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Abstract. We study a fork-join network with a single class of jobs, which are forked into a fixed

number of parallel tasks upon arrival to be processed at the corresponding multi-server stations.

After service completion, each task will join a buffer associated with the service station waiting for

synchronization, called “unsynchronized queue”. The synchronization rule requires that all tasks

from the same job must be completed, referred to as “non-exchangeable synchronization”. Once

synchronized, jobs will leave the system immediately. Service times of the parallel tasks of each

job can be correlated and form a sequence of i.i.d. random vectors with a general continuous joint

distribution function. We study the joint dynamics of the queueing and service processes at all

stations and the associated unsynchronized queueing processes.

The main mathematical challenge lies in the “resequencing” of arrival orders after service

completion at each station. As in Lu and Pang (2015) for the infinite-server fork-join network model,

the dynamics of all the aforementioned processes can be represented via a multiparameter sequential

empirical process driven by the service vectors for the parallel tasks of each job. We consider the

system in the Halfin-Whitt regime, and prove a functional law of large number and a functional

central limit theorem for queueing and synchronization processes. In this regime, although the delay

for service at each station is asymptotically negligible, the delay for synchronization is of the same

order as the service times.

1. Introduction

We consider a fundamental fork-join network with a single class of jobs that will fork into a
fixed number of parallel tasks upon their arrival, and then join after service completion. Each
parallel task is processed at a multi-server station under the first-come-first-serve (FCFS) and
non-idling service discipline, and will join a buffer waiting for synchronization associated with the
station after service completion. This buffer is called “unsynchronized queue” or “waiting buffer for
synchronization”. Tasks are only synchronized if all the parallel tasks of the same job are completed,
called “non-exchangeable synchronization” (NES) [3, 60, 61, 33]. After synchronization, jobs will
leave the system immediately (the synchronization time is irrelevant in our model). Figure 1 depicts
such a network model. Unlike classical queueing models, there are two types of delays in this
fork-join network: delay for service and delay for synchronization. The objective of this paper is
to study the delay for synchronization when each service station is operating in the Halfin-Whitt
(Quality-and-Efficiencty-Driven, QED) regime [18]. In this regime, the job arrival rate and the
number of servers in each service station get large appropriately while fixing service time distributions
so that each station is asymptotically critically loaded, achieving both high quality (low delay) and
high efficiency (high utilization).

Fork-join networks with NES are used in many applications, including healthcare systems,
parallel computing, MapReducing scheduling (e.g., large-scale parallel Web search), disassembly and
reassembly systems in manufacturing and so on. In patient flows of hospitals [2, 3, 22, 60, 61], the
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Figure 1. A fundamental fork-join network with finite servers

treatment and discharge processes are typical examples of fork-join networks with NES: a patient
must have all test results ready before a doctor examination and these tests are conducted in different
units/laboratories and can never be mixed; a patient, after the discharge decision is made, must
wait for necessary procedures, pharmacy, transportation, etc., before being physically discharged.
In MapReduce scheduling [11, 31, 54, 57], jobs are processed in two phases: in the map phase, a
large-scale data input (e.g., Web processing data) is distributed into individual computation nodes,
and each node processes one block of input data, and after the execution of all blocks of the same
data input, they will be joined as an output in the reduce phase. In addition, fork-join networks with
NES are also used in manufacturing and inventory systems [5, 6, 17, 27, 28, 40, 41, 49, 48, 53, 56],
military operations [26, 59] and law reinforcement [30].

The main mathematical challenge in analyzing the multi-server fork-join network with NES is the
resequencing of arrival orders after service completion at each service station due to the randomness
of service times. Exact analysis of this model is prohibitively difficult since it is necessary to track
the service completion times of all the parallel tasks of each job, which will require an infinite
dimensional state space. Many efforts have been made to study the resequencing problems in the
literature using the max-plus recursions [21, 4, 12]. Here we develop a completely new approach
to study the resequencing problem in the fork-join networks with NES asymptotically when each
station is operating in the Halfin-Whitt regime.

