ−γdθ
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= (ts)H
(
s

t
· ϕ(u)

u

)(1−γ)/2

·
∫ ∞

0
((1 + θ)α − θα)θ−γdθ → 0 as u→ 0 + .

where the integral is finite as in (2.11). This corresponds to the second term of Ψ(·, ·) in (2.3). Thus,

we have shown that condition (iii), i.e., (6.1) holds with equality to zero.

For (iv), we show that in probability,

sup
t∈(0,T ]

|X(ut)|
uH(2 log log u−1)1/2

→ 0 as u→ 0 + .

By the Fernique inequality (see, e.g., [9]), we obtain for each u, there exists q > 0 such that

P

(
sup
t∈(0,T ]

|X(ut)|
uH(2 log log u−1)1/2

> ε

)

≤ CP

(
Z >

ε

supt∈(0,T ](u
H(2 log log u−1)1/2)−1Ψ(ut, ut)1/2 + q

)

= CP

(
Z >

ε

(2 log log u−1)1/2)−1 supt∈(0,T ](Ψ(t, t)1/2 + q

)
→ 0 as u→ 0+,

for all ε ≥ ε0 for some ε0 > 0 and some constant C > 0, and Z ∼ N(0, 1). This proves that condition

(iv) holds.

For (vi), we show that for each η > 0, there exists a δ > 0 such that

lim sup
θ→1−

∞∑
n=1

exp

(
−η(θn)2H log n

sups,t∈[0,T ],Φ(s,t)≤δ2 Φ(θns, θnt)

)
<∞.

Observe that, similar to (5.6), for r > 0,

Φ(rs, rt) = r2HΦ(s, t).

Thus, it becomes to show that for each η > 0, there exists a δ > 0 such that
∞∑
n=1

exp

(
−η log n

δ2

)
=

∞∑
n=1

n−η/δ
2
<∞,

which holds for any δ <
√
η. This completes the proof. �

6.1. Compositions.

We consider the composition X(|X(·)|) of X(·) itself. In Example 4.1 of [1], by applying its

Corollary 4.2, it is shown that for FBM BH with 1/2 ≤ H < 1, given b > 0, with probability one,{
BH(|BH(ub)|)

uH2(2 log log u−1)(H+1)/2

}
is relatively compact as u→ 0+ and its limit set is [−σ, σ] where σ = bH

2
HH/2(H + 1)−(H+1)/2.

We apply [1, Corollary 4.2] to the GFBM X in (1.1). We remark that the following result requires

α > 0, since we need to use the α-Hölder continuity of the function t→ tα in the proof. Note that
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when γ = 0, the condition α > 0 is equivalent to H > 1/2 in the case of FBM BH . However, for

the GFBM X, as shown in Figure 2, in the region of α > 0 and γ ∈ (0, 1), the range of the Hurst

parameter H can cover the entire interval H ∈ (0, 1) (observing that when the α ≈ 0 and γ ≈ 1, H

can be very close to 0).

Theorem 6.2. If α > 0 , with probability one, the set{
X(|X(ub)|)

uH2(2 log log u−1)(H+1)/2
, u > 0

}
is relatively compact, as u→ 0+, and its limit set is [−σ, σ] where

σ = sup
0≤r≤
√

Ψ(b,b)

√
Ψ(r, r)(1− r2/Ψ(b, b))1/2, a.s.

Proof. We verify the four conditions (i)-(iv) in [1, Corollary 4.2]. Condition (i) requires E[X(ut)X(us)] =

u2HE[X(t)X(s)], which holds by (5.6). Condition (ii) requires that sup0≤t≤T |X(t)| <∞ a.s. Con-

dition (iii) requires that

lim
u→1−

E[X(ut)X(t)] = E
[
X(t)2

]
for each t ≥ 0.

This follows from the continuity of Ψ(s, t) in (2.3).

For Condition (iv), we show for each s, t ≥ 0,

lim
u→0+

u−HE[X(s)X(ut)] = 0.

By (2.3), for u small enough such that s > ut, we have

u−HE[X(s)X(ut)] = c2u−H
∫ ut

0
(s− v)α(ut− v)αv−γdv

+ c2u−H
∫ ∞

0
((s+ v)α − vα)((ut+ v)α − vα)v−γdv.

For the first term, by change of variables, it is equal to

c2uH
∫ t

0
(s/u− v)α(t− v)αv−γdv ≤ c2uH

∫ t

0
(s/u)α(t− v)αv−γdv

= c2uH−α
∫ t

0
sα(t− v)αv−γdv → 0 as u→ 0+

since H − α = 1/2− γ/2 > 0. For the second term,

u−H
∫ ∞

0
((s+ v)α − vα)((ut+ v)α − vα)v−γdv

≤ u−H
∫ ∞

0
sα((ut+ v)α − vα)v−γdv

= u−H
∫ ∞

0
sα(ut)α−γ+1((1 + θ)α − θα)θ−γdθ

= u(1−γ)/2sαtα−γ+1

∫ ∞
0

((1 + θ)α − θα)θ−γdθ
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→ 0 as u→ 0+,

where the integral is finite as in (2.11). Thus we have verified Condition (iv). This completes the

proof. �
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