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We study a fork-join network of stations with multiple servers and non-exchangeable synchronization in
heavy traffic under the FCFS discipline. Tasks are only synchronized if all the tasks associated with the same
job are completed. Service times of parallel tasks of each job can be correlated. We consider the number of
tasks in each waiting buffer for synchronization, jointly with the number of tasks in each parallel service
station and the number of synchronized jobs. We develop a new approach to show a functional central limit
theorem for these processes in the quality-driven regime, under general assumptions on the arrival and service
processes. Specifically, we represent these processes as functionals of a sequential empirical process driven by
the sequence of service vectors for each job’s parallel tasks. All the limiting processes are functionals of two
independent processes - the limiting arrival process and a generalized Kiefer process driven by the service
vector of each job. We characterize the transient and stationary distributions of the limiting processes.
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1. Introduction Fork-join networks consist of a set of service stations that serve job requests
simultaneously and sequentially according to pre-designated deterministic precedence constraints.
Such networks have many applications in manufacturing and telecommunications [5, 7, 8, 24, 35,
36, 56, 55, 66, 67, 49, 50, 62, 41], patient flow analysis in healthcare [31, 3, 4, 71, 72], parallel
computing [60, 65, 64, 68, 42], military deployment operations [34, 70, 1], and law enforcement
systems [38]. Two types of synchronization constraints are of particular interest. One is called
exchangeable synchronization (ES) in which tasks are not tagged with a particular job and can
be synchronized for a service completion once the necessary tasks are completed. This type of
synchronization constraint is often used in manufacturing systems; for example, in many assembly
systems, different parts of a product are processed at separate workstations or plant locations and
a product will be assembled once all of its necessary parts are completed. In this case, the parts are
not tagged with a particular product, since they are standardized for the same type of product. The
second type is called non-exchangeable synchronization (NES). Tasks are tagged with a particular
job and can only be synchronized when all the parallel tasks of the same job are completed.

Here we focus on the second type of synchronization constraint. We are primarily motivated
to study fork-join networks with NES from patient flow analysis in hospitals [3, 4, 31, 71, 72].
For example, as a prerequisite for a doctor examination, all the test results for the same patient
must be ready, and they cannot be mixed among different patients. Mixing one patient’s blood
test result with another patient’s cardiology result can lead to severe medical consequences. Fork-
join networks with NES also have applications in parallel computing. For example, a computation
job can be split into several tasks processed in parallel (possibly only at some stages) and joined
subsequently once these parallel tasks tagged with the same job are completed. Another example
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is MapReduce scheduling [16, 64, 68, 42]. In the map phase, jobs are split into parallel tasks
and these tasks tagged with the same job are synchronized to be processed in the reduce phase
(with additional complicated interactions between those two phases). NES also occurs in some
component procurement problems that do not allow mixing between sets of component orders in
certain assembly systems [24].

When there is a single server in each of the parallel service station and the service discipline
is first-come-first-served (FCFS), the service completion order is preserved to be the same as the
arrival order of tasks in each service station, so that the two types of synchronization constraints
are equivalent. However, the arrival order of tasks in each service station can be resequenced at the
service completion epochs when the number of servers in a service station is larger than one, or
when the service discipline is not FCFS. Resequencing has been one of the most difficult obstacles
in the study of fork-join networks. Some limited work has been dedicated to the study of such
challenging problems. For example, substantial efforts were dedicated to the study of the max-
plus recursions [30, 6, 18]. More recently, Atar et al. [4] have studied a fork-join network with
single-server service stations where tasks may reenter for service at some service stations in a
Bernoulli scheme so that the arrival orders of tasks at each service station are resequenced after
service completion. They show that under a dynamic priority discipline, the system dynamics with
NES is asymptotically equivalent to that with ES in the conventional (single-server) heavy-traffic
regime. For a Markovian fork-join network with multiple servers, Zviran [72] shows that the system
dynamics with NES is also asymptotically equivalent to that with ES in the conventional heavy-
traffic regime. However, the two types of synchronization constraints lead to very different system
dynamics when the service stations have many parallel servers in the Halfin-Whitt regime, as
conjectured in [4, 72]. To the best of our knowledge, our work is the first to tackle the resequencing
problem in non-Markovian fork-join networks with NES and multi-server service stations in the
many-server heavy-traffic regimes.

(a) (b)

Figure 1. A fundamental fork-join network and a graphical representation of its system dynamics

We consider a fundamental fork-join network model with a single class of jobs and NES. As
depicted in Figure 1(a), each arriving job is forked into a fixed number of parallel tasks upon
arrival and each of the tasks is processed in parallel at a dedicated service station with multiple
servers under the FCFS and non-idling service discipline. The parallel tasks of each job have
correlated service times. Upon service completion, each task will join a buffer associated with its
service station, called “unsynchronized queue”, and wait for synchronization, such that each job is
synchronized only if all of its tasks have been completed. In this model, in addition to the service
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dynamics, we are interested in the waiting buffer dynamics for synchronization. One important
performance measure is the response time of a job, namely, the time from arrival to synchronization.
The response time may also include the time required for the synchronization process, but we do
not consider that in this work. The response time includes two delays, waiting time for service and
waiting time for synchronization. Since each service station can be regarded as a separate many-
server queue, the waiting time for service has been well understood [45, 63]. However, the waiting
time for synchronization, which is our focus in this paper, has not been studied. Specifically, we
investigate the waiting buffer dynamics for synchronization jointly with the service dynamics. In
this work, we start with the situation when all the service stations operate in the quality-driven
(QD) many-server regime. Asymptotically, this is equivalent to a model which has infinite numbers
of servers at all service stations.

To describe the system dynamics, we can start with a graphical representation as shown in
Figure 1(b) for a system of two parallel tasks. At each job’s arrival epoch, we mark the arrival
time on the horizontal line (x-axis) and the service times of two parallel tasks on the vertical line
(y-axis). At each time t, by drawing a negative forty-five degree line, we can count the numbers
of tasks in each service station and each waiting buffer for synchronization. If both parallel tasks
of a job are above the line, both tasks are in service at time t; if both are below the line, the
job has been synchronized and left the system; and if one task of a job is above the line and the
other is below, the one above is still in service and the one below is already in the buffer waiting
for synchronization. When the arrival process is Poisson, we can apply Poisson random measure
theory, similarly as in the “physics” of M/GI/∞ queues [22]. It can be shown that at each time t,
the numbers of tasks in each service station and each waiting buffer for synchronization all have
Poisson distributions and their covariances can also be obtained; see Proposition 2.1. However,
when the arrival process is more general, this Poisson random measure approach does not work,
and we cannot obtain the exact distributions for these performance measures. Thus, we consider
heavy-traffic approximations of the system dynamics when the arrival rate gets large. For that,
the graphical representation in Figure 1(b) also plays an important role; see the system’s dynamic
equations in §2.

It may appear that the waiting buffer dynamics for synchronization can be obtained by using
previous work on infinite-server queues [37], since the number of tasks in each waiting buffer for
synchronization is equal to the number of service completions in that service station minus the
number of synchronized jobs. The number of synchronized jobs is equal to the number of service
completions in an infinite-server queue with service times having the same distribution as the
maximum of the service vector of all parallel tasks. For G/GI/∞ queues, when the arrival process
satisfies a functional central limit theorem (FCLT) with a Brownian motion limit, the limiting
process of the number of jobs in the system (as well as the number of service completions) in the
diffusion scale can be represented as a sum of two independent terms, one as an Ito’s integral of
the arrival Brownian motion limit and the other as a functional of a standard Kiefer process driven
by service times [37]. For the fork-join networks with NES, by applying the results for G/GI/∞
queues, the number of synchronized jobs also has a diffusion limit process represented as a sum of
two independent terms, one as an Ito’s integral of the arrival Brownian motion limit and the other
as a functional of a standard Kiefer process driven by the maximum of the service vector of all
parallel tasks. However, the two Kiefer processes driven by the service time at a station and the
maximum of the service vector are correlated, and such correlated Kiefer processes have not been
studied in the literature. It is very difficult to characterize the performance measures, in particular,
the covariances between the number of tasks in service at a station and that in a waiting buffer
for synchronization.

Here we develop a new approach to describe the system dynamics. The service dynamics, the
waiting buffer dynamics for synchronization and the process counting synchronized jobs are all
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represented as functionals of the multiparameter sequential empirical process driven by the service
vector of all parallel tasks. Their diffusion-scaled processes will converge weakly to limit processes
that can be all represented as functionals of two independent processes - the limiting arrival process
and the corresponding generalized multiparameter Kiefer process driven by the service vector (The-
orem 3.3). When the limiting arrival process is Brownian motion, we show that the aforementioned
limiting processes are a multidimensional continuous Gaussian process, and thus characterize the
joint transient and stationary distributions of these processes (Theorem 3.4). We also study the
impact of the correlation among the service vector upon these distributions; see Corollary 3.1. A
numerical example is given to show the effectiveness of our approximations in §3.3.2. We charac-
terize the difference between the mean waiting buffer sizes for synchronization in the two fork-join
models with ES and NES constraints; see Proposition 3.1.

There are several advantages with this new approach. It gives a clean and elegant representation
of the limiting processes, involving only two independent stochastic processes arising from the
arrival and service processes. Moreover, the characterization of the limiting processes as Gaussian
and their transient and stationary distributional properties can be easily obtained. We believe that
this new approach launches a new framework to study more general fork-join networks, for example,
the same model in Figure 1(a) when all service stations operate in the Halfin-Whitt regime and
when the service vectors for parallel service times form a stationary and weakly dependent sequence
satisfying strong mixing conditions, and multiclass models with multiple processing stages.

In the development of this approach, we make a fundamental contribution to the study of
sequential empirical processes driven by random vectors. Sequential empirical processes driven by
a sequence of random vectors and their limits as generalized Kiefer processes have been studied
in the statistics literature; see e.g., [54, 11, 13, 14, 17, 19, 20], but the convergence is proved in
the space D([0, T ]k,R) of real-valued càdlàg functions defined on [0, T ]k, k≥ 2 and T ≥ 0, endowed
with the generalized Skorohod J1 topology in [48] and [61]. In our setting, it is necessary to prove
the convergence in the space D([0, T ],D([0, T ]k,R)) of function-valued càdlàg functions defined on
[0, T ], endowed with the Skorohod J1 topology for D([0, T ]k,R)-valued càdlàg functions, for T ≥ 0.

Literature review. Most of the literature on fork-join networks is on models with single-server ser-
vice stations. We only give a brief summary here on relevant work in heavy traffic. These studies are
in the conventional (single-server) heavy-traffic regime. In Varma’s dissertation [67], the diffusion-
scaled workload processes and unsynchronized queueing processes in some fork-join network models
with ES are shown to converge weakly to certain multi-dimensional reflected Brownian motions.
The stationary distributions of the system response time and the processes counting the number of
tasks in unsynchronized queues are specified by some partial differential equations (PDEs). Nguyen
[49] shows the diffusion-scaled processes counting the queue lengths at each service station of a
single-class fork-join network model with ES converge to a reflected Brownian motion in a polyhe-
dral cone of the nonnegative orthant. Nguyen [50] discusses the difficult challenges with multiclass
fork-join models with ES. As we have noted above, for a fork-join network with feedback and NES,
Atar et al. [4] show that a dynamic priority discipline achieves throughput optimality asymptot-
ically in the conventional heavy-traffic regime, as a consequence of the asymptotic equivalence
between NES and ES constraints.

Very little work has been done for fork-join networks with multi-server service stations. Ko
and Serfozo [35] consider a fork-join network model with a single class of Poisson arrivals and K
parallel service stations with multiple servers at each station and exponential service times, and
obtain an approximation for the distribution of the system response time in equilibrium under
the NES constraint. Dai [15] provides an exact simulation algorithm to approximate the system
response time in equilibrium for the same Markovian model in [35] by using a “coupling from the
past” method. Zviran [72] studies optimal control of multi-server feedforward fork-join networks
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with exponential service times in the conventional heavy-traffic regime and shows that FCFS is
asymptotically optimal and the resequencing disruption becomes asymptotically negligible. Zaied
[71] calculates mean offered-load functions of fork-join networks with NES and multiple processing
stages when the arrival process is time-inhomogeneous Poisson and service times for parallel tasks
are independent, and studies staffing of time-varying emergency departments and synchronization
delays under Markovian assumptions. Both dissertations of Zviran [72] and Zaied [71] are motivated
from applications in patient flow analysis. Gurvich and Ward [25] study optimal matching policies
for a pure join model (Markovian) with multiple classes of jobs under certain matching constraints.

This work contributes to the recent development for non-Markovian many-server queueing mod-
els. We only mention those that are most relevant to our work due to the large volume of papers
on many-server models. Krichagina and Puhalskii [37] first observe that the system dynamics of an
infinite-server queueing model can be represented by an integral functional of a sequential empirical
process driven by service times. They show that the diffusion-scaled processes counting the number
of jobs in the system can be approximated by a functional of a standard Kiefer process driven
by service times. Pang and Whitt [51, 53] generalize that approach to establish two-parameter
process limits for G/G/∞ queues when the service times are i.i.d. and weakly dependent, respec-
tively. Reed [58] and Puhalskii and Reed [57] have observed a relationship between finite-server
and infinite-server queues and generalized the approach in [37] to obtain the diffusion limits for
G/GI/N queues in the Halfin-Whitt regime. Mandelbaum and Momčilović [46] generalize the
approach by Reed [58] to study G/GI/N + GI queues with abandonment in the Halfin-Whitt
regime, and Huang et al. [26] study G/M/N +GI queues in an overloaded many-server regime
by applying the results in [37]. All these papers use sequential empirical processes driven by a
sequence of univariate random variables. Our approach to study fork-join networks with NES uses
multiparameter sequential empirical processes driven by a sequence of i.i.d. random vectors and
properties of multiparameter processes and martingales. This approach is further developed to
study (non-Markovian) many-server fork-join networks in the Halfin-Whitt regime in [44].

1.1. Organization of the Paper The paper is organized as follows. We finish this section
with a summary of notations below. In §2, a detailed description of the model and the assumptions
are given. The main results are stated in §3. A new FCLT for multiparameter sequential empirical
processes is given in §3.1 and proved in §4. The functional weak law of large numbers (FWLLN)
and FCLT for the service and waiting dynamics for synchronization are stated in §3.2 and proved
in §6. The Gaussian characterization of the limit processes is stated in §3.3 and proved in §5. We
make some concluding remarks and discuss future work in §7. Some additional proofs are given in
the appendix §A and §B.

1.2. Notation The following notations are used throughout the paper. R and R+ (Rd and Rd+,
respectively) denote sets of real and real non-negative numbers (d-dimensional vectors, respectively,
d ≥ 2). N denotes the set of natural numbers. For a, b ∈ R, we denote a ∧ b := min{a, b} and
a∨ b := max{a, b}. For any x∈R+, bxc is used to denote the largest integer less than or equal to x.
We use bold letter to denote a vector, e.g., xxx := (x1, ..., xd)∈Rd. 000 and eee denote the vectors whose
components are all 0 and 1, respectively. For x ∈ R and eee ∈ Rd, we define xeee := (x, ..., x) ∈ Rd.
For xxx,yyy ∈ Rd, we denote xxx ≤ yyy, xxx ≥ yyy and xxx > yyy in the componentwise sense, and let xxx ∧ yyy =
(x1 ∧ y1, ..., xd ∧ yd) and xxx∨yyy = (x1 ∨ y1, ..., xd ∨ yd). For xxx,yyy ∈Rd, xxx� yyy is used to denote that at
lease one component of xxx is strictly greater than the corresponding component of yyy. We use 1(A)
to denote the indicator function of a set A. The abbreviation a.s. means almost surely. For any
univariate distribution function G, we denote Gc := 1−G. We denote the sets Tuuu := {ttt∈Rd+ : tk >
uk, k = 1, ..., d} and Luuu := {ttt ∈Rd+ : tk ≤ uk, k = 1, ..., d} for uuu= (u1, ..., ud) ∈Rd+. For any set A, we
write Ac as its complementary set.
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All random variables and processes are defined on a common probability space (Ω,F , P ). For
any two complete separable metric spaces S1 and S2, we denote S1 × S2 as their product space,
endowed with the maximum metric, i.e., the maximum of two metrics on S1 and S2. Sk is used to
represent k-fold product metric space of any complete and separable metric space S for k ∈N with
the maximum metric. For a complete separable metric space S, D([0,∞),S) denotes the space of
all S-valued càdlàg functions on [0,∞), and is endowed with the Skorohod J1 topology (see, e.g.,
[23]). Let D ≡ D([0,∞),R). D(T,R) denotes the space of all “continuous from above with limits
from below” real-valued functions on T⊆ Rk+ for k ≥ 2; see [61, 9, 48] for T= [0,1]k and [27, 33]
for T= [0,∞)k. Denote Dk ≡D([0,∞)k,R) for k ≥ 2. For the space D([0,1]k,R), we endow it with
the metric dk introduced in [61]. The spaces D([0,∞),Dk) and D([0,∞),D([0,1]k,R)), k ≥ 2, are
endowed with the Skorohod J1 topology in [23] (see §6 in Chapter 3). For any z ∈ D([0,∞),Dk),
denote ‖z‖T,A := sup0≤t≤T supxxx∈A |z(t,xxx)|, where T > 0 and A is a bounded closed subset of Rk+. For
a complete separable metric space S, C([0,∞)k,S) is the space of all continuous S-valued functions
on [0,∞)k for k ≥ 1, and denote Ck ≡C([0,∞)k,R) for k ≥ 2, and C≡C([0,∞),R). C([0,∞),Ck)
is the subset of continuous functions in D([0,∞),Dk). Let D↑ and C↑ be the subset of functions in
D and C which are nondecreasing, respectively. Weak convergence of probability measures µn to µ

will be denoted as µn⇒ µ. For any two random variables X1 and X2, we denote X1
d
=X2 as their

equality in distribution. For a sequence of processes {X n : n≥ 1} and a process X , X n
df−→X and

X n P−→X denote the convergence in finite-dimensional distributions of X n to X and in probability,
respectively.

2. Model and Assumptions In this section, we present a detailed description of our model
and the assumptions. As shown in Figure 1(a), there is a single class of jobs, and each job is forked
into K parallel tasks, K ≥ 2. Each task is processed in a service station with multiple servers
under the FCFS discipline. There is an infinite number of servers at each station. After service
completion, each task will join a waiting buffer for synchronization associated with each service
station, and when all tasks of the same job are completed, they will be synchronized and leave the
system. Here we assume that the synchronization process takes zero amount of time.

Let A := {A(t) : t ≥ 0} be the arrival process of jobs with τi representing the arrival time of
the ith job, i ∈ N. Let {ηηηi : i≥ 1} denote the i.i.d. service time vectors of the parallel tasks. The
joint distribution of the service time vector for the ith job ηηηi is F (xxx) := F (x1, ..., xK) for xk ≥ 0,
k = 1, ...,K. Their marginal distributions are Fk(x), for x≥ 0, k = 1, ...,K. The joint distribution
of any two service times ηij and ηik is Fj,k(xj, xk) := P (ηij ≤ xj, ηik ≤ xk) for xj, xk ≥ 0, j, k= 1, ...,K.
Note Fj,k(·, ·) = Fk(·) when j = k for j, k= 1, ...,K. We denote F c

j,k(xj, xk) := P (ηij >xj, η
i
k >xk) =

1−Fj(xj)−Fk(xk) +Fj,k(xj, xk) for xj, xk ≥ 0, j, k= 1, ...,K. Note F c
j,k(·, ·) = F c

k (·) when j = k for
j, k = 1, ...,K. Let ηim := max{ηi1, ..., ηiK} be the maximum of the components in the service vector
ηηηi, and Fm(x) := P (ηim ≤ x) = F (x, ..., x) for x≥ 0. (Throughout the paper, we use subscript “m”
to index quantities and processes associated with the maximum.) The service process is assumed
to be independent of the arrivals. We exclude the case of perfectly positively correlated parallel
services since that will lead to empty waiting buffers for synchronization.