In [33], we have studied a fork-join network with NES as described above where each service
station is operating in the quality-driven (QD) regime (equivalent to having infinite numbers of
servers at each station asymptotically). The approach developed in [33] solves the resequencing
problem when the number of servers at each station is infinite (no delay for service). However,
it cannot be extended directly to resolve the resequencing problem when the number of servers
at each station is finite. As shown in [51, 50, 24, 25], the queueing process for service itself in
G/GI/N queues in the Halfin–Whitt regime already present substantial difficulties. In our model,
the delay for service also affects the resequencing of tasks after service completion at each station,
and as a consequence, the queueing processes for synchronization. This complexity requires further
development of the methodology in [33].

In this paper we aim to solve the resequencing problem when all service stations have multiple
servers, operating in the Halfin-Whitt regime. Since the service times for the parallel tasks for
a job are correlated, the service completion processes of the parallel tasks are dependent, which
causes a substantial amount of difficulties in the analysis of the resequencing of the parallel tasks
and the synchronization process, as well as the service dynamics at all parallel stations jointly. In
our approach, the key is a representation of the service processes, the unsynchronized queueing
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processes and the synchronized process via functionals of a multiparameter sequential empirical
process driven by the service vectors for the parallel tasks as well as the arrival process and the
initial quantities. With this representation, we first show a functional law of large numbers (FLLN),
Theorem 3.1, for these processes assuming that the system starts from empty when the arrival rate
is allowed to be time dependent. The fluid limit of the synchronized process is an integral of the
minimum of the fluid entering service processes at all stations with respect to the joint service time
distribution function. Numerical examples are provided to illustrate the fluid approximations in
§3.1. We then prove a functional central limit theorem (FCLT), Theorem 4.1, for these processes
when the arrival rate is constant in the Halfin-Whitt regime and when the number of parallel tasks
is equal to two, under some stationarity conditions on the initial quantities. The limits of the
diffusion-scaled processes are the unique solution to a set of stochastic integral equations driven by
the corresponding multiparameter Kiefer process, the arrival limit process and the limiting initial
quantities. One important term in the limits of the synchronized process and the unsynchronized
queues is an integral of the limit of the diffusion-scaled minimum of “entering service” processes at
both stations with respect to the joint service time distribution.

Our results show that when all service stations operate in the Halfin-Whitt regime and the arrival
rate is scaled as O(n), the numbers of tasks in the service stations and the numbers of tasks waiting
for synchronization are of the same order, O(n). This implies that waiting times for synchronization
are O(1), although waiting times for service are O(1/

√
n). This is an extremely important insight

for the management of multi-server fork-join networks with NES in the Halfin-Whitt regime. An
intuitive interpretation is that in steady state, for jobs whose tasks are waiting in the associated
buffer(s) for synchronization, their other parallel tasks must be already in service with probability
one asymptotically. Therefore, in order to minimize the response time - the time duration from the
arrival time to synchronization, we conjecture that one must prioritize tasks in each service station
dynamically to reduce the waiting time for synchronization to a smaller order.

1.1. Literature review and comparisons. Many studies on fork-join networks with synchro-
nization constraints focus on service stations with a single server; see, e.g., [15, 16, 5, 6, 21, 4, 12,
27, 28, 40, 41, 49, 48, 53, 56] and references therein. We remark that in the single-server models
with FCFS discipline, the NES constraint is equivalent to the exchangeable synchronization (ES),
and thus, resequencing is not the mathematical challenge. A single-class single-server fork-join
network with feedback is recently studied in Atar et al. [3], where resequencing becomes the main
mathematical challenge due to task feedback. In the conventional heavy-traffic regime, they show
that the system dynamics under NES and ES constraints become asymptotically equivalent under a
dynamic priority routing policy.

