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Abstract. We study an infinite-server fork-join queueing system with dependent services, which

experiences alternating renewal service disruptions. Jobs are forked into a fixed number of parallel

tasks upon arrival and processed at the corresponding parallel service stations with multiple servers.

Synchronization of a job occurs when its parallel tasks are completed, i.e., non-exchangeable. Service

times of the parallel tasks of each job can be correlated, having a general continuous joint distribution

function, and moreover, the service vectors of consecutive jobs form a stationary dependent sequence

satisfying the strong mixing (α-mixing) condition. The system experiences renewal alternating

service disruptions with up and down periods. In each up period, the system operates normally, but

in each down period, jobs continue to enter the system, while all the servers will stop working, and

services received will be conserved and resume at the beginning of the next up period. We study

the impact of both the dependence among service times and these down times upon the service

dynamics, the unsynchronized queueing dynamics and the synchronized process, assuming that the

down times are asymptotically negligible. We prove FWLLN and FCLT for these processes, where

the limit processes in the FCLT possess a stochastic decomposition property and the convergence

requires the Skorohod M1 topology.

1. Introduction

The purpose of this paper is to understand the performance of an infinite-server fork-join queueing
system with dependent services which experiences service disruptions with alternating “up” and
“down” periods. In the up periods, the system operates normally: each job upon arrival is forked
into a fixed number of parallel tasks to be processed in the dedicated service stations simultaneously.
Specifically, each of the parallel tasks is served at the associated service station with an infinite
number of parallel servers. Each job brings in a service vector for its parallel tasks. The service
times of the parallel tasks of each job can be correlated. We assume that the service vectors of
the consecutive jobs are identically distributed, and moreover, they form a stationary and weakly
dependent sequence satisfying the strong mixing (α-mixing) condition. After service completion,
each task will join a buffer associated with its service station, referred to as “unsynchronized
queue”, waiting there for synchronization. Tasks are only synchronized if all tasks tagged with
the same job are completed, called “non-exchangeable synchronization” (NES) [3, 24, 25, 43].
After synchronization, jobs will leave the system immediately (zero synchronization time). In
the down periods, all the servers in each parallel service station stop working. Tasks in service
(respectively, waiting for synchronization) will remain in the associated service stations (respectively,
unsynchronized queues). The amount of services received will be conserved and services will resume
when the down periods end. Each task/job may experience several up and down periods before
synchronization. On the other hand, jobs continue to enter the system and are forked into parallel
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tasks. Each of these tasks will be assigned to a free server in the dedicated service station and wait
there to receive service when the next up period starts.

In fork-join queueing systems with NES, the response time, as measured by the wait for service,
plus service time and the wait for synchronization, is a key performance measure. The model we
study captures the two latter measures since jobs do not wait for service due to the infinite number of
servers. It is thus important to characterize the impact of the down times, as well as the correlations
among parallel service times of each job and services of consecutive jobs, upon the service and
synchronization processes. The system dynamics of the fork-join queueing system cannot be analyzed
exactly, even if the arrival process is Poisson and the service time distributions are exponential.
Our objective is to obtain an approximation of the system dynamics in a heavy-traffic asymptotic
regime, where the arrival rate gets large while service times are fixed. The results can be used to
approximate the performance of a corresponding fork-join model with finite-server stations in which
all stations are in an underloaded (quality-driven) regime. We also scale the disruption/interruption
process such that the “up” times have the same order as the service times, while the “down” times
are asymptotically negligible compared with the service times (see Assumption 3). We aim to study
the impact of these very “short” down times upon the performance of the fork-join queueing system.

We show a functional central limit theorem (FCLT) for the service processes, unsynchronized
queueing processes and synchronized processes (Theorem 3.3). The convergence in the FCLT is
shown in the Skorohod M1 topology. There exists a stochastic decomposition property for the limit
processes, which evidently does not hold for the corresponding prelimit processes. All the limit
processes are decomposed into three independent processes, a stochastic integral of the arrival
limit process, a functional of a multiparameter generalized Kiefer process driven by the sequence of
strong mixing (α-mixing) service vectors, and a jump process arising from the service disruptions.
The jump processes in the limit have their jumps occurring simultaneously, being driven by a
compound-type jump process, and the jump sizes in each of these limit processes depend on the
service time distributions at the corresponding service stations. We also obtain a functional weak
law of large numbers (FWLLN) for the aforementioned processes, which shows that the disruptions
do not affect the system performance in the fluid scale, under our assumption of asymptotically
negligible down times.

We then study the characterization of these limiting processes (Lemmas 3.1–3.3 and Proposition
3.1). Specifically, we obtain the covariance functions of the limiting processes associated with the
arrival and service processes and the random environment, when the arrival process is a Lévy process
with (deterministic) time change, and when the limit counting process associated with the up-down
cycles is Poisson. We study the impact of the service correlations in two aspects: correlation
among the service vector of each job, and correlation among service vectors of different jobs. When
the service vectors form a first-order discrete vector autoregressive sequence, “DVAR(1)”, we find
that the correlations from these two aspects can be separated in the covariance functions of the
aforementioned processes (Corollary 3.1). The impact of the asymptotically negligible down times is
in two folds, affecting both the queueing process and the delay for synchronization. These are shown
in the jump terms in the limiting service, unsynchronized queueing and synchronized processes, and
their covariance functions are also obtained (Lemma 3.3).

1.1. Literature Review and Comparisons. Fork-join networks have been extensively studied
in the literature, see, e.g., [20, 28, 29, 40, 3, 19, 9, 42, 43, 31, 30] and references therein. A pure join
model with multiple class of jobs is studied in [13], where an asymptotically optimal matching policy
is derived to minimize the holding cost in unsynchronized queues. To our best knowledge, this is
the very first work on fork-join queueing systems with both dependent and disruptive services.

Our work relates closely to the recent development of multi-server fork-join queueing models
in the many-server heavy-traffic regimes. The major challenge in studying multi-server fork-join
queueing models with NES is the resequencing of arrival orders after service completion at each



AN INFINITE-SERVER FORK-JOIN QUEUEING SYSTEM WITH DEPENDENT AND DISRUPTIVE SERVICES 3

service station due to the randomness of service times for parallel tasks [3, 43]. Lu and Pang
[24, 25] developed a new approach to resolve the sequencing for these fork-join models, via sequential
empirical processes driven by the service vectors of jobs. It is assumed in [24, 25] that the service
vectors of jobs in the multi-server fork-join queueing models are i.i.d. and have a continuous joint
distribution function. Our first contribution is to generalize that approach to the setting where
the service vectors of the consecutive jobs are weakly dependent, forming a stationary sequence
and satisfying the strong mixing (α-mixing) condition for random vectors. The proofs require new
techniques for the strong mixing conditions.

Queues with dependent service times have been studied in the literature. For example, Pang and
Whitt [35] recently studied two-parameter process limits for G/G/∞ queues, where the consecutive
service times are assumed to be stationary and weakly dependent, satisfying the φ-mixing or S-mixing
conditions. See also the extensive references therein. However, in all these studies, correlations are
only considered in the unit variate setting. Our work is the first to study the sequential dependence
among service vectors associated with each job in queueing systems. As a special case, our work
also extends the analysis of the G/G/∞ queues to the case of strong mixing (α-mixing) service
times, in terms of the total count processes.

On the other hand, substantial amount work has studied queues in random environments (in
particular, service disruptions/interruptions), for example, [8, 16, 17, 18, 32, 33, 36, 26] and references
therein. The work closest to ours is [36], where the G/G/∞ queue with weakly dependent and
disruptive service times is studied. Two-parameter heavy-traffic limits are proved for the queueing
processes in the space D([0,∞),D) endowed with Skorohod M1 topology. The case when the service
times have finite support is also discussed in [36]. Our paper generalizes the work [36] to the
infinite-server fork-join queueing system with NES, where the disruptions affects all service stations
simultaneously. Thus, the effect of the disruptions is not only characterized for the service processes
at the service stations, but more importantly, for the synchronization processes.

1.2. Organization of the Paper. The paper is organized as follows. We finish the introduction
with notation below. In §2, we provide a detailed model description and the assumptions. The
main results are given in §3. The FWLLN and FCLT for the processes tracking the service and
waiting dynamics for synchronization are stated in §3.1, and their proofs are provided in §5. We
characterize the limiting processes in §3.2, and provide the proof in §4. Some concluding remarks
are given in §6.

1.3. Notation. The following notations will be used throughout the paper. R and R+ (Rd and Rd+,
respectively) denote sets of real and real non-negative numbers (d-dimensional vectors, respectively,
d ≥ 2). N denotes the set of natural numbers. For a, b ∈ R, we denote a ∧ b := min{a, b} and
a ∨ b := max{a, b}. For any x ∈ R+, bxc (dxe, respectively) is used to denote the largest integer
no greater than (the smallest integer no less than) x, respectively. We use bold letter to denote a
vector, e.g., xxx := (x1, ..., xd) ∈ Rd, d ≥ 2. 000 and eee denote the vectors whose components are all 0
and 1, respectively. eeei is used to denote the vector whose ith component is one and whose other
components are infinity. For x ∈ R and eee,eeei ∈ Rd, d ≥ 2, we define xeee := (x, ..., x) ∈ Rd and let xeeei
be the vector whose ith entry is x and whose other components are infinity, 1 ≤ i ≤ d. For xxx,yyy ∈ Rd,
d ≥ 2, we denote xxx ≤ yyy and xxx < yyy in the componentwise sense, and let xxx ∧ yyy = (x1 ∧ y1, ..., xd ∧ yd).
Denote (R2)∞ := {((a1, b1), . . . , (aj , bj), . . . ) : aj , bj ∈ R, j ∈ N} with the metric ρ defined by
ρ(γ1, γ2) :=

∑∞
i=1

1
2i

min{max{|ai − ci|, |bi − di|}, 1}, for any γ1 := ((a1, b1), (a2, b2), ...) and γ2 :=

((c1, d1), (c2, d2), ...) in (R2)∞ (the well-definedness of the metric can be easily checked as Example
1.2 in [5]). We use 1(A) to denote the indicator function of a set A. For any univariate distribution
function G, we denote Gc := 1−G. For any two deterministic real-valued functions f and g, we write
f(x) = O(g(x)) if lim supx→∞ |f(x)/g(x)| <∞ and f(x) = o(g(x)) if lim supx→∞ |f(x)/g(x)| = 0.
For a sequence of random variables {Zn : n ≥ 1} and a sequence of constants {bn : n ≥ 1}, we write
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Zn = op(bn) if Zn/bn converges to zero in probability as n→∞, i.e., limn→∞ P (|Zn/bn| > ε) = 0
for any ε > 0.

All random variables and processes are defined on a common probability space (Ω,F , P ). For any
two complete separable metric spaces S1 and S2, we denote S1×S2 as their product space, endowed
with the maximum metric ρ defined by m((x1, x2), (y1, y2)) := max{m1(x1, y1),m2(x2, y2)}, for
(x1, x2), (y1, y2) ∈ S1 ×S2, where m1 and m2 are metrics for S1 and S2, respectively (see, e.g., §11.4
of [41]). Sk is used to represent k-fold product space of any complete and separable metric space S
for k ∈ N. For a complete separable metric space S, D([0,∞),S) denotes the space of all S-valued
càdlàg functions on [0,∞), and is endowed with the Skorohod J1 topology (see, e.g., [12]). Let
D ≡ D([0,∞),R). (D, J1) denotes the space D endowed with J1 topology while (D,M1) denotes the
space D endowed with M1 topology. We refer to §3.3 and §12 of [41] for the definition and convergence
criteria in (D,M1). Let (Dk, J1) ≡ (D, J1) × · · · × (D, J1) ((Dk,M1) ≡ (D,M1) × · · · × (D,M1),
respectively) be the k-fold product of (D, J1) ((D,M1), respectively) with the maximum metric as
the product topology. Let C ≡ C([0,∞),R) be the space of all continuous real-valued functions on
[0,∞) and denote C↑ as the space of nondecreasing continuous functions in C. Let Ck be the k-fold
product of C. Denote ‖ · ‖ as the uniform norm, i.e., for any real-valued function x and T > 0,
‖x‖T = sup0≤t≤T |x(t)|. D(T,R) denotes the space of all “continuous from above with limits from

below” real-valued functions in the sense of [4, 27, 39, 14] on T ⊆ Rk+ for k ≥ 2; see [39, 4, 27] for

T = [0, 1]k and [14] for T = [0,∞)k. Denote Dk ≡ D([0,∞)k,R) for k ≥ 2. Weak convergence of
probability measures µn to µ will be denoted as µn ⇒ µ. We also use ⇒ to denote the convergence
in distribution without abuse of notation. For a sequence of processes {X n : n ≥ 1} and a process

X , X n df−→ X denotes the convergence in finite-dimensional distributions of X n to X . We use the
abbreviations a.s. and a.e. to represent almost surely and almost everywhere.

2. Model and Assumptions

In this section, we present the model and assumptions in detail. In the fork-join queueing model,
there is a single class of arrivals and each job upon arrival is forked into K parallel tasks, which are
processed in the corresponding parallel service stations with an infinite number of servers. After
service completion, each task will join a waiting buffer for synchronization, called unsynchronized
queue, associated with each service station. When all tasks of the same job are finished, they will be
synchronized and leave the system immediately. The system is operating in an alternating renewal
environment with up-down cycles (down periods as the service disruptive process). In the up periods,
the system operates normally. In the down periods, all servers will stop functioning and resume at
the beginning of the next up period. New jobs continue to enter the system and their tasks will be
assigned to free servers in the service stations and wait there for service to start at the beginning
of the next up period. Tasks in service (respectively, waiting for synchronization) will be kept in
their stations (respectively, unsynchronized queues), and the amount of services received will be
conserved, and their services will be resumed when the down period ends.

Let A = {A(t) : t ≥ 0} be the arrival process of the system with τi representing the arrival
time of the ith job, i ∈ N. Let {ηηηi : i ≥ 1} be a sequence of identically distributed service
vectors of the parallel tasks. The joint distribution of the service time vector for the ith job ηηηi

is F (xxx) := F (x1, ..., xK) for x1, ..., xK ≥ 0 and F (xxx) = 0 if xk ≤ 0 for some 1 ≤ k ≤ K. The
service times of the parallel tasks of the same job can be correlated. The case of perfectly positively
correlated parallel services (the components of the service vector are equal, ηi1 = ηi2 = · · · = ηiK for
each i) is excluded since that will lead to empty waiting buffers for synchronization. Moreover, we
assume that the sequence {ηηηi : i ≥ 1} is stationary and weakly dependent, satisfying the strong
mixing (α-mixing) condition.

Assumption 1. The sequence of service vectors {ηηηi : i ≥ 1} is weakly dependent and constitute a
one-sided stationary sequence with each ηηηi having a continuous distribution function F (xxx), xxx ∈ RK+ .
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The sequence {ηηηi : i ≥ 1} satisfies the α-mixing condition, that is, αn = O(n−a), for a > 1, where
αi := sup{|P (A ∩ B) − P (A)P (B)| : A ∈ Fj , B ∈ Gj+i, j ≥ 1}, with Fj := σ{ηηηi : 1 ≤ i ≤ j} and
Gj := σ{ηηηi : i ≥ j}.

The joint distribution of any two service times ηij and ηik is Fj,k(xj , xk) := P (ηij ≤ xj , η
i
k ≤ xk)

for xj , xk ≥ 0, j, k = 1, ...,K. Note Fj,k(·, ·) = Fk(·) when j = k for j, k = 1, ...,K. We denote
F cj,k(xj , xk) := P (ηij > xj , η

i
k > xk) = 1−Fj(xj)−Fk(xk)+Fj,k(xj , xk) for xj , xk ≥ 0, j, k = 1, ...,K.

Note F cj,k(·, ·) = F ck(·) when j = k for j, k = 1, ...,K. Let ηim := max{ηi1, ..., ηiK} be the maximum

of the components in the service vector ηηηi, and Fm(x) := P (ηim ≤ x) = F (x, ..., x) for x ≥ 0.
(Throughout the paper, we use subscript “m” to index quantities and processes associated with the
maximum.)

Let {(ui, di) : i ≥ 1} be a sequence of i.i.d. random vectors with ui and di representing the up
and down times in the ith up-down cycle of the underlying renewal process for all parallel service
stations. We assume that the arrival and service processes and renewal disruptive process are
mutually independent.