Let Xk := {Xk(t) : t≥ 0} be the process counting the number of tasks in service at the service
station k, and Yk := {Yk(t) : t ≥ 0} be the process counting the number of tasks in the waiting
buffer for synchronization (unsynchronized queue) after service completion at service station k,
k = 1, ...,K. Let S := {S(t) : t≥ 0} be the process counting the number of synchronized jobs and
Dk := {Dk(t) : t ≥ 0} be the process counting the number of tasks that have completed service
at station k, k = 1, ...,K. Denote XXX := (X1, ...,XK), YYY := (Y1, ..., YK) and DDD := (D1, ...,DK). We
assume that the system starts empty.

We first obtain the following properties on the processes XXX(t), YYY (t) and S(t) at each time t≥ 0
when the arrival process A is Poisson.
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Proposition 2.1. If the arrival process A is Poisson with rate λ, then at each time t≥ 0, for
k= 1, ...,K, Xk(t) has a Poisson distribution with rate λ

∫ t
0
F c
k (s)ds, Yk(t) has a Poisson distribution

with rate λ
∫ t
0
(F c

m(s)− F c
k (s))ds, and S(t) has a Poisson distribution with rate λ

∫ t
0
Fm(s)ds. For

each time t≥ 0 and j, k= 1, ...,K,

Cov(Xj(t),Xk(t)) = λ

∫ t

0

F c
j,k(s, s)ds, (2.1)

Cov(Yj(t), Yk(t)) = λ

∫ t

0

(Fj,k(s, s)−Fm(s))ds, (2.2)

Cov(Xj(t), Yk(t)) = λ

∫ t

0

(Fk(s)−Fj,k(s, s))ds. (2.3)

For each time t≥ 0 and k = 1, ...,K, S(t) is independent of Xk(t) and Yk(t). When K = 2, Y1(t)
and Y2(t) are independent for each t≥ 0.

Proof. The results follow from applying Poisson random measure theory and direct calculations,
together with an illustrative figure generalizing Figure 1(b) for K ≥ 2. �

When the arrival process A is general, we will obtain heavy-traffic limits for the fluid and diffusion
scaled processes of (XXX,YYY ,S) jointly. We will let the arrival rate grow large for the system to be in
heavy traffic. For that, we consider a sequence of such systems indexed by n and use superscript
n for the processes A,XXX,YYY ,DDD,S, and the arrival times {τi : i≥ 1}, but we let the service vectors
{ηηηi : i≥ 1} and their distribution functions be independent of n. We make the following assumption
on the arrival process An.
Assumption 1: FCLT for arrivals. There exist: (i) a continuous nondecreasing deterministic

real-valued function ā on [0,∞) with ā(0) = 0 and (ii) a stochastic process Â with continuous
sample paths, such that

Ân := n−
1
2 (An−nā)⇒ Â in D as n→∞. (2.4)

�
It follows from (2.4) that we have the associated FWLLN

Ān :=
An

n
⇒ ā in D as n→∞. (2.5)

When the arrival process is renewal, the limit in (2.5) is ā(t) = λt, for t ≥ 0 and some positive
constant λ, and the limit in (2.4) is Â=

√
λc2aBa, where c2a is the squared coefficient of variation

(SCV) of an interarrival time, and Ba is a standard Brownian motion (BM).
We also make a regularity assumption on the joint service-time distribution function F (xxx).
Assumption 2: Service time distributions. The joint distribution function F (xxx) of the

service time vectors {ηηηi : i∈N} is continuous. �
From the graphical representation of the system dynamics in Figure 1(b), we can write, for each

t≥ 0 and k= 1, ...,K,

Xn
k (t) =

An(t)∑
i=1

1(τni + ηik > t), (2.6)

Y n
k (t) =

An(t)∑
i=1

1(τni + ηik ≤ t and τni + ηik′ > t for some k′ 6= k)

=

An(t)∑
i=1

(
1(τni + ηik ≤ t)−1(τni + ηim ≤ t)

)
(2.7)

=

An(t)∑
i=1

(
1(τni + ηim > t)−1(τni + ηik > t)

)
,
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Sn(t) =

An(t)∑
i=1

1(τni + ηim ≤ t) =

An(t)∑
i=1

1(τni + ηik ≤ t, ∀k), (2.8)

Dn
k (t) =

An(t)∑
i=1

1(τni + ηik ≤ t). (2.9)

The following balanced equations hold for each t≥ 0 and k= 1, ...,K,

Dn
k (t) =An(t)−Xn

k (t), (2.10)

Y n
k (t) =Dn

k (t)−Sn(t). (2.11)

As we have remarked in the introduction, by previous work on G/GI/∞ queues [37], each
individual process Xn

k and Dn
k (resp., Sn) can be represented by an integral of a sequential empirical

process driven by a sequence of i.i.d. random variables {ηik : i ≥ 1} (resp., {ηim : i ≥ 1}) for each
k= 1, ...,K. Thus, Gaussian limits for the diffusion-scaled processes Xn

k , Dn
k and Sn in heavy traffic

for each k can be established, and as a consequence, a Gaussian limit for the diffusion-scaled process
Y n
k can be obtained from those of Dn

k and Sn, k= 1, ...,K. However, that approach does not give a
characterization of the joint Gaussian distribution of the limiting processes of the diffusion-scaled
processes (XXXn,YYY n, Sn).

We will represent all the processes XXXn,YYY n, Sn as integrals of a multiparameter sequential empir-
ical process K̄n := {K̄n(t,xxx) : t≥ 0,xxx∈RK+} driven by the sequence of service vectors {ηηηi : i≥ 1}:

K̄n(t,xxx) :=
1

n

bntc∑
i=1

1(ηηηi ≤xxx), t≥ 0, xxx∈RK+ . (2.12)

That is, we write, for t≥ 0 and k= 1, ...,K,

Xn
k (t) = n

∫ t

0

∫
RK+

1(s+xk > t)dK̄
n
(
Ān(s),xxx

)
, (2.13)

Y n
k (t) = n

∫ t

0

∫
RK+

(1(s+xk ≤ t)−1(s+xj ≤ t, ∀j))dK̄n
(
Ān(s),xxx

)
, (2.14)

and

Sn(t) = n

∫ t

0

∫
RK+

1(s+xj ≤ t, ∀j)dK̄n
(
Ān(s),xxx

)
. (2.15)

The integrals in (2.13), (2.14) and (2.15) are well-defined as a Stieltjes integral for functions of
bounded variation as integrators.

2.1. Comparison with a fork-join network with ES We make a comparison with an
associated fork-join network with ES. We use superscript “ES” in the corresponding processes for
this model. Let the arrival and service processes be the same as the model described above. The
only difference is the synchronization constraint. Here tasks are not tagged with a particular job,
so that whenever there are tasks completed at all parallel service stations, the oldest completed
task at each waiting buffer for synchronization will be synchronized. It is evident that when the
arrival process A(t) is Poisson, the processes Y ES

k (t) and SES(t) do not have a Poisson distribution
at each time t≥ 0, k = 1, ...,K. In this case, for each k = 1, ...,K, Xn,ES

k and Dn,ES
k will have the

same representations as in (2.6) and (2.9), but the processes Sn,ES and Y n,ES
k become

Sn,ES(t) = min
1≤j≤K

{Dn,ES
j (t)}, t≥ 0, (2.16)
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and
Y n,ES
k (t) =Dn,ES

k (t)−Sn,ES(t) =Dn,ES
k (t)− min

1≤j≤K
{Dn,ES

j (t)}, t≥ 0. (2.17)

Thus, at any time, one of the waiting buffers for synchronization should be empty. It is evident
that the processes Sn,ES and Y n,ES

k , k = 1, ...,K, cannot be represented as a single integral of the
multiparameter sequential empirical process K̄n as in equations (2.15) and (2.14), respectively. We
will discuss more on the comparison in §3.3 for the steady-state mean values of the fluid limits of
these processes when the arrival rate is constant.

3. Main Results In this section, we present the main results of the paper. In §3.1, we state
an FCLT for multiparameter sequential empirical processes driven by a sequence of i.i.d. random
vectors. In §3.2, we present the FWLLN and FCLT for the fluid and diffusion scaled processes
(XXXn,YYY n) and Sn. In §3.3, we give the Gaussian characterizations of the limit processes. We provide
the proofs in §§4-6.

3.1. An FCLT for Multiparameter Sequential Empirical Processes We present an
FCLT for multiparameter sequential empirical processes Ûn := {Ûn(t,xxx) : t≥ 0, xxx∈ [0,1]K} driven
by a sequence of i.i.d. random vectors with uniform marginals:

Ûn(t,xxx) :=
1√
n

bntc∑
i=1

(
1(ξξξi ≤xxx)−H(xxx)

)
, t≥ 0, xxx∈ [0,1]K , (3.1)

where for each i∈N, ξξξi := (ξi1, ..., ξ
i
K) is a vector of nonnegative random variables with continuous

joint distribution function H(·) and uniform marginals over [0,1].
The convergence for the processes Ûn(t,xxx) is established in the space D([0,∞),D([0,1]K ,R)). We

remark that this theorem is in the same spirit as Lemma 3.1 in [37], where an FCLT is proved for
the two-parameter process Ûn(t, x) in the univariate case in the space D([0,∞),D([0,1],R)) when
K = 1. We generalize that result to the multivariate setting. The proof of the theorem is given in
§4.

Theorem 3.1. The multiparameter sequential empirical processes Ûn(t,xxx) defined in (3.1)
converge weakly to a continuous Gaussian limit,

Ûn(t,xxx)⇒U(t,xxx) in D([0,∞),D([0,1]K ,R)) as n→∞, (3.2)

where U(t,xxx) is a continuous Gaussian random field with mean function E[U(t,xxx)] = 0 and covari-
ance function

Cov(U(t,xxx),U(s,yyy)) = (t∧ s)(H(xxx∧yyy)−H(xxx)H(yyy)), t, s≥ 0, xxx,yyy ∈ [0,1]K .

To show the FCLT for the processes (XXXn,YYY n, Sn), we define the diffusion-scaled multiparameter
sequential empirical processes K̂n := {K̂n(t,xxx) : t≥ 0,xxx∈RK+} by

K̂n(t,xxx) :=
1√
n

bntc∑
i=1

(
1(ηηηi ≤xxx)−F (xxx)

)
, t≥ 0, xxx∈RK+ . (3.3)

Theorem 3.1 can be applied to show an FCLT for the processes K̂n. Define FFF :RK→ [0,1]K with
FFF (xxx) = (F1(x1), ...,FK(xK)). By Sklar’s theorem [59], a multidimensional version of probability
integral transformation, for any multivariate distribution function F , there exists a unique mul-
tivariate distribution function HF (called “copula”, depending on F ) with uniform marginals on
[0,1] such that F (xxx) = HF (FFF (xxx)) when the marginal distribution functions Fk, k = 1, ...,K, are
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continuous. Then, K̂n(·, ·) can be represented as a composition of Ûn(·, ·) with FFF (·) in the second
component, i.e.,

K̂n(t,xxx) = Ûn(t,FFF (xxx)), t≥ 0, xxx∈RK+ .

Thus, it follows from Theorem 3.1 that the processes K̂n(t,xxx) converge in distribution:

K̂n(t,xxx) = Ûn(t,FFF (xxx))⇒ K̂(t,xxx) :=U(t,FFF (xxx)) in D([0,∞),DK) as n→∞, (3.4)

which implies that

K̄n(t,xxx)⇒ k̄(t,xxx) := tF (xxx) in D([0,∞),DK) as n→∞. (3.5)

3.2. FWLLN and FCLT for the processes (XXXn,YYY n, Sn) We define fluid-scaled processes
X̄̄X̄Xn, Ȳ̄ȲY n and S̄n by

X̄XX
n

:=
1

n
XXXn, ȲYY

n
:=

1

n
YYY n, S̄n :=

1

n
Sn. (3.6)

The FWLLN for (X̄XX
n
, ȲYY

n
, S̄n) is stated in the following theorem.

Theorem 3.2 (FWLLN). Under Assumptions 1 and 2, the fluid-scaled processes converge
to deterministic fluid functions,

(Ān,X̄XX
n
, ȲYY

n
, S̄n)⇒ (ā,X̄XX,ȲYY , S̄) (3.7)

in D2K+2 as n→∞, where the limits are all deterministic functions: ā is the limit in (2.5), for
each t≥ 0,

X̄XX(t) := (X̄1(t), ..., X̄K(t)), X̄k(t) :=

∫ t

0

F c
k (t− s)dā(s), for k= 1, ...,K, (3.8)

ȲYY (t) := (Ȳ1(t), ..., ȲK(t)), Ȳk(t) :=

∫ t

0

(F c
m(t− s)−F c

k (t− s))dā(s), for k= 1, ...,K, (3.9)

S̄(t) :=

∫ t

0

Fm(t− s)dā(s). (3.10)

When ā(t) = λt for a constant arrival rate λ> 0 and E[η1k]<∞ for k= 1, ...,K,

X̄k(∞) := lim
t→∞

X̄k(t) = λE[η1k], k= 1, ...,K, (3.11)

Ȳk(∞) := lim
t→∞

Ȳk(t) = λ(E[η1m]−E[η1k]), k= 1, ...,K, (3.12)

lim
t→∞

S̄(t)

t
= λ. (3.13)

We define the diffusion scaling of XXXn, YYY n and Sn by

X̂XX
n

:=
√
n(X̄XX

n−X̄XX), ŶYY
n

:=
√
n(ȲYY

n− ȲYY ), Ŝn :=
√
n(S̄n− S̄). (3.14)

We will show the following FCLT for these diffusion-scaled processes. The proof is given in §6.
Theorem 3.2 follows immediately from this FCLT and thus its proof is omitted.

Theorem 3.3 (FCLT). Under Assumptions 1 and 2, the diffusion-scaled processes converge
in distribution,

(Ân, K̂n,X̂XX
n
, ŶYY

n
, Ŝn)⇒ (Â, K̂,X̂XX,ŶYY , Ŝ) (3.15)
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in D× D([0,∞),DK)× D2K+1 as n→∞, where Â is the limit in (2.4), K̂ is the limit in (3.4),
which is independent of Â, and for t≥ 0 and k= 1, ...,K,

X̂XX(t) := M̂MM 1(t) +M̂MM 2(t), M̂MM i(t) := (M̂1,i(t), ..., M̂K,i(t)), i= 1,2, (3.16)

M̂k,1(t) :=

∫ t

0

F c
k (t− s)dÂ(s) = Â(t)−

∫ t

0

Â(s)dF c
k (t− s), (3.17)

M̂k,2(t) :=

∫ t

0

∫
RK+

1(s+xk > t)dK̂(ā(s),xxx) =−
∫ t

0

∫
RK+

1(s+xk ≤ t)dK̂(ā(s),xxx), (3.18)

Ŝ(t) := V̂1(t) + V̂2(t), (3.19)

V̂1(t) :=

∫ t

0

Fm(t− s)dÂ(s) =−
∫ t

0

Â(s)dFm(t− s), (3.20)

V̂2(t) :=

∫ t

0

∫
RK+

1(s+xj ≤ t, ∀j)dK̂(ā(s),xxx), (3.21)

ŶYY (t) := ẐZZ1(t) + ẐZZ2(t), ẐZZi(t) := (Ẑ1,i(t), ..., ẐK,i(t)), i= 1,2, (3.22)

Ẑk,1(t) :=

∫ t

0

(Fk(t− s)−Fm(t− s))dÂ(s) =

∫ t

0

Â(s)d(Fm(t− s)−Fk(t− s)), (3.23)

Ẑk,2(t) :=

∫ t

0

∫
RK+

(1(s+xk ≤ t)−1(s+xj ≤ t, ∀j))dK̂(ā(s),xxx) =−M̂k,2(t)− V̂2(t). (3.24)

The processes M̂MM 2, ẐZZ2 and V̂2 are defined in the mean-square sense; see the precise definitions
in Definition 5.1. This is in the same way as the limit process with respect to a standard Kiefer
process for the G/GI/∞ queue is defined in [37, 51]. The limit processes are characterized in the
next subsection.

3.3. Characterization of the Limit Processes In this section, we show the Gaussian
property of the limiting processes (X̂XX,ŶYY ) and Ŝ when the arrival limit process is a Brownian motion.
Its proof is given in §5.

Theorem 3.4 (Gaussian Property). Under Assumptions 1 and 2, when the arrival limit
process Â is a Brownian motion, i.e., Â(t) = caBa(ā(t)) for a standard Brownian motion Ba, a
positive constant ca > 0 and t ≥ 0, the limiting processes (X̂XX,ŶYY ) and Ŝ in Theorem 3.3 are well-
defined continuous Gaussian processes. For each t≥ 0,

(X̂XX(t), ŶYY (t))
d
=N(000,Σ(t)), and Ŝ(t)

d
=N(0, σS(t)),

where for j, k= 1, ...,K,

σXjk(t) :=Cov(X̂j(t), X̂k(t)) =

∫ t

0

[
F c
j,k(t− s, t− s) + (c2a− 1)F c

j (t− s)F c
k (t− s)

]
dā(s), (3.25)

σYjk(t) :=Cov(Ŷj(t), Ŷk(t)) =

∫ t

0

[
(Fj,k(t− s, t− s)−Fm(t− s))

+ (c2a− 1)(Fj(t− s)−Fm(t− s))(Fk(t− s)−Fm(t− s))
]
dā(s), (3.26)

σXYjk (t) :=Cov(X̂j(t), Ŷk(t)) =

∫ t

0

[
(Fk(t− s)−Fj,k(t− s, t− s))

+ (c2a− 1)
(
F c
j (t− s)(Fk(t− s)−Fm(t− s))

)]
dā(s), (3.27)

and

σS(t) := V ar(Ŝ(t)) =

∫ t

0

Fm(t− s)dā(s) + (c2a− 1)

∫ t

0

(Fm(t− s))2dā(s). (3.28)
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When the arrival rate function ā(t) = λt for a positive constant λ> 0,

(X̂XX(t), ŶYY (t))⇒ (X̂XX(∞), ŶYY (∞))
d
=N(000,Σ(∞)) as t→∞,

lim
t→∞

t−1V ar(Ŝ(t)) = λc2a, (3.29)

where for j, k= 1, ...,K,

σXjk(∞) := λ

∫ ∞
0

F c
j,k(s, s)ds+λ(c2a− 1)

∫ ∞
0

F c
j (s)F c

k (s)ds, (3.30)

σYjk(∞) := λ

∫ ∞
0

[
(Fj,k(s, s)−Fm(s)) + (c2a− 1)(Fj(s)−Fm(s))(Fk(s)−Fm(s))

]
ds, (3.31)

σXYjk (∞) := λ

∫ ∞
0

[
(Fk(s)−Fj,k(s, s)) + (c2a− 1)

(
F c
j (s)(Fk(s)−Fm(s))

)]
ds. (3.32)

We make the following remarks on the Gaussian property of the limiting processes.
(i) When we set c2a = 1, the variance and covariance formulas coincide with those in the Poisson

arrival case in Proposition 2.1.
(ii) When K = 2 and c2a = 1, Cov(Ŷ1(t), Ŷ2(t)) = 0 for t≥ 0, even if the service times of parallel

tasks are correlated, since both terms inside the integral in (3.26) vanish. This can also be explained
using Figure 1(b). In fact, when the arrival process is Poisson and K = 2, using Poisson random
measure theory, it is shown in Proposition 2.1 that the unscaled processes Y1(t) and Y2(t) are
independent for each t≥ 0.