Very limited work has been done for fork-join networks with multi-server service stations under
the NES constraint. Ko and Serfozo [27] studied a single-class multi-server fork-join model with
NES as depicted in Figure 1, where the arrival process is Poisson and service times are independent
exponential, but their focus is on obtaining approximations for the steady-state system response
time. In [10] an exact simulation algorithm is provided for the same Markovian model. Recently, in
[8], an exact sampling algorithm is developed to simulate the stationary distribution for a multi-
server fork-join model with NES that has renewal arrivals and i.i.d. service vectors. Zaied [60]
studied multiclass fork-join networks with NES, which have time-inhomogeneous Poisson arrivals
and infinite-server service stations, focusing on the calculation of mean offered load functions. In
addition to the work in [3], Zviran [61] also studied the fork-join network with NES in Figure 1 with
exponential service times under the conventional heavy-traffic regime, and proved that the system
dynamics under NES and ES are asymptotically equivalent under the FCFS discipline.

To the best of our knowledge, our work is the first to study (non-Markovian) multi-server fork-join
networks with NES in the Halfin-Whitt regime. As mentioned earlier, we have developed an approach
to study such networks in the QD regime in [33]. Specifically, we have shown that the service
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processes and the queueing processes for synchronization can be represented with a multiparameter
sequential empirical process driven by the service vectors for the parallel tasks of jobs, and as a
consequence, can be approximated by a multidimensional Gaussian process as a functional of the
corresponding multiparameter generalized Kiefer process driven by the service vectors. In [34]
and [35], we have further developed the model and methodology in [33]. We have studied the
infinite-server fork-join network model with NES, where both the arrival and service processes are
modulated by a finite-state continuous-time Markov chain in [34]. For the infinite-server fork-join
network model with NES, when the service vectors of the parallel tasks satisfy the strong-mixing
(α-mixing) condition, a new approach has been developed to prove the weak convergence of the
aforementioned queueing processes in [35]. In that model, the service component of the limit process
is driven by a multiparameter generalized Kiefer process accounting for the sequential correlations
among the service vectors. In addition, we have also studied in the fork-join network model with
disruptive services, which results in an additional jump component in the limit process, requiring
the Skorohod M1 topology for the weak convergence.

Our approach in this paper is based on the conjecture that the system dynamics (queueing,
service, waiting for synchronization, and synchronization) in the multi-server fork-join network
model with NES can be represented via the corresponding infinite-server model dynamics, which is
studied in [33]. However, to prove this conjecture, it requires novel methods to take into account
the multidimensionality and the dependence of the service dynamics at all the service stations.
Our approach is much relevant to the recent development in the study of G/GI/N queues in the
Halfin-Whitt regime. In particular, Reed [51] proved an FCLT for the diffusion-scaled process
counting the number of jobs in the G/GI/N queues in the Halfin-Whitt regime, under certain
conditions on the initial quantities. He developed a novel approach to represent the finite-server
model dynamics via the corresponding infinite-server model dynamics, generalizing the approach
for an infinite-server model developed by Krichagina and Puhalskii [29]. Puhalskii and Reed [50]
extended that approach to allow for more general initial conditions and non-critical loading, proving
the convergence of finite-dimensional distributions for the process counting the number of jobs in
the G/GI/N queues. Our work generalizes the methodology in Reed [51] for many-server queues to
the multi-server fork-join network model with NES in the Halfin-Whitt regime.

1.2. Notation. Throughout the paper, the following notation will be used. R and R+ (Rd and Rd+,
respectively) denote sets of real and real non-negative numbers (d-dimensional vectors, respectively,
d ≥ 2). Z+ is the set of non-negative integers. N denotes the set of natural numbers. For
a, b ∈ R, we denote a ∧ b := min(a, b) and a ∨ b := max(a, b). For x ∈ R, let x+ := max{x, 0} and
x− := −min{x, 0}. For any x ∈ R+, bxc is used to denote the largest integer less than or equal to
x. We use bold letter to denote a vector, e.g., xxx := (x1, ..., xN ) ∈ RN . 000 denotes the vector whose
components are all 0. For xxx,yyy ∈ RN , we denote xxx ≤ yyy, xxx ≥ yyy and xxx > yyy in the componentwise sense,
and let xxx∧ yyy = (x1 ∧ y1, ..., xN ∧ yN ). We use 1(A) to denote the indicator function of a set A. The
abbreviation a.s. means almost surely. For any univariate distribution function F (·), we denote
F c(·) = 1−F (·). For ααα ∈ R2