Recall that each job is forked into K tasks and each task is processed in a parallel station,
for which we call the service station serving task k of each job as “service station k”. Let
Xk := {Xk(t) : t ≥ 0} be the process counting the number of tasks in service at the service
station k, and Yk := {Yk(t) : t ≥ 0} be the process counting the number of tasks in the waiting
buffer for synchronization (unsynchronized queue) after service completion at service station k,
k = 1, ...,K. Let S := {S(t) : t ≥ 0} be the process counting the number of synchronized jobs and
Dk := {Dk(t) : t ≥ 0} be the process counting the number of tasks that have completed service at
station k, k = 1, ...,K. Denote XXX := (X1, ..., XK), YYY := (Y1, ..., YK) and DDD := (D1, ..., DK). We
assume that the system starts empty at the beginning of an up period.

2.1. A Sequence of Systems. The exact distributions of (XXX,YYY , S) cannot be obtained directly,
even when the arrival process is Poisson and the service times are exponential. Thus, our objective
is to establish heavy-traffic limits for the fluid and diffusion scaled processes of (XXX,YYY , S) jointly.
We consider a sequence of such systems indexed by n and use superscript n for the processes
A,XXX,YYY ,DDD,S, the sequence of {(ui, di) : i ≥ 1}, and the arrival times {τi : i ≥ 1}, but we let the
service times {ηηηi : i ≥ 1} and their distribution functions be independent of n. We will let the
arrival rate grow large for the system to be in heavy traffic and make the following assumption on
the arrival process An.

Assumption 2 (FCLT for arrivals). There exist: (i) a nondecreasing deterministic real-valued
continuous function ā with a density function λ ∈ D a.e. and ā(0) = 0 and (ii) a stochastic process

Â with sample paths in D, such that

Ân := n−
1
2 (An − nā)⇒ Â in (D,M1) as n→∞. (2.1)

This implies that an FWLLN holds for An:

Ān := n−1An ⇒ ā in (D,M1) as n→∞. (2.2)

Note that since the limit ā is continuous, the convergence is equivalent to be in any Skorohod
topology [41].

We consider a scaling regime for the underlying random environment, where the down times are
asymptotically negligible. Specifically, we make the following assumption.

Assumption 3 (Scaling of the Service Disruptive Process). The sequence of up and down times
{(uni , dni ) : i ≥ 1} satisfies

{(uni , n1/2dni ) : i ≥ 1} ⇒ {(ui, di) : i ≥ 1} in
(
R2
)∞

as n→∞, (2.3)

where ui, di > 0 a.s. for each i ≥ 1.
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2.2. System Dynamics. We provide a representation of the processes (XXXn,YYY n, S). We first
introduce some processes associated with the underlying renewal random environment. Let the
sequence {Tni : i ≥ 1} be the renewal times, defined by

Tni :=
i∑

j=1

(unj + dnj ), for i ≥ 1 and Tn0 := 0. (2.4)

Let Nn := {Nn(t) : t ≥ 0} be the associated renewal counting process, defined by

Nn(t) := max{i ≥ 0 : Tni ≤ t}, t ≥ 0. (2.5)

Let χn := {χn(t) : t ≥ 0} be the service-availability process, defined by

χn(t) :=

{
1, Tni ≤ t ≤ Tni + uni+1, for i ≥ 0,

0, Tni + uni+1 < t < Tni+1, for i ≥ 0.
(2.6)

The cumulative up-time process ξn := {ξn(t) : t ≥ 0} is defined by

ξn(t) :=

∫ t

0
χn(s)ds, t ≥ 0. (2.7)

The cumulative down-time process ζn := {ζn(t) : t ≥ 0} is defined by ζn(t) := t − ξn(t) for each
t ≥ 0.

Now, for each t ≥ 0 and k = 1, ...,K, we can write

Xn
k (t) =

An(t)∑
i=1

1(ηik > ξn(t)− ξn(τni )), (2.8)

Sn(t) =

An(t)∑
i=1

1(ηij ≤ ξn(t)− ξn(τni ), ∀j = 1, ...,K), (2.9)

Y n
k (t) = Dn

k (t)− Sn(t)

=

An(t)∑
i=1

1(ηik ≤ ξn(t)− ξn(τni ) and ηik′ > ξn(t)− ξn(τni ) for some k′ 6= k). (2.10)

The following balanced equations hold for each t ≥ 0 and k = 1, ...,K,

Dn
k (t) = An(t)−Xn

k (t), (2.11)

Y n
k (t) = Dn

k (t)− Sn(t). (2.12)

Define the diffusion-scaled processes

ξ̂n := n1/2(ξn − e) and ζ̂n := n1/2ζn = −ξ̂n, (2.13)

where e(t) := t is the identity function, and ξn and ζn are the cumulative up and down times. We
then obtain the following limits for the processes associated with service disruptions.

Lemma 2.1. Under Assumption 3,(
ξn, ζn, Nn, ξ̂n, ζ̂n

)
⇒
(
e, 0, N̂ ,−Ĵ , Ĵ

)
in (D3, J1)× (D2,M1) as n→∞, (2.14)

where the limit process Ĵ := {Ĵ(t) : t ≥ 0} is defined by

Ĵ(t) :=

N̂(t)∑
i=1

di, t ≥ 0, (2.15)

where N̂ := {N̂(t) : t ≥ 0} is the associated renewal counting process in the limit, defined by

N̂(t) := max{i ≥ 0 : T̂i ≤ t}, t ≥ 0, (2.16)
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and {T̂i : i ≥ 0} is the limiting sequence of cycle renewal times, defined by

T̂i :=

i∑
j=1

uj , i ≥ 1, and T̂0 := 0. (2.17)

Proof. The convergence of (ξn, ζn) in (2.14) follows directly from Assumption 3. The convergence

of (Nn, ξ̂n, ζ̂n) in (2.14) can be found in §5.4 of [33]. The joint convergence (ξn, ζn, Nn, ξ̂n, ζ̂n) is
obtained from Theorem 11.4.5 of [41], by noting that the limit of (ξn, ζn) is deterministic. �

3. Main Results

3.1. Limit Theorems. We first define multiparameter sequential empirical processes Ûn :=
{Ûn(t,xxx) : t ≥ 0, xxx ∈ [0, 1]K} driven by a sequence of random vectors with uniform marginals:

Ûn(t,xxx) :=
1√
n

bntc∑
i=1

γ̃i(xxx), t ≥ 0, xxx ∈ [0, 1]K ,

where for each i ∈ N, γ̃i(xxx) := 1(Ui ≤ xxx)−H(xxx), xxx ∈ [0, 1]K , and {Ui : i ≥ 1} constitutes a one-
sided stationary sequence, and each Ui is a vector of nonnegative random variables with continuous
joint distribution function H(·) and uniform marginals over [0, 1]. We assume that the sequence
{Ui : i ≥ 1} satisfies the strong mixing (α-mixing) condition, as in Assumption 1 for {ηηηi : i ≥ 1}, that
is, αU

n = O(n−a), for a > 1, where αU
i := sup{|P (A ∩B)− P (A)P (B)| : A ∈ FU

j , B ∈ GUj+i, j ≥ 1},
with FU

j := σ{Ui : 1 ≤ i ≤ j} and GUj := σ{Ui : i ≥ j}. Here we state an FCLT for the

multiparameter sequential empirical processes (see Theorem 1 in [7]).

Theorem 3.1. (An FCLT for Strong Mixing (α-mixing) Uniformly Distributed Random Vectors)

The processes Ûn(t,xxx) converge in distribution,

Ûn(t,xxx)⇒ Û(t,xxx) in (D([0, 1]K+1,R), J1) as n→∞, (3.1)

where Û := {Û(t,xxx) : t ≥ 0,xxx ∈ RK+} is a continuous Gaussian random field with mean 0 and
covariance function

Cov(Û(t,xxx), Û(s,yyy)) = (t ∧ s)ΓU (xxx,yyy),

ΓU (xxx,yyy) := (t ∧ s)(H(xxx ∧ yyy)−H(xxx)H(yyy)) + ΓcU (xxx,yyy) <∞,

ΓcU (xxx,yyy) :=
∞∑
i=2

(E[γ̃1(xxx)γ̃i(yyy)] + E[γ̃1(yyy)γ̃i(xxx)]) <∞,

for each t, s ≥ 0 and xxx,yyy ∈ [0, 1]K .

To show the FCLT for the processes (XXXn,YYY n, Sn), we define the diffusion-scaled multiparameter

sequential empirical processes K̂n := {K̂n(t,xxx) : t ≥ 0,xxx ∈ RK+} by

K̂n(t,xxx) :=
1√
n

bntc∑
i=1

γi(xxx), t ≥ 0, xxx ∈ RK+ ,

where for each i ∈ N, γi(xxx) := 1(ηηηi ≤ xxx)− F (xxx). We remark that when the service vectors are i.i.d.,

an FCLT for K̂n is used to prove the FCLT for the processes (XXXn,YYY n, Sn) in diffusion scale for the
infinite-server fork-join queueing system in [24]. Here under the strong mixing (α-mixing) condition,

we need the FCLT for K̂n, which can be obtained by applying Theorem 3.1 and Sklar’s theorem
[38]. Let FFF : RK+ → [0, 1]K be FFF (xxx) := (F1(x1), ..., FK(xK)) for xxx ∈ RK+ . By Sklar’s theorem [38], a
multidimensional version of probability integral transformation, for any multivariate distribution
function G, there exists a multivariate distribution function HG (called “copula”, depending on G)
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with uniform marginals on [0, 1] such that G(xxx) = HG(G1(x1), ..., GK(xK)). For the multivariable

distribution function F of service vectors and its copula H, we then can represent K̂n(·, ·) as a

composition of Ûn(·, ·) with FFF (·) in the second component, i.e.,

K̂n(t,xxx) = Ûn(t,FFF (xxx)), t ≥ 0, xxx ∈ RK+ . (3.2)

Thus, by Theorem 3.1, we immediately obtain that

K̂n(t,xxx) = Ûn(t,FFF (xxx))⇒ K̂(t,xxx) := Û(t,FFF (xxx)) in (DK+1, J1) as n→∞, (3.3)

where K̂ := {K̂(t,xxx) : t ≥ 0,xxx} is a time-changed multiparameter Gaussian process with mean 0
and covariance function

Cov(K̂(t,xxx), K̂(s,yyy)) = (t ∧ s)Γ(xxx,yyy), (3.4)

Γ(xxx,yyy) := ΓU (FFF (xxx),FFF (yyy)) = (t ∧ s)(F (xxx ∧ yyy)− F (xxx)F (yyy)) + Γc(xxx,yyy) <∞,

Γc(xxx,yyy) := ΓcU (FFF (xxx),FFF (yyy)) =
∞∑
i=2

(E[γ1(xxx)γi(yyy)] + E[γ1(yyy)γi(xxx)]) <∞, (3.5)

for each t, s ≥ 0 and xxx,yyy ∈ RK+ . Note that the last term Γc(xxx,yyy) captures the sequential dependence
among the service vectors, and it is evident that Γc(xxx,yyy) ≡ 0 when the service vectors are i.i.d.

We will represent all the processesXXXn,YYY n, Sn as integrals of a multiparameter sequential empirical
process K̄n := {K̄n(t,xxx) : t ≥ 0,xxx ∈ RK+} driven by the sequence of service vectors {ηηηi : i ≥ 1}:

K̄n(t,xxx) :=
1

n

bntc∑
i=1

1(ηηηi ≤ xxx), t ≥ 0, xxx ∈ RK+ . (3.6)

For t ≥ 0 and k = 1, ...,K,

Xn
k (t) = n

∫ t

0

∫
RK
+

1(xk > ξn(t)− ξn(s))dK̄n
(
Ān(s),xxx

)
, (3.7)

Y n
k (t) = n

∫ t

0

∫
RK
+

(1(xk ≤ ξn(t)− ξn(s))− 1(xj ≤ ξn(t)− ξn(s), ∀j)) dK̄n
(
Ān(s),xxx

)
, (3.8)

and

Sn(t) = n

∫ t

0

∫
RK
+

1(xj ≤ ξn(t)− ξn(s), ∀j)dK̄n
(
Ān(s),xxx

)
. (3.9)

The integrals in (3.7), (3.8) and (3.9) are well-defined as Stieltjes integrals for functions of bounded
variation as integrators. We remark that the representation like (3.7) were first established by
Krichagina and Puhalskii [21] to study G/GI/∞ queues, and Pang and Zhou [36] analyzed the
impact of service interruptions on G/G/∞ queues by generalizing the representation in [21] and
introducing the cumulative up-time process ξn. In the fork-join queueing system, Lu and Pang
[24] developed an integral representation for the system dynamics via multiparameter sequential
empirical processes driven by the service vectors.

We define fluid-scaled processes X̄XX
n
, ȲYY

n
and S̄n by

X̄XX
n

:=
1

n
XXXn, ȲYY

n
:=

1

n
YYY n, S̄n :=

1

n
Sn. (3.10)

The FWLLN for
(
X̄XX
n
, ȲYY

n
, S̄n

)
is stated in the following theorem.

Theorem 3.2 (FWLLN). Under Assumptions 1-3, the fluid-scaled processes converge to determin-
istic fluid functions, (

Ān, X̄XX
n
, ȲYY

n
, S̄n

)
⇒
(
ā, X̄XX, ȲYY , S̄

)
(3.11)
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in D2K+2 as n→∞, where the limits are all deterministic continuous functions: ā is the limit in
(2.2), and for each t ≥ 0,

X̄XX(t) := (X̄1(t), ..., X̄K(t)), X̄k(t) :=

∫ t

0
F ck(t− s)dā(s), for k = 1, ...,K, (3.12)

ȲYY (t) := (Ȳ1(t), ..., ȲK(t)), Ȳk(t) :=

∫ t

0
(F cm(t− s)− F ck(t− s))dā(s), for k = 1, ...,K, (3.13)

S̄(t) :=

∫ t

0
Fm(t− s)dā(s). (3.14)

We remark that the fluid limits are the same as in Theorem 3.2 of [24], implying that the fluid
limits are neither affected by the random environment, nor by the sequential dependence of service
vectors. It is worth noting that the fluid limits are affected by the correlation among the service
times of the parallel tasks.

We define the diffusion-scaled processes XXXn, YYY n and Sn by

X̂XX
n

:=
√
n(X̄XX

n − X̄XX), ŶYY
n

:=
√
n(ȲYY

n − ȲYY ), Ŝn :=
√
n(S̄n − S̄). (3.15)

We will show the following FCLT. The proof is given in §5. Theorem 3.2 follows directly from this
FCLT and thus its proof is omitted.

Theorem 3.3 (FCLT). Under Assumptions 1-3, the diffusion-scaled processes converge in distri-
bution, (

Ân, K̂n, X̂XX
n
, ŶYY

n
, Ŝn

)
⇒
(
Â, K̂, X̂XX, ŶYY , Ŝ

)
(3.16)

in (D,M1) × (DK+1, J1) × (D2K+1,M1) as n → ∞, where Â is the limit in (2.1), K̂ is defined in
(3.3), and for t ≥ 0 and k = 1, ...,K,

X̂XX(t) := M̂MM1(t) + M̂MM2(t) + M̂MM3(t), M̂MM i(t) := (M̂1,i(t), ..., M̂K,i(t)), i = 1, 2, 3, (3.17)

M̂k,1(t) :=

∫ t

0
F ck (t− s)dÂ(s) = Â(t)−

∫ t

0
Â(s)dF ck(t− s), (3.18)

M̂k,2(t) :=

∫ t

0

∫
RK
+

1(s+ xk > t)dK̂(ā(s),xxx) = −
∫ t

0

∫
RK
+

1(s+ xk ≤ t)dK̂(ā(s),xxx), (3.19)

M̂k,3(t) :=

∫ t

0
(Ĵ(t)− Ĵ(s))λ(s)dF ck(t− s), (3.20)

Ŝ(t) := V̂1(t) + V̂2(t) + V̂3(t), (3.21)

V̂1(t) :=

∫ t

0
Fm(t− s)dÂ(s) = −

∫ t

0
Â(s)dFm(t− s), (3.22)

V̂2(t) :=

∫ t

0

∫
RK
+

1(s+ xj ≤ t, ∀j)dK̂(ā(s),xxx), (3.23)

V̂3(t) :=

∫ t

0
(Ĵ(t)− Ĵ(s))λ(s)dFm(t− s), (3.24)

ŶYY (t) := ẐZZ1(t) + ẐZZ2(t) + ẐZZ3(t), ẐZZi(t) := (Ẑ1,i(t), ..., ẐK,i(t)), i = 1, 2, 3, (3.25)

Ẑk,1(t) :=

∫ t

0
(Fk(t− s)− Fm(t− s))dÂ(s) =

∫ t

0
Â(s)d(Fm(t− s)− Fk(t− s)), (3.26)

Ẑk,2(t) :=

∫ t

0

∫
RK
+

(1(s+ xk ≤ t)− 1(s+ xj ≤ t, ∀j))dK̂(ā(s),xxx) (3.27)

= −M̂k,2(t)− V̂2(t). (3.28)
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Ẑk,3(t) :=

∫ t

0
(Ĵ(t)− Ĵ(s))λ(s)d(Fk(t− s)− Fm(t− s)) = −M̂k,3(t)− V̂3(t). (3.29)

Remark 3.1. It is worth noting that the convergences to the processes M̂k,1, V̂1 and Ẑk,1 in the
Skorohod M1 topology require the continuity of the distribution function F (·) (see Remark 5.1 for a

counter example), for k = 1, ...,K. The proofs for the convergences to the processes M̂k,2, V̂2 and

Ẑk,2, and M̂k,3, V̂3 and Ẑk,3 do not require the continuity of F (·), for k = 1, ...,K.