(iii) We emphasize the interesting structure of the variances of X̂k and Ŷk and their covariances,
k= 1, ...,K. Recall that for G/GI/∞ queues [37], the steady-state variance formula of the number
of jobs in the system is given as the sum of two terms, the mean and the coefficient (c2a − 1)
multiplying an integral associated with the service time distribution; for example, when E[η1k]<∞,
the variance of the steady-state number of tasks in the kth service station is

V ar(X̂k(∞)) = λE[η1k] +λ(c2a− 1)

∫ ∞
0

(F c
k (s))2ds, k= 1, ...,K.

It turns out that the steady-state variance formula for the number of tasks in the waiting buffer for
synchronization has the same structure; for instance, when E[η1k]<∞ for k= 1, ...,K, the variance
of the steady-state waiting buffer size at the kth service station is

V ar(Ŷk(∞)) = λ(E[η1m]−E[η1k]) +λ(c2a− 1)

∫ ∞
0

(F c
m(s)−F c

k (s))2ds, k= 1, ...,K.

The same structure also exists for the covariances between X̂j and Ŷk, as shown in (3.27), for
j, k= 1, ...,K.

(iv) The synchronized process does not have a Brownian motion limit, but its limiting process is
Gaussian, and has the same variability as the arrival process when the arrival rate is constant, as
shown in (3.29). This can be also explained by regarding the synchronized process as the departure
process of a G/GI/∞ queue with the same arrival process and service times as the maximum of
the service vectors (see [37, 51]).

�

To explore the impact of the correlation among the service times of each job’s parallel tasks
on the system dynamics, we consider the case when the service vector ηηηi has the joint continuous
distribution function

F (xxx) = (1− ρ)
K∏
k=1

G(xk) + ρG

(
min

k=1,...,K
{xk}

)
(3.33)
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with a marginal continuous distribution function G(·), for 0 ≤ ρ < 1, xk ≥ 0 and k = 1, ...,K.
Namely, the service times at the parallel stations have the same distribution, and are symmetrically
correlated with a correlation parameter ρ ∈ [0,1). We state the mean and covariance functions of
the performance measures studied above as functions of the parameter ρ in the following corollary.
Its proof follows from a direct calculation and is thus omitted.

Corollary 3.1. Under the same assumptions in Theorem 3.4, when the service vector ηηηi has
the joint distribution function F in (3.33), for each t≥ 0 and k = 1, ...,K, X̄k(t) and V ar(X̂k(t))
are the same as in (3.8) and (3.25), respectively,

Ȳk(t) = (1− ρ)

∫ t

0

[
G(t− s)(1− (G(t− s))K−1)

]
dā(s),

V ar(Ŷk(t)) =

∫ t

0

[
(1− ρ)G(t− s)(1− (G(t− s))K−1)

+ (1− ρ)2(c2a− 1)(G(t− s))2
(
1− (G(t− s))K−1

)2 ]
dā(s),

Cov(X̂k(t), Ŷk(t)) = (c2a− 1)(1− ρ)

∫ t

0

[
Gc(t− s)G(t− s)(1− (G(t− s))K−1)

]
dā(s),

for j, k= 1, ...,K and j 6= k,

Cov(X̂j(t), X̂k(t)) =

∫ t

0

[
(1− ρ)(Gc(t− s))2 + ρGc(t− s) + (c2a− 1)(Gc(t− s))2

]
dā(s),

Cov(Ŷj(t), Ŷk(t)) =

∫ t

0

[
(1− ρ)(G(t− s))2(1− (G(t− s))K−2)

+ (1− ρ)2(c2a− 1)(G(t− s))2
(
1− (G(t− s))K−1

)2 ]
dā(s),

Cov(X̂j(t), Ŷk(t)) = (1− ρ)

∫ t

0

[
G(t− s)Gc(t− s)

+ (c2a− 1)Gc(t− s)G(t− s)
(
1− (G(t− s))K−1

)]
dā(s),

and

S̄(t) =

∫ t

0

[
(1− ρ)(G(t− s))K + ρG(t− s)

]
dā(s),

V ar(Ŝ(t)) =

∫ t

0

[
(1− ρ)(G(t− s))K + ρG(t− s)

]
dā(s)

+ (c2a− 1)

∫ t

0

[
(1− ρ)(G(t− s))K + ρG(t− s)

]2
dā(s).

We make several remarks on the impact of the correlation ρ among the service vector with
distribution (3.33). The mean and the variance of Xk(t) are not affected by the correlation, but
the covariances of Xj(t) and Xk(t) increase linearly in ρ for t≥ 0 and j, k = 1, ...K with j 6= k, as
ρ ↑ 1. The mean of Yk(t) decreases linearly in ρ and the mean of S(t) increases linearly in ρ for
t≥ 0 and k = 1, ...,K, as ρ ↑ 1. The covariances of Yj(t) and Yk(t) decrease nonlinearly in ρ, but
the covariances of Xj(t) and Yk(t) decrease linearly in ρ for t≥ 0 and j, k = 1, ...K, as ρ ↑ 1. The
variance of S(t) increases nonlinearly in ρ, for t≥ 0, as ρ ↑ 1. The intuitive interpretation for these
observations is that positive correlation makes the parallel tasks more likely to finish close to each
other so that the waiting time for synchronization becomes less and more jobs are synchronized. It
is also important to emphasize that the covariances of Yj(t) and Yk(t) and the covariances of Xj(t)
and Yk(t) decrease in different orders in the correlation parameter ρ for t≥ 0 and j, k= 1, ...K, as
ρ ↑ 1. The same observations hold for the associated steady-state performance measures.
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3.3.1. Comparing the steady-state mean values with a fork-join network with ES
In §2.1, we have discussed the difference between our model and a fork-join network with ES.
In the ES model, the synchronization process SES can be represented as the minimum of the
departure processes from all parallel stations, and these departure processes are dependent due
to the correlation of service vector of each job. Thus, we are unable to obtain a distributional
approximation of the processes SES and Y ES

k , k= 1, ...,K. However, for each t≥ 0, by applying the
previous results on G/GI/∞ queues [37], we can obtain the mean values of the fluid limit Ȳ ES

k (t),
k= 1, ...,K, and S̄ES(t):

Ȳ ES
k (t) := λ

[∫ t

0

Fk(s)ds− min
1≤j≤K

{∫ t

0

Fj(s)ds

}]
(3.34)

−→ Ȳ ES
k (∞) := λ

(
max
1≤j≤K

{E[η1j ]}−E[η1k]

)
as t→∞,

S̄ES(t) := λ min
1≤j≤K

{∫ t

0

Fj(s)ds

}
= λt−λ max

1≤j≤K

{∫ t

0

F c
j (s)ds

}
, and lim

t→∞

S̄ES(t)

t
= λ. (3.35)

Recall that the steady-state mean value of the waiting buffer for synchronization in our model
Ȳk(∞) = λ (E[η1m]−E[η1k]) in (3.12), k= 1, ...,K, denoted as Ȳ NES

k (∞) for the comparison purpose.
It is evident that the average waiting buffer sizes for synchronization under NES constraint are
larger than those under ES constraint, even though the total synchronization throughput rates
are the same, limt→∞ S̄

ES(t)/t = limt→∞ S̄
NES(t)/t = λ. We also observe that when the parallel

service times are perfectly positively correlated, the difference Ȳ NES
k (∞)− Ȳ ES

k (∞) becomes zero
for k= 1, ...,K. We summarize this comparison result in the following proposition.

Proposition 3.1. Under Assumptions 1 and 2, when ā(t) = λt for a positive arrival rate
λ> 0 and E[η1k]<∞ for k= 1, ...,K,

Ȳ NES
k (∞)− Ȳ ES

k (∞) = λ
(
E[η1m]− max

1≤j≤K
{E[η1j ]}

)
≥ 0, for k= 1, ...,K. (3.36)

By the extreme value theory, if the service vector has i.i.d. components such that the service
time distribution lies in the domain of attraction for Gumbel extremal distribution, then we have
aK(η1m − bK)⇒ Z as K →∞, where Z has a Gumbel distribution, and aK and bK are constants
depending on K; see Chapter 1 in [40]. The Gumbel distribution has cdf P (Z ≤ z) = e−e

−z
, z ≥ 0,

with mean E[Z] = γ ≈ 0.5772, the Euler-Mascheroni constant, and variance V ar(Z) = π/
√

6 ≈
1.2825. For one example, if the service vector has i.i.d. components of an exponential distribution
with rate 1, then aK = 1 and bK = ln(K) (see Example 1.7.2 of [40]), for k= 1, ...,K,

Ȳ NES
k (∞)− Ȳ ES

k (∞)≈ λ(ln(K) + γ− 1) as K→∞. (3.37)

For another example, if the service vector has i.i.d. components of a lognormal distribution
LN(0,1), we have, for k= 1, ...,K,

Ȳ NES
k (∞)− Ȳ ES

k (∞)≈ λ(γ/aK + bK − e1/2) as K→∞, (3.38)

where aK and bK are (see Example 1.7.4 of [40]):

aK = (2 lnK)1/2 exp
{
−(2 lnK)1/2 + 0.5(2 lnK)−1/2(ln lnK + ln(4π))

}
,

and

bK = exp
{

(2 lnK)1/2− 0.5(2 lnK)−1/2(ln lnK + ln(4π))
}
.
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3.3.2. Numerical Example In this section, we provide a numerical example with two parallel
tasks (K = 2), comparing our approximations with simulations. We let the arrival process be
renewal with arrival rate λ= 100 and the SCV c2a = 5. The service times of the two parallel tasks
are assumed to be a bivariate Marshall-Olkin hyperexponential distribution, which is a mixture
of two independent bivariate Marshall-Olkin exponential distributions [47]. A bivariate Marshall-
Olkin exponential distribution function FMO(x, y) for the random vector (X,Y) can be written as
F c
MO(x, y) := P (X > x,Y > y) = exp(−µ1x − µ2y − µ12(x ∨ y)), x, y ≥ 0, where three parameters
µ1, µ2, µ12 are such that the two marginals are exponential with rates µ1 + µ12 and µ2 + µ12 and
their correlation ρo = µ12/(µ1 +µ2 +µ12)∈ [0,1]. We denote MO(λ1, λ2, ρo) for a bivariate Marshall-
Olkin exponential distribution, where λ1 and λ2 are the rates for the marginals, and ρo is the
correlation parameter, for which the parameters µ1 = (λ1−ρoλ2)/(1+ρo), µ2 = (λ2−ρoλ1)/(1+ρo)
and µ12 = (ρo(λ1 +λ2))/(1 + ρo).

In Table 1, we show the approximation values for the mean, variance and covariance of Xk

and Yk, for k = 1,2, and compare them with the corresponding simulated values, in two cases -
independent parallel service times and correlated parallel service times (with correlation coefficient
ρ equal to 0.5). In the numerical examples, we take a mixture of MO(4/5,1, ρo,1) with probability
0.4 and MO(6/5,6/5, ρo,2) with probability 0.6, such that the means of the two hyperexponential
marginals are ms,1 = 1 and ms,2 = 0.9. By setting ρo,1 = ρo,2 = 0, we have two independent parallel
service times (ρ= 0 in Table 1), and by setting ρo,1 = 0.7 and ρo,2 = 172/679, we obtain that the
correlation coefficient (see the correlation formula in §5.2 [52]) between the two parallel service
times is equal to 0.5 (ρ= 0.5 in Table 1).

To estimate the simulated values, we simulated the system up to time 40 with 4000 independent
replications starting with an empty system, which we call one experiment. In each replication,
we collected data over the time interval [20,40] and formed the time average (the system tends
to be in steady state in less than 5 time units). We conducted 5 independent experiments and
took sample averages as estimations for simulated values. To construct the 95% confidence interval
(CI), we used Student t-distribution with four degrees of freedom. The halfwidth of the 95% CI is
2.776s5/

√
5, where s5 is the sample deviation.

Table 1. Comparing approximations with simulations in a stationary model

(X1,X2) (E[X1],E[X2]) (V ar(X1), V ar(X2)) Cov(X1,X2)

ρ= 0
Sim. (95% CI.) (99.99 ± 0.17 , 89.98 ± 0.12) (296.26 ± 0.66, 269.46 ± 0.70) 234.14 ± 0.66

Approx. (100.00, 90.00) (296.00, 269.27) 233.99

ρ= 0.5
Sim. (95% CI.) (99.98 ± 0.04, 89.99 ± 0.04) (296.08 ± 0.57, 269.23 ± 0.80) 256.34 ± 0.43

Approx. (100.00, 90.00) (296.00, 269.27) 256.30

(Y1, Y2) (E[Y1],E[Y2]) (V ar(Y1), V ar(Y2)) Cov(Y1, Y2)

ρ= 0
Sim. (95% CI.) (43.18 ± 0.05 , 53.20 ± 0.10) (70.12 ± 0.20, 89.85 ± 0.40) 31.53 ± 0.30

Approx. (43.20, 53.20) (70.31, 90.08) 31.55

ρ= 0.5
Sim. (95% CI.) (20.89 ± 0.01, 30.88 ± 0.02) (27.14 ± 0.15, 42.23 ± 0.35) 8.36 ± 0.07

Approx. (20.89, 30.89) (27.05, 42.23) 8.31

(X,Y ) Cov(X1, Y1) Cov(X1, Y2) Cov(X2, Y1) Cov(X2, Y2)

ρ= 0
Sim. (95% CI.) 60.80 (± 0.59) 122.87 (± 0.61) 99.21 (± 0.42) 64.56 (± 0.54)

Approx. 61.09 123.10 99.85 64.57

ρ= 0.5
Sim. (95% CI.) 28.72 (± 0.33) 68.37 (± 0.73) 47.51 (± 0.42) 34.49 (± 0.44)

Approx. 28.67 68.37 47.41 34.44

We make several remarks for the numerical example. First, our approximations match very well
with the simulated values. Second, the size of waiting buffers for synchronization is quite large, of



Lu and Pang: Gaussian Limits for A Fork-Join Network with Non-Exchangeable Synchronization
16 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

the same order as the number of tasks in the service stations. Third, we find that when the two
parallel tasks are positively correlated, the mean and the variance of Xk’s are the same as those
in the independent case, while the covariance between X1 and X2 gets larger, the mean and the
variance and covariances of Yk’s and the covariances between Xk and Yj become smaller than those
in the independent case, j, k = 1,2. These are also consistent with the observations in Corollary
3.1. Note that this numerical example is more general than that considered in Corollary 3.1.

4. Proof of Theorem 3.1 In this section, we prove Theorem 3.1. We will use properties of
multiparameter martingales and multiparameter point processes, which we first review briefly for
completeness in §§4.1 and 4.2.

4.1. Preliminaries We will first review the definitions associated with multiparameter mar-
tingales; see, e.g., [33] for a more detailed introduction. We will then state the Cairoli’s Strong
(p, p) inequality, which is an extension of Doob’s maximal inequality in the multiparameter setting
(see, e.g., Theorem 2.3.2 of §7 in [33]). For completeness, we will state the result without proof.

Definition 4.1 (Multiparameter Filtration). In a probability space (Ω,G, P ), a collec-
tion F := {Fttt : ttt∈RK+} is said to be a (K-parameter) filtration if F is a collection of sub-σ-fields of
G such that Fsss ⊆Fttt for sss≤ ttt and sss,ttt∈RK+ .
Definition 4.2 (Multiparameter Submartingale). Suppose F := {Fttt : ttt ∈ RK+} is a fil-

tration of sub-σ-fields of G in a probability space (Ω,G, P ). A real-valued stochastic process M :=
{M(ttt) : ttt∈RK+} is a multiparameter submartingale with respect to F if

(i) M is adapted to F . That is, for all ttt∈RK+ , M(ttt) is Fttt-measurable.
(ii) M is integrable.
(iii) For all sss≤ ttt both in RK+ , E[M(ttt)|Fsss]≥M(sss), a.s.

A stochastic process M is a multiparameter supermartingale if −M is a multiparameter sub-
martingale. It is a multiparameter martingale if it is both a multiparameter submartingale and
supermartingale.
Definition 4.3 (Separability). A stochastic process X := {X(ttt) : ttt ∈ RK+} is said to be

separable if there exists an at most countable collection T ⊂ RK+ and a null set N such that for
all closed sets C ⊂ R and all open sets I ⊂ RK+ of the form I = (ααα,βββ) := {ttt ∈ RK+ : αk < tk <
βk, k = 1, ...,K}, where ααα= (α1, ..., αK), βββ = (β1, ..., βK) and αk and βk are rational or infinite for
k= 1, ...,K, then

{X(sss)∈C, ∀ sss∈ I ∩T}\{X(sss)∈C, ∀ sss∈ I} ⊂N .
We remark that by Doob’s separability theorem (see Theorem 2.2.1 of §5 in [33]), any stochastic

process X := {X(ttt) : ttt∈RK+} has a separable modification. Thus, we assume the processes defined
in the paper are all separable.
Definition 4.4 (Commuting Filtration). The K-parameter filtration F is commuting if

for all sss,ttt∈RK+ and all bounded Fttt-measurable random variables Y ,

E[Y |Fsss] =E[Y |Fsss∧ttt], a.s.

Equivalently, for all sss,ttt ∈ RK+ , given Fsss∧ttt, Fsss and Fttt are conditionally independent (see, e.g.,
Theorem 2.1.1 of §7 in [33]).

Recall that a function f :RK+ →R is right-continuous (with respect to the partial order ≤) if for
all ttt∈RK+ , limttt≤sss:sss→ttt f(sss) = f(ttt). Now we are ready to state the Cairoli’s Strong (p, p) inequality.

Lemma 4.1 (Cairoli’s Strong (p, p) Inequality). If M := {M(ttt) : ttt ∈ RK+} is a separable,
nonnegative multiparameter submartingale with respect to a commuting (K-parameter) filtration,
and ttt→E[(M(ttt))p] is right-continuous, then for any ttt∈RK+ and all p > 1,

E

[
sup
sss≤ttt
{(M(sss))p}

]
≤
(

p

p− 1

)Kp
E[(M(ttt))p].