+ and α ∈ R+, we call ∆ααα(δ) (resp. ∆α(δ)) is a δ-grid of [0, α1]× [0, α2]
(resp. [0, α]), if ∆ααα(δ) (resp. ∆α(δ)) is a finite partition of [0, α1]× [0, α2] (resp. [0, α]), where each
element of the partition is the rectangle [s1, t1)× [s2, t2) (resp. [s, t)), satisfying 0 ≤ sk < tk < αk
for k = 1, 2 (resp. 0 ≤ s < t), and mink=1,2(tk − sk) ≥ δ (resp. t − s ≥ δ). For two real-valued
functions f and g, we write f(x) = O(g(x)) if lim supx→∞ |f(x)/g(x)| <∞.

All random variables and processes are defined on a common probability space (Ω,F , P ). For any
two complete separable metric spaces S1 and S2, we denote S1×S2 as their product space, endowed
with the maximum metric, i.e., the maximum of two metrics on S1 and S2. Sk is used to represent
k-fold product space of any complete and separable metric space S for k ∈ N. For a complete
separable metric space S, D([0,∞),S) denotes the space of all S-valued càdlàg functions on [0,∞),
and is endowed with the Skorohod J1 topology (see, e.g., [7, 14, 58]). Denote D ≡ D([0,∞),R).
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The space D([0,∞),D), denoted as DD, is endowed with the Skorohod J1 topology, that is, both
inside and outside D spaces are endowed with the Skorohod J1 topology. For a complete separable
metric space S, the space D([0,∞)2,S) is the space of all S-valued “continuous from above with
limits from below” functions on [0,∞)2, and is endowed with the same metric as defined by [19].
D2 ≡ D([0, 1]2,R) is denoted as the space of all “continuous from above with limits from below”
functions on the unit square [0, 1]2 in the sense of Neuhaus [39], and is endowed with the same
metric dD2 as in [39]. Weak convergence of probability measures µn to µ will be denoted as µn ⇒ µ.

For a sequence of processes {X n : n ≥ 1} and a process X , we use notation X n
df⇒ X to denote the

convergence in finite-dimensional distributions of X n to X .

1.3. Organization of the paper. The paper is organized as follows. In §2, we provide a detailed
description of the model. In §3, we present the FLLN for the system dynamics, and provide
numerical examples in §3.1. The FLLN is proved in §5. We state the FCLT for the system dynamics
in §4 and provide its proof in §6. We make some concluding remarks in §7. Some additional proofs
are collected in the Appendix.

2. The multi-server fork-join network model

In this section, we present a detailed description of our model. We consider a fork-join network
with a single class of jobs, and each job is forked into K (K > 1) parallel tasks. Each task is
processed in a service station with finite servers under the non-idling FCFS discipline. Namely, a
newly arriving task immediately gets served if there is an idle server in that station, and joins the
back of the queue otherwise, and the task waiting for the longest in the queue enters service as
soon as a server in that station becomes available. After service completion, each task will join a
waiting buffer for synchronization associated with each service station, and when all tasks of the
same job are completed, they will be synchronized and leave the system. Here we assume that the
synchronization process takes zero amount of time.