The limit processes M̂k,1, Ẑk,1, k = 1, ...,K, and V̂1 are well-defined as stochastic integrals in the
sense of integration by parts (see, e.g., page 336 of [6]), that is, for each ω, they can be constructed
pathwise via integration by parts. Their existence and continuity are proved by the continuous
mapping theorem (Lemma 5.3). They are standard Itô integrals when Â is a (time-changed)

Brownian motion, or more generally, Itô integrals (with respect to semimartingales) if Â is a
semimartingale. The second equalities in (3.18), (3.26) and (3.22) follow from integration by parts.

The processes M̂MM2, ẐZZ2 and V̂2 are defined in the mean-square sense; see the precise definitions in
Definition 4.1. This is in the same way as the limit process with respect to a standard Kiefer process
for the G/GI/∞ queue defined in [21, 34]. The second equalities in (3.28) and (3.29) follow from

simple algebra. When N̂ is Poisson and the arrival rate is constant, we can write V̂3 as

V̂3(t) = −λ
∫ t

0
Ĵ(s)dFm(s) = −λFm(t)Ĵ ([0, t]× R+) + λ

∫ t

0

∫ ∞
0

xFm(s)Ĵ (ds, dx),

where Ĵ (s, x) is a Poisson random measure defined on [0,∞)× R+, with intensity λuds× dG̃(x),

where λu = 1/E[ui] ∈ (0,∞) and G̃(·) is the distribution function of the limiting down times

{dk : k ≥ 1}. Similarly for the processes M̂k,3 and Ẑk,3, k = 1, ...,K.

We remark that there is a stochastic decomposition property for X̂k, Ŷk, k = 1, ...,K, and Ŝ. Each
limit process is decomposed into three independent processes capturing variabilities from arrival,
service and disruptions respectively. For example, for each k = 1, ...,K, in the representation of Ŷk
in (3.25), Ẑk,1, Ẑk,2 and Ẑk,3 capture the variabilities of arrival, service and disruption processes,
respectively, and they are independent of each other. It is also worth noting that the correlation
of parallel service times of each job is captured through Fm in the limiting processes. In addition,

the disruption causes jumps simultaneously for all the processes X̂XX, ŶYY and Ŝ, driven by the same
process Ĵ , while the jump sizes depend on the distributions of service times at different stations.
For example, for each k = 1, ...,K, the jump sizes of M̂k,3, V̂3 and Ẑk,3 depend on Fk, Fm and

Fk − Fm, respectively. The processes X̂XX and ŶYY have upward (positive) jumps and the process Ŝ has
downward (negative) jumps, implying that the disruptions degrade the performance by increasing
the congestions and delaying the synchronization processes, and thus, decreasing the throughput.
The degradation is precisely characterized by the jump processes in the limit. These observations
provide important insights on the impact of the disruptions upon the system performance, as we
show next.

3.2. Characterization of Limit Processes. In this section, we will characterize the limit pro-

cesses of
(
X̂XX
n
, ŶYY

n
, Ŝn

)
.

We first characterize the variability induced by the arrival limit process Â. We make a general
assumption on the arrival process Â by assuming it is a Lévy process with a deterministic time
change, i.e., Â(t) = L(ā(t)) for a nondecreasing continuous deterministic function ā in (2.1) and
a Lévy process L := {L(t) : t ≥ 0} satisfying the square integrable condition E([L(t))2] < ∞ for
t ≥ 0 with a Lévy-Khintchine triplet (b, c,Π) (see, e.g., [2]) and [22]), where b ∈ R, c ≥ 0 and Π is a
positive measure concentrated on R\{0} satisfying

∫
R[1 ∧ x2]Π(dx) <∞. A Lévy-Khintchine triplet
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(b, c,Π) uniquely determines the Lévy process L, and satisfies the following:

E
[
eiθL(t)

]
= exp

(
ibθt− 1

2
c2θ2t+ t

∫
R

[eiθx − 1− iθx1(|x| < 1)]Π(dx)

)
, θ ∈ R, t ≥ 0.

Lévy processes with deterministic time change are well defined [22]. Since Â(t) has mean zero for
each t ≥ 0, we set b = 0. In the following lemma, we compute the covariance functions of the limit

processes
(
M̂MM1, ẐZZ1, V̂1

)
as functionals of the arrival limit process in Theorem 3.3. Its proof is given

in §4.

Lemma 3.1. Under the assumptions of Theorem 3.3, if the arrival limit process Â(t) = L(ā(t)),
where L is a square-integrable Lévy process with a Lévy-Khintchine triplet (0, c,Π), the multi-

dimensional process
(
M̂MM1, ẐZZ1, V̂1

)
has mean 000, and the covariance functions as follows: for j, k =

1, ...,K and each t ≥ 0,

Cov
(
M̂j,1(t), M̂k,1(t)

)
=
(
c2 + ν2

) ∫ t

0
F cj (t− s)F ck(t− s)dā(s), (3.30)

Cov
(
M̂j,1(t), Ẑk,1(t)

)
=
(
c2 + ν2

) ∫ t

0
[F cj (t− s)Fk(t− s)− F cj (t− s)Fm(t− s)]dā(s), (3.31)

Cov
(
Ẑj,1(t), Ẑk,1(t)

)
=
(
c2 + ν2

) ∫ t

0
[Fj(t− s)Fk(t− s)− Fj(t− s)Fm(t− s) (3.32)

−Fk(t− s)Fm(t− s) + (Fm(t− s))2
]
dā(s), (3.33)

Cov
(
M̂j,1(t), V̂1(t)

)
=
(
c2 + ν2

) ∫ t

0
F cj (t− s)Fm(t− s)dā(s), (3.34)

Cov
(
Ẑj,1(t), V̂1(t)

)
=
(
c2 + ν2

) ∫ t

0
[(Fj(t− s)− Fm(t− s))Fm(t− s)]dā(s), (3.35)

V ar
(
V̂1(t)

)
=
(
c2 + ν2

) ∫ t

0
(Fm(t− s))2dā(s), (3.36)

where ν2 :=
∫
R x

2Π(dx) < ∞ and ν2 ≥ 0. In particular, when the arrival limit process Â is

a Brownian motion, i.e., Â(t) = caBa(ā(t)) for a standard Brownian motion Ba and a positive
constant ca > 0, c2 and ν2 in (3.30)-(3.36) are replaced by c2

a and 0, respectively.

We next show the limit processes
(
M̂MM2, ẐZZ2, V̂2

)
in (3.19), (3.28) and (3.23), represented as

functionals of the multiparameter generalized Kiefer process, are well-defined continuous Gaussian
processes. Its proof is given in §4.

Lemma 3.2. Under the assumptions of Theorem 3.3, the multi-dimensional process
(
M̂MM2, ẐZZ2, V̂2

)
in (3.19), (3.28) and (3.23) is a well-defined Gaussian process with mean 000, and covariance functions:
for each t ≥ 0 and j, k = 1, ...,K,

Cov
(
M̂j,2(t), M̂k,2(t)

)
=

∫ t

0
[Fj,k(t− s, t− s)− Fj(t− s)Fk(t− s) + Γcj,k(t− s)]dā(s), (3.37)

Cov
(
Ẑj,2(t), Ẑk,2(t)

)
=

∫ t

0
[Fj,k(t− s, t− s)− Fj(t− s)Fk(t− s)− Fm(t− s)

+ Fk(t− s)Fm(t− s) + Fm(t− s)Fj(t− s)− (Fm(t− s))2 + Γcj,k(t− s, t− s)
−Γck,m(t− s, t− s)− Γcj,m(t− s, t− s) + Γcm,m(t− s, t− s)

]
dā(s), (3.38)

Cov
(
M̂j,2(t), Ẑk,2(t)

)
=

∫ t

0
[Fm(t− s)− Fj,k(t− s, t− s) + Fj(t− s)Fk(t− s)− Fj(t− s)Fm(t− s)

−Γcj,k(t− s, t− s) + Γcj,m(t− s, t− s)
]
dā(s), (3.39)
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Cov
(
M̂k,2(t), V̂2(t)

)
= −

∫ t

0

[
F ck(t− s)Fm(t− s) + Γck,m(t− s, t− s)

]
dā(s), (3.40)

Cov
(
Ẑk,2(t), V̂2(t)

)
=

∫ t

0
[Fm(t− s)(Fm(t− s)− Fk(t− s))

+Γck,m(t− s, t− s)− Γcm,m(t− s, t− s)
]
dā(s), (3.41)

V ar
(
V̂2(t)

)
=

∫ t

0

[
Fm(t− s)F cm(t− s) + Γcm,m(t− s, t− s)

]
dā(s), (3.42)

where Γck,m(x, y) := Γc(xeeek, yeee), Γcj,k(x, y) := Γc(xeeej , yeeek) and Γcm,m(x, y) := Γc(xeee, yeee), for x, y ≥ 0
and j, k = 1, ...,K.

Note that in the covariance functions (3.37)–(3.42), the sequential dependence is captured in the
terms Γc, which all become zero when the service vectors are i.i.d.

To understand the impact of the both “componentwise” and “vectorwise” (sequential) dependence
for service vectors, we consider the following example of the service vectors with a special structure.
From the componentwise perspective, we let ηηηi, i ≥ 1, have the joint continuous distribution function

F (xxx) = (1− ρ)

K∏
k=1

G(xk) + ρG

(
min

k=1,...,K
{xk}

)
(3.43)

with a marginal continuous distribution function G(·), for 0 ≤ ρ < 1, xk ≥ 0 and k = 1, ...,K.
Namely, the service times at the parallel stations have the same distribution, and are symmetrically
correlated with a correlation parameter ρ ∈ [0, 1), i.e., the correlation of service times at any
two parallel stations is ρ. From the vectorwise perspective, we use the first-order discrete vector
autoregressive process, “DVAR(1)”. Specifically, we let ηηη1 be distributed according to F in (3.43),
and generate {ηηηi : i ≥ 2} by

ηηηi = ζi−1ηηη
i−1 + (1− ζi−1)η̃ηηi, i ≥ 2, (3.44)

where {ζi : i ≥ 1} is a sequence of i.i.d. Bernoulli random variables with P (ζ1 = 1) = 1− P (ζ1 =
0) = p, and {η̃ηηi : i ≥ 2} is a sequence of i.i.d random vectors, each with joint distribution function

F in (3.43). In this special case, by direct calculation, the correlation between ηij and ηi+lk is plρ,

for each i, l ∈ N and j, k = 1, ...,K with j 6= k, while the correlation between ηik and ηi+lk is pl. The

covariance functions of
(
M̂MM2, ẐZZ2, V̂2

)
are stated in Corollary 3.1. Its proof is given in §4.

Corollary 3.1. Under the assumptions of Theorem 3.3, when the sequence of service vectors
{ηηηi : i ∈ N} has the structure in (3.44) and each service vector has the joint distribution function
shown in (3.43), we have, for each t ≥ 0 and k = 1, ...,K,

V ar
(
M̂k,2(t)

)
= (2Σp + 1)

∫ t

0
G(t− s)Gc(t− s)dā(s),

V ar
(
Ẑk,2(t)

)
= (2Σp + 1)

∫ t

0

[
(1− ρ)G(t− s)

(
1− (G(t− s))K−1

)
−(1− ρ)2(G(t− s))2

(
1− (G(t− s))K−1

)2]
dā(s),

V ar
(
V̂2(t)

)
= (2Σp + 1)

∫ t

0

[(
ρG(t− s) + (1− ρ)(G(t− s))K

)
×
(
1− ρG(t− s)− (1− ρ)(G(t− s))K

)]
dā(s),

Cov
(
M̂k,2(t), Ẑk,2(t)

)
= −(2Σp + 1)(1− ρ)

∫ t

0

[
Gc(t− s)G(t− s)(1− (G(t− s))K−1)

]
dā(s),
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and for j, k = 1, ...,K and j 6= k,

Cov
(
M̂j,2(t), M̂k,2(t)

)
= (2Σp + 1)ρ

∫ t

0
G(t− s)Gc(t− s)dā(s), (3.45)

Cov
(
Ẑj,2(t), Ẑk,2(t)

)
= (2Σp + 1)

∫ t

0

[
(1− ρ)(G(t− s))2(1− (G(t− s))K−2)

− (1− ρ)2(G(t− s))2
(
1− (G(t− s))K−1

)2 ]
dā(s), (3.46)

Cov
(
M̂j,2(t), Ẑk,2(t)

)
= (2Σp + 1)(1− ρ)

∫ t

0

[
G(t− s)Gc(t− s)

−Gc(t− s)G(t− s)
(
1− (G(t− s))K−1

) ]
dā(s), (3.47)

Cov
(
M̂k,2(t), V̂2(t)

)
= −(2Σp + 1)

∫ t

0

[
Gc(t− s)

(
ρG(t− s) + (1− ρ)GK(t− s)

)]
dā(s), (3.48)

Cov
(
Ẑk,2(t), V̂2(t)

)
= (2Σp + 1)(1− ρ)

∫ t

0

[
G(t− s)

(
(G(t− s))K−1 − 1

)
×
(
ρG(t− s) + (1− ρ)(G(t− s))K

)]
dā(s), (3.49)

where Σp :=
∑∞

i=1 p
i = p/(1− p) <∞.

We remark that there exists a separation of the componentwise correlation and vectorwise
(sequential) dependence for service vectors in the above special case. Specifically, Σp captures all
the sequential dependence from the service vectors, while the correlation of the service times of
parallel tasks is captured in the correlation coefficient ρ.

Next we characterize the multi-dimensional limit process with jumps (M̂MM3, ẐZZ3, V̂3) due to the

random environment, when the limit counting process N̂ is Poisson. Note that when N̂ is Poisson

and the arrival rate λ is constant, the processes with jumps (M̂MM3, ẐZZ3, V̂3) become, for t ≥ 0,

M̂k,3(t) = −λ
∫ t

0
Ĵ(s)dF ck (s), V̂3(t) = −λ

∫ t

0
Ĵ(s)dFm(s), Ẑk,3(t) = λ

∫ t

0
Ĵ(s)d(Fm(s)− Fk(s)),

which are all functionals of the compound Poisson process Ĵ(t). The proof of the following lemma
is provided in §4.