Lu and Pang: Gaussian Limits for A Fork-Join Network with Non-Exchangeable Synchronization
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 17

4.2. Compensator of Multiparameter Point Processes We introduce the compensator
of multiparameter point processes. For one-parameter point processes, we refer to Jacod and
Shiryaev [29] (§II.3c), but for multiparameter point processes, we refer to Ivanoff and Merzbach
[28] for the introduction of general set-valued point processes and their compensators (pp. 94-95,
Theorem 4.5.3). Here we review multiparameter point processes and their compensators, and gen-
eralize the proofs in [29] to the multiparameter setting. The proofs are included in the appendix
for completeness. We start with multiparameter one-point process N i := {N i(ttt) : t ∈ RK+} defined
by

N i(ttt) := 1(ζζζi ≤ ttt), ttt∈RK+ , i∈N,

where {ζζζi : i∈N} is a sequence of i.i.d. random vectors of RK+ with joint distribution function Hζ(·).
We assume that Hζ(·) is continuous. Before introducing the compensator of N i, we construct the
filtration F i := {F ittt : ttt∈RK+} shown in the following lemma.

Lemma 4.2. The filtration F i = {F ittt : ttt∈RK+} generated by N i is the following: for all ttt∈RK+ ,
F ittt is the class of all sets of the form C = (ζζζi)−1(B), where B is a Borel subset of RK+ such that
either Lcttt ⊆B or Lcttt ∩B = Ø.

With the filtration constructed above, the compensator of N i is given in the following lemma.

Lemma 4.3. Let F i be the filtration defined in Lemma 4.2. Then the compensator of N i is

Λi(ttt) :=

∫
Lttt

1(ζζζi >uuu)
Hζ(duuu)

Hζ(Tuuu)
, ttt∈RK+ ,

and N i(ttt)−Λi(ttt) is a multiparameter martingale with respect to the filtration F i. Moreover,

E

(∫
RK+

1(ζζζi >uuu)
Hζ(duuu)

Hζ(Tuuu)

)2
<∞. (4.1)

We next consider the compensator of multiparameter point processes X`(ttt), `∈N, defined by

X`(ttt) :=
∑̀
i=1

N i(ttt) =
∑̀
i=1

1(ζζζi ≤ ttt), ttt∈RK+ .

The following result then follows from Lemma 4.3.

Lemma 4.4. The compensator of the multiparameter point process X`, with respect to the
filtration FX` := {FX`ttt : ttt∈RK+}, is given by

Z`(ttt) :=

∫
Lttt

∑̀
i=1

1(ζζζi >uuu)

Hζ(Tuuu)
Hζ(duuu), ttt∈RK+ ,

where FX`ttt =
∨

1≤i≤`F ittt . Moreover, for each ttt∈RK+ , E[(Z`(ttt))2]<∞.

4.3. Proof of Theorem 3.1 In this section, we prove Theorem 3.1. We first introduce a
decomposition of Ûn in (3.1), which has two terms, one as a multiparameter martingale and the
other as a process of finite variation. For an integrable function f defined on RK+ , we denote∫

Lxxx

f(sss)dsss :=

∫ x1

0

(
...

∫ xK

0

f(s1, ..., sK)dsK ...

)
ds1, xxx∈RK+ .
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Lemma 4.5 (Decomposition of Ûn). For xxx := (x1, ..., xK)∈ [0,1]K and t≥ 0, we can decom-
pose Ûn in (3.1) as

Ûn(t,xxx) = Ûn
0 (t,xxx) + Ûn

1 (t,xxx), (4.2)

where

Ûn
0 (t,xxx) :=

1√
n

bntc∑
i=1

(
1(ξξξi ≤xxx)−

∫
Lxxx

1(ξξξi >uuu)

H(Tuuu)
H(duuu)

)
, (4.3)

and

Ûn
1 (t,xxx) :=

1√
n

bntc∑
i=1

∫
Lxxx

1(ξξξi >uuu)−H(Tuuu)

H(Tuuu)
H(duuu). (4.4)

For fixed t≥ 0, Ûn
0 (t,xxx) is a multiparameter martingale with respect to the smallest adapted filtra-

tion, and Ûn
1 (t,xxx) has finite variation as a multiparameter process of xxx.

Proof. For t≥ 0 and xxx∈ [0,1]K , by the definition of Ûn(t,xxx) in (3.1),

Ûn(t,xxx) =
1√
n

bntc∑
i=1

(
1(ξξξi ≤xxx)−H(xxx)

)
=Ûn

0 (t,xxx) +
1√
n

bntc∑
i=1

(∫
Lxxx

1(ξξξi >uuu)

H(Tuuu)
H(duuu)−H(xxx)

)
=Ûn

0 (t,xxx) + Ûn
1 (t,xxx).

Thus, (4.2) holds. The fact that Ûn
0 (t,xxx) is a multiparameter martingale follows from Lemma 4.4

for fixed t≥ 0. �
We remark that in the one-parameter case K = 1, this decomposition is called a semimartingale

decomposition for sequential empirical processes (Proposition II.3.36, [29]), and the second term
Ûn

1 (t, x) is equal to

Ûn
1 (t, x) =−

∫ x

0

(
1√
n

bntc∑
i=1

(1(ξi ≤ u)−H(u))

)
1

Hc(u)
H(du) =−

∫ x

0

Ûn(t, u)

Hc(u)
H(du), (4.5)

for t, x ≥ 0. That holds because for K = 1, 1(ξi > u)−Hc(u) = −1(ξi ≤ u) +H(u) for each u ≥
0. However, in the multiparameter setting, that equality does not hold, and thus, the second
term Ûn

1 (t,xxx) in (4.4) cannot be written as such a simple form in (4.5). This decomposition for
multiparameter sequential empirical processes is new, and it requires new methods to handle the
convergence associated with the second term in the proof of Theorem 3.1 below.

Proof of Theorem 3.1. We now start proving the weak convergence of the multiparameter
sequential empirical processes Ûn(·, ·). We take the standard approach by proving that the finite
dimensional distributions of Ûn(·, ·) converge weakly to those of U(·, ·), and that the sequence of
processes {Ûn : n≥ 1} is tight in D([0,∞),D([0,1]K ,R)). Denote Ûn(t) := Ûn(t, ·) and U(t) :=U(t, ·)
for t ∈ [0,∞). As shown in Section 3.9 of [23], in order to prove the convergence of the finite
dimensional distributions of Ûn(·, ·), it suffices to show that for any `∈N and 0≤ t1 < t2 < ... < t`,

(Ûn(t1), ..., Û
n(t`))⇒ (U(t1), ...,U(t`)) in (D([0,1]K ,R))` as n→∞. (4.6)

This follows directly from Theorem 1 in [54]. Thus, it only remains to prove that the sequence of
processes {Ûn : n≥ 1} is tight in D([0,∞),D([0,1]K ,R)).
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We first introduce the σ-fields

F ixxx := σ(1(ξξξi ≤ yyy), 0≤ yyy≤xxx)∨N , xxx∈ [0,1]K ,

Fxxx :=
∨
i≥1

F ixxx, xxx∈ [0,1]K ,

Gnt :=
∨

i≤bntc

F ieee, t≥ 0,

where N is the family of P -null sets and we recall eee ∈RK+ with all components 1. Let Gn := {Gnt :
t≥ 0} and F := {Fxxx :xxx∈ [0,1]K}. The definitions of Gn and F with Lemma 4.2 imply that they are
complete filtrations. Moreover, Gn satisfies the usual conditions (increasing and right-continuous
families of complete σ-fields, see, e.g., Definition 2.25 of Chapter 1 in [32]). By (3.1), the sequence
{Ûn(t) : t≥ 0} is adapted to the filtration Gn. From (4.6), for each t≥ 0, the sequence {Ûn(t) : n≥ 1}
is tight in D([0,1]K ,R).

Let d̃K := dK ∧ 1, where we recall dK is the metric for the space D([0,1]K ,R). By the relative
compactness criteria in [23] (see Theorem 8.6(a) and Remark 8.7(a), (b) of Chapter 3), it suffices
to show that, for each T > 0, there exists a family of {γn(δ) : 0 < δ < 1, n ≥ 1} of nonnegative
random variables satisfying

E[d̃K(Ûn(t+u), Ûn(t))|Gnt ]≤E[γn(δ)|Gnt ], a.s., (4.7)

where γn(δ) satisfies
lim
δ→0

limsup
n→∞

E[γn(δ)] = 0, (4.8)

for 0≤ t≤ T and 0≤ u≤ δ.
By the definition of d̃K , d̃K = (dK ∧ 1) ≤ dK . Note that, for v1(·), v2(·) ∈ D([0,1]K ,R),

dK(v1(·), v2(·))≤ supxxx∈[0,1]K |v1(xxx)− v2(xxx)|. Instead of showing (4.7), it suffices to show

E

[
sup

xxx∈[0,1]K
|Ûn(t+u,xxx)− Ûn(t,xxx)||Gnt

]
≤E[γn(δ)|Gnt ], a.s., (4.9)

for 0 ≤ t ≤ T and 0 ≤ u ≤ δ. By (3.1), Ûn(t + u) − Ûn(t) is independent of Gnt . Thus, (4.9) is
equivalent to

E

[
sup

xxx∈[0,1]K
|Ûn(t+u,xxx)− Ûn(t,xxx)|

]
≤E[γn(δ)|Gnt ], a.s., (4.10)

for 0≤ t≤ T and 0≤ u≤ δ.
We will first give a bound to the left hand side (LHS) of (4.10). By the decomposition property

in Lemma 4.5,

E

[
sup

xxx∈[0,1]K
|Ûn(t+u,xxx)− Ûn(t,xxx)|

]
≤E

[
sup

xxx∈[0,1]K
|Ûn

0 (t+u,xxx)− Ûn
0 (t,xxx)|

]

+E

[
sup

xxx∈[0,1]K
|Ûn

1 (t+u,xxx)− Ûn
1 (t,xxx)|

]
, (4.11)

where Ûn
0 (t,xxx) and Ûn

1 (t,xxx) are defined in (4.3) and (4.4), respectively. For the first term on the
right hand side (RHS) of (4.11), by Jensen’s inequality,

E

[
sup

xxx∈[0,1]K
|Ûn

0 (t+u,xxx)− Ûn
0 (t,xxx)|

]
≤

E
( sup

xxx∈[0,1]K
|Ûn

0 (t+u,xxx)− Ûn
0 (t,xxx)|

)2
 1

2

≤

(
E

[
sup

xxx∈[0,1]K
(Ûn

0 (t+u,xxx)− Ûn
0 (t,xxx))2

]) 1
2

.
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By Lemma 4.5, we note that, for the fixed t and u, Ûn
0 (t+ u,xxx)− Ûn

0 (t,xxx) is a martingale with
respect to the filtration F . For the fixed t, since Ûn(t,xxx) is right continuous in xxx, Ûn

0 (t,xxx) is right
continuous in xxx. Thus, E[(Ûn

0 (t+ u,xxx)− Ûn
0 (t,xxx))2] is right continuous in xxx for the fixed t and u.

By the construction of the filtration and Definition 4.4, it is easy to check that F is commuting.
Thus, by Cairoli’s Strong (p, p) inequality in Lemma 4.1 and setting p= 2,

E

[
sup

xxx∈[0,1]K
(Ûn

0 (t+u,xxx)− Ûn
0 (t,xxx))2

]
≤4KE

[(
Ûn

0 (t+u,eee)− Ûn
0 (t,eee)

)2
]

=4KE

 1

n

bn(t+u)c∑
i=bntc+1

(
1−

∫
Leee

1(ξξξi >uuu)

H(Tuuu)
H(duuu)

)2


=4KC1

(
bn(t+u)c− bntc

n

)
≤4KC1

(
δ+

1

n

)
, (4.12)

where

C1 :=E

[(
1−

∫
Leee

1(ξξξi >uuu)

H(Tuuu)
H(duuu)

)2
]

is a constant. By Lemma 4.3, we see that C1 is finite. By (4.12), we have

E

[
sup

xxx∈[0,1]K
|Ûn

0 (t+u,xxx)− Ûn
0 (t,xxx)|

]
≤ γn1 (δ) := 2K

√
C1

(
δ+

1

n

) 1
2

. (4.13)

We now consider the second term on the RHS of (4.11). Denote

σ2
xxx := V ar

(∫
Lxxx

1(ξξξi >uuu)−H(Tuuu)

H(Tuuu)
H(duuu)

)
.

Note that, for xxx∈ [0,1]K ,

σ2
xxx ≤ 2

(
E

[(∫
Lxxx

1(ξξξi >uuu)

H(Tuuu)
H(duuu)

)2
]

+H(xxx)

)
≤ 2

(
E

[(∫
Leee

1(ξξξi >uuu)

H(Tuuu)
H(duuu)

)2
]

+ 1

)
. (4.14)

Recall eee is the vector in RK with all components 1. By Lemma 4.3, we see that the RHS of (4.14) is
finite. Thus, supxxx∈[0,1]K σ

2
xxx is finite, which implies supxxx∈[0,1]K σxxx is finite. By strong approximation

of random walks by Brownian motion (see section 3.5 in [39]), ∃ n0 and c1, when n≥ n0, we have

sup
xxx∈[0,1]K

sup
0≤t≤T+δ

∣∣∣Ûn
1 (t,xxx)−σxxxB(t)

∣∣∣≤ c1n− 1
4 log

3
2 n, a.s., (4.15)

where B(t) is a standard Brownian motion. Denote c2 := supxxx∈[0,1]K σxxx. Then, for 0 ≤ t ≤ T , 0 ≤
u≤ δ, and n≥ n0,

E

[
sup

xxx∈[0,1]K

∣∣∣Ûn
1 (t+u,xxx)− Ûn

1 (t,xxx)
∣∣∣]

≤E

[
sup

xxx∈[0,1]K

∣∣∣Ûn
1 (t+u,xxx)−σxxxB(t+u)

∣∣∣]+E

[
sup

xxx∈[0,1]K
σxxx |B(t+u)−B(t)|

]
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+E

[
sup

xxx∈[0,1]K

∣∣∣σxxxB(t)− Ûn
1 (t,xxx)

∣∣∣]
≤ 2c1n

− 1
4 log

3
2 n+ c2E [|B(u)|]

≤ 2c1n
− 1

4 log
3
2 n+ c2

(
E
[
(B(u))2

]) 1
2

≤ 2c1n
− 1

4 log
3
2 n+ c2u

1
2

≤ 2c1n
− 1

4 log
3
2 n+ c2δ

1
2 . (4.16)

For n<n0, 0≤ t≤ T and 0≤ u≤ δ,

E

[
sup

xxx∈[0,1]K
|Ûn

1 (t+u,xxx)− Ûn
1 (t,xxx)|

]

≤E

 sup
xxx∈[0,1]K

∣∣∣∣∣∣
bn(t+u)c∑
i=bntc+1

∫
Lxxx

1(ξξξi >uuu)−H(Tuuu)

H(Tuuu)
H(duuu)

∣∣∣∣∣∣


≤ (bn(t+ δ)c− bntc)E

[
sup

xxx∈[0,1]K

∣∣∣∣∫
Lxxx

1(ξξξi >uuu)

H(Tuuu)
H(duuu)

∣∣∣∣+ sup
xxx∈[0,1]K

H(xxx)

]
= (bn(t+ δ)c− bntc)

(
E

[∫
Leee

1(ξξξi >uuu)

H(Tuuu)
H(duuu)

]
+ 1

)
= (bn(t+ δ)c− bntc)

(∫
Leee

E[1(ξξξi >uuu)]

H(Tuuu)
H(duuu) + 1

)
(By Fubini’s theorem)

= 2(bn(t+ δ)c− bntc)
≤ 2(nδ+ 1). (4.17)

Define γn2 (δ) by

γn2 (δ) =

{
2c1n

− 1
4 log

3
2 n+ c2δ

1
2 , if n≥ n0,

2(nδ+ 1), if n<n0.
(4.18)

Thus, by (4.16) and (4.17), we have obtained an upper bound for the second term on the RHS of
(4.11):

E

[
sup

xxx∈[0,1]K
|Ûn

1 (t+u,xxx)− Ûn
1 (t,xxx)|

]
≤ γn2 (δ). (4.19)

Let γn(δ) := γn1 (δ) + γn2 (δ). From (4.11), (4.13) and (4.19), we see that

E

[
sup

xxx∈[0,1]K
|Ûn(t+u,xxx)− Ûn(t,xxx)|

]
≤ γn(δ) =E[γn(δ)|Gt],

and

lim
δ→0

limsup
n→∞

E[γn(δ)|Gnt ] = lim
δ→0

limsup
n→∞

γn(δ) = 0.

Thus, we have verified (4.7) and (4.8), and shown the weak convergence of {Ûn : n≥ 1}. �

5. Proofs for the Characterization of the Limit Processes In this section, we prove
the Gaussian characterizations of the limiting processes, Theorem 3.4. We first introduce some
notations. For a set J , let |J | be the cardinality of J . Let J 1

k and J 2
N−k be the partition of

A := {1, ...,N}, where N is a positive integer, J 1
k ∩J 2

N−k = Ø, |J 1
k |= k and |J 2

N−k|=N − k. Note
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that J 1
0 =J 2

0 = Ø. Let Φ :RN →R. For xxx,yyy,zzz ∈RN and xxx≤ yyy, define ΦJ
1
k ,J

2
N−k(xxx;yyy) := Φ(zzz), where

zj = xj for j ∈J 1
k and zj = yj for j ∈J 2

N−k. Then, we define

∆Φ(xxx;yyy) :=
N∑
k=0

(−1)k
∑

J 1
k
,J 2
N−k partitions of A

ΦJ
1
k ,J

2
N−k(xxx;yyy). (5.1)

This notion “∆” can be interpreted as the following: for a real-valued function Φ defined on RN ,
∆Φ(xxx;yyy) represents the increment of Φ between xxx and yyy for each xxx,yyy ∈ RN satisfying xxx≤ yyy. For
N = 1, ∆Φ(x;y) = Φ(y)−Φ(x) for x≤ y. For N = 2, ∆Φ(xxx;yyy) = Φ(y1, y2)−Φ(x1, y2)−Φ(x2, y1) +
Φ(x1, x2) for xxx= (x1, x2)≤ yyy = (y1, y2). In the following proofs, we will use ∆K̂(xxx;yyy) as defined in
(5.1) for N =K + 1, and ∆F (xxx;yyy) as defined in (5.1) for N =K.

For k= 1, ...,K, define

K̂k(ā(t), y) := K̂(ā(t),xxx),

where xxx∈RK+ satisfies xk = y and xj =∞ for j 6= k, j = 1, ...,K. Define

K̂m(ā(t), y) := K̂(ā(t),xxx),

where xxx∈RK+ satisfies xk = y for k= 1, ...,K.

We first provide the definitions of the processes M̂MM 2 in (3.18), ẐZZ2 in (3.24) and V̂2 in (3.21).
Definition 5.1. For k = 1, ...,K, the processes M̂k,2 in (3.18), V̂2 in (3.21) and Ẑk,2 in (3.24)

are defined as mean-square integrals, i.e., for each t≥ 0,

lim
`→∞

E[(M̂k,2(t)− M̂k,2,`(t))
2] = 0, (5.2)

lim
`→∞

E[(V̂2(t)− V̂2,`(t))
2] = 0, (5.3)

lim
`→∞

E[(Ẑk,2(t)− Ẑk,2,`(t))2] = 0, (5.4)

where

M̂k,2,`(t) :=−
∫ t

0

∫
RK+

1k,`,t(s,xxx)dK̂(ā(s),xxx), (5.5)

V̂2,`(t) :=

∫ t

0

∫
RK+

1m,`,t(s,xxx)dK̂(ā(s),xxx), (5.6)

Ẑk,2,`(t) :=−M̂k,2,`(t)− V̂2,`(t), (5.7)

and

1k,`,t(s,xxx) :=
∑̀
i=1

1(s`i−1 < s≤ s`i)1(xk ≤ t− s`i), (5.8)

1m,`,t(s,xxx) :=
∑̀
i=1

1(s`i−1 < s≤ s`i)1(xj ≤ t− s`i , ∀j = 1, ...,K), (5.9)

with 0 = s`0 < s`1 < ... < s`` = t and max1≤i≤` |s`i − s`i−1| → 0 as `→∞. We call {s`i : 0 ≤ i ≤ `} is a
partition of [0, t].

