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1. Motivation and Model

We consider a fundamental fork-join network with a single class of jobs that will fork into a
fixed number of parallel tasks upon their arrival, and then join after service completion. Each
parallel task is processed at a multi-server station under the first-come-first-serve (FCFS) and
non-idling service discipline, and will join a buffer waiting for synchronization (“unsynchro-
nized queue”) associated with the station after service completion. Service times of parallel
tasks of each job can be correlated. Tasks are only synchronized if all the parallel tasks of the
same job are completed, called “non-exchangeable synchronization” (NES). After synchro-
nization, jobs will leave the system immediately (the synchronization time is irrelevant in our
model). Figure 1 depicts such a network model. Unlike classical queueing models, there are
two types of delays in this fork-join network: delay for service and delay for synchronization.
The objective of this paper is to study the delay for synchronization when each service sta-
tion is operating in the Halfin-Whitt (Quality-and-Efficiency-Driven, QED) regime. In this
regime, the job arrival rate and the number of servers in each service station get large ap-
propriately while fixing service time distributions so that each station is asymptotically crit-
ically loaded, achieving both high quality (low delay) and high efficiency (high utilization).

Figure 1: A fundamental fork-join network

Fork-join networks with NES are used
in many applications, including healthcare
systems, parallel computing, MapReduce
scheduling (e.g., large-scale parallel Web
search), disassembly and reassembly systems
in manufacturing and so on. In patient flows
of hospitals, the treatment and discharge
processes are typical examples of fork-join
networks with NES: a patient must have all
test results ready before a doctor examina-
tion and these tests are conducted in differ-
ent medical units/laboratories and can never
be mixed; a patient, after the discharge de-
cision is made, must wait for necessary pro-
cedures, pharmacy, transportation, etc., be-
fore being physically discharged. In MapRe-
duce scheduling, jobs are processed in two phases: in the map phase, a large-scale data input
(e.g., Web processing data) is distributed into individual computation nodes, and each node
processes one block of input data, and after the execution of all blocks of the same data input,
they will be joined as an output in the reduce phase. In addition, fork-join networks with
NES are also natural models in manufacturing and inventory systems, military operations
and law reinforcement.

The main mathematical challenge in analyzing the multi-server fork-join network with
NES is the resequencing of arrival orders after service completion at each service station
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due to the randomness of service times and delay for service at all parallel service stations.
Dependence of service times for parallel tasks of a job also makes the service completion
processes of the parallel tasks dependent, which causes a substantial amount of difficulties
in the analysis of the resequencing of the parallel tasks and the synchronization process, as
well as the service dynamics at all parallel stations jointly. To the best of our knowledge,
our work is the first to study (non-Markovian) multi-server fork-join networks with NES in
the Halfin-Whitt regime.

2. Methods and Results

Exact analysis of this model is prohibitively difficult since it is necessary to track the
service completion times of all the parallel tasks of each job, which will require an infinite
dimensional state space. We develop a new approach to study the resequencing problem in
the fork-join networks with NES asymptotically when each station is operating in the Halfin-
Whitt regime. Specifically, we establish a relationship between the dynamics of the finite-
server fork-join network model and that of the corresponding infinite-server fork-join network
model. Thus, the system dynamics (queueing, service, waiting for synchronization, and
synchronization) in the multi-server fork-join network model with NES can be represented
as functionals of a multiparameter sequential empirical process driven by the service vectors
for the parallel tasks as well as the arrival process and the initial quantities.

With this representation, we first show an FLLN (fluid limit) for these processes assuming
that the system starts from empty when the arrival rate is allowed to be time dependent.
In particular, the fluid limit of the synchronized process is an integral of the minimum of
the fluid entering service processes at all stations with respect to the joint service time
distribution function. The fluid limits for the unsynchronized queueing processes and the
synchronized process capture the impact of the service dependence among all parallel tasks
of each job through their joint distribution function. For the fluid limits of service processes,
they are reduced to the same limits as in G/G/N queues, depending only on the marginal
service time distribution function, and thus are not affected by the dependence structure of
parallel service times.

We then prove an FCLT for the aforementioned processes when the arrival rate is constant
in the Halfin-Whitt regime and when the number of parallel tasks is equal to two, under some
stationarity conditions on the initial quantities. The limits of the diffusion-scaled processes
are the unique solution to a set of stochastic integral equations driven by a generalized
multiparameter Kiefer process (the limit of the multiparameter sequential empirical processes
driven by the service vectors), the arrival limit process and the limiting initial quantities.
One important term in the limits of the synchronized process and the unsynchronized queues
is an integral of the limit of the diffusion-scaled minimum of “entering service” processes at
both stations with respect to the joint service time distribution. Moreover, the limits of
service processes for parallel stations are dependent on the joint distribution of service times
unlike their fluid limits, and thus are correlated with each other.

Our results show that when all service stations operate in the Halfin-Whitt regime and
the arrival rate and the numbers of servers at all stations are of order O(n), the numbers
of tasks in the service stations and the numbers of tasks waiting for synchronization are
of the same order, O(n). This implies that waiting times for synchronization are O(1),
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although waiting times for service are O(1/
√
n). This is an extremely important insight for

the management of multi-server fork-join networks with NES in the Halfin-Whitt regime.
An intuitive interpretation is that in steady state, for jobs whose tasks are waiting in the
associated buffer(s) for synchronization, their other parallel tasks must be already in service
with probability one asymptotically. Therefore, in order to minimize the response time - the
time duration from the arrival time to synchronization, we conjecture that one must prioritize
tasks in each service station dynamically to reduce the waiting time for synchronization to
a smaller order.

3. Numerical Examples

We give numerical examples with two parallel stations to show the effectiveness of fluid
approximations for the number of tasks Xk in parallel station k (including those in service
and in queue) and the size of waiting buffer k for synchronization Yk, k = 1, 2, comparing with
simulations. We let the arrival process be Poisson with time-varying rate 200 + 120 sin(t),
t ≥ 0. The numbers of servers in stations 1 and 2 are 300 and 340, respectively. In the
first numerical example, the service times of the 1st and 2nd tasks are assumed to have a
bivariate Marshall-Olkin exponential distribution with means 1 and 10/9, respectively. In the
second numerical example, we let the service times of the two parallel tasks have a bivariate
Marshall-Olkin hyperexponential distribution with the same means as the first example. In
both cases, we consider independent and dependent parallel service times, and the parameters
in the Marshall-Olkin exponential and hyperexponential distributions are chosen such that
the correlation coefficients are both equal to 0.5. The numerical results are shown in Figure
2, marked with “ind.” and “corr.”, respectively, for independent and correlated cases. We
make two remarks from numerical results. First, the fluid approximations match very well
with the simulated results. Second, the positive correlation among parallel service times
does not affect the service dynamics (Xk) but reduces the unsynchronized queues (Yk).

Time
0 5 10 15 20

0

50

100

150

200

250

300

350
Sim. (corr.) Approx. (corr.) Sim. (ind.) Approx. (ind.)

X
2

Y
1

Y
2

X
1

Y
1

Y
2

(a) Exponential service times
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(b) Hyperexponential service times

Figure 2: Comparison of fluid approximations with simulations.
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