Lemma 3.3. Under the assumptions of Theorem 3.3, when the limit counting process N̂ is Poisson

with rate λu = 1/E[u1] <∞ and E[d2
1] <∞, the multi-dimensional process with jumps

(
M̂MM3, ẐZZ3, V̂3

)
has mean functions: for k = 1, ...,K and t ≥ 0,

E[M̂k,3(t)] = λuE[d1]

∫ t

0
[(t− s)λ(s)]dF ck(t− s), E[V̂3(t)] = λuE[d1]

∫ t

0
[(t− s)λ(s)]dFm(t− s),

E[Ẑk,3(t)] = λuE[d1]

∫ t

0
[(t− s)λ(s)]d(Fk(t− s)− Fm(t− s)), (3.50)

and covariance functions: for j, k = 1, ...,K and each t ≥ 0,

Cov
(
M̂j,3(t), M̂k,3(t)

)
= c2

d

∫ t

0

∫ t

0
[(t− s1 ∨ s2)λ(s1)λ(s2)] dF cj (t− s1)dF ck(t− s2),

Cov
(
M̂j,3(t), Ẑk,3(t)

)
= c2

d

∫ t

0

∫ t

0
[(t− s1 ∨ s2)λ(s1)λ(s2)] dF cj (t− s1)dFk(t− s2)

+ c2
d

∫ t

0

∫ t

0
[(t− s1 ∨ s2)λ(s1)λ(s2)] dF cj (t− s1)dF cm(t− s2),
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Cov
(
Ẑj,3(t), Ẑk,3(t)

)
= c2

d

∫ t

0

∫ t

0
[(t− s1 ∨ s2)λ(s1)λ(s2)] dFj(t− s1)dFk(t− s2)

+ c2
d

∫ t

0

∫ t

0
[(t− s1 ∨ s2)λ(s1)λ(s2)] dF cj (t− s1)dFm(t− s2)

+ c2
d

∫ t

0

∫ t

0
[(t− s1 ∨ s2)λ(s1)λ(s2)] dF ck(t− s1)dFm(t− s2)

+ c2
d

∫ t

0

∫ t

0
[(t− s1 ∨ s2)λ(s1)λ(s2)] dFm(t− s1)dFm(t− s2),

Cov
(
M̂j,3(t), V̂3(t)

)
= c2

d

∫ t

0

∫ t

0
[(t− s1 ∨ s2)λ(s1)λ(s2)] dF cj (t− s1)dFm(t− s2),

Cov
(
Ẑj,3(t), V̂3(t)

)
= c2

d

∫ t

0

∫ t

0
[(t− s1 ∨ s2)λ(s1)λ(s2)] dFj(t− s1)dFm(t− s2)

+ c2
d

∫ t

0

∫ t

0
[(t− s1 ∨ s2)λ(s1)λ(s2)] dFm(t− s1)dF cm(t− s2),

V ar
(
V̂3(t)

)
= c2

d

∫ t

0

∫ t

0
[(t− s1 ∨ s2)λ(s1)λ(s2)] dFm(t− s1)dFm(t− s2),

where c2
d := λuE[d2

1].

When ā(t) = λt for t ≥ 0, where λ is a positive constant, the covariance functions in Lemma 3.3
can be simplified, for example, for j, k = 1, ...,K and each t ≥ 0,

Cov
(
Ẑj,3(t), Ẑk,3(t)

)
= λ2c2

d

(∫ t

0

∫ t

0
[s1 ∧ s2] dFj(s1)dFk(s2) +

∫ t

0

∫ t

0
[s1 ∧ s2] dF cj (s1)dFm(s2)

+

∫ t

0

∫ t

0
[s1 ∧ s2] dF ck(s1)dFm(s2) +

∫ t

0

∫ t

0
[s1 ∧ s2] dFm(s1)dFm(s2)

)
.

When the limiting counting process N̂ is Poisson, we can characterize the limiting processes

(X̂XX, ŶYY ) and Ŝ in Theorem 3.3 as in the following proposition. Its proof directly follows from Lemmas
3.1-3.3 and the stochastic decomposition property.

Proposition 3.1. Under the assumptions of Theorem 3.3, when the limit counting process N̂ is

Poisson with rate λu = 1/E[u1] < ∞ and E[d2
1] < ∞, the limiting processes (X̂XX, ŶYY ) and Ŝ in

Theorem 3.3 have means E[X̂k(t)] = E[M̂k,3(t)], E[Ŷk(t)] = E[Ẑk,3(t)] and E[Ŝ(t)] = E[V̂3(t)] for

k = 1, ...,K and t ≥ 0, where E[M̂k,3(t)], E[Ẑk,3(t)] and E[V̂3(t)] are given in (3.50), and covariance
functions are shown as follows: for each t ≥ 0 and j, k = 1, ...,K,

Cov
(
X̂j(t), X̂k(t)

)
=

3∑
i=1

Cov
(
M̂j,i(t), M̂k,i(t)

)
, Cov

(
Ŷj(t), Ŷk(t)

)
=

3∑
i=1

Cov
(
Ẑj,i(t), Ẑk,i(t)

)
,

(3.51)

Cov
(
X̂j(t), Ŷk(t)

)
=

3∑
i=1

Cov
(
M̂j,i(t), Ẑk,i(t)

)
, V ar

(
Ŝ(t)

)
=

3∑
i=1

V ar
(
V̂i(t)

)
, (3.52)

where Cov
(
M̂j,i(t), M̂k,i(t)

)
, Cov

(
Ẑj,i(t), Ẑk,i(t)

)
, Cov

(
M̂j,i(t), Ẑk,i(t)

)
and V ar

(
V̂i(t)

)
are given in

Lemmas 3.1-3.3, for each t ≥ 0, i = 1, 2, 3, and j, k = 1, ...,K.
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4. Proofs for the Characterization of the Limit Processes

In this section, we provide the proofs for Lemmas 3.1-3.3. We first focus on proving Lemma 3.1.

Proof of Lemma 3.1. Since Â is a time-changed Lévy process with mean 0 satisfying the square-
integrable condition, Â is an L2-martingale, implying that M̂k,1, Ẑk,1 and V̂1 have mean zero, for

k = 1, ...,K. Next, we will only provide the detailed proof for the covariance between M̂j,1(t) and

Ẑk,1(t) in (3.31), for each t ≥ 0 and j, k = 1, ...,K, as the other terms can be obtained analogously.

By the definition of Â, we have, for t ≥ 0 and θ ∈ R,

E
[
eiθÂ(t)

]
= E

[
eiθL(ā(t))

]
= exp

(
−1

2
c2θ2ā(t) + ā(t)

∫
R

[eiθx − 1− iθx1(|x| < 1)]Π(dx)

)
. (4.1)

(See, e.g., §1.8 in [1].) By Proposition II.2.17 in [15], we obtain the quadratic variation of Â as

〈Â〉(t) = c2ā(t) + ā(t)

∫
R
x2Π(dx), t ≥ 0. (4.2)

By Theorem I.4.40 in [15], we have

Cov
(
M̂j,1(t), Ẑk,1(t)

)
= E

[
M̂j,1(t)Ẑk,1(t)

]
= E

[∫ t

0
[F cj (t− s)Fk(t− s)− F cj (t− s)Fm(t− s)]d〈Â〉(s)

]
. (4.3)

Combining (4.2) and (4.3), we can easily see (3.31) holds. This completes the proof. �

We next prove Lemma 3.2. We first provide the definitions of the processes M̂MM2 in (3.19), ẐZZ2

in (3.28) and V̂2 in (3.23). Before stating the definitions, we let Pi be the joint distribution of the
service vectors ηηη1 and ηηηi, i.e., Pi(xxx,yyy) := P (η1 ≤ xxx, ηi ≤ yyy), i ∈ N, and define PI(xxx,yyy) := F (xxx)F (yyy),
for xxx,yyy ∈ RK+ . We next introduce the following notation, which was used in [24]. For a set J , let
|J | be the cardinality of J . Let J 1

k and J 2
N−k be the partition of A := {1, ..., N}, where N is a

positive integer, J 1
k ∩ J 2

N−k = Ø, |J 1
k | = k and |J 2

N−k| = N − k. Note that J 1
0 = J 2

0 = Ø. Let

Φ : RN → R. For xxx,yyy,zzz ∈ RN and xxx ≤ yyy, define ΦJ
1
k ,J

2
N−k(xxx;yyy) := Φ(zzz), where zj = xj for j ∈ J 1

k

and zj = yj for j ∈ J 2
N−k. Then, we define

∆Φ(xxx;yyy) :=
N∑
k=0

(−1)k
∑

J 1
k ,J

2
N−k partitions of A

ΦJ
1
k ,J

2
N−k(xxx;yyy). (4.4)

This notion “∆” can be interpreted as the following: for a real-valued function Φ defined on RN ,
∆Φ(xxx;yyy) represents the increment of Φ between xxx and yyy for each xxx,yyy ∈ RN satisfying xxx ≤ yyy. For
N = 1, ∆Φ(x; y) = Φ(y)−Φ(x) for x ≤ y. For N = 2, ∆Φ(xxx;yyy) = Φ(y1, y2)−Φ(x1, y2)−Φ(x2, y1) +

Φ(x1, x2) for xxx = (x1, x2) ≤ yyy = (y1, y2). In the following proofs, we will use ∆K̂(xxx;yyy) and ∆F (xxx;yyy)
for N = K + 1 and N = K, respectively, and use ∆Γc(xxx;yyy), ∆Pi(xxx;yyy) and ∆PI(xxx;yyy) for N = 2K.

Definition 4.1. For k = 1, ...,K, the processes M̂k,2 in (3.19), V̂2 in (3.23) and Ẑk,2 in (3.28) are
defined as mean-square integrals, i.e., for each t ≥ 0,

lim
`→∞

E[(M̂k,2(t)− M̂k,2,`(t))
2] = 0, (4.5)

lim
`→∞

E[(V̂2(t)− V̂2,`(t))
2] = 0, (4.6)

lim
`→∞

E[(Ẑk,2(t)− Ẑk,2,`(t))2] = 0, (4.7)
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where

M̂k,2,`(t) := −
∫ t

0

∫
RK
+

1k,`,t(s,xxx)dK̂(ā(s),xxx),

= −
∑̀
i=1

(
K̂(ā(s`i), (t− s`i)eeek)− K̂(ā(s`i−1), (t− s`i)eeek)

)
= −

∑̀
i=1

∆K̂
(

(ā(s`i−1),000); (ā(s`i), (t− s`i)eeek)
)
, (4.8)

V̂2,`(t) :=

∫ t

0

∫
RK
+

1m,`,t(s,xxx)dK̂(ā(s),xxx)

=
∑̀
i=1

(
K̂(ā(s`i), (t− s`i)eee)− K̂(ā(s`i−1), (t− s`i)eee)

)
=
∑̀
i=1

∆K̂
(

(ā(s`i−1),000); (ā(s`i), (t− s`i)eee)
)
, (4.9)

Ẑk,2,`(t) := −M̂k,2,`(t)− V̂2,`(t), (4.10)

and

1k,`,t(s,xxx) :=
∑̀
i=1

1(s`i−1 < s ≤ s`i)1(xk ≤ t− s`i), (4.11)

1m,`,t(s,xxx) :=
∑̀
i=1

1(s`i−1 < s ≤ s`i)1(xj ≤ t− s`i , ∀j = 1, ...,K), (4.12)

with 0 = s`0 < s`1 < ... < s`` = t and max1≤i≤` |s`i − s`i−1| → 0 as `→∞. We call {s`i : 0 ≤ i ≤ `} a
partition of [0, t].

Before we show the well-definedness and covariance structure for the multi-dimensional process

(M̂MM2, ẐZZ2, V̂2) in Lemma 3.2, we also need the following lemmas on the properties of Γc(·, ·) defined
in (3.5).

Lemma 4.1. There exists a finite positive number C0 such that

|Γc(xxx,yyy)| < C0,

for any xxx,yyy ∈ RK+ , where Γc(·, ·) is defined in (3.5).

Proof. By the definition of Γc(·, ·) in (3.5), for any xxx,yyy ∈ RK+ ,

|Γc(xxx,yyy)| =
∣∣∣∣∣
∞∑
i=2

(
E[γ1(xxx)γi(yyy)] + E[γ1(yyy)γi(xxx)]

)∣∣∣∣∣
≤
∞∑
i=2

(∣∣E[γ1(xxx)γi(yyy)]
∣∣+
∣∣E[γ1(yyy)γi(xxx)]

∣∣)
=
∞∑
i=2

(∣∣E[1(ηηη1 ≤ xxx)1(ηηηi ≤ yyy)]− F (xxx)F (yyy)
∣∣+
∣∣E[1(ηηη1 ≤ yyy)1(ηηηi ≤ xxx)]− F (xxx)F (yyy)

∣∣)
≤ 2

∞∑
i=1

αi,
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where the last inequality follows from the definition of α-mixing coefficients. By Assumption 1, we
see that

∑∞
i=1 αi <∞. Thus, Lemma 4.2 holds by taking C0 = 2

∑∞
i=1 αi. �

Lemma 4.2. For any xxx,yyy ∈ RK+ with xxx ≤ yyy, we have

∆Γc((xxx,xxx); (yyy,yyy)) =
∞∑
i=2

(2∆Pi((xxx,xxx); (yyy,yyy))− 2∆PI((xxx,xxx); (yyy,yyy))) .

Proof. Note that, for any xxx,yyy ∈ RK+ ,

Γc(xxx,yyy) =
∞∑
i=2

(
E[γ1(xxx)γi(yyy)] + E[γ1(yyy)γi(xxx)]

)
=
∞∑
i=2

(
E[1(ηηη1 ≤ xxx)1(ηηηi ≤ yyy)]− F (xxx)F (yyy) + E[1(ηηη1 ≤ yyy)1(ηηηi ≤ xxx)]− F (xxx)F (yyy)

)
=
∞∑
i=2

(
Pi(xxx,yyy) + Pi(yyy,xxx)− 2PI(xxx,yyy)

)
.

By (4.4), Lemma 4.1 and Fubini’s Theorem, we see that Lemma 4.2 holds. �

Proof of Lemma 3.2. To show the well-definedness of the multidimensional process (M̂MM2, ẐZZ2, V̂2),

by (3.19), (3.23) and (3.28), it suffices to prove that M̂k,2 and V̂2 are well-defined, k = 1, ...,K. To
achieve that, by Definition 4.1, it is sufficient to prove, for each t ≥ 0,

lim
l,`→∞

E
[
(M̂k,2,l(t)− M̂k,2,`(t))

2
]

= 0, (4.13)

lim
l,`→∞

E
[
(V̂2,l(t)− V̂2,`(t))

2
]

= 0, (4.14)

where we define M̂k,2,l(t), V̂2,l(t) and their associated partition {sli : 0 ≤ i ≤ l} of [0, t] similarly as

M̂k,2,`(t) in (4.8), V̂2,`(t) in (4.9) and the partition {s`i : 0 ≤ i ≤ `} of [0, t] in Definition 4.1 for each
t ≥ 0, respectively.