We next show the well-definedness and Gaussian property for the process (M̂MM 2, ẐZZ2, V̂2) in (3.18),
(3.24) and (3.21).
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Lemma 5.1. The process (M̂MM 2, ẐZZ2, V̂2) in (3.18), (3.24) and (3.21) is a well-defined continuous
Gaussian process with mean 000, and covariance functions: for each t≥ 0 and j, k= 1, ...,K,

Cov(M̂j,2(t), M̂k,2(t)) =

∫ t

0

[Fj,k(t− s, t− s)−Fj(t− s)Fk(t− s)]dā(s), (5.10)

Cov(Ẑj,2(t), Ẑk,2(t)) =

∫ t

0

[
Fj,k(t− s, t− s)−Fj(t− s)Fk(t− s)−Fm(t− s)

+Fk(t− s)Fm(t− s) +Fm(t− s)Fj(t− s)− (Fm(t− s))2
]
dā(s), (5.11)

Cov(M̂j,2(t), Ẑk,2(t)) =

∫ t

0

[Fm(t− s)−Fj,k(t− s, t− s)−Fj(t− s)Fm(t− s)

+Fj(t− s)Fk(t− s)]dā(s), (5.12)

Cov(M̂k,2(t), V̂2(t)) =−
∫ t

0

[F c
k (t− s)Fm(t− s)]dā(s), (5.13)

Cov(Ẑk,2(t), V̂2(t)) =

∫ t

0

[Fm(t− s)(Fm(t− s)−Fk(t− s))]dā(s), (5.14)

V ar(V̂2(t)) =

∫ t

0

[Fm(t− s)F c
m(t− s)]dā(s). (5.15)

Proof. We first show that (M̂MM 2, ẐZZ2, V̂2) is a well-defined continuous Gaussian process. By (3.18),
(3.21) and (3.24), it suffices to show M̂k,2(·) and V̂2(·) are well-defined continuous Gaussian pro-
cesses, k= 1, ...,K.

Recall Definition 5.1. The processes M̂k,2,`(t) in (5.5) and V̂2,`(t) in (5.6) can be written as

M̂k,2,`(t) =−
∑̀
i=1

∆K̂
(
(ā(s`i−1),000); (ā(s`i),xxx

i)
)

=−
∑̀
i=1

[
K̂k(ā(s`i), t− s`i)− K̂k(ā(s`i−1), t− s`i)

]
, t≥ 0, (5.16)

V̂2,`(t) =
∑̀
i=1

∆K̂
(
(ā(s`i−1),000); (ā(s`i),yyy

i)
)

=
∑̀
i=1

[
K̂m(ā(s`i), t− s`i)− K̂m(ā(s`i−1), t− s`i)

]
, t≥ 0, (5.17)

where xxxi ∈RK with xij =∞ for j 6= k and xik = t− s`i , and yyyi ∈RK with yij = t− s`i for 1≤ j ≤K.

To show M̂k,2(·) and V̂2(·) are well-defined, k= 1, ...,K, we need to prove, for each t≥ 0,

lim
l,`→∞

E
[
(M̂k,2,l(t)− M̂k,2,`(t))

2
]

= 0, (5.18)

lim
l,`→∞

E
[
(V̂2,l(t)− V̂2,`(t))

2
]

= 0, (5.19)

where we define M̂k,2,l(t), V̂2,l(t) and their associated partition {sli : 0≤ i≤ l} of [0, t] similarly as
M̂k,2,`(t) in (5.5), V̂2,`(t) in (5.6) and the partition {s`i : 0≤ i≤ `} of [0, t] in Definition 5.1 for each
t≥ 0, respectively. We focus on the details of showing (5.19), as a similar argument can be applied
to the proof of (5.18). Recall eee∈RK with all entries 1. Without loss of generality, we assume that
the partition {s`i : 0≤ i≤ `} of [0, t] is finer than the partition {sli : 0≤ i≤ l} of [0, t]. By (5.17), we
have

V̂2,l(t)− V̂2,`(t) =
l∑
i=1

∑
j:sli−1<s

`
j≤s

l
i

∆K̂
(
(ā(s`j−1), (t− sli)eee); (ā(s`j), (t− s`j)eee)

)
, t≥ 0. (5.20)
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We first claim that, for 0≤ t1 ≤ t2 ≤ t′1 ≤ t′2, 0≤ x≤ y and 0≤ x′ ≤ y′,

E

[(
∆K̂ ((ā(t1), xeee); (ā(t2), yeee))

)2
]

= (ā(t2)− ā(t1))(∆F (xeee;yeee))(1−∆F (xeee;yeee)), (5.21)

E
[
∆K̂((ā(t1), xeee); (ā(t2), yeee))∆K̂((ā(t′1), x

′eee); (ā(t′2), y
′eee))
]

= 0. (5.22)

For conciseness, we only show (5.21) and (5.22) with K = 2. The case K > 2 can be easily gener-
alized. Note that for 0≤ t1 ≤ t2 and 0≤ x≤ y,

E

[(
∆K̂ ((ā(t1), x,x); (ā(t2), y, y))

)2
]

=E
[(
K̂(ā(t2), y, y)− K̂(ā(t1), y, y)− K̂(ā(t2), x, y)− K̂(ā(t2), y, x)

+K̂(ā(t1), x, y) + K̂(ā(t1), y, x) + K̂(ā(t2), x,x)− K̂(ā(t1), x, x)
)2 ]

= (ā(t2)− ā(t1))(F (y, y)−F (x, y)−F (y,x) +F (x,x))
× (1− (F (y, y)−F (x, y)−F (y,x) +F (x,x)))

= (ā(t2)− ā(t1))(∆F ((x,x); (y, y)))(1−∆F ((x,x); (y, y))).

Similarly, if 0≤ t1 ≤ t2 ≤ t′1 ≤ t′2, 0≤ x≤ y and 0≤ x′ ≤ y′, then

E
[
∆K̂((ā(t1), x, x); (ā(t2), y, y))∆K̂((ā(t′1), x

′, x′); (ā(t′2), y
′, y′))

]
= 0.

Thus, we have shown (5.21) and (5.22). By these two equations and (5.20), we have

E[(V̂2,l(t)− V̂2,`(t))
2]

=
l∑
i=1

∑
j:sli−1<s

`
j≤s

l
i

(ā(s`j)− ā(s`j−1))(∆F ((t− sli)eee; (t− s`j)eee))(1−∆F ((t− sli)eee; (t− s`j)eee))

≤
l∑
i=1

∑
j:sli−1<s

`
j≤s

l
i

(ā(s`j)− ā(s`j−1))(∆F ((t− sli)eee; (t− s`j)eee))

≤
l∑
i=1

(ā(sli)− ā(sli−1))(∆F ((t− sli)eee; (t− sli−1)eee))

≤ max
1≤i≤l

(ā(sli)− ā(sli−1)).

Since ā(·) is continuous and max1≤i≤l(ā(sli)− ā(sli−1))→ 0 as l→∞, we have proved (5.19).

Since K̂(·, ·) is Gaussian with mean 0, for a fixed t≥ 0, M̂k,2,`(t) and V̂2,`(t) are normally dis-
tributed with mean 0, k= 1, ...,K. By the definitions of M̂k,2(t) in (5.2) (respectively, V̂2(t) in (5.3)),
M̂k,2,`(t) (respectively, V̂2,`(t)) converges to M̂k,2(t) (respectively, V̂2(t)) in probability as `→∞,
for each t≥ 0 and k = 1, ...,K. Recall the fact that if a sequence of normally distributed random
variables in probability converges to a random variable, the limit is also normally distributed (see
Lemma 4.9.4 in [43]). Thus, M̂k,2(t) and V̂2(t) are normally distributed and their means are 0, for
each t≥ 0 and k= 1, ...,K.

Next, we show that M̂k,2(t) and V̂2(t) are continuous in t, k = 1, ...,K. Again, we focus on the
proof of the continuity of V̂2(t). We assume that the same partition {s`i : 0≤ i≤ `} of [0, t] is applied
for V̂2,`(t) and V̂2,`(s) for 0≤ s≤ t. By (5.17), we have

V̂2,`(t)− V̂2,`(s) =
∑̀
i=1

∆K̂
(
(ā(s`i−1), (s− s`i)eee); (ā(s`i), (t− s`i)eee)

)
,
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where we note that K̂(t, x) = 0 for t≥ 0 and x≤ 0. With (5.21) and (5.22), we obtain that

E[(V̂2,`(t)− V̂2,`(s))
2]

=
∑̀
i=1

(ā(s`i)− ā(s`i−1))(∆F ((s− s`i)eee; (t− s`i)eee))(1−∆F ((s− s`i)eee; (t− s`i)eee)). (5.23)

By Lebesgue’s theorem, we then have

lim
`→∞

E[(V̂2,`(t)− V̂2,`(s))
2] =

∫ t

0

[
(∆F ((s−u)eee; (t−u)eee))

× (1−∆F ((s−u)eee; (t−u)eee))
]
dā(u). (5.24)

By the definition of V̂2(t) in (5.3), and the fact that V̂2,`(t) is normally distributed for each t≥ 0,
Lemma 4.9.4 of [43] implies

E[(V̂2(t)− V̂2(s))
2] = lim

`→∞
E[(V̂2,`(t)− V̂2,`(s))

2]. (5.25)

Thus, with (5.24) and (5.25), we see that

E[(V̂2(t)− V̂2(s))
2] =

∫ t

0

[
(∆F ((s−u)eee; (t−u)eee))(1−∆F ((s−u)eee; (t−u)eee))

]
dā(u). (5.26)

From (5.26), we obtain that V̂2(·) is continuous in probability. By Lemma 4.9.6 in [43], to show V̂2(·)
has continuous sample paths almost surely, it is sufficient to show, for any partition {s`i : 0≤ i≤ `}
of [0, t],

lim
L→∞

limsup
`→∞

P

(∑̀
i=1

(V̂2(s
`
i)− V̂2(s

`
i−1))

2 ≥L

)
= 0. (5.27)

By Markov inequality and (5.26), we note that

P

(∑̀
i=1

(V̂2(s
`
i)− V̂2(s

`
i−1))

2 ≥L

)

≤ 1

L

∑̀
i=1

E[(V̂2(s
`
i)− V̂2(s

`
i−1))

2]

=
1

L

∑̀
i=1

∫ t

0

[
(∆F ((s`i−1−u)eee; (s`i −u)eee))(1−∆F ((s`i−1−u)eee; (s`i −u)eee))

]
dā(u)

≤ 1

L

∑̀
i=1

∫ t

0

[
∆F ((s`i−1−u)eee; (s`i −u)eee)

]
dā(u)

≤ 1

L
ā(t).

The last inequality above follows from the fact that
∑`

i=1 ∆F ((s`i−1 − u)eee; (s`i − u)eee)≤ Fm(t)≤ 1.

Thus, (5.27) holds, which implies that V̂2(·) is a continuous process. A similar argument shows
that M̂k,2(·) is also a continuous process, k= 1, ...,K. In summary, we have shown that M̂k,2(·) and
V̂2(·) are well-defined continuous Gaussian processes, and thus, so are Ẑk,2(·), k= 1, ...,K.

Now we show the covariance of (M̂MM 2, ẐZZ2, V̂2). We here only focus on the covariance of Ẑj,2(t)
and Ẑk,2(t) in (5.11), as other covariance functions in (5.10) and (5.12)-(5.14) and the variance of
V̂2(t) in (5.15) follow from a similar argument, for each t≥ 0 and j, k = 1, ...,K. For a fixed t≥ 0
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and j, k = 1, ...,K, without loss of generality, we assume that Ẑj,2,`(t) and Ẑk,2,`(t) have the same
partition {s`i : 1 ≤ i ≤ `} for the interval [0, t]. First, by Cauchy-Schwarz inequality, we have, for
t≥ 0 and j, k= 1, ...,K,∣∣Cov(Ẑj,2,`(t), Ẑk,2,`(t))−Cov(Ẑj,2(t), Ẑk,2(t))

∣∣ (5.28)

=
∣∣E[Ẑj,2,`(t)Ẑk,2,`(t)]−E[Ẑj,2(t)Ẑk,2,`(t)] +E[Ẑj,2(t)Ẑk,2,`(t)]−E[Ẑj,2(t)Ẑk,2(t)]

∣∣
≤
∣∣E[(Ẑj,2,`(t)− Ẑj,2(t))Ẑk,2,`(t)]

∣∣+ ∣∣E[Ẑj,2(t)(Ẑk,2,`(t)− Ẑk,2(t))]
∣∣

≤
(
E[(Ẑj,2,`(t)− Ẑj,2(t))2]

) 1
2
(
E[(Ẑk,2,`(t))

2]
) 1

2

+
(
E[(Ẑj,2(t))

2]
) 1

2
(
E[(Ẑk,2,`(t)− Ẑk,2(t))2]

) 1
2

.

For each t≥ 0 and j, k= 1, ...,K, since E[(Ẑj,2,`(t)− Ẑj,2(t))2]→ 0 and E[(Ẑk,2,`(t)− Ẑk,2(t))2]→ 0
as `→∞, by (5.28), we have

lim
`→∞

Cov(Ẑj,2,`(t), Ẑk,2,`(t)) =Cov(Ẑj,2(t), Ẑk,2(t)). (5.29)

Note that

Cov(Ẑj,2,`(t), Ẑk,2,`(t))

=Cov
(∑̀
i=1

[
K̂j(ā(s`i), t− s`i)− K̂j(ā(s`i−1), t− s`i)− K̂m(ā(s`i), t− s`i) + K̂m(ā(s`i−1), t− s`i)

]
,

∑̀
l=1

[
K̂k(ā(s`l ), t− s`l )− K̂k(ā(s`l−1), t− s`l )− K̂m(ā(s`l ), t− s`l ) + K̂m(ā(s`l−1), t− s`l )

])
=
∑̀
i=1

∑̀
l=1

Cov
([
K̂j(ā(s`i), t− s`i)− K̂j(ā(s`i−1), t− s`i)− K̂m(ā(s`i), t− s`i) + K̂m(ā(s`i−1), t− s`i)

]
,[

K̂k(ā(s`l ), t− s`l )− K̂k(ā(s`l−1), t− s`l )− K̂m(ā(s`l ), t− s`l ) + K̂m(ā(s`l−1), t− s`l )
])
.

By some simple calculations, if s`i ≤ s`l−1 and s`l ≤ s`i−1,

Cov
([
K̂j(ā(s`i), t− s`i)− K̂j(ā(s`i−1), t− s`i)− K̂m(ā(s`i), t− s`i) + K̂m(ā(s`i−1), t− s`i)

]
,[

K̂k(ā(s`l ), t− s`l )− K̂k(ā(s`l−1), t− s`l )− K̂m(ā(s`l ), t− s`l ) + K̂m(ā(s`l−1), t− s`l )
])

= 0.

If s`i = s`l ,

Cov
([
K̂j(ā(s`i), t− s`i)− K̂j(ā(s`i−1), t− s`i)− K̂m(ā(s`i), t− s`i) + K̂m(ā(s`i−1), t− s`i)

]
,[

K̂k(ā(s`l ), t− s`l )− K̂k(ā(s`l−1), t− s`l )− K̂m(ā(s`l ), t− s`l ) + K̂m(ā(s`l−1), t− s`l )
])

= (ā(s`i)− ā(s`i−1))
[
Fj,k(t− s`i , t− s`i)−Fj(t− s`i)Fk(t− s`i) +Fj(t− s`i)Fm(t− s`i)

+Fk(t− s`i)Fm(t− s`i)− (Fm(t− s`i−1))2
]
.

Thus,

Cov(Ẑj,2,`(t), Ẑk,2,`(t)) =
∑̀
i=1

(ā(s`i)− ā(s`i−1))
[
Fj,k(t− s`i , t− s`i)−Fj(t− s`i)Fk(t− s`i)

+Fj(t− s`i)Fm(t− s`i) +Fk(t− s`i)Fm(t− s`i)− (Fm(t− s`i))2
]
.
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By Lebesgue’s theorem, we have

lim
`→∞

Cov(Ẑj,2,`(t), Ẑk,2,`(t)) =

∫ t

0

[
Fj,k(t− s, t− s)−Fj(t− s)Fk(t− s)−Fm(t− s)

+Fk(t− s)Fm(t− s) +Fm(t− s)Fj(t− s)− (Fm(t− s))2
]
dā(s). (5.30)

Thus, by (5.29) and (5.30), we obtain (5.11). This completes the proof of the lemma. �

Proof of Theorem 3.4. By the fact that ẐZZ1 and M̂MM 1 are well-defined continuous Gaussian pro-
cesses, Lemma 5.1, (3.16) and (3.22), we see that (X̂XX,ŶYY ) is a Gaussian process. It is evident that
(X̂XX,ŶYY ) has mean 000. For the covariance functions of X̂j and Ŷk, j, k = 1, ...,K, here we only show
(3.27), since the other covariance formulas follow from the similar argument. By the independence
of Â(·) and K̂(·, ·), Lemma 5.1, the Ito isometry, (3.16) and (3.22), we have, for each t ≥ 0 and
j, k= 1, ...,K,

Cov(X̂j(t), Ŷk(t))

=Cov
(
M̂j,1(t) + M̂j,2(t), Ẑk,1(t) + Ẑk,2(t)

)
= c2a

∫ t

0

F c
j (t− s)(Fk(t− s)−Fm(t− s))dā(s) +Cov

(
M̂j,2(t), Ẑk,2(t)

)
= c2a

∫ t

0

F c
j (t− s)(Fk(t− s)−Fm(t− s))dā(s) +

∫ t

0

[
Fm(t− s)−Fj,k(t− s, t− s)

−Fj(t− s)Fm(t− s) +Fj(t− s)Fk(t− s)
]
dā(s)

=

∫ t

0

[
(c2a− 1)

(
F c
j (t− s)(Fk(t− s)−Fm(t− s))

)
+
(
F c
j (t− s)Fk(t− s) +Fj(t− s)Fk(t− s)−Fj,k(t− s, t− s)

)]
dā(s).

Thus, (3.27) holds.
The Gaussian property of Ŝ, and its mean and variance can be obtained similarly. The claim

that limt→∞ t
−1V ar(Ŝ(t)) = λc2a follows from a direct calculation when ā(t) = λt, t≥ 0. The proof

of this theorem is completed. �

6. Proof of the FCLT In this section, we prove the FCLT for the processes (X̂XX
n
, ŶYY

n
, Ŝn),

Theorem 3.3. We first give representations for the processes (X̂XX
n
, ŶYY

n
, Ŝn) by the multiparameter

sequential empirical processes K̂n. In §6.1, we show the tightness of the diffusion-scaled processes
(X̂XX

n
, ŶYY

n
, Ŝn). We prove their convergence of the finite dimensional distributions in §6.2.