Let A := {A(t) : t ≥ 0} be the arrival process of jobs after time 0. Let τi be the arrival time of
the ith job, i ∈ N, that is, A(t) = max{i ≥ 1 : τi ≤ t} for t > 0 and A(0) = 0. Let Nk be the number
of servers at service station k, k = 1, ...,K. Each job brings in a K-dimensional service vector,
representing the service time at each service station, which can be correlated. Let ηηηi := (ηi1, ..., η

i
K) be

the service vector of the job that arrives at time τi, i ∈ N, where ηik is the service time at the kth service
station. We assume that the sequence {ηηηi : i ≥ 1} is i.i.d., and let the joint distribution function
of ηηηi be F (xxx) = F (x1, ..., xK) for xk ≥ 0, k = 1, ...,K. Let F c(xxx) := P (ηi1 > x1, ..., η

i
K > xK), for

x1, ..., xK ≥ 0. Their marginal distributions are Fk(·) with mean 1/µk ∈ (0,∞), for k = 1, ...,K.
Let ηim := max{ηi1, ..., ηiK} and Fm(x) := P (ηim ≤ x) = P (ηij ≤ x,∀j) = F (x, ..., x) for x ≥ 0.

(Throughout this paper, we use “m” to index quantities and processes associated with the maximum.)
We make a regularity assumption on the service time distributions for the parallel tasks. It is worth
noting that in [50] and [51], the service time distribution is allowed to be general for G/GI/N
queues. Here we require the continuity of the joint distribution function F , which is necessary for
Proposition 4.1 and the proof of the weak convergence in (6.76), and thus the weak convergence
in Theorems 3.1 and 4.1. As a consequence, all the limits in the fluid and diffusion scales are
continuous.

Assumption 1. The joint distribution function F (xxx) of the service time vector ηηηi, i ∈ N, is
continuous.

State Descriptors. Let Xk := {Xk(t) : t ≥ 0} be the process counting the number of tasks at
the service station k, and Yk := {Yk(t) : t ≥ 0} be the process counting the number of tasks in
the waiting buffer for synchronization (unsynchronized queue) after service completion at service
station k, k = 1, ...,K. Denote XXX := (X1, ..., XK) and YYY := (Y1, ..., YK). Let S := {S(t) : t ≥ 0}
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be the process counting the number of synchronized jobs by each time t ≥ 0. In addition, let
Qk := {Qk(t) : t ≥ 0} and Bk := {Bk(t) : k ≥ 0} be the processes representing the queue length and
the number of tasks in service at station k, respectively, k = 1, ...,K. Let Dk := {Dk(t) : t ≥ 0} be
the cumulative service completion (departure) process at service station k, k = 1, ...,K. Denote
QQQ := (Q1, ..., QK), BBB := (B1, ..., BK), and DDD := (D1, ..., DK).

A Sequence of Systems. We consider a sequence of the above fork-join networks, indexed by
superscript n and let n→∞. We assume that each service station is operating in the many-server
heavy-traffic asymptotic regimes, where the arrival rate of jobs and the number of servers get large
appropriately while the service time distributions are fixed. In establishing the FLLN, we allow
the arrival rate to be time-dependent. In establishing the FCLT, we will assume that each service
station is operating in the Halfin-Whitt (QED) regime, so that it is critically loaded with a constant
arrival rate (see Assumption 4 for the precise definition). For any process X , we use X n to represent
the associated process in the sequence of the fork-join networks.

Some Fundamental Flow Balance Equations. For each service station k, k = 1, ...,K, and for
each t ≥ 0, we have the following flow conservation equations:

(2.1) Xn
k (t) = Bn

k (t) +Qnk(t),

(2.2) Xn
k (t) = Xn

k (0) +An(t)−Dn
k (t),

(2.3) Y n
k (t) = Y n

k (0) +Dn
k (t)− Sn(t).

The non-idling condition implies that for each k = 1, ...,K and t ≥ 0,

(2.4) Bn
k (t) = Xn

k (t) ∧Nn
k , Qnk(t) = (Xn

k (t)−Nn
k )+.

In addition, we have the following flow balance equation, for each k, k′ = 1, ...,K, k 6= k′, and t ≥ 0,

(2.5) Xn
k (t) + Y n

k (t) = Xn
k′(t) + Y n

k′(t),

that is, the total numbers of tasks in each service station and its associated waiting buffer for
synchronization are equal at all time, and are equal to the total number of jobs in the system.