We provide the detailed proof of (4.14) here, and the proof of (4.13) follows similarly. Without
loss of generality, we assume that the partition {s`i : 0 ≤ i ≤ `} of [0, t] is finer than the partition
{sli : 0 ≤ i ≤ l} of [0, t]. Thus, by definition, we can write

V̂2,l(t)− V̂2,`(t) =
l∑

i=1

∑
j:sli−1<s

`
j≤sli

∆K̂
(

(ā(s`j−1), (t− sli)eee); (ā(s`j), (t− s`j)eee)
)
, t ≥ 0. (4.15)

By direct calculations using (3.4), we can show that for 0 ≤ t1 ≤ t2 < t′1 ≤ t′2, 0 ≤ x ≤ y and
0 ≤ x′ ≤ y′,

E

[(
∆K̂ ((ā(t1), xeee); (ā(t2), yeee))

)2
]

= (ā(t2)− ā(t1))
(
(∆F (xeee; yeee))(1−∆F (xeee; yeee))

+ ∆Γc((xeee, xeee); (yeee, yeee))
)
, (4.16)

E
[
∆K̂((ā(t1), xeee); (ā(t2), yeee))∆K̂((ā(t′1), x′eee); (ā(t′2), y′eee))

]
= 0. (4.17)

By these two equations and (4.15), we obtain

E
[(
V̂2,l(t)− V̂2,`(t)

)2]
=

l∑
i=1

∑
j:sli−1<s

`
j≤sli

(ā(s`j)− ā(s`j−1))

(
(∆F ((t− sli)eee; (t− s`j)eee))(1−∆F ((t− sli)eee; (t− s`j)eee))
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+ ∆Γc(((t− sli)eee, (t− sli)eee); ((t− s`j)eee, (t− s`j)eee))
)

≤
l∑

i=1

∑
j:sli−1<s

`
j≤sli

(ā(s`j)− ā(s`j−1))

(
(∆F ((t− sli)eee; (t− s`j)eee))

+ ∆Γc(((t− sli)eee, (t− sli)eee); ((t− s`j)eee, (t− s`j)eee))
)

≤
l∑

i=1

(ā(sli)− ā(sli−1))

(
∆F ((t− sli)eee; (t− sli−1)eee)

+ ∆Γc(((t− sli)eee, (t− sli)eee); ((t− s`j∗i )eee, (t− s`j∗i )eee))

)
≤ max

1≤i≤l

{
ā(sli)− ā(sli−1)

}(
1 +

l∑
i=1

∆Γc(((t− sli)eee, (t− sli)eee); ((t− s`j∗i )eee, (t− s`j∗i )eee))

)
,

where j∗i := argmax
j:sli−1<s

`
j≤sli
{∆Γc(((t − sli)eee, (t − sli)eee); ((t − s`j)eee, (t − s`j)eee))}, i = 1, ..., l, and the last

inequality follows from the fact that
∑l

i=1 ∆F ((t− sli)eee; (t− sli−1)eee) ≤ Fm(t) ≤ 1. Note that

l∑
i=1

∆Γc(((t− sli)eee, (t− sli)eee); ((t− s`j∗i )eee, (t− s`j∗i )eee))

= 2
l∑

i=1

∞∑
q=2

(
∆Pq(((t− sli)eee, (t− sli)eee); ((t− s`j∗i )eee, (t− s`j∗i )eee))

−∆PI(((t− sli)eee, (t− sli)eee); ((t− s`j∗i )eee, (t− s`j∗i )eee))
)

= 2
∞∑
q=2

l∑
i=1

(
∆Pq(((t− sli)eee, (t− sli)eee); ((t− s`j∗i )eee, (t− s`j∗i )eee))

−∆PI(((t− sli)eee, (t− sli)eee); ((t− s`j∗i )eee, (t− s`j∗i )eee))
)

= 2
∞∑
q=2

l∑
i=1

(P (G1,i ∩Hq,1,i)− P (G1,i)P (Hq,1,i))

≤ 2

∞∑
q=2

sup
Hq,1∈σ(ηηηq)

l∑
i=1

(P (G1,i ∩Hq,1)− P (G1,i)P (Hq,1))

= 2
∞∑
q=2

sup
Hq,1∈σ(ηηηq)

(P (G1 ∩Hq,1)− P (G1)P (Hq,1))

≤ 2
∞∑
i=1

αi := C0,

where G1,i := {(t− sli)eee ≤ ηηη1 ≤ (t− s`j∗i )eee}, Hq,1,i := {(t− sli)eee ≤ ηηηq ≤ (t− s`j∗i )eee}, G1 = ∪li=1G1,i,

and σ(ηηηq) is the σ-algebra generated by ηηηq. Here the first equality follows from Lemma 4.2. The
second equality holds by Fubini’s Theorem and Lemma 4.1, and the third equality follows by the
definition of the increment in high dimensions using (4.4). The first inequality holds by the fact that
Hq,1,i, i = 1, ..., l, are in σ(ηηηq), and the fourth equality is obtained by noting that G1,i, i = 1, ..., l,
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are mutually exclusive. The last inequality is directly implied by the definition of the strong mixing
coefficients. Thus, we have

E
[(
V̂2,l(t)− V̂2,`(t)

)2] ≤ max
1≤i≤l

{
ā(sli)− ā(sli−1)

}
(1 + C0).

Since ā(·) is continuous and max1≤i≤l(ā(sli)− ā(sli−1))→ 0 as l→∞, we have proved (4.14).

To see the Gaussian property of the multidimensional process (M̂MM2, ẐZZ2, V̂2), we first note that, for

a fixed t ≥ 0, M̂k,2,`(t), Ẑk,2,`(t) and V̂2,`(t) have normal distributions with mean zeros, k = 1, ...,K.

By the definition of M̂k,2(t), Ẑk,2(t) and V̂2(t), we see that M̂k,2,`(t), Ẑk,2,`(t) and V̂2,`(t) converge to

M̂k,2(t), Ẑk,2(t) and V̂2(t) in probability as `→∞ for each t ≥ 0 and k = 1, ...,K. Following from

Lemma 4.9.4 of [23], we immediately see that M̂k,2(t), Ẑk,2(t) and V̂2(t) are normally distributed
with mean zeros, for each t ≥ 0 and k = 1, ...,K.

We now show M̂k,2(t), Ẑk,2(t) and V̂2(t) are continuous in t ≥ 0, k = 1, ...,K. Since the proofs for

the continuity property of the aforementioned processes are similar, we only consider V̂2. Without
loss of generality, we assume V̂2,`(t) and V̂2,`(s) have the same partition {s`i : 0 ≤ i ≤ `} of [0, t] for
0 ≤ s ≤ t. Note from (4.9) that

V̂2,`(t)− V̂2,`(s) =
∑̀
i=1

∆K̂((ā(s`i−1), (s− s`i)eee); (ā(s`i), (t− s`i)eee)),

where we set K̂(t,xxx) = 0 for xxx < 000. By (4.16) and (4.17), we further obtain

E
[(
V̂2,`(t)− V̂2,`(s)

)2]
=
∑̀
i=1

(ā(s`i)− ā(s`i−1))
[
(∆F ((s− s`i)eee; (t− s`i)eee))(1−∆F ((s− s`i)eee; (t− s`i)eee)

+∆Γc(((s− s`i)eee, (s− s`i)eee); ((t− s`i)eee, (t− s`i)eee))
]
.

Thus, we have

E
[(
V̂2(t)− V̂2(s)

)2]
= lim

`→∞
E
[(
V̂2,`(t)− V̂2,`(s)

)2]
=

∫ t

0
[∆F ((s− u)eee; (t− u)eee))(1−∆F ((s− u)eee; (t− u)eee)

+ ∆Γc(((s− u)eee, (s− u)eee); ((t− u)eee, (t− u)eee))]dā(u).

The second equality follows by applying Lebesgue’s theorem, while the first equality follows from
the definition of V̂2,`(t), the fact that V̂2,`(t) is normally distributed and applying Lemma 4.9.4 in

[23]. Thus, we have shown that V̂2,`(·) is continuous in probability. By Lemma 4.9.6 in [23], to

show that the sample paths of V̂2,`(·) are continuous a.s., it suffices to show that for any partition

{s`i : 0 ≤ i ≤ `} of [0, t],

lim
L→∞

lim sup
`→∞

P

(∑̀
i=1

(
V̂2(s`i)− V̂2(s`i−1)

)2 ≥ L) = 0. (4.18)

By Markov inequality,

P

(∑̀
i=1

(
V̂2(s`i)− V̂2(s`i−1)

)2 ≥ L)
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≤ 1

L

∑̀
i=1

E
[(
V̂2(s`i)− V̂2(s`i−1)

)2]
=

1

L

∑̀
i=1

∫ t

0

[
(∆F ((s`i−1 − u)eee; (s`i − u)eee))(1−∆F ((s`i−1 − u)eee; (s`i − u)eee))

+ ∆Γc(((s`i−1 − u)eee, (s`i−1 − u)eee); ((s`i − u)eee, (s`i − u)eee))
]
dā(u)

≤ 1

L

∑̀
i=1

∫ t

0

[
∆F ((s`i−1 − u)eee; (s`i − u)eee)

+ ∆Γc(((s`i−1 − u)eee, (s`i−1 − u)eee); ((s`i − u)eee, (s`i − u)eee))
]
dā(u)

≤ 1

L
ā(t)(1 + C0),

where C0 is specified in Lemma 4.1. Here the last inequality is implied by
∑`

i=1 ∆F ((s`i−1−u)eee; (s`i−
u)eee) ≤ Fm(t) ≤ 1, together with the fact that∑̀

i=1

∆Γc(((s`i−1 − u)eee, (s`i−1 − u)eee); ((s`i − u)eee, (s`i − u)eee))

= 2
∑̀
i=1

∞∑
q=2

(
∆Pq(((s

`
i−1 − u)eee, (s`i−1 − u)eee); ((s`i − u)eee, (s`i − u)eee))

−∆PI(((s
`
i−1 − u)eee, (s`i−1 − u)eee); ((s`i − u)eee, (s`i − u)eee))

)
= 2

∞∑
q=2

∑̀
i=1

(
∆Pq(((s

`
i−1 − u)eee, (s`i−1 − u)eee); ((s`i − u)eee, (s`i − u)eee))

−∆PI(((s
`
i−1 − u)eee, (s`i−1 − u)eee); ((s`i − u)eee, (s`i − u)eee))

)
= 2

∞∑
q=2

∑̀
i=1

(P (G2,i ∩Hq,2,i)− P (G2,i)P (Hq,2,i))

≤ 2

∞∑
q=2

sup
Hq,2∈σ(ηηηq)

∑̀
i=1

(P (G2,i ∩Hq,2)− P (G2,i)P (Hq,2))

= 2
∞∑
q=2

sup
Hq,2∈σ(ηηηq)

(P (G2 ∩Hq,2)− P (G2)P (Hq,2))

≤ 2

∞∑
i=1

αi := C0,

where G2,i := {(s`i−1−u)eee ≤ ηηη1 ≤ (s`i −u)eee}, Hq,2 := {(s`i−1−u)eee ≤ ηηηq ≤ (s`i −u)eee}, G2 = ∪`i=1G2,i,
and σ(ηηηq) is the σ-algebra generated by ηηηq. Here the first equality follows from Lemma 4.2. The
second equality holds by Fubini’s Theorem and Lemma 4.1, and the third equality follows from
(4.4). The first inequality holds by the fact that Hq,2,i, i = 1, ..., `, are in σ(ηηηq), and the fourth
equality is obtained by noting that G2,i, i = 1, ..., l, are mutually exclusive. The last inequality
is directly implied by the definition of the strong mixing coefficients. Therefore, we can see that
(4.18) holds, which implies that V̂2(·) is a continuous process. Therefore, we have proved that the

multidimensional process (M̂MM2, ẐZZ2, V̂2) is Gaussian with mean zero and has continuous sample paths.
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Next we compute the covariance functions of M̂j,2(t), Ẑk,2(t) and V̂ (t), for each t ≥ 0 and
j, k = 1, ...,K. Here we only show (3.47), and the rest of the formulas can be derived similarly.

From Definition 4.1, the processes M̂k,2,`(·) in (4.8), V̂2,`(·) in (4.9) and Ẑk,2,`(·) in (4.10) can be
written as, for k = 1, ...,K,

M̂k,2,`(t) =−
∑̀
i=1

∆K̂
(

(ā(s`i−1),000); (ā(s`i), (t− s`i)eeek)
)

=−
∑̀
i=1

[
K̂(ā(s`i), (t− s`i)eeek)− K̂(ā(s`i−1), (t− s`i)eeek)

]
, t ≥ 0, (4.19)

V̂2,`(t) =
∑̀
i=1

∆K̂
(

(ā(s`i−1),000); (ā(s`i), (t− s`i)eee)
)

=
∑̀
i=1

[
K̂(ā(s`i), (t− s`i)eee)− K̂(ā(s`i−1), (t− s`i)eee)

]
, t ≥ 0, (4.20)

Ẑk,2,`(t) = −M̂k,2,`(t)− V̂2,`(t)

=
∑̀
i=1

[
K̂(ā(s`i), (t− s`i)eeek)− K̂(ā(s`i−1), (t− s`i)eeek)

−K̂(ā(s`i), (t− s`i)eee) + K̂(ā(s`i−1), (t− s`i)eee)
]
, t ≥ 0, (4.21)

where {s`i : 0 ≤ i ≤ `} is a partition of [0, t]. Then, for j, k = 1, ...,K,

Cov
(
M̂j,2,`(t), Ẑk,2,`(t)

)
= Cov

(
−
∑̀
i=1

[
K̂(ā(s`i), (t− s`i)eeej)− K̂(ā(s`i−1), (t− s`i)eeej)

]
,

∑̀
l=1

[
K̂(ā(s`l ), (t− s`l )eeek)− K̂(ā(s`l−1), (t− s`l )eeek)− K̂(ā(s`l ), (t− s`l )eee) + K̂(ā(s`l−1), (t− s`l )eee)

])

= −
∑̀
i=1

∑̀
l=1

Cov
([
K̂(ā(s`i), (t− s`i)eeej)− K̂(ā(s`i−1), (t− s`i)eeej)

]
,

[
K̂(ā(s`l ), (t− s`l )eeek)− K̂(ā(s`l−1), (t− s`l )eeek)− K̂(ā(s`l ), (t− s`l )eee) + K̂(ā(s`l−1), (t− s`l )eee)

])
.

Using (3.4) with some calculations, if s`i ≤ s`l−1 and s`l ≤ s`i−1,

Cov
([
K̂(ā(s`i), (t− s`i)eeej)− K̂(ā(s`i−1), (t− s`i)eeej)

]
,[

K̂(ā(s`l ), (t− s`l )eeek)− K̂(ā(s`l−1), (t− s`l )eeek)− K̂(ā(s`l ), (t− s`l )eee) + K̂(ā(s`l−1), (t− s`l )eee)
])

= 0,

and if s`i = s`l ,

Cov
([
K̂(ā(s`i), (t− s`i)eeek)− K̂(ā(s`i−1), (t− s`i)eeek)

]
,[

K̂(ā(s`l ), (t− s`l )eeek)− K̂(ā(s`l−1), (t− s`l )eeek)− K̂(ā(s`l ), (t− s`l )eee) + K̂(ā(s`l−1), (t− s`l )eee)
])

= (ā(s`i)− ā(s`i−1))
[
Fj,k(t− s`i , t− s`i)− Fm(t− s`i)− Fj(t− s`i)Fk(t− s`i)
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+ Fj(t− s`i)Fm(t− s`i) + Γcj,k(t− s`i , t− s`i)− Γcj,m(t− s`i , t− s`i)
]
.

Thus, for each t ≥ 0 and j, k = 1, ...,K,

Cov
(
M̂j,2,`(t), Ẑk,2,`(t)

)
=
∑̀
i=1

(ā(s`i)− ā(s`i−1))
[
Fm(t− s`i)− Fj,k(t− s`i , t− s`i) + Fj(t− s`i)Fk(t− s`i)

− Fj(t− s`i)Fm(t− s`i)− Γcj,k(t− s`i , t− s`i) + Γcj,m(t− s`i , t− s`i)
]
.

By Lebesgue’s theorem, we obtain, for each t ≥ 0 and j, k = 1, ...,K,

lim
`→∞

Cov
(
M̂j,2,`(t), Ẑk,2,`(t)

)
=

∫ t

0

[
Fm(t− s)− Fj,k(t− s, t− s) + Fj(t− s)Fk(t− s)

− Fj(t− s)Fm(t− s)− Γcj,k(t− s, t− s) + Γcj,m(t− s, t− s)
]
dā(s).

Following the analogous argument in Lemma 5.1 of [24], we observe that, for each t ≥ 0 and
j, k = 1, ...,K,

lim
`→∞

Cov
(
M̂j,2,`(t), Ẑk,2,`(t)

)
= Cov

(
M̂j,2(t), Ẑk,2(t)

)
.

Therefore, we can see (3.39) holds. The proof for Lemma 3.2 is completed. �

We will next compute the covariance functions of M̂j,2(t), Ẑk,2(t) and V̂ (t), for each t ≥ 0 and
j, k = 1, ...,K, when the sequence of service vectors is generated from the DVAR(1) procedure in
(3.44) and each service vector is distributed according to F in (3.43).