Lemma 6.1 (Representations of X̂XX
n
, ŶYY

n
and Ŝn). The processes X̂XX

n
, ŶYY

n
and Ŝn in (3.14)

can be represented as: for each t≥ 0 and k= 1, ...,K,

X̂XX
n
(t) =M̂MM

n

1 (t) +M̂MM
n

2 (t), M̂MM
n

i (t) := (M̂n
1,i(t), ..., M̂

n
K,i(t)), i= 1,2, (6.1)

ŶYY
n
(t) =ẐZZ

n

1 (t) + ẐZZ
n

2 (t), ẐZZ
n

i (t) := (Ẑn1,i(t), ..., Ẑ
n
K,i(t)), i= 1,2, (6.2)

Ŝn(t) =V̂ n
1 (t) + V̂ n

2 (t), (6.3)

where

M̂n
k,1(t) :=

∫ t

0

F c
k (t− s)dÂn(s) = Ân(t)−

∫ t

0

Ân(s)dF c
k (t− s), (6.4)

M̂n
k,2(t) :=

∫ t

0

∫
RK+

1(s+xk > t)dK̂
n
(
Ān(s),xxx

)
=−

∫ t

0

∫
RK+

1(s+xk ≤ t)dK̂n
(
Ān(s),xxx

)
, (6.5)
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V̂ n
1 (t) :=

∫ t

0

Fm(t− s)dÂn(s) =−
∫ t

0

Ân(s)dFm(t− s), (6.6)

V̂ n
2 (t) :=

∫ t

0

∫
RK+

1(s+xj ≤ t, ∀ j)dK̂n
(
Ān(s),xxx

)
, (6.7)

Ẑnk,1(t) :=

∫ t

0

(Fk(t− s)−Fm(t− s))dÂn(s) =

∫ t

0

Ân(s)d(Fm(t− s)−Fk(t− s)), (6.8)

Ẑnk,2(t) :=

∫ t

0

∫
RK+

(1(s+xk ≤ t)−1(s+xj ≤ t, ∀ j))dK̂n
(
Ān(s),xxx

)
=−M̂n

k,2(t)− V̂ n
2 (t), (6.9)

and the integrals in (6.4)-(6.9) are defined as Stieltjes integrals for functions of bounded variation
as integrators.

Proof. The representations of the processes X̂XX
n
, ŶYY

n
and Ŝn follow from equations (2.13), (2.14),

(2.15), (3.14) and direct calculations. �

6.1. Proof of Tightness In this section, we will show the tightness of the sequence of
diffusion-scaled processes in (3.15).

Lemma 6.2. The sequence of the processes {(X̂XX
n
, ŶYY

n
, Ŝn) : n≥ 1} is tight in D2K+1.

We provide two proofs for the lemma. The first proof is based on the representation of the
processes X̂n

k and Ŝn with the two-parameter sequential empirical process for each k separately, as
for G/GI/∞ queues in [37]. The second approach is based on the representation of the processes

(X̂XX
n
, ŶYY

n
, Ŝn) with the multiparameter sequential empirical processes K̂n. We state the proof of the

first approach below, and the proof of the second approach in the Appendix B. We think that the
techniques developed in the new approach will turn out to be useful to study fork-join networks
with NES in the many-server heavy-traffic regimes (see, e.g., [44]).
Proof of Lemma 6.2. Since tightness on product spaces is equivalent to tightness on each of the
component spaces (Theorem 11.6.7 of [69]), we only need to show {X̂n

k : n≥ 1}, {Ŷ n
k : n≥ 1} and

{Ŝn : n≥ 1} are tight separately for each k = 1, ...,K. As in [37], we have the representations for
X̂n
k and Ŝn, k= 1, ...,K, as follows:

X̂n
k (t) = M̂n

k,1(t) +

∫ t

0

∫
R+

1(s+x> t)dK̂n
k (Ān(s), x), t≥ 0,

Ŝn(t) = V̂ n
1 (t) +

∫ t

0

∫
R+

1(s+x≤ t)dK̂n
m(Ān(s), x), t≥ 0,

where M̂n
k,1 and V̂ n

1 are defined in (6.4) and (6.6), respectively, and K̂n
k (t, x) and K̂n

m(t, x) are
denoted as

K̂n
k (t, x) :=

1√
n

bntc∑
i=1

(
1(ηik ≤ x)−Fk(x)

)
, t≥ 0, x≥ 0, (6.10)

K̂n
m(t, x) :=

1√
n

bntc∑
i=1

(
1(ηim ≤ x)−Fm(x)

)
, t≥ 0, x≥ 0. (6.11)

Note that K̂n
k (·, ·) and K̂n

m(·, ·) are all two-parameter sequential empirical processes in space
D([0,∞),D), for k = 1, ...,K. Following the proof of [37] and [51], we see that X̂n

k and Ŝn weakly
converge, as n→∞, which implies that {X̂n

k : n≥ 1} and {Ŝn : n≥ 1} are tight, k= 1, ...,K. Since
Ŷ n
k = Ân− X̂n

k − Ŝn, we also obtain the tightness of {Ŷ n
k : n≥ 1} for k= 1, ...,K. This complete the

proof of the lemma. �
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6.2. Proof of Convergence of the Finite-Dimensional Distributions In this subsection,
we will show that the finite-dimensional distributions of (X̂XX

n
, ŶYY

n
, Ŝn) converge to those of (X̂XX,ŶYY , Ŝ)

as n→∞. Since we have already proved the tightness of {(X̂XX
n
, ŶYY

n
, Ŝn) : n≥ 1}, the results of this

subsection complete the proof of the convergence (X̂XX
n
, ŶYY

n
, Ŝn)⇒ (X̂XX,ŶYY , Ŝ) in D2K+1 as n→∞.

We first show the convergence of (M̂MM
n

1 , ẐZZ
n

1 , V̂
n
1 ) in finite-dimensional distributions. As a prereq-

uisite, we define the mapping χ :D→D2K+1 by

χ(x) = (φ1(x), ..., φK(x),ϕ1(x), ...,ϕK(x),ψ(x)), for x∈D, (6.12)

where the mappings φk :D→D, ϕk :D→D and ψ :D→D are defined by

φk(x)(t) :=x(t)−
∫ t

0

x(s)dF c
k (t− s), t≥ 0, (6.13)

ϕk(x)(t) :=

∫ t

0

x(s)d(Fm(t− s)−Fk(t− s)), t≥ 0, (6.14)

ψ(x)(t) :=−
∫ t

0

x(s)dFm(t− s), t≥ 0. (6.15)

for x ∈ D and k = 1, ...,K. We now state the continuity property of the above mappings in the
following lemma.

Lemma 6.3. The mappings φk defined in (6.13), ϕk defined in (6.14), k = 1, ...,K, and ψ
defined in (6.15) are all continuous in D, and the mapping χ(·) defined in (6.12) is continuous in
D2K+1.

Proof. The proof for the continuity of φk, ϕk, k= 1, ...,K, and ψ is analogous to the proof of Lemma
9.1 in [51], and we omit it here for brevity. By noting that we endow the maximum metric on the
product space D2K+1, it is easy to see that the mapping χ is also continuous. �

From (6.4), (3.17), (6.8), (3.23), (6.6) and (3.20), we see that M̂n
k,1(t) = φk(Â

n)(t), M̂k,1(t) =

φk(Â)(t), Ẑnk,1(t) = ϕk(Â
n)(t), Ẑk,1(t) = ϕk(Â)(t), V̂ n

1 (t) = ψ(Ân)(t) and V̂1(t) = ψ(Â)(t), for t≥ 0
and k = 1, ...,K. By Assumption 1 and the continuity of the mapping χ (Lemma 6.3) as well as
the continuous mapping theorem, we immediately obtain

(M̂MM
n

1 , ẐZZ
n

1 , V̂
n
1 )⇒ (M̂MM 1, ẐZZ1, V̂1) in D2K+1 as n→∞, (6.16)

which implies

(M̂MM
n

1 , ẐZZ
n

1 , V̂
n
1 )

df−→ (M̂MM 1, ẐZZ1, V̂1) as n→∞. (6.17)

Next, we will show the convergence of (M̂MM
n

2 , ẐZZ
n

2 , V̂
n
2 ) in finite-dimensional distributions, jointly

with (M̂MM
n

1 , ẐZZ
n

1 , V̂
n
1 ). In order to achieve that, we first introduce some additional processes. For t≥ 0,

we divide the interval [0, t] by the sequence {sli : 0 ≤ i ≤ l}: 0 = sl0 < sl1 < ... < sll = t satisfying
max1≤i≤l |sli− sli−1| → 0, as l→∞. We define, for t≥ 0 and k= 1, ...,K,

M̃n
k,2,l(t) :=−

∫ t

0

∫
RK+

1k,l,t(s,xxx)dK̂n(ā(s),xxx), (6.18)

Z̃nk,2,l(t) :=

∫ t

0

∫
RK+

[1k,l,t(s,xxx)−1m,l,t(s,xxx)]dK̂n(ā(s),xxx), (6.19)

Ṽ n
2,l(t) :=

∫ t

0

∫
RK+

1m,l,t(s,xxx)dK̂n(ā(s),xxx), (6.20)
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where 1k,l,t(·, ·) and 1m,l,t(·, ·) are defined in (5.8) and (5.9), respectively. M̂n
k,2,l(t), Ẑ

n
k,2,l(t) and

V̂ n
2,l(t) are defined analogously as M̃n

k,2,l(t), Z̃
n
k,2,l(t) and Ṽ n

2,l(t) with ā(·) replaced by Ān(·) in the

above integrals respectively, for t≥ 0 and k = 1, ...,K. We set M̃n
k,2,l := {M̃n

k,2,l(t) : t≥ 0}, Z̃nk,2,l :=

{Z̃nk,2,l(t) : t ≥ 0}, k = 1, ...,K, and Ṽ n
2,l := {Ṽ n

2,l(t) : t ≥ 0}. Note that, for k = 1, ...,K and t ≥ 0,

M̃n
k,2,l(t), Z̃

n
k,2,l(t) and Ṽ n

2,l(t) can be rewritten as

M̃n
k,2,l(t) =−

l∑
i=1

∆K̂n
(
(ā(sli−1),000); (ā(sli),xxx

i)
)
, Ṽ n

2,l(t) =
l∑
i=1

∆K̂n
(
(ā(sli−1),000); (ā(sli),yyy

i)
)
,

Z̃nk,2,l(t) =
l∑
i=1

{
∆K̂n

(
(ā(sli−1),000); (ā(sli),xxx

i)
)
−∆K̂n

(
(ā(sli−1),000); (ā(sli),yyy

i)
)}
,

where xxxi ∈RK with xij =∞ for j 6= k and xik = t− sli, and yyyi ∈RK with yij = t− sli for 1≤ j ≤K.

Set M̃MM
n

2,l := (M̃n
1,2,l, ..., M̃

n
K,2,l) and Z̃ZZ

n

2,l := (Z̃n1,2,l, ..., Z̃
n
K,2,l). For tki,1, t

k
i′,2, tj ≥ 0, cki,1, c

k
i′,2, cj ∈R, and

positive integers Ik,1, Ik,2 and I3, where i= 1, ..., Ik,1, i
′ = 1, ..., Ik,2, j = 1, ..., I3 and k= 1, ...,K, with

the weak convergence of K̂n in (3.4), we see that, as n→∞,

K∑
k=1

Ik,1∑
i=1

cki,1M̃
n
k,2,l(t

k
i,1) +

Ik,2∑
i′=1

cki′,2Z̃
n
k,2,l(t

k
i′,2)

+

I3∑
j=1

cjṼ
n
2,l(tj)

⇒
K∑
k=1

Ik,1∑
i=1

cki,1M̂k,2,l(t
k
i,1) +

Ik,2∑
i′=1

cki′,2Ẑk,2,l(t
k
i′,2)

+

I3∑
j=1

cjV̂2,l(tj),

where we recall M̂k,2,l, Ẑk,2,l and V̂2,l are defined in (5.5), (5.7) and (5.6), respectively, for k =
1, ...,K. By the Cramer-Wold theorem (see Theorem 3.9.5 in [21]), we have

(M̃MM
n

2,l, Z̃ZZ
n

2,l, Ṽ
n
2,l)

df−→ (M̂MM 2,l, ẐZZ2,l, V̂2,l) as n→∞,

where M̂MM 2,l := (M̂1,2,l, ..., M̂K,2,l) and ẐZZ2,l := (Ẑ1,2,l, ..., ẐK,2,l). Since Ân(·) and K̂n(·, ·) are two inde-

pendent processes, M̂MM
n

1 , ẐZZ
n

1 and V̂ n
1 are independent of M̃MM

n

2,l, Z̃ZZ
n

2,l and Ṽ n
2,l. Thus,

(M̂MM
n

1 , ẐZZ
n

1 , V̂
n
1 ,M̃MM

n

2,l, Z̃ZZ
n

2,l, Ṽ
n
2,l)

df−→ (M̂MM 1, ẐZZ1, V̂1,M̂MM 2,l, ẐZZ2,l, V̂2,l) as n→∞.

As l→∞, by the definitions of M̂MM 2,l, ẐZZ2,l and V̂2,l, (M̂MM 2,l, ẐZZ2,l, V̂2,l) converges to (M̂MM 2, ẐZZ2, V̂2) in L2;
see Definition 5.1. Note that L2 convergence implies convergence in probability. Thus,

(M̂MM 2,l, ẐZZ2,l, V̂2,l)
P−→ (M̂MM 2, ẐZZ2, V̂2) as l→∞.

Therefore, it suffices to show the following, for T > 0, ε > 0,

lim
n→∞

P

(
sup

0≤t≤T

{
K∑
k=1

[
|M̂n

k,2,l(t)− M̃n
k,2,l(t)|+ |Ẑnk,2,l(t)− Z̃nk,2,l(t)|

]
+ |V̂ n

2,l(t)− Ṽ n
2,l(t)|

}
> ε

)
= 0, (6.21)

and, for t > 0 and ε > 0,

lim
l→∞

lim sup
n→∞

P

(
K∑
k=1

[
|M̂n

k,2(t)− M̂n
k,2,l(t)|+ |Ẑnk,2(t)− Ẑnk,2,l(t)|

]
+ |V̂ n

2 (t)− V̂ n
2,l(t)|> ε

)
= 0. (6.22)
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First, we focus on the proof of (6.21). Note that

P

(
sup

0≤t≤T

{
K∑
k=1

[
|M̂n

k,2,l(t)− M̃n
k,2,l(t)|+ |Ẑnk,2,l(t)− Z̃nk,2,l(t)|

]
+ |V̂ n

2,l(t)− Ṽ n
2,l(t)|

}
> ε

)

≤ P

(
sup

0≤t≤T

K∑
k=1

|M̂n
k,2,l(t)− M̃n

k,2,l(t)|+ sup
0≤t≤T

K∑
k=1

|Ẑnk,2,l(t)− Z̃nk,2,l(t)|+ sup
0≤t≤T

|V̂ n
2,l(t)− Ṽ n

2,l(t)|> ε

)

≤ P

(
sup

0≤t≤T

K∑
k=1

|M̂n
k,2,l(t)− M̃n

k,2,l(t)|>
ε

3

)
+P

(
sup

0≤t≤T

K∑
k=1

|Ẑnk,2,l(t)− Z̃nk,2,l(t)|>
ε

3

)
+P

(
sup

0≤t≤T
|V̂ n

2,l(t)− Ṽ n
2,l(t)|>

ε

3

)
. (6.23)

Since ā(·) and K̂(·, ·) are continuous, with Assumption 1 and (3.4), we easily see that the three
terms on (6.23) all converge to 0 when n→∞. Thus, (6.21) holds.

Next, we will show (6.22). We can represent M̂n
k,2,l(·), M̂n

k,2(·), V̂ n
2,l(·) and V̂ n

2 (·) in the form of the

two-parameter sequential empirical process, and represent Ẑnk,2,l(·) and Ẑnk,2(·) as the difference of
two two-parameter sequential empirical processes, for k= 1, ...,K. These representations are shown
in the following:

M̂n
k,2(t) =−

∫ t

0

∫ ∞
0

1(s+x≤ t)dK̂n
k (Ān(s), x), t≥ 0,

Ẑnk,2(t) =

∫ t

0

∫ ∞
0

1(s+x≤ t)dK̂n
k (Ān(s), x)−

∫ t

0

∫ ∞
0

1(s+x≤ t)dK̂n
m(Ān(s), x), t≥ 0,

V̂ n
2 (t) =

∫ t

0

∫ ∞
0

1(s+x≤ t)dK̂n
m(Ān(s), x), t≥ 0,

where K̂n
k (·, ·) and K̂n

m(·, ·) are defined in (6.10) and (6.11), respectively, k = 1, ...,K, and the
integrals above are defined as Stieltjes integrals for functions of bounded variation. Following the
proof of Lemma 11.1 in [51], we obtain that (6.22) also holds. Thus, we have shown

(M̂MM
n

1 , ẐZZ
n

1 , V̂
n
1 ,M̂MM

n

2 , ẐZZ
n

2 , V̂
n
2 )

df−→ (M̂MM 1, ẐZZ1, V̂1,M̂MM 2, ẐZZ2, V̂2) as n→∞.

By the continuous mapping theorem, we have

(M̂MM
n

1 +M̂MM
n

2 , ẐZZ
n

1 + ẐZZ
n

2 , V̂
n
1 + V̂ n

2 )
df−→ (M̂MM 1 +M̂MM 2, ẐZZ1 + ẐZZ2, V̂1 + V̂2) as n→∞.

Thus,

(X̂XX
n
, ŶYY

n
, Ŝn)

df−→ (X̂XX,ŶYY , Ŝ) as n→∞.

This completes the proof of this lemma. �

7. Concluding Remarks We have developed a new approach to study fork-join networks
with NES when all service stations have infinitely many servers and the parallel tasks of each job
have correlated service times. By representing the service processes, the waiting buffer dynamics for
synchronization and the synchronized processes via a common sequential empirical process driven
by the service vectors of parallel tasks of each job, we characterize the joint transient and stationary
distributions of these processes as a multidimensional Gaussian distribution asymptotically when
the arrival process satisfies an FCLT with a Brownian motion limit. We have assumed that the
system starts from empty. It remains to study general initial conditions as in [37, 51, 2]. That
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requires tracking the status (in service or in the waiting buffer for synchronization) of each task of
jobs initially in the system.

This approach can be further developed to study fork-join networks with NES in the many-server
regimes, for example, the recent development in the Halfin-Whitt regime in [44], where non-empty
initial condition is considered for K = 2. It remains open to investigate if our approach can be
used to study scheduling and routing control problems in single class or multi-class models with
potentially multiple processing stages. In our model, we have assumed that each job is forked into
a fixed number of tasks. It may be interesting to study models in which each job is forked into a
random number of tasks and/or the number of service stations is large.

Our results may be already useful to study many-server fork-join network models with NES.
For example, the mean and covariance approximations in Theorem 3.4 can be regarded as approx-
imations for the offered load processes in the corresponding many-server models, and thus, can
be potentially used for staffing decisions to achieve certain service level constraints and/or sta-
bilize delay probabilities for service and synchronization. It will be also interesting to investigate
how these results can be applied in practical applications by conducting data-driven research, for
example, hospital patient flows and MapReduce scheduling.