3. Fluid Limit

In this section, we present the fluid limit for the fork-join network. We assume that the system
starts from empty and allow the arrival rate to be time-dependent.

Assumption 2. There exists a continuous nondecreasing deterministic real-valued function ā(t) on
[0,∞) with ā(0) = 0 such that

(3.1) Ān(t) := n−1An(t)⇒ ā(t) in D as n→∞.

We also make the following assumption on the numbers of servers.

Assumption 3. For k = 1, ...,K, N̄n
k := Nn

k /n→ Nk > 0 as n→∞.

Under the empty initial condition, we can write the processes Xn
k (t), Y n

k (t), k = 1, ...,K, and
Sn(t) as

(3.2) Xn
k (t) =

An(t)∑
i=1

1(τni + wn,ik + ηik > t), t ≥ 0,

(3.3) Y n
k (t) =

An(t)∑
i=1

1(τni + wn,ik + ηik ≤ t, τni + wn,ik′ + ηik′ > t, for some k′ 6= k), t ≥ 0,
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(3.4) Sn(t) =

An(t)∑
i=1

1(τni + wn,ik + ηik ≤ t, ∀k = 1, ...,K), t ≥ 0,

where wn,ik is the waiting time of the ith arrival at station k, i ∈ N.
In addition, for k = 1, ...,K, let Enk (t) be the number of tasks that have entered service at station

k by time t, t ≥ 0, and set Enk := {Enk (t) : t ≥ 0}. Denote EEEn := (En1 , ..., E
n
K). For each service

station k = 1, ..,K, we also have the balance equation

(3.5) Enk (t) = An(t)−Qnk(t) = An(t)− (Xn
k (t)−Nn

k )+, t ≥ 0.

Define the fluid-scaled processes X̄ n := n−1X n for X n = XXXn,YYY n, Sn,EEEn,QQQn,BBBn,DDDn. We now
state the FLLN for the fluid-scaled processes.

Theorem 3.1. Under Assumptions 1-3,

(3.6) (Ān, X̄XX
n
, ȲYY

n
, S̄n, ĒEE

n
, Q̄QQ

n
, B̄BB

n
, D̄DD

n
)⇒ (ā, X̄XX, ȲYY , S̄, ĒEE,Q̄QQ,B̄BB,D̄DD)

in D6K+2 as n→∞, where the limits are all deterministic continuous functions: ā is the limit in
(3.1), (ĒEE,X̄XX, ȲYY , S̄) is the unique solution to the following: for t ≥ 0 and k = 1, ...,K,

(3.7) X̄k(t) =

∫ t

0
F ck(t− s)dā(s) +

∫ t

0
(X̄k(t− s)−Nk)

+dFk(s),

(3.8) Ēk(t) = ā(t)− (X̄k(t)−Nk)
+,

(3.9) S̄(t) =

∫ t

0
...

∫ t

0

(
min

k=1,...,K

{
Ēk(t− sk)

})
dF (s1, ..., sK),

(3.10) Ȳk(t) =

∫ t

0
Fk(t− s)dā(s)−

∫ t

0
(X̄k(t− s)−Nk)

+dFk(s)− S̄(t),

and the limits Q̄̄Q̄Q, B̄̄B̄B and D̄̄D̄D satisfy

(3.11) Q̄k(t) = (X̄k(t)−Nk)
+, B̄k(t) = X̄k(t) ∧Nk, D̄k(t) = ā(t)− X̄k(t).

It is easy to check that for each k = 1, ...,K, the limit X̄k(t) also satisfies the following equation:

(3.12) X̄k(t) = ā(t)−
∫ t

0
Ēk(t− s)dFk(s), t ≥ 0.

We remark that the fluid limit X̄k for each k = 1, ...,K depends only on the marginal distribution
Fk, while the fluid limits Ȳk, k = 1, ...,K, and S̄ depend on the joint distribution F . Specifically,
each entering service fluid limit Ēk(t) depends on the marginal distribution Fk, and the fluid limit S̄
is a multivariate integral of the minimum of the entering service fluid limits with respect to the