Proof of Corollary 3.1. Without loss of generality, we here only show (3.47), as the other covariance
formulas can be obtained similarly. Note from (3.5) and (3.44) that, for t ≥ 0 and j, k = 1, ...,K,

Γcj,k(t, t) = 2
∞∑
i=1

(
P (η1

j ≤ t, η1+i
k ≤ t)− Fj(t)Fk(t)

)
= 2

∞∑
i=1

(
piFj,k(t, t) + (1− pi)Fj(t)Fk(t)− Fj(t)Fk(t)

)
= 2Σp(Fj,k(t, t)− Fj(t)Fk(t)), (4.22)

and

Γcj,m(t, t) = 2
∞∑
i=1

(
P (η1

j ≤ t, η1+i
m ≤ t)− Fj(t)Fm(t)

)
= 2

∞∑
i=1

(
piFm(t) + (1− pi)Fj(t)Fm(t)− Fj(t)Fm(t)

)
= 2Σp(Fm(t)− Fj(t)Fm(t)). (4.23)

Since the joint distribution function F satisfies (3.43), we have, for each t ≥ 0 and j, k = 1, ...,K
with j 6= k,

Fj,k(t, t) = ρG(t) + (1− ρ)(G(t))2, Fj(t) = Fk(t) = G(t), (4.24)

Fm(t) = ρG(t) + (1− ρ)(G(t))K . (4.25)

Plugging (4.22)-(4.25) into (3.39) with some simple calculation, we immediately see (3.47) holds.
The proof of Lemma 3.2 is completed. �

We next provide the proof for Lemma 3.3.
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Proof of Lemma 3.3. Here we only show Cov(M̂j,3(t), Ẑk,3(t)), since other mean and covariance

functions of M̂j,3(t), Ẑk,3(t) and V̂3(t), for t ≥ 0 and j, k = 1, ...,K, follow from the similar argument.

From the assumption that N̂ is Poisson, we have, by Fubini’s theorem, for t ≥ 0 and j, k = 1, ...,K,

Cov
(
M̂j,3(t), Ẑk,3(t)

)
= E

[
(M̂j,3(t)− E[M̂j,3(t)])(Ẑk,3(t)− E[Ẑk,3(t)])

]
= E

[∫ t

0

∫ t

0
(Ĵ(t)− Ĵ(s1)− λuE[d1](t− s1))

×(Ĵ(t)− Ĵ(s2)− λuE[d1](t− s2))λ(s1)λ(s2)dF cj (t− s1)dFk(t− s2)
]

+ E

[∫ t

0

∫ t

0
(Ĵ(t)− Ĵ(s1)− λuE[d1](t− s1))

×(Ĵ(t)− Ĵ(s2)− λuE[d1](t− s2))λ(s1)λ(s2)dF cj (t− s1)dF cm(t− s2)
]

=

∫ t

0

∫ t

0
E
[
(Ĵ(t)− Ĵ(s1)− λuE[d1](t− s1))(Ĵ(t)− Ĵ(s2)− λuE[d1](t− s2))

]
× λ(s1)λ(s2)dF cj (t− s1)dFk(t− s2)

+

∫ t

0

∫ t

0
E
[
(Ĵ(t)− Ĵ(s1)− λuE[d1](t− s1))(Ĵ(t)− Ĵ(s2)− λuE[d1](t− s2))

]
× λ(s1)λ(s2)dF cj (t− s1)dF cm(t− s2)

= λuE[d2
1]

∫ t

0

∫ t

0
[((t− s1) ∧ (t− s2))λ(s1)λ(s2)] dF cj (t− s1)dFk(t− s2)

+ λuE[d2
1]

∫ t

0

∫ t

0
[((t− s1) ∧ (t− s2))λ(s1)λ(s2)] dF cj (t− s1)dF cm(t− s2).

Therefore, the proof of Lemma 3.3 is completed. �

5. Proof of Theorem 3.3

In this section, we prove the FCLT for the processes
(
X̂XX
n
, ŶYY

n
, Ŝn

)
, Theorem 3.3. We first give

representations for the processes
(
X̂XX
n
, ŶYY

n
, Ŝn

)
by the multiparameter sequential empirical processes

K̂n.

Lemma 5.1 (Representations of X̂XX
n
, ŶYY

n
and Ŝn). The processes X̂XX

n
, ŶYY

n
and Ŝn in (3.15) can be

represented as: for each t ≥ 0 and k = 1, ...,K,

X̂XX
n
(t) =M̂MM

n

1 (t) + M̂MM
n

2 (t) + M̂MM
n

3 (t), M̂MM
n

i (t) :=
(
M̂n

1,i(t), ..., M̂
n
K,i(t)

)
, i = 1, 2, 3, (5.1)

ŶYY
n
(t) =ẐZZ

n

1 (t) + ẐZZ
n

2 (t) + ẐZZ
n

3 (t), ẐZZ
n

i (t) :=
(
Ẑn1,i(t), ..., Ẑ

n
K,i(t)

)
, i = 1, 2, 3, (5.2)

Ŝn(t) =V̂ n
1 (t) + V̂ n

2 (t) + V̂ n
3 (t), (5.3)

where

M̂n
k,1(t) :=

∫ t

0
F ck(ξn(t)− ξn(s))dÂn(s) = Ân(t)−

∫ t

0
Ân(s)dF ck(ξn(t)− ξn(s)), (5.4)

M̂n
k,2(t) :=

∫ t

0

∫
RK
+

1(xk > ξn(t)− ξn(s))dK̂n
(
Ān(s),xxx

)
=−

∫ t

0

∫
RK
+

1(xk ≤ ξn(t)− ξn(s))dK̂n
(
Ān(s),xxx

)
, (5.5)
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M̂n
k,3(t) :=

∫ t

0
[
√
n(F ck(ξn(t)− ξn(s))− F ck(t− s))]dā(s), (5.6)

V̂ n
1 (t) :=

∫ t

0
Fm(ξn(t)− ξn(s))dÂn(s) = −

∫ t

0
Ân(s)dFm(ξn(t)− ξn(s)), (5.7)

V̂ n
2 (t) :=

∫ t

0

∫
RK
+

1(xj ≤ ξn(t)− ξn(s), ∀ j)dK̂n
(
Ān(s),xxx

)
, (5.8)

V̂ n
3 (t) :=

∫ t

0
[
√
n(Fm(ξn(t)− ξn(s))− Fm(t− s))]dā(s), (5.9)

Ẑnk,1(t) :=

∫ t

0
(Fk(ξ

n(t)− ξn(s))− Fm(ξn(t)− ξn(s)))dÂn(s)

=−
∫ t

0
Ân(s)d(Fk(ξ

n(t)− ξn(s))− Fm(ξn(t)− ξn(s))), (5.10)

Ẑnk,2(t) :=

∫ t

0

∫
RK
+

(1(xk ≤ ξn(t)− ξn(s))− 1(xj ≤ ξn(t)− ξn(s), ∀ j)) dK̂n
(
Ān(s),xxx

)
=− M̂n

k,2(t)− V̂ n
2 (t), (5.11)

Ẑnk,3(t) :=

∫ t

0
[
√
n(Fk(ξ

n(t)− ξn(s))− Fk(t− s))−
√
n(Fm(ξn(t)− ξn(s))− Fm(t− s))]dā(s)

=− M̂n
k,3(t)− V̂ n

3 (t), (5.12)

and the integrals in (5.4), (5.5), (5.7), (5.8), (5.10) and (5.11) are defined as Stieltjes integrals for
functions of bounded variation as integrators.

Proof. The representations of the processes X̂XX
n
, ŶYY

n
and Ŝn follow from equations (3.7), (3.8), (3.9),

(3.15) and direct calculations. The second equalities in (5.4), (5.7) and (5.10) follow from integration
by parts, and the second equalities in (5.5), (5.8) and (5.11) are obtained from simple algebra. �

We first prove the convergence of
(
M̂MM

n

1 , ẐZZ
n

1 , V̂
n

1 , M̂MM
n

3 , ẐZZ
n

3 , V̂
n

3

)
.

Lemma 5.2.(
M̂MM

n

1 , M̂MM
n

3 , ẐZZ
n

1 , V̂
n

1 , ẐZZ
n

3 , V̂
n

3

)
⇒
(
M̂MM1, M̂MM3, ẐZZ1, V̂1, ẐZZ3, V̂VV 3

)
in (D4K+2,M1) as n→∞. (5.13)

To show this lemma, we first prove some continuity properties of functional mappings in the M1

topology. We define the mapping Φ : C↑ × D2 → D4K+2 by

Φ(x, y, z) = ($k(x, z), ϕk(x, z), ψ(x, z), fk(y), gk(y), h(y), k = 1, ...,K), (5.14)

where the mappings $k : C↑ × D→ D, ϕk : C↑ × D→ D, ψ : C↑ × D→ D, fk : D→ D, gk : D→ D
and h : D→ D are defined by

$k(x, z)(t) :=z(t)−
∫ t

0
z(s)dF ck(x(t)− x(s)), t ≥ 0, (5.15)

ϕk(x, z)(t) :=

∫ t

0
z(s)d(Fm(x(t)− x(s))− Fk(x(t)− x(s))), t ≥ 0, (5.16)

ψ(x, z)(t) :=−
∫ t

0
z(s)dFm(x(t)− x(s)), t ≥ 0, (5.17)

fk(y)(t) :=−
∫ t

0
[(y(t)− y(s))λ(s)]dF ck(t− s), t ≥ 0, (5.18)

gk(y)(t) :=−
∫ t

0
[(y(t)− y(s))λ(s)]d(Fk(t− s)− Fm(t− s)), t ≥ 0, (5.19)
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h(y)(t) :=−
∫ t

0
[(y(t)− y(s))λ(s)]dFm(t− s), t ≥ 0, (5.20)

for x ∈ C↑ and y, z ∈ D and k = 1, ...,K. We now state the continuity property of the above
mappings in the following lemma.

Lemma 5.3. For xn, x ∈ C↑, yn, y ∈ D and zn, z ∈ D, n ∈ N, if (xn, yn, zn) → (x, y, z) in

(C↑, ‖ · ‖)× (D2,M1) as n→∞, then Φ(xn, yn, zn)→ Φ(x, y, z) in (D4K+2,M1) as n→∞.

Remark 5.1. We provide a counter example that the continuity of F (·) is necessary in order to
prove Lemma 5.3. We focus on the mapping ψ in (5.17). Let xn(t) = x(t) = t for t ≥ 0, and

Fm(t) =

 0 if 0 ≤ t < 1/2,
1/3 if 1/2 ≤ t < 1,
1 if t ≥ 1.

Here Fm is the c.d.f of a random variable taking values 1/2 with probability 1/3 and 1 with
probability 2/3. We thus have, for t ≥ 0 and n ∈ N,

ψ(xn, zn)(t) =

∫ t

0
zn(t− s)dFm(s) =


0 if 0 ≤ t < 1/2,
1
3zn

(
t− 1

2

)
if 1/2 ≤ t < 1,

1
3zn

(
t− 1

2

)
+ 2

3zn (t− 1) if t ≥ 1.

Similarly, for t ≥ 0,

ψ(x, z)(t) =

∫ t

0
z(t− s)dFm(s) =


0 if 0 ≤ t < 1/2,
1
3z
(
t− 1

2

)
if 1/2 ≤ t < 1,

1
3z
(
t− 1

2

)
+ 2

3z (t− 1) if t ≥ 1.

For n ∈ N, let zn(t) = 1
21
(
t ∈

[
1
2 − 1

n+2 ,
1
2

))
+ 1

(
t ∈

[
1
2 , 1
))
− 1

(
t ∈ [1,∞)

)
, for t ≥ 0. Let

z(t) = 1
(
t ∈

[
1
2 , 1
))
− 1
(
t ∈ [1,∞)

)
, for t ≥ 0. Thus, we obtain that for t ≥ 0 and n ∈ N,

ψ(xn, zn)(t) =
1

6
1
(
t ∈
[
1− 1

n+ 2
, 1
))

+
1

3
1
(
t ∈
[
1,

3

2
− 1

n+ 2

))
+

2

3
1
(
t ∈
[3

2
− 1

n+ 2
,
3

2

))
+

1

3
1
(
t ∈
[3

2
, 2
))
− 1
(
t ∈ [2,∞)

)
,

and

ψ(x, z)(t) =
1

3
1 (t ∈ [1, 2))− 1 (t ∈ [2,∞)) .

See the plots of ψ(xn, zn) and ψ(x, z) in Figure 1.

0

t1
3

2
� 1

n + 2

3

2 2

 (xn, zn)

1 � 1

n + 2

�1

2/3

1/3

1/6

(a) The function ψ(xn, zn)

t1 2

 (x, z)

0

�1

1/3

(b) The function ψ(x, z)

Figure 1. The functions ψ(xn, zn) and ψ(x, z)
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It is evident that zn → z in (D,M1) as n→∞ (refer to the example in page 81 of [41]). Notice that
ψ(x, z)(t) = 1/3 for t ∈ [1, 7/4], and thus, ψ(x, z)(t) is a continuous function on [1, 7/4]. Therefore,
ψ(xn, zn)→ ψ(x, z) in (D([1, 7/4],R),M1) is equivalent to ψ(xn, zn)→ ψ(x, z) in (C([1, 7/4],R), ‖·‖)
as n→∞ (see, e.g., §3.3 of Chapter 3 in [41]). By noting that sup1≤t≤7/4 ‖ψ(xn, zn)(t)−ψ(x, z)(t)‖ =

1/3, we conclude that ψ(xn, zn) does not converge to ψ(x, z) in the Skorohod M1 topology on the
domain [1, 7/4] as n→∞, directly implying that the mapping ψ is not continuous in the Skorohod
M1 topology.

Proof of Lemma 5.3. We first observe that as a function in t,
∫ t

0 z(s)dF (x(t)− x(s)) is continuous
for any continuous distribution function F , z ∈ D and x ∈ C↑. (For a proof, we refer to Step 3
in the proof of Lemma 6.3 in [36].) Thus, to prove the continuity of ψ, by Lemma 5.1 in [36] (or
Section 3.6 in [12]), it suffices to prove that for tn, t ∈ [0, T ] such that tn → t as n→∞,

lim
n→∞

∣∣∣∣∫ tn

0
zn(s)dFm(xn(tn)− xn(s))−

∫ t

0
z(s)dFm(x(t)− x(s))

∣∣∣∣ = 0. (5.21)

Note that ∣∣∣∣∫ tn

0
zn(s)dFm(xn(tn)− xn(s))−

∫ t

0
z(s)dFm(x(t)− x(s))

∣∣∣∣
≤

∣∣∣∣∫ tn

0
zn(s)d

(
Fm(xn(tn)− xn(s))− Fm(x(t)− x(s))

)∣∣∣∣
+

∣∣∣∣∫ tn

0
[zn(s)− z(s)]dFm(x(t)− x(s))

∣∣∣∣+

∣∣∣∣∫ tn

t
z(s)dFm(x(t)− x(s))

∣∣∣∣ . (5.22)

The first integral on the right hand side of (5.22) converges to zero as n → ∞ because of the
continuity of Fm and xn(tn) → x(t) uniformly as n → ∞ (Recall that xn and x are continuous).
Since zn → z in (D,M1), zn(s) → z(s) as n → ∞ for almost all s ∈ [0, T ], and thus the second
integral on the right hand side of (5.22) goes to zero as n→∞. It is evident that the third integral
on the right hand side of (5.22) also goes to zero as n→∞. Therefore, we have proved (5.21) and
the continuity of ψ.

To see the continuities of $k for k = 1, ...,K, we first note that following a similar argument as
above (replace Fm with Fk), we obtain the continuity of the mapping

$
(2)
k (x, z)(t) := −

∫ t

0
z(s)dF ck(x(t)− x(s)), t ≥ 0.

Note that $
(2)
k (x, z)(t) is continuous in t so that there is no common jumps of $

(2)
k (x, z)(t) and z(t).

By noting $k(x, z)(t) = z(t) +$
(2)
k (x, z)(t) and Corollary 12.7.1 in [41] (continuity of addition in

(D,M1)), we obtain the continuities of $k for k = 1, ...,K.
The continuity of ϕk for k = 1, ...,K can be obtained easily from either ψ (replace Fm by Fm−Fk)

or $
(2)
k . The continuity of the mappings fk, gk for k = 1, ...,K and h can be obtained from the

continuity of mappings $k, ϕk and ψ by treating z(s) = (y(t) − y(s))λ(s) and x(s) = s for all
s, t ∈ [0, T ]. Since each of the mappings from (5.15)–(5.20) is proved to be continuous, the lemma is
proved. �

Proof of Lemma 5.2. Note that, from (5.4), (3.18), (5.10), (3.26), (5.7) and (3.22),

M̂n
k,1(t) = $k(ξ

n, Ân)(t), M̂k,1(t) = $k(e, Â)(t),

Ẑnk,1(t) = ϕk(ξ
n, Ân)(t), Ẑk,1(t) = ϕk(e, Â)(t),

V̂ n
1 (t) = ψ(ξn, Ân)(t), V̂1(t) = ψ(e, Â)(t),

for t ≥ 0 and k = 1, ...,K.
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Note that Fm(·) is a monotone function, and is thus differentiable a.e. Let fm(·) be the a.e.
derivative of Fm(·). Applying the Taylor expansion to the integrands of (5.9), we have

V̂ n
3 (t) =

∫ t

0

√
n(Fm(ξn(t)− ξn(s))− Fm(t− s))λ(s)ds

=

∫ t

0

√
n(ξn(t)− ξn(s)− t+ s)fm(t− s)λ(s)ds+ op(1)

= −
∫ t

0

√
n(ξn(t)− ξn(s)− t+ s)λ(s)dFm(t− s) + op(1)

= −
∫ t

0
(ξ̂n(t)− ξ̂n(s))λ(s)dFm(t− s) + op(1).