Appendix A: Proofs of the Results in §4.2 In the appendix, we provide the proofs for
the results in §4.2 for multiparameter point processes.

Proof of Lemma 4.2. By the definition of F ittt , F ittt is a σ-algebra for ttt∈RK+ . Note that since Lcttt ⊆Lcsss
for sss≤ ttt, F isss ⊆F ittt .

We next prove F i = {F ittt : ttt∈RK+} is the smallest filtration to which N i is adapted. Let G :=
{Gttt : ttt∈RK+} be any other filtration where (ζζζi)−1(Lttt) ∈ Gttt for any ttt ∈RK+ . Let C = (ζζζi)−1(B) ∈F ittt .
If Lcttt ∩B = Ø, B ⊆ Lttt. Then, C = (ζζζi)−1(B) ∩ (ζζζi)−1(Lttt) ∈ Gttt. If Lcttt ⊆ B, then C = {(ζζζi)−1(B) ∩
(ζζζi)−1(Lttt)}∪ (ζi)−1(Lcttt)∈ Gttt. Hence, F ittt ⊆Gttt. �

Proof of Lemma 4.3. For i ∈N, by the definition of Λi, Λi is increasing, predictable and càdlàg
with Λi(0) = 0. It is sufficient to show that N i − Λi is a multiparameter martingale, which is
equivalent to show that ∀sss≤ ttt, and ∀B ∈F isss,

E[1(B)(N i(ttt)−N i(sss)−Λi(ttt) + Λi(sss)] = 0. (A.1)

Without loss of generality, we assume that K = 2. When K > 2, the proof can be easily generalized.
If ζζζi ≤ sss, it is easily seen that N i(ttt)−N i(sss)−Λi(ttt) + Λi(sss) = 0, a.s. Thus, it is sufficient to show

E[1(B)1(ζζζi � sss)(N i(ttt)−N i(sss)−Λi(ttt) + Λi(sss)] = 0. (A.2)

By the construction of the filtration F i, we have either B∩{ζζζi � sss}= Ø or B∩{ζζζi � sss}= {ζζζi � sss}.
In the former case, (A.2) holds evidently. We now consider the latter case. In this case, the LHS
of (A.2) can be written as

E[1(ζζζi � sss)(N i(ttt)−N i(sss)−Λi(ttt) + Λi(sss)]
= E[1(ζζζi � sss)1(ζζζi ≤ ttt)−1(ζζζi � sss)(Λi(ttt)−Λi(sss)]

= E[1(ζζζi � sss)1(ζζζi ≤ ttt)]−E
[
1(ζζζi � sss)

(∫
Lttt

1(ζζζi >uuu)

Hζ(Tuuu)
Hζ(duuu)

)
−
∫
Lsss

1(ζζζi >uuu)

Hζ(Tuuu)
Hζ(duuu)

)]
.

Observe that∫
Lttt

1(ζζζi >uuu)

Hζ(Tuuu)
Hζ(duuu)−

∫
Lsss

1(ζζζi >uuu)

Hζ(Tuuu)
Hζ(duuu)

=

∫ t1

s1

∫ t2

s2

1(ζi1 >u1)1(ζi2 >u2)

Hζ(Tuuu)
Hζ(du1, du2) +

∫ s1

0

∫ t2

s2

1(ζi1 >u1)1(ζi2 >u2)

Hζ(Tuuu)
Hζ(du1, du2)

+

∫ t1

s1

∫ s2

0

1(ζi1 >u1)1(ζi2 >u2)

Hζ(Tuuu)
Hζ(du1, du2),
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and

1(ζζζi � sss) = 1(ζi1 ≤ s1)1(ζi2 > s2) +1(ζi1 > s1)1(ζi2 > s2) +1(ζi1 > s1)1(ζi2 ≤ s2).

Thus, we obtain

E

[
1(ζζζi � sss)

(∫
Lttt

1(ζζζi >uuu)

Hζ(Tuuu)
Hζ(duuu)

)
−
∫
Lsss

1(ζζζi >uuu)

Hζ(Tuuu)
Hζ(duuu)

)]
= E

[∫ t1

s1

∫ t2

s2

1(ζi1 >u1)1(ζi2 >u2)

Hζ(Tuuu)
Hζ(du1, du2) +

∫ s1∧ζi1

0

∫ t2

s2

1(ζi1 >u1)1(ζi2 >u2)

Hζ(Tuuu)
Hζ(du1, du2)

+

∫ t1

s1

∫ ζi2∧s2

0

1(ζi1 >u1)1(ζi2 >u2)

Hζ(Tuuu)
Hζ(du1, du2)

]
(By Fubini’s Theorem)

=

∫ t1

s1

∫ t2

s2

Hζ(du1, du2) +

∫ s1

0

∫ t2

s2

Hζ(du1, du2) +

∫ t1

s1

∫ s2

0

Hζ(du1, du2).

Then we can see that equation (A.2) holds, and thus, N i−Λi is a multiparameter martingale with
the filtration F i. Therefore, Λi is a compensator of N i.

The final step is to show (4.1). Following the definitions of the multivariate integral and the
increment in RK+ (see (5.1)), by Lemma B.5, we obtain that∫

RK+

1(ζζζi >uuu)
Hζ(duuu)

Hζ(Tuuu)
= (−1)K

∫
RK+

1(ζζζi >uuu)
Hc
ζ (duuu)

Hζ(Tuuu)
,

where Hc
ζ (xxx) := P (ζζζi >xxx) for xxx ∈RK+ . Then using the expression on the RHS, we can easily check

that (4.1) holds under continuity assumption of Hζ . This completes the proof of the lemma. �
Proof of Lemma 4.4. Since X`(ttt)−Z`(ttt) =

∑`

i=1(N
i(ttt)−Λi(ttt)), it suffices to show N i(ttt)−Λi(ttt)

is a multiparameter martingale relative to the filtration FX` for i= 1, ..., `. Observe that F i∞ are
mutually independent, i∈N. For sss≤ ttt, Bi ∈F isss and B =∩1≤j≤`Bj, we then have

E[1(B)(N i(ttt)−N i(sss)−Λi(ttt)+Λi(sss))] =

[ ∏
j≤`,j 6=i

P (Bj)

]
E[1(Bi)(N

i(ttt)−N i(sss)−Λi(ttt)+Λi(sss))] = 0.

A monotone class argument implies that E[1(B)(N i(ttt)−N i(sss)−Λi(ttt)+Λi(sss))] = 0 for all B ∈FX`sss .

Thus, N i(ttt)−Λi(ttt) is a multiparameter martingale relative to the filtration FX` , ttt∈RK+ . The claim
that E[(Z`(ttt))2]<∞ for ttt∈RK+ follows from (4.1). This completes the proof of this lemma. �

Appendix B: The Second Approach to the Proof of Tightness in §6.1 In this section,
we provide the second approach to the proof of tightness of the processes (X̂XX

n
, ŶYY

n
, Ŝn) in Lemma

6.2.
To show the tightness of {X̂n

k : n≥ 1}, it suffices to show the tightness of {M̂n
k,1 : n≥ 1} in (6.4)

and {M̂n
k,2 : n≥ 1} in (6.5), for k = 1, ...,K. Similarly, the tightness of {Ŷ n

k : n≥ 1} (respectively,

{Ŝn : n≥ 1}) follows from the tightness of {Ẑnk,1 : n≥ 1} in (6.8) and {Ẑnk,2 : n≥ 1} in (6.9) (respec-

tively, {V̂ n
1 : n≥ 1} in (6.6) and {V̂ n

2 : n≥ 1} in (6.7)), for k= 1, ...,K. The tightness of {M̂n
k,1 : n≥

1}, {Ẑnk,1 : n≥ 1}, k= 1, ...,K, and {V̂ n
1 : n≥ 1} follows from the weak convergence of (M̂MM

n

1 , ẐZZ
n

1 , V̂
n
1 )

in (6.16). Then, it remains to show the tightness of {M̂n
k,2 : n≥ 1} in (6.5), {Ẑnk,2 : n≥ 1} in (6.9)

and {V̂ n
2 : n ≥ 1} in (6.7), k = 1, ...,K. The proof follows from two steps. First, we give decom-

positions of these processes into two processes, based on a decomposition of the multiparameter
sequential empirical process K̂n. Second, we establish the tightness of each decomposed process



Lu and Pang: Gaussian Limits for A Fork-Join Network with Non-Exchangeable Synchronization
34 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

via an appropriate tightness criterion. In particular, one decomposed process is dealt with using
Aldous’ sufficient condition for tightness (see, e.g., Theorem 16.10 in [10]) in Lemma B.3, and the
second decomposed process is dealt with a sufficient condition for tightness (see, e.g., Lemma 3.32
of Chapter VI in [29]) in Lemma B.4.

We will first prove Lemma B.3, starting with some preliminary results below. Denote

R̂n(t,xxx) := K̂n(Ān(t),xxx), t≥ 0, xxx∈RK+ .

From Lemma 4.5, for t≥ 0 and xxx∈RK+ , R̂n(t,xxx) can be written as

R̂n(t,xxx) = Ŵ n
0 (t,xxx) + Ŵ n

1 (t,xxx), (B.1)

where

Ŵ n
0 (t,xxx) :=

1√
n

An(t)∑
i=1

(
1(ηηηi ≤xxx)−

∫
Lxxx

1(ηηηi >uuu)

F (Tuuu)
F (duuu)

)
, (B.2)

and

Ŵ n
1 (t,xxx) :=

1√
n

An(t)∑
i=1

∫
Lxxx

(
1(ηηηi >uuu)−F (Tuuu)

F (Tuuu)

)
F (duuu). (B.3)

Therefore, by (B.1), (6.5), (6.9) and (6.7), we can decompose M̂n
k,2, Ẑ

n
k,2 and V̂ n

2 as

M̂n
k,2(t) =− Ĝn,1

k (t)− Ĝn,2
k (t), (B.4)

Ẑnk,2(t) =În,1k (t) + În,2k (t), (B.5)

V̂ n
2 (t) =Ĥn,1(t) + Ĥn,2(t), (B.6)

for t≥ 0 and k= 1, ...,K, where

Ĝn,1
k (t) :=

∫ t

0

∫
RK+

1(s+xk ≤ t)dŴ n
0 (s,xxx), (B.7)

Ĝn,2
k (t) :=

∫ t

0

∫
RK+

1(s+xk ≤ t)dŴ n
1 (s,xxx), (B.8)

Ĥn,1(t) :=

∫ t

0

∫
RK+

1(s+xj ≤ t, ∀j)dŴ n
0 (s,xxx), (B.9)

Ĥn,2(t) :=

∫ t

0

∫
RK+

1(s+xj ≤ t, ∀j)dŴ n
1 (s,xxx), (B.10)

În,1k (t) :=

∫ t

0

∫
RK+

(1(s+xk ≤ t)−1(s+xj ≤ t, ∀j))dŴ n
0 (s,xxx) = Ĝn,1

k (t)− Ĥn,1(t), (B.11)

În,2k (t) :=

∫ t

0

∫
RK+

(1(s+xk ≤ t)−1(s+xj ≤ t, ∀j))dŴ n
1 (s,xxx) = Ĝn,2

k (t)− Ĥn,2(t). (B.12)

Therefore, for k = 1, ...,K, in order to show the tightness of {M̂n
k,2 : n≥ 1}, it is sufficient to show

the tightness of {Ĝn,1
k : n ≥ 1} and {Ĝn,2

k : n ≥ 1}. Similarly, the tightness of {V̂ n
2 : n ≥ 1} follows

from the tightness of {Ĥn,1 : n≥ 1} and {Ĥn,2 : n≥ 1}. Then, by (B.11) and (B.12), the tightness
of {Ẑnk,2 : n ≥ 1} follows directly, k = 1, ...,K. For each k, we start by proving the tightness of

{Ĝn,1
k : n≥ 1} and {Ĥn,1 : n≥ 1} in Lemma B.3, and then prove the tightness of {Ĝn,2

k : n≥ 1} and
{Ĥn,2 : n≥ 1} in Lemma B.4.
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We first present some preliminary results to prove Lemma B.3. Denote, for k= 1, ...,K and i∈N,

Gn,1
k,i (t) :=1(0≤ ηik ≤ t− τni )−

∫ ηi1

0

...

∫ ηik∧(t−τ
n
i )+

0

...

∫ ηiK

0

1

F (Tuuu)
F (duuu),

Hn,1
i (t) :=1(000≤ ηηηi ≤ (t− τni )eee)−

∫
L
ηηηi∧(t−τn

i
)+eee

1

F (Tuuu)
F (duuu), (B.13)

where we recall eee is the K-dimensional vector with one for each component. By (B.7) and (B.11),
we obtain that

Ĝn,1
k (t) =

1√
n

An(t)∑
i=1

Gn,1
k,i (t), Ĥn,1(t) =

1√
n

An(t)∑
i=1

Hn,1
i (t). (B.14)

Let ξni := τni − τni−1 be the interarrival times between the (i− 1)th and ith jobs arriving to the
system, i∈N. Define the σ-fields by

Gnt (k) :=σ(1(ηik ≤ (s− τni )), s≤ t, i= 1, ...,An(t))∨σ(ηij, j 6= k, i= 1, ...,An(t)) (B.15)
∨σ{An(s), s≤ t}∨σ(ξnr , r≥ 1)∨N ,

Hn
t :=σ(1(ηηηi ≤ (s− τni )eee), s≤ t, i= 1, ...,An(t))∨σ(An(s), s≤ t)∨σ(ξnr , r≥ 1)∨N , (B.16)

where N includes all the null sets.
It is easy to verify that Gn(k) := {Gnt (k) : t ≥ 0} for k = 1, ...,K and Hn := {Hn

t : t ≥ 0} are
filtrations. We state the martingale properties of Ĝn,1

k (·) for k = 1, ...,K and Ĥn,1(·) in Lemmas
B.1 and B.2, respectively. Since the proofs of the two Lemmas are similar, we only prove Lemma
B.2 in detail.

Lemma B.1. The processes Ĝn,1
k := {Ĝn,1

k (t) : t ≥ 0} are Gn(k)-square-integrable martingales
for k= 1, ...,K.

Lemma B.2. The process Ĥn,1 := {Ĥn,1(t) : t≥ 0} is an Hn-square-integrable martingale.

Proof of Lemma B.2. From (B.14), it suffices to show that, for each i ∈ N, the process Hn,1
i =

{Hn,1
i (t) : t≥ 0} is an Hn-square-integrable martingale. By the construction of the filtration Hn in

(B.16) and the definition of Hn,1
i , Hn,1

i is Hn-adapted. Note that, for every t≥ 0,

|Hn,1
i (t)| ≤ 1 +

∫
L
ηηηi

1

F (Tuuu)
F (duuu), a.s.

By Lemma 4.3, we have E[(Hn,1
i (t))2]<∞, for t≥ 0. We next will show the martingale property

for Hn,1
i , i.e., for s < t,

E[Hn,1
i (t)|Hn

s ] =Hn,1
i (s). (B.17)

To show (B.17), it suffices to show

1(τni > s)E[Hn,1
i (t)|Hn

s ] = 0, (B.18)

and
1(τni ≤ s)E[Hn,1

i (t)|Hn
s ] =Hn,1

i (s). (B.19)

We first prove (B.18). By the construction of Hn in (B.16), τni is an Hn-stopping time. Thus, the
σ-field Hn

τni
is well-defined. Thus,

1(τni > s)E[Hn,1
i (t)|Hns ] = 1(τni > s)E

[
E
[
Hn,1
i (t)|Hnτni

]
|Hn

s

]
. (B.20)
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Then, we claim that

E[Hn,1
i (t)|Hn

τni
] =

E[Hn,1
i (t)|τni ]

P (ηηηi >000|τni )
= 0, (B.21)

where the last equality follows from (B.13) and the independence of ηηηi and τni . For the first equality
in (B.21), by Lemma 3.6 in [37], it suffices to show

Hτni ∩{ηηη
i >000} ⊂ (σ(ξnr , r≥ 1)∨σ(ηηηr, r≥ 1, r 6= i)∨σ(τni )∨N )∩{ηηηi >000}. (B.22)

It suffices to check (B.22) for sets generating Hn
τni

. By (B.16), we note that

Hn
τni

= σ(ξnr , r≥ 1)∨σ(τnr ,1(ηηηr ≤ (s∧ τni − τnr )eee), s≥ 0, r= 1, ...,An(τni ))∨N . (B.23)

(Here we use, e.g., the argument in Appendix A.2 of Brémaud [12].) Then, for s1, ..., sl > 0, l =
i, i+ 1, ..., p = 1,2, ..., and Borel sets Z1, ...,Zp, Br and Cr with r = 1, ..., l, since An(τni ) ≥ l > i,
then τnr = τni , r= i+ 1, ..., l, we have(

p⋂
r=1

{ξnr ∈Zr}

)
∩{An(τni )≥ l}∩

(
l⋂

r=1

{τnr ∈Br}

)
∩

(
l⋂

r=1

{1(ηηηr ≤ (sr ∧ τni − τnr )eee)∈Cr}

)
∩{ηηηi >000}

=

(
p⋂
r=1

{ξnr ∈Zr}

)
∩

(
l⋂

r=i+1

{τni = τnr }

)
∩

(
i−1⋂
r=1

{τnr ∈Br}

)
∩

(
l⋂
r=i

{τnr ∈Br}

)

∩

{
i−1⋂
r=1

{1(ηηηr ≤ (sr ∧ τni − τnr )eee)∈Cr}

}
∩{ηηηi >000},

where 0 ∈ Cr, i ≤ r ≤ l, and the LHS is Ø otherwise. We show that the event on the RHS of
the previous equation is in (σ(ξnr , r≥ 1)∨σ(ηηηr, r≥ 1, r 6= i)∨σ(τni )∨N )∩{ηηηi >000}. It is enough to
prove that this holds for the event

⋂l

r=i+1{τni = τnr } ∩ {ηηηi > 000}. We then can proceed in the same
way as the proof of Lemma 3.5 in [37], and we omit the details here for brevity. Thus, we have
proved (B.18) holds.

We will next prove (B.19). Note that

1(τni ≤ s)E[Hn,1
i (t)|Hns ]

= 1(ηηηi ≤ (s− τni )eee)E[Hn,1
i (t)|Hns ] +1(ηηηi � (s− τni )eee)1((s− τni )≥ 0)E[Hn,1

i (t)|Hn
s ]. (B.24)

Since 1(ηηηi ≤ (s− τni )eee) and 1(000≤ ηηηi ≤ (s− τni )eee) are Hn
s -measurable, the first term on the RHS of

(B.24) is

1(ηηηi ≤ (s− τni )eee)E[Hn,1
i (t)|Hns ]

= 1(000≤ ηηηi ≤ (s− τni )eee)−1(ηηηi ≤ (s− τni )eee)

∫
L
ηηηi∧(s−τn

i
)+eee

1

F (Tuuu)
F (duuu). (B.25)

For the second term in (B.24), we claim that

1(ηηηi � (s− τni )eee)1((s− τni )≥ 0)E[Hn,1
i (t)|Hn

s ]

= 1(ηηηi � (s− τni )eee)1((s− τni )≥ 0)
E[1(ηηηi � (s− τni )eee)1((s− τni )≥ 0)Hn,1

i (t)|τni ]

P (ηηηi � (s− τni )eee and s− τni ≥ 0|τni )
(B.26)

=−1(ηηηi � (s− τni )eee)1((s− τni )≥ 0)

∫
L
ηηηi∧(s−τn

i
)eee

1

F (Tuuu)
F (duuu), (B.27)
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where (B.27) follows from the definition of Ĥn,1
i . For (B.26), by Lemma 3.6 in [37] and the fact

that 1(ηηηi � (s− τni )eee) and 1((s− τni )≥ 0) are Hn
s measurable, it suffices to show

Hn
s ∩{ηηηi � (s− τni )eee, s− τni ≥ 0} ⊂ (σ(ξnr , r≥ 1)∨σ(ηηηr, r≥ 1, r 6= i)∨σ(τni )∨N )

∩{ηηηi � (s− τni )eee, s− τni ≥ 0}. (B.28)

The verification of (B.28) is similar to the proof of Lemma 3.5 in [37], and we omit the details for
brevity. Thus, we can see (B.19) holds. In summary, the martingale property of Hn,1

i follows from
(B.18) and (B.19). �

Now, we can prove the tightness of {Ĝn,1
k : n≥ 1}, k= 1, ...,K, and {Ĥn,1 : n≥ 1}.

Lemma B.3. The sequences {Ĝn,1
k : n≥ 1}, k= 1, ...,K, and {Ĥn,1 : n≥ 1} are tight in D.

Proof of Lemma B.3. We only show the tightness of {Ĥn,1 : n≥ 1} in detail. The proof for the
tightness for the sequence {Ĝn,1

k : n≥ 1}, k= 1, ...,K, is similar.
By Aldous’ sufficient condition for tightness (see, e.g., Theorem 16.10 in [10]), we need to verify

the following: for L> 0 and ε > 0,

lim
κ→∞

limsup
n→∞

P

(
sup
t≤L
|Ĥn,1(t)|>κ

)
= 0, (B.29)

lim
δ→0

limsup
n→∞

sup
τ∈Cn

L

P

(
sup
0≤t≤δ

|Ĥn,1(τ + t)− Ĥn,1(τ)|> ε
)

= 0, (B.30)

where CnL is the set of all Hn-stopping times bounded by L. Since the proofs of (B.29) and (B.30)
are analogous, we only check (B.30) here. Note that, for κ> 0 and δ < 1,

P

(
sup
0≤t≤δ

|Ĥn,1(τ + t)− Ĥn,1(t)|> ε
)

≤ P

(
sup
0≤t≤δ

|Ĥn,1(τ + t)− Ĥn,1(t)|> ε, Ān(L+ 1)>κ

)
+P

(
sup
0≤t≤δ

|Ĥn,1(τ + t)− Ĥn,1(t)|> ε, Ān(L+ 1)≤ κ
)

≤ P
(
Ān(L+ 1)>κ

)
+P

(
sup
0≤t≤δ

|Ĥn,1
κn (τ + t)− Ĥn,1

κn (t)|> ε
)
, (B.31)

where Ĥn,1
κn (t) := 1√

n

∑bκn∧An(t)c
i=1 Hn,1

i (t) for t≥ 0. By Assumption 1, we see that

lim
κ→∞

limsup
n→∞

P
(
Ān(L+ 1)>κ

)
= 0.

For the second term in (B.31), by Doob’s optional stopping theorem and Lemma B.2, {Ĥn,1
κn (τ +

t)− Ĥn,1
κn (τ) : t≥ 0} is a locally square-integrable martingale with respect to the filtration Hn for

τ ∈ CnL. Thus,
{
|Ĥn,1

κn (τ + t)− Ĥn,1
κn (τ)| : t≥ 0

}
is a submartingale with respect to the filtration Hn.

Thus, by Doob’s inequality (see Theorem 9.2 of Chapter 1 in [43]), we have

P

(
sup
0≤t≤δ

|Ĥn,1
κn (τ + t)− Ĥn,1

κn (τ)|> ε
)
≤ 1

ε2
E[(Ĥn,1

κn (τ + δ)− Ĥn,1
κn (τ))2]. (B.32)

By Lemma B.2 and the independence of ηηηi and ηηηj for i 6= j, we have

E[(Ĥn,1
κn (τ + δ)− Ĥn,1

κn (τ))2] (B.33)
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=E

 1

n

bAn(τ)∧κnc∑
i=1

(Hn,1
i (τ + δ)−Hn,1

i (τ))2

+E

 1

n

bAn(τ+δ)∧κnc∑
i=bAn(τ)∧κnc+1

(Hn,1
i (τ + δ))2

 (B.34)

≤E

 1

n

An(L)∑
i=1

sup
s≤L

0≤t−s≤δ

(Hn,1
i (t)−Hn,1

i (s))2

+E

 1

n
sup
s≤L

0≤t−s≤δ

An(t)∑
i=An(s)+1

(H̃n,1
i )2

 , (B.35)

where H̃n,1
i := 1 +

∫
L
ηηηi

1
F (Tuuu)

F (duuu). Denote σ2(δ) := E

[
sup

s≤L,0≤t−s≤δ
(Hn,1

i (t)−Hn,1
i (s))2

]
. By the

square integrability of Hn,1
i , we can see that σ2(δ)<∞. By the dominated convergence theorem,

we obtain that
lim
δ→0

σ2(δ) = 0. (B.36)

Note that, by the FWLLN, for each δ > 0 and 0<L<∞,

1

n

bnuc∑
i=1

sup
s≤L,0≤t−s≤δ

(Hn,1
i (t)−Hn,1

i (s))2⇒ σ2(δ)u in D as n→∞. (B.37)

By Assumption 1, (B.36) and (B.37), we have

lim
δ→0

limsup
n→∞

E

 1

n

An(L)∑
i=1

sup
s≤L,0≤t−s≤δ

(Hn,1
i (t)−Hn,1

i (s))2

= 0.

Because of the C-tightness of {Ān : n≥ 1} (see Lemma 3.2 in [37]), similarly, we also have

lim
δ→0

limsup
n→∞

E

 1

n
sup

s≤L,0≤t−s≤δ

An(t)∑
i=An(s)+1

(H̃n,1
i )2

= 0.

Therefore, we have shown (B.30), and the lemma is proved. �

To complete the tightness proof of {M̂n
k,2 : n≥ 1}, {Ẑnk,2 : n≥ 1} and {V̂ n

2 : n≥ 1}, the final step

is to show that the sequences {Ĝn,2
k : n≥ 1}, k= 1, ...,K, and {Ĥn,2 : n≥ 1} are tight.

Lemma B.4. The sequences of processes {Ĝn,2
k : n ≥ 1}, k = 1, ...,K, and {Ĥn,2 : n ≥ 1} are

tight in D.

Proof of Lemma B.4. Since the proof for the tightness of {Ĝn,2
k : n≥ 1} for k= 1, ...,K is analo-

gous to that of {Ĥn,2 : n≥ 1}, we will focus on the tightness proof of {Ĥn,2 : n≥ 1} in detail.
Denote

T̂ n(t,xxx) :=
1√
n

bntc∑
i=1

(1(ηηηi ≥xxx)−F (Txxx)), t≥ 0, xxx∈R2
+.

By the definition of Ĥn,2 in (B.10), we could rewrite it as

Ĥn,2(t) =

∫
RK+

[
T̂ n
(

min
1≤j≤K

Ān(t−xj),xxx
)
1(xj ≤ t,∀j)(F (Txxx))

−1
]
F (dxxx).

For each ε > 0 and t≥ 0, we can decompose Ĥn,2 as

Ĥn,2(t) = Ĥn,2,ε
1 (t) + Ĥn,2,ε

2 (t),
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where

Ĥn,2,ε
1 (t) =

∫
RK+

[
T̂ n
(

min
1≤j≤K

Ān(t−xj),xxx
)
1(xj ≤ t,∀j)1(F (Txxx)≥ ε)(F (Txxx))

−1
]
F (dxxx),

Ĥn,2,ε
2 (t) =

∫
RK+

[
T̂ n
(

min
1≤j≤K

Ān(t−xj),xxx
)
1(xj ≤ t,∀j)1(F (Txxx)< ε)(F (Txxx))

−1
]
F (dxxx).

To show {Ĥn,2 : n ≥ 1} is tight, it suffices to prove that the following two conditions hold (see
Lemma 3.32 of Chapter VI in [29]): for each δ > 0 and T > 0,
1. {Ĥn,2,ε

1 : n≥ 1} is tight,

2. lim
ε→0

limsup
n→∞

P
(
‖Ĥn,2,ε

2 ‖T > δ
)

= 0, where ‖Ĥn,2,ε
2 ‖T := sup

0≤t≤T
|Ĥn,2,ε

2 (t)|.

We start by verifying condition 1. Note that Ĥn,2,ε
1 is the integral representation of T̂ n(Ān(·), ·).

If we can show the weak convergence of T̂ n(Ān(·), ·) and the mapping defined by this integral
representation is continuous in D, condition 1 will follow from the continuous mapping theorem.
We first show the weak convergence of T̂ n(·, ·). Note that the process T̂ n(·, ·) is similar to the
multiparameter sequential empirical process K̂n(·, ·) defined in (3.3), which focuses on the lower
tail of the random vector. If we can represent T̂ n(·, ·) in terms of the multiparameter sequential
empirical process K̂n(·, ·), the weak convergence of T̂ n(·, ·) follows. The following lemma is a key
observation to establish the relationship between T̂ n(·, ·) and K̂n(·, ·).

Lemma B.5. For each i,

1(ηηηi >xxx) = 1 +
K∑
k=1

(−1)k
∑

1≤j1<...<jk≤K

1(ηijl ≤ xjl , l= 1, ..., k), a.s. (B.38)

Proof of Lemma B.5. We use the induction method on the dimension K to prove the lemma.
When K = 1, (B.38) holds obviously. Assume that (B.38) holds when K =N . When K =N + 1,
we notice that

1(ηij >xj, j = 1, ...,N + 1) = 1(ηij >xj, j = 1, ...,N)−1(ηi1 >x1, ..., η
i
N >xN , η

i
N+1 ≤ xN+1).

For the two terms on the right side of the previous equation, using (B.38) on the first term and on
the first N components of the second term by induction, we have

1(ηij >xj, j = 1, ...,N + 1)

= 1 +
N∑
k=1

(−1)k
∑

1≤j1<...<jk≤N

1(ηijl ≤ xjl , l= 1, ..., k)

−

(
1(ηiN+1 ≤ xN+1) +

N∑
k=1

(−1)k
∑

1≤j1<...<jk≤N

1(ηijl ≤ xjl , l= 1, ..., k)1(ηiN+1 ≤ xN+1)

)

= 1 +
N+1∑
k=1

(−1)k
∑

1≤j1<...<jk≤N+1

1(ηijl ≤ xjl , l= 1, ..., k).

Therefore, (B.38) holds for K =N + 1. In summary, we see that (B.38) holds. �
By Lemma B.5, T̂ n(·, ·) can be represented by the multiparameter sequential empirical processes

driven by the vector and the subvector of the parallel service times. Following the proof of Theorem
3.1, we can show the weak convergence of T̂ n(·, ·). Then, we state the result in Lemma B.6 and
omit the proof for brevity.
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Lemma B.6.

T̂ n(t,xxx)⇒ T̂ (t,xxx) in D([0,∞),DK) as n→∞,

where T̂ (t,xxx) is a continuous Gaussian random field with mean function E[T̂ (t,xxx)] = 0 and covari-
ance function

Cov
(
T̂ (t,xxx), T̂ (s,yyy)

)
= (t∧ s)(F (Txxx∨yyy)−F (Txxx)F (Tyyy)), t≥ 0, xxx,yyy ∈RK+ .

With the weak convergence of T̂ n(·, ·), the next step is to establish the weak convergence of
T̂ n(Ān(·), ·). Define the composition mapping ◦1 :D([0,∞),DK)×D↑→D([0,∞),DK) by

x ◦1 y(s,ttt) := x(y(s),ttt), for s≥ 0, ttt∈RK+ , x∈D([0,∞),DK) and y ∈D↑. (B.39)

In order to show the weak convergence of T̂ n(Ān(·), ·), by (2.4) and Lemma B.6, it suffices to show
the mapping ◦1 is continuous, which is provided in Lemma B.7.

Lemma B.7. The mapping ◦1 defined in (B.39) is continuous in D([0,∞),DK) at each (x, y)∈
C([0,∞),CK)×C↑.

Proof of Lemma B.7. For each (x, y)∈C([0,∞),CK)×C↑, T > 0 and a bounded closed set A⊂
RK+ , we assume that (xn, yn)∈D([0,∞),DK)×D↑ satisfies

(xn, yn)→ (x, y) in (D([0,∞),DK),‖ · ‖T,A) as n→ ∞. (B.40)

Note that (B.40) also implies that

xn→ x in (D([0,∞),DK),‖ · ‖T,A) as n→ ∞, (B.41)

and

yn→ y in (D↑,‖ · ‖T ) as n→∞. (B.42)

By Proposition 5.2 in [23] and Lemma 2.1 in [63], it suffices to show

‖xn ◦1 yn−x ◦1 y‖T,A→ 0 as n→∞. (B.43)

By the triangle inequality, we have

‖xn ◦1 yn−x ◦1 y‖T,A ≤‖xn ◦1 yn−x ◦1 yn‖T,A+ ‖x ◦1 yn−x ◦1 y‖T,A,
=‖xn−x‖T ′,A+ ‖x ◦1 yn−x ◦1 y‖T,A, (B.44)

where T ′ = supn ‖yn‖T . The first term in (B.44) converges to 0 by the convergence of xn in (B.41).
Noticing that x is continuous and the convergence of yn in (B.42), the second term in (B.44)
converges to 0 as n→∞. �

From Lemma B.7 and the continuous mapping theorem, we obtain the weak convergence of
{T̂ n(Ān(·), ·) : n≥ 1} in D([0,∞),DK), which is summarized in Lemma B.8.

Lemma B.8.

T̂ n ◦1 Ān(t,xxx)⇒ T̂ ◦1 ā(t,xxx) in D([0,∞),DK) as n→∞, (B.45)

where T̂ (·, ·) is defined in Lemma B.6.
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Next, we focus on the proof of the continuity of the integration mappings. Define the mapping
h :D([0,∞),DK)→D[0,∞) by

h(u)(t) :=

∫
RK+

[
u

(
min

j=1,...,K
(t−xj) ,xxx

)
1(xj ≤ t,∀j)1(F (Txxx)≥ ε)(F (Txxx))

−1
]
F (dxxx), (B.46)

where t≥ 0 and u∈D([0,∞),DK). Lemma B.9 shows the continuity of the mapping h.

Lemma B.9. The mapping h defined in (B.46) is continuous at u, where u∈C([0,∞),CK).

Proof of Lemma B.9. Let u∈C([0,∞),CK). Assume un ∈D([0,∞),DK) satisfying

un→ u in D([0,∞),DK) as n→∞. (B.47)

Since u is continuous, by the definition of h, h(u)(·) is also continuous. Let T > 0. In order to show
the continuity of the mapping h, it suffices to show

‖h(un)(·)−h(u)(·)‖T → 0 as n→∞. (B.48)

Let the set A := {xxx∈RK+ : F (Txxx)≥ ε}, we have

‖h(un)(·)−h(u)(·)‖T
= sup

t≤T

∣∣∣ ∫
RK+

[
(un( min

j=1,...,K
(t−xj),xxx)−u( min

j=1,...,K
(t−xj),xxx))1(xj ≤ t,∀j)

×1(F (Txxx)≥ ε))(F (Txxx))
−1
]
F (dxxx)

∣∣∣
≤ ‖un−u‖T,A

∫
A

1(F (Txxx)≥ ε)
F (Txxx)

F (dxxx),

≤ ‖un−u‖T,Aε−1P (A). (B.49)

By the convergence of un, we see that the RHS of (B.49) converges to 0 as n→∞. Thus, the
mapping h is continuous in D([0,∞),DK). �

Combining (B.45) and Lemma B.9, we obtain that {Ĥn,2,ε
1 : n ≥ 1} weak converges from the

continuous mapping theorem, implying that {Ĥn,2,ε
1 : n≥ 1} is tight in D. Therefore, condition 1 is

verified.
Now, we start to prove that condition 2 holds. Note that, for any δ > 0, T > 0 and κ> 0,

P
(

sup
t≤T

∣∣∣ ∫
RK+

[
T̂ n( min

1≤j≤K
Ān(t−xj),xxx)1(xj ≤ t,∀j)1(F (Txxx)< ε)(F (Txxx))

−1
]
F (dxxx)

∣∣∣> δ)
≤ P

(
sup
t≤T

∣∣∣ ∫
RK+

[
T̂ n( min

1≤j≤K
Ān(t−xj),xxx)1(xj ≤ t,∀j)1(F (Txxx)< ε)(F (Txxx))

−1
]
F (dxxx)

∣∣∣> δ,
Ān(T )≤ κT

)
+P

(
Ān(T )>κT

)
≤ P

(∣∣∣∫
RK+

1(F (Txxx)< ε)

F (Txxx)
sup
t≤κT
|T̂ n(t,xxx)|F (dxxx)

∣∣∣> δ)+P
(
Ān(T )>κT

)
. (B.50)

By Assumption 1, we see that the second term on the RHS of (B.50) converges to 0 as n→∞ for
sufficiently large κ. Thus, by Markov inequality and Fubini’s theorem, we only need to show the
following

lim
ε→0

limsup
n→∞

∫
RK+

1(F (Txxx)< ε)

F (Txxx)
E

[
sup
t≤κT
|T̂ n(t,xxx)|

]
F (dxxx) = 0.
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Notice that, for any fixed xxx ∈RK+ , {T̂ n(t,xxx) : t≥ 0} is a locally square-integrable martingale with
respect to the filtration generated by itself, and it has the predictable quadratic-variation process
(see Chapter 3 in [29]), 〈T̂ n(·,xxx)〉(t) = bntc

n
F (Txxx)(1−F (Txxx)). By Theorem 1.9.5 in [43], we have

E

[
sup
t≤κT
|T̂ n(t,xxx)|

]
≤ 3E(〈T̂ n(·,xxx)〉(κT ))

1
2 ≤ 3

√
κT (F (Txxx)(1−F (Txxx)))

1
2 .

Thus, ∫
RK+

1(F (Txxx)< ε)

F (Txxx)
E

[
sup
t≤κT
|T̂ n(t,xxx)|

]
F (dxxx)≤ 3

√
κT

∫
RK+

1(F (Txxx)< ε)

(F (Txxx))
1
2

F (dxxx).

By Lemma B.5 and the definitions of multivariate integral and increments in RK+ (see (5.1)), we
obtain that ∫

RK+

1(F (Txxx)< ε)

(F (Txxx))
1
2

F (dxxx) = (−1)K
∫
RK+

1(F (Txxx)< ε)

(F (Txxx))
1
2

F c(dxxx). (B.51)

where F c(xxx) := P (ηηηi > xxx) for xxx ∈ RK+ . The RHS of (B.51) goes to 0 as ε→ 0 by the monotone

convergence theorem, if we show
∣∣ ∫
RK+

(F (Txxx))
− 1

2F c(dxxx)
∣∣<∞. This can be easily verified. Thus the

proof is complete. �
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