Thus we see that

V̂ n
3 (t) = h(ξ̂n)(t) + op(1), V̂3(t) = h(−Ĵ)(t), t ≥ 0.

Similarly, we also have that for t ≥ 0 and k = 1, ...,K,

M̂n
k,3(t) = fk(ξ̂

n)(t) + op(1), M̂k,3(t) = fk(−Ĵ)(t),

Ẑnk,3(t) = gk(ξ̂
n)(t) + op(1), Ẑk,3(t) = gk(−Ĵ)(t).

By Assumption 1, Lemma 2.1 and the continuity of the mapping Φ (Lemma 5.3) as well as the
continuous mapping theorem, we immediately obtain the convergence in (5.13). �

In the next two lemmas, we prove the convergence of
(
M̂MM

n

2 , ẐZZ
n

2 , V̂
n

2

)
by Theorem 13.5 in [5]. Since

the limits of M̂MM
n

2 , ẐZZ
n

2 and V̂ n
2 are continuous, we will apply the criterion in Theorem 13.5 in [5] to

prove the convergence of
(
M̂MM

n

2 , ẐZZ
n

2 , V̂
n

2

)
in the Skorohod J1 topology.

Remark 5.2. We emphasize that in the proof for the convergence of
(
M̂MM

n

2 , ẐZZ
n

2 , V̂
n

2

)
, the continuity

condition on the distribution function F (·) is not required, as can be seen below. The results in
Lemmas 5.5–5.6 hold for any general distribution function F (·).

In Lemma 5.5 we prove the convergence of finite dimensional distributions which is the first
condition in Theorem 13.5 in [5]. We first present the following lemma on random sequences
satisfying the strong mixing (α-mixing) condition, which is a special case of Lemma 2.1 in [10]
(choosing p = 2 and C = 1 and the random variables bounded by 1 a.s.).

Lemma 5.4. Suppose that {ζn : n ≥ 1} is a sequence of random variables satisfying the α-mixing

condition with the mixing coefficients {αζn: n ≥ 1} . Let Ψ1 ∈ Fk := σ{ζj : 1 ≤ j ≤ k} and
Ψ2 ∈ Gk+n := σ{ζj : j ≥ k + n}. Moreover, assume that |Ψ1| ≤ 1 a.s. and |Ψ2| ≤ 1 a.s. Then∣∣E[Ψ1Ψ2]− E[Ψ1]E[Ψ2]

∣∣ ≤ 6(αζn)1/2. (5.23)

Lemma 5.5. The finite-dimensional distributions of
(
M̂MM

n

2 , ẐZZ
n

2 , V̂
n

2

)
converge to those of

(
M̂MM2, ẐZZ2, V̂2

)
as n→∞.

Proof. We first introduce some additional processes. For t ≥ 0, we divide the interval [0, t] by the
sequence {sli : 0 ≤ i ≤ l}: 0 = sl0 < sl1 < ... < sll = t satisfying max1≤i≤l |sli − sli−1| → 0, as l →∞.
We define, for t ≥ 0 and k = 1, ...,K,

M̃n
k,2,l(t) :=−

∫ t

0

∫
RK
+

1k,l,t(s,xxx)dK̂n(ā(s),xxx), (5.24)

M̂n
k,2,l(t) :=−

∫ t

0

∫
RK
+

1k,l,t(s,xxx, ξ
n)dK̂n(Ān(s),xxx), (5.25)
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Z̃nk,2,l(t) :=

∫ t

0

∫
RK
+

[1k,l,t(s,xxx)− 1m,l,t(s,xxx)]dK̂n(ā(s),xxx), (5.26)

Ẑnk,2,l(t) :=

∫ t

0

∫
RK
+

[1k,l,t(s,xxx, ξ
n)− 1m,l,t(s,xxx, ξ

n)]dK̂n(Ān(s),xxx), (5.27)

Ṽ n
2,l(t) :=

∫ t

0

∫
RK
+

1m,l,t(s,xxx)dK̂n(ā(s),xxx), (5.28)

V̂ n
2,l(t) :=

∫ t

0

∫
RK
+

1m,l,t(s,xxx, ξ
n)dK̂n(Ān(s),xxx), (5.29)

where 1k,l,t(·, ·) and 1m,l,t(·, ·) are defined in (4.11) and (4.12), respectively, and

1k,l,t(s,xxx, ξ
n) :=

l∑
i=1

1(sli−1 < s ≤ sli)1(xk ≤ ξn(t)− ξn(sli)),

1m,l,t(s,xxx, ξ
n) :=

l∑
i=1

1(sli−1 < s ≤ sli)1(xj ≤ ξn(t)− ξn(sli), ∀j = 1, ...,K).

We set M̃n
k,2,l := {M̃n

k,2,l(t) : t ≥ 0}, M̂n
k,2,l := {M̂n

k,2,l(t) : t ≥ 0}, Z̃nk,2,l := {Z̃nk,2,l(t) : t ≥ 0},
Ẑnk,2,l := {Ẑnk,2,l(t) : t ≥ 0}, k = 1, ...,K, Ṽ n

2,l := {Ṽ n
2,l(t) : t ≥ 0} and V̂ n

2,l := {V̂ n
2,l(t) : t ≥ 0}. Note

that, for k = 1, ...,K and t ≥ 0, M̃n
k,2,l(t), M̂

n
k,2,l(t), Z̃

n
k,2,l(t), Ẑ

n
k,2,l(t), Ṽ

n
2,l(t) and V̂ n

2,l(t) can be
rewritten as

M̃n
k,2,l(t) =−

l∑
i=1

∆K̂n
(

(ā(sli−1),000); (ā(sli), (t− sli)eeek)
)
,

M̂n
k,2,l(t) =−

l∑
i=1

∆K̂n
(

(Ān(sli−1),000); (Ān(sli), (ξ
n(t)− ξn(sli))eeek)

)
,

Ṽ n
2,l(t) =

l∑
i=1

∆K̂n
(

(ā(sli−1),000); (ā(sli), (t− sli)eee)
)
,

V̂ n
2,l(t) =

l∑
i=1

∆K̂n
(

(Ān(sli−1),000); (Ān(sli), (ξ
n(t)− ξn(sli))eee)

)
,

Z̃nk,2,l(t) =

l∑
i=1

{
∆K̂n

(
(ā(sli−1),000); (ā(sli), (t− sli)eeek)

)
−∆K̂n

(
(ā(sli−1),000); (ā(sli), (t− sli)eee)

)}
,

Ẑnk,2,l(t) =
l∑

i=1

{
∆K̂n

(
(Ān(sli−1),000); (Ān(sli), (ξ

n(t)− ξn(sli))eeek)
)

−∆K̂n
(

(Ān(sli−1),000); (Ān(sli), (ξ
n(t)− ξn(sli))eee)

)}
.

Set M̃MM
n
2,l := (M̃n

1,2,l, ..., M̃
n
K,2,l), M̂MM

n

2,l := (M̂n
1,2,l, ..., M̂

n
K,2,l), Z̃ZZ

n
2,l := (Z̃n1,2,l, ..., Z̃

n
K,2,l) and ẐZZ

n

2,l :=

(Ẑn1,2,l, ..., Ẑ
n
K,2,l). For tki,1, t

k
i′,2, tj ≥ 0, cki,1, c

k
i′,2, cj ∈ R, and positive integers Ik,1, Ik,2 and I3, where

i = 1, ..., Ik,1, i′ = 1, ..., Ik,2, j = 1, ..., I3 and k = 1, ...,K, with the weak convergence of K̂n in (3.3),
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we see that, as n→∞,

K∑
k=1

Ik,1∑
i=1

cki,1M̃
n
k,2,l(t

k
i,1) +

Ik,2∑
i′=1

cki′,2Z̃
n
k,2,l(t

k
i′,2)

+

I3∑
j=1

cj Ṽ
n

2,l(tj)

⇒
K∑
k=1

Ik,1∑
i=1

cki,1M̂k,2,l(t
k
i,1) +

Ik,2∑
i′=1

cki′,2Ẑk,2,l(t
k
i′,2)

+

I3∑
j=1

cj V̂2,l(tj),

where we recall M̂k,2,l, Ẑk,2,l and V̂2,l are defined in (4.8), (4.10) and (4.9), respectively, for k = 1, ...,K.
By the Cramer-Wold theorem (see Theorem 3.9.5 in [11]), we have(

M̃MM
n
2,l, Z̃ZZ

n
2,l, Ṽ

n
2,l

) df−→
(
M̂MM2,l, ẐZZ2,l, V̂2,l

)
as n→∞,

where M̂MM2,l :=
(
M̂1,2,l, ..., M̂K,2,l

)
and ẐZZ2,l :=

(
Ẑ1,2,l, ..., ẐK,2,l

)
. Then, we have(

M̂MM
n

1 , ẐZZ
n

1 , V̂
n

1 , M̂MM
n

3 , ẐZZ
n

3 , V̂
n

3 , M̃MM
n
2,l, Z̃ZZ

n
2,l, Ṽ

n
2,l

) df−→
(
M̂MM1, ẐZZ1, V̂1, M̂MM3, ẐZZ3, V̂3, M̂MM2,l, ẐZZ2,l, V̂2,l

)
as n→∞,

since
(
M̂MM

n

1 , ẐZZ
n

1 , V̂
n

1 , M̂MM
n

3 , ẐZZ
n

3 , V̂
n

3

)
and

(
M̃MM

n
2,l, Z̃ZZ

n
2,l, Ṽ

n
2,l

)
are independent.

Now it suffices to show the difference between
(
M̂MM

n

2,l, ẐZZ
n

2,l, V̂
n

2,l

)
and

(
M̃MM

n
2,l, Z̃ZZ

n
2,l, Ṽ

n
2,l

)
is asymp-

totically negligible in probability as l → ∞, and the difference between
(
M̂MM

n

2,l, ẐZZ
n

2,l, V̂
n

2,l

)
and(

M̂MM
n

2 , ẐZZ
n

2 , V̂
n

2

)
is asymptotically negligible in probability as n→∞ and l→∞, i.e., for any ε > 0,

T > 0 and each k = 1, ...,K,

lim
n→∞

P

(
sup

0≤t≤T
|M̂n

k,2,l(t)− M̃n
k,2,l(t)| > ε

)
= 0, (5.30)

lim
n→∞

P

(
sup

0≤t≤T
|Ẑnk,2,l(t)− Z̃nk,2,l(t))| > ε

)
= 0, (5.31)

lim
n→∞

P

(
sup

0≤t≤T
|V̂ n

2,l(t)− Ṽ n
2,l(t)| > ε

)
= 0, (5.32)

and,

lim
l→∞

lim sup
n→∞

P
(
|M̂n

k,2(t)− M̂n
k,2,l(t)| > ε

)
= 0, (5.33)

lim
l→∞

lim sup
n→∞

P
(
|Ẑnk,2(t)− Ẑnk,2,l(t)| > ε

)
= 0, (5.34)

lim
l→∞

lim sup
n→∞

P
(
|V̂ n

2 (t)− V̂ n
2,l(t)| > ε

)
= 0. (5.35)

The claims in (5.30)-(5.32) follow directly by noting that Û in (3.1) and ā in (2.2) are continuous,
together with (3.2), Assumption 2, Theorem 3.1 and Lemma 2.1.

Next we show (5.33)–(5.35) hold. We will focus on (5.33), and (5.34) and (5.35) follow from a
similar argument. We first observe that

M̂n
k,2(t)− M̂n

k,2,l(t) =
1√
n

An(t)∑
i=1

χnk,i,l(t),

where

χnk,i,l(t) =

l∑
p=1

(
1(slp−1 < τni ≤ slp)

[
1(ξn(t)− ξn(slp) < ηik ≤ ξn(t)− ξn(τni ))
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− Fk(ξn(t)− ξn(τni )) + Fk(ξ
n(t)− ξn(slp))

])
,

and {sli : 0 ≤ i ≤ l} is a partition of [0, t]. For fixed t > 0, let ς = ς(t) > 0 such that ς > ā(t). Thus,
we obtain, for any ε > 0,

P
(
|M̂n

k,2(t)− M̂n
k,2,l(t)| > ε

)
≤ P (An(t) > nς) + P

(
An(t) ≤ nς, |M̂n

k,2(t)− M̂n
k,2,l(t)| > ε

)
≤ P (An(t) > nς) +

1

ε4
E
[
1(An(t) ≤ nς)|M̂n

k,2(t)− M̂n
k,2,l(t)|4

]
.

By Assumption 2, we have lim supn→∞ P (An(t) > nς) = 0. For the second term, we have

E
[
1(An(t) ≤ nς)|M̂n

k,2(t)− M̂n
k,2,l(t)|4

]
=

1

n2
E

[
An(t)∧bnςc∑

i=1

χnk,i,l(t)
4

]
+

4

n2
E

[
An(t)∧bnςc∑
i,j=1, i 6=j

χnk,i,l(t)χ
n
k,j,l(t)

3

]

+
6

n2
E

[
An(t)∧bnςc∑
i,j=1, i 6=j

χnk,i,l(t)
2χnk,j,l(t)

2

]
. (5.36)

By conditioning, we have that for the first term on the right hand side of (5.36),

1

n2
E

[
An(t)∧bnςc∑

i=1

χnk,i,l(t)
4

]
=

1

n2
E

[
An(t)∧bnςc∑

i=1

E
[
χnk,i,l(t)

4|An(s), ξn(s) : 0 ≤ s ≤ t
]]

≤ 16ς

n
→ 0 as n→∞.

By Lemma 5.4 and conditioning, together with E[χnk,i,l(t)] = 0, we obtain

4

n2
E

[
An(t)∧bnςc∑
i,j=1, i 6=j

χnk,i,l(t)χ
n
k,j,l(t)

3

]
≤ 8

n2
E

[
An(t)∧bnςc∑
i,j=1, i<j

6α
1/2
j−i

]

≤ 48

n2

bnςc∑
i,j=1, i<j

α
1/2
j−i → 0 as n→∞,

where the convergence follows from the Assumption 1. Now for the third term, by Lemma 5.4 and
conditioning, we obtain

6

n2
E

[
An(t)∧bnςc∑
i,j=1, i 6=j

χnk,i,l(t)
2χnk,j,l(t)

2

]
≤ 12

n2
E

[
An(t)∧bnςc∑
i,j=1, i<j

(
E[χnk,i,l(t)

2]E[χnk,j,l(t)
2] + 6α

1/2
j−i

)]
.

It is clear that under Assumption 1,

1

n2

bnςc∑
i,j=1, i<j

α
1/2
j−i → 0 as n→∞.

It suffices to show that

lim
l→∞

lim sup
n→∞

1

n2
E

[
An(t)∧bnςc∑
i,j=1, i<j

E[χnk,i,l(t)
2]E[χnk,j,l(t)

2]

]
= 0.
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We observe that by conditioning,

E[χnk,i,l(t)
2] = E

[
l∑

p=1

(
1(slp−1 < τni ≤ slp)

[
Fk(ξ

n(t)− ξn(τni ))− Fk(ξn(t)− ξn(slp))
]

×
[
1− Fk(ξn(t)− ξn(τni )) + Fk(ξ

n(t)− ξn(slp))
])]

≤ E
[

l∑
p=1

(
1(slp−1 < τni ≤ slp)

[
Fk(ξ

n(t)− ξn(τni ))− Fk(ξn(t)− ξn(slp))
]]
,

and similarly,

E[χnk,j,l(t)
2] ≤ E

[
l∑

p=1

(
1(slp−1 < τnj ≤ slp)

[
Fk(ξ

n(t)− ξn(τnj ))− Fk(ξn(t)− ξn(slp))
]]
.

Thus, we have

1

n2
E

[
An(t)∧bnςc∑
i,j=1, i<j

E[χnk,i,l(t)
2]E[χnk,j,l(t)

2]

]

≤ 1

n2
E

[
An(t)∧bnςc∑
i,j=1, i<j

[ l∑
p=1

(
1(slp−1 < τni ≤ slp)

[
Fk(ξ

n(t)− ξn(τni ))− Fk(ξn(t)− ξn(slp))
])]

×
[ l∑
p=1

(
1(slp−1 < τnj ≤ slp)

[
Fk(ξ

n(t)− ξn(τni ))− Fk(ξn(t)− ξn(slp))
])]]

≤ 1

n2
E

[(
An(t)∧bnςc∑

i=1

[ l∑
p=1

(
1(slp−1 < τni ≤ slp)

[
Fk(ξ

n(t)− ξn(τni ))− Fk(ξn(t)− ξn(slp))
])])2]

= E

[
1(Ān(t) ≤ ς)

(
l∑

p=1

∫ slp

slp−1

[
Fk(ξ

n(t)− ξn(u))− Fk(ξn(t)− ξn(slp))
]
dĀn(u)

)2]
.

Now it suffices to show that

lim
l→∞

lim sup
n→∞

E

[
1(Ān(t) ≤ ς)

(
l∑

p=1

∫ slp

slp−1

[
Fk(ξ

n(t)− ξn(u))− Fk(ξn(t)− ξn(slp))
]
dĀn(u)

)2]
= 0.

(5.37)
By the convergence of Ān ⇒ ā under Assumption 2 and ξn ⇒ e in Lemma 2.1 under Assumption 3,
the continuous mapping theorem and the uniform integrability of1(Ān(t) ≤ ς)

(
l∑

p=1

∫ slp

slp−1

[
Fk(ξ

n(t)− ξn(u))− Fk(ξn(t)− ξn(slp))
]
dĀn(u)

)2

: n ≥ 1

 ,

we immediately have

lim sup
n→∞

E

[
1(Ān(t) ≤ ς)

(
l∑

p=1

∫ slp

slp−1

[
Fk(t− u)− Fk(t− slp)

]
dĀn(u)

)2]

=

(
l∑

p=1

∫ slp

slp−1

[
Fk(t− u)− Fk(t− slp)

]
dā(u)

)2

.
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Then, by Lebesgue’s theorem, the right hand side of the above equation converges to zero as l→∞.
Therefore, we have proved (5.37), which completes the proof of (5.33)-(5.35). �

We next complete the proof of the convergence of the processes
(
M̂MM

n

2 , ẐZZ
n

2 , V̂
n

2

)
.

Lemma 5.6. (
M̂MM

n

2 , ẐZZ
n

2 , V̂
n

2

)
⇒
(
M̂MM2, ẐZZ2, V̂2

)
in (D2K+1, J1) as n→∞. (5.38)

Proof. We apply Theorem 13.5 in [5]. By Lemma 5.5, since the limits are continuous, it suffices to
show the third condition is satisfied, that is, for 0 ≤ r ≤ s ≤ t ≤ T and T > 0, and for ε > 0 and
k = 1, . . . ,K,

P
(∣∣M̂n

k,2(t)− M̂n
k,2(s)

∣∣ ∧ ∣∣M̂n
k,2(s)− M̂n

k,2(r)
∣∣ ≥ ε) ≤ 1

ε4
(HM,k(t)−HM,k(r))

2, (5.39)

P
(∣∣Ẑnk,2(t)− Ẑnk,2(s)

∣∣ ∧ ∣∣Ẑnk,2(s)− Ẑnk,2(r)
∣∣ ≥ ε) ≤ 1

ε4
(HZ,k(t)−HZ,k(r))

2,

P
(∣∣V̂ n

2 (t)− V̂ n
2 (s)

∣∣ ∧ ∣∣V̂ n
2 (s)− V̂ n

2 (r)
∣∣ ≥ ε) ≤ 1

ε4
(HV (t)−HV (r))2,

where HM,k(·), HZ,k(·) and HV (·) are nondecreasing and continuous functions on [0, T ] (to be

determined below). We focus on the proof for M̂n
k,2 since the proof for V̂ n

2 follows from a similar

argument, and the property for Ẑnk,2 follows from results for M̂n
k,2 and V̂ n

2 .

We first observe that it is convenient to represent M̂n
k,2(t) for k = 1, ...,K in (5.5) as

M̂n
k,2(t) := − 1√

n

An(t)∑
i=1

(
1(ηik ≤ ξn(t)− ξn(τni ))− Fk(ξn(t)− ξn(τni ))

)
, t ≥ 0. (5.40)

Fix κ > 0 such that κ > ā(T ). We write

P
(∣∣M̂n

k,2(t)− M̂n
k,2(s)

∣∣ ∧ ∣∣M̂n
k,2(s)− M̂n

k,2(r)
∣∣ ≥ ε)

≤ P (An(T ) > nκ) + P
(
An(T ) ≤ nκ,

∣∣M̂n
k,2(t)− M̂n

k,2(s)
∣∣ ∧ ∣∣M̂n

k,2(s)− M̂n
k,2(r)

∣∣ ≥ ε)
≤ P (An(T ) > nκ) +

1

ε4
E
[
1(An(T ) ≤ nκ)

∣∣M̂n
k,2(t)− M̂n

k,2(s)
∣∣2∣∣M̂n

k,2(s)− M̂n
k,2(r)

∣∣2]
≤ P (An(T ) > nκ) +

1

ε4

(
E
[
1(An(T ) ≤ nκ)

∣∣M̂n
k,2(t)− M̂n

k,2(s)
∣∣4])1/2

×
(
E
[
1(An(T ) ≤ nκ)

∣∣M̂n
k,2(s)− M̂n

k,2(r)
∣∣2])1/2

,

where the last inequality follows from Cauchy-Schwartz inequality. Since P (Ān(T ) ≥ κ) → 0 as
n→∞, it suffices to show that for all 0 ≤ s ≤ t ≤ T and T > 0,

E
[
1(Ān(T ) ≤ κ)

∣∣M̂n
k,2(t)− M̂n

k,2(s)
∣∣4] ≤ (HM,k(t)−HM,k(s))

2.

We have

E
[
1(Ān(T ) ≤ κ)

∣∣M̂n
k,2(t)− M̂n

k,2(s)
∣∣4]

= E

[
1(Ān(T ) ≤ κ)

∣∣∣∣ 1√
n

An(t)∑
i=1

[
1(ηik + ξn(τni ) ≤ ξn(t))− Fk(ξn(t)− ξn(τni ))

]
− 1√

n

An(s)∑
i=1

[
1(ηik + ξn(τni ) ≤ ξn(s))− Fk(ξn(s)− ξn(τni ))

]∣∣∣∣4 ]
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= E

[
1(Ān(T ) ≤ κ)

∣∣∣∣ 1√
n

An(s)∑
i=1

ζni,k(s, t)

+
1√
n

An(t)∑
i=An(s)+1

[
1(ηik + ξn(τni ) ≤ ξn(t))− Fk(ξn(t)− ξn(τni ))

]∣∣∣∣4 ]

≤ 8E

[
1(Ān(T ) ≤ κ)

∣∣∣∣ 1√
n

An(s)∑
i=1

ζni,k(s, t)

∣∣∣∣4 ]

+ 8E

[
1(Ān(T ) ≤ κ)

∣∣∣∣ 1√
n

An(t)∑
i=An(s)+1

[
1(ηik + ξn(τni ) ≤ ξn(t))− Fk(ξn(t)− ξn(τni ))

]∣∣∣∣4 ], (5.41)

where

ζni,k(s, t) := 1(ηik + ξn(τni ) ∈ (ξn(s), ξn(t)])− Fk(ξn(t)− ξn(τni )) + Fk(ξ
n(s)− ξn(τni )).

We next provide an upper bound for the two terms on the right hand of (5.41). For the first
term, we have

E

[
1(Ān(T ) ≤ κ)

∣∣∣∣ 1√
n

An(s)∑
i=1

ζni,k(s, t)

∣∣∣∣4 ]

=
1

n2
E

[
1(Ān(T ) ≤ κ)

An(s)∑
i=1

(ζni,k(s, t))
4

]
+

4

n2
E

[
1(Ān(T ) ≤ κ)

An(s)∑
i,j=1,i 6=j

ζni,k(s, t)(ζ
n
j,k(s, t))

3

]

+
6

n2
E

[
1(Ān(T ) ≤ κ)

An(s)∑
i,j=1,i 6=j

(ζni,k(s, t))
2(ζnj,k(s, t))

2

]
. (5.42)

It is easy to see that the first term on the right hand side of (5.42) is in the order of O(1/n)
and converges to 0 as n → ∞. For the second term, by Lemma 5.4 and conditioning, since
E[ζni,k(s, t)] = 0, we have that for i, j ≥ 1 and j > i,

E
[
ζni,k(s, t)(ζ

n
j,k(s, t))

3
]
≤ 6α

1/2
j−i.

Thus,

4

n2
E

[
1(Ān(T ) ≤ κ)

An(s)∑
i,j=1,i 6=j

ζni,k(s, t)(ζ
n
j,k(s, t))

3

]

≤ 8

n2
E

[
1(Ān(T ) ≤ κ)

An(s)∑
i,j=1,i<j

6α
1/2
j−i

]

≤ 48

n2

bnκc∑
i,j=1,i<j

α
1/2
j−i → 0 as n→∞, (5.43)

where the convergence holds under Assumption 1 with αn → 0 as n→∞.
Similarly, by Lemma 5.4 and conditioning, we have that for i, j ≥ 1 and j > i,

E
[
(ζni,k(s, t))

2(ζnj,k(s, t))
2
]
≤ E

[
(ζni,k(s, t))

2
]
E
[
(ζnj,k(s, t))

2
]

+ 6α
1/2
j−i.
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Thus,

6

n2
E

[
1(Ān(T ) ≤ κ)

An(s)∑
i,j=1,i 6=j

(ζni,k(s, t))
2(ζnj,k(s, t))

2

]

≤ 12

n2
E

[
1(Ān(T ) ≤ κ)

An(s)∑
i,j=1,i<j

E
[
(ζni,k(s, t))

2
]
E
[
(ζnj,k(s, t))

2
]]

+
72

n2
E

[
1(Ān(T ) ≤ κ)

An(t)∑
i,j=1,i<j

α
1/2
j−i

]
. (5.44)

The second term on the right hand side of (5.44) converges to 0 as in (5.43). Notice that conditional
on the ξn process,

E
[
(ζni,k(s, t))

2|ξn(u) : 0 ≤ u ≤ t
]

= (Fk(ξ
n(t)− ξn(τni ))− Fk(ξn(s)− ξn(τni ))

× (1− (Fk(ξ
n(t)− ξn(τni ))− Fk(ξn(s)− ξn(τni )))

≤ Fk(ξn(t)− ξn(τni ))− Fk(ξn(s)− ξn(τni )).

Thus, the first term on the right hand side of (5.44) is bounded above as follows:

12

n2
E

[
1(Ān(T ) ≤ κ)

An(s)∑
i,j=1,i<j

E
[
(ζni,k(s, t))

2
]
E
[
(ζnj,k(s, t))

2
]]

≤ 12

n2
E

[
1(Ān(T ) ≤ κ)

An(s)∑
i,j=1,i<j

(Fk(ξ
n(t)− ξn(τni ))− Fk(ξn(s)− ξn(τni )))

×
(
Fk(ξ

n(t)− ξn(τnj ))− Fk(ξn(s)− ξn(τnj ))
) ]

≤ 6

n2
E

[
1(Ān(T ) ≤ κ)

(An(s)∑
i=1

(Fk(ξ
n(t)− ξn(τni ))− Fk(ξn(s)− ξn(τni )))

)2]

= 6E

[
1(Ān(T ) ≤ κ)

(∫ s

0
(Fk(ξ

n(t)− ξn(u)− Fk(ξn(s)− ξn(u)) dĀn(u)

)2]
n→∞−−−→ 6

(∫ s

0
[Fk(t− u)− Fk(s− u)]dā(u)

)2

≤ 6

(∫ T

0
[Fk(t− u)− Fk(s− u)]dā(u)

)2

, (5.45)

where the convergence follows from Assumption 2 and ξn ⇒ e in Lemma 2.1 under Assumption 3.
Therefore we have shown that the first term on the right hand of (5.41) is bounded above by

C1

(∫ T

0
[Fk(t− u)− Fk(s− u)]dā(u)

)2

for all n with some sufficiently large constant C1 > 0. Similar calculations and arguments show that

the second term on the right hand of (5.41) is bounded above by C2

(
ā(t)− ā(s)

)2
for all n with

some sufficiently large constant C2 > 0. Thus, to prove the claim in (5.39) for M̂n
k,2, we can choose

the function HM,k(·) as

HM,k(t) = C

(∫ T

0
Fk(t− u)dā(u) + ā(t)

)
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for t ∈ [0, T ] and some sufficiently large constant C > 0. It is evident that HM,k(·) is nondecreasing
and continuous on [0, T ]. This completes the proof of the lemma. �

Completing the proof of Theorem 3.3. By Lemmas 5.2 and 5.5, we have shown that(
M̂MM

n

1 , ẐZZ
n

1 , V̂
n

1 , M̂MM
n

3 , ẐZZ
n

3 , V̂
n

3 , M̂MM
n

2 , ẐZZ
n

2 , V̂
n

2

) df−→
(
M̂MM1, ẐZZ1, V̂1, M̂MM3, ẐZZ3, V̂3, M̂MM2, ẐZZ2, V̂2

)
as n→∞.

By the continuous mapping theorem, we have(
M̂MM

n

1 +M̂MM
n

2 +M̂MM
n

3 , ẐZZ
n

1 + ẐZZ
n

2 + ẐZZ
n

3 , V̂
n

1 + V̂ n
2 + V̂ n

3

) df−→
(
M̂MM1 +M̂MM2 +M̂MM3, ẐZZ1 + ẐZZ2 + ẐZZ3, V̂1 + V̂2 + V̂3

)
as n→∞. Thus, (

X̂XX
n
, ŶYY

n
, Ŝn

) df−→
(
X̂XX, ŶYY , Ŝ

)
as n→∞.

Lemmas 5.2 and 5.6 also imply that the processes
(
X̂XX
n
, ŶYY

n
, Ŝn

)
are tight (applying Theorem 11.6.7

in [41]). This completes the proof of Theorem 3.3.
�

6. Concluding Remarks

In this paper, we have studied an infinite-server fork-join queueing system with NES and
sequentially correlated (strong mixing) service vectors which is subject to renewal alternating service
disruptions. By proving the FCLT, we have obtained the mean and covariance approximations in
transient and steady states for the service and synchronization processes. They provide important
insights on the impact of the interruptions, and the “component-wise” and “vector-wise” correlations
among service times of the parallel tasks, upon the service and synchronization processes.

Many interesting problems remain to be studied. First, we have assumed that the down times
in the random environment are asymptotically negligible comparing with the service times in this
paper. If the down times are of the same order as the service times, we can easily show an FWLLN
for the service and synchronization processes, where the fluid limit will be stochastic, and in fact, a
deterministic system in the random environment. It will be interesting to study the steady state of
the stochastic fluid limit and the convergence rate to the steady state. Second, we have assumed that
all service stations are simultaneously disrupted. It may be interesting to investigate the situation
where only some of the service stations are affected during the down times. In that regard, our
analysis is the worst-case scenario, and can be used to bound the associated performance measures.
For example, the results on the synchronized process will become a lower bound. Third, it will
be interesting to study such fork-join queueing systems in the Halfin-Whitt regime, and fork-join
models with multiple classes of jobs. In addition, we have assumed that the sequence of the service
times of all parallel tasks is weakly dependent, satisfying the strong mixing (α-mixing) condition.
It will be interesting to consider cases with strong dependence among service times. This is a
fundamental problem, even for infinite-server queues. Pang and Zhou [37] has recently studied
infinite-server queues with arrival dependent services (which result in strong dependence among
service times). These problems will be interesting future work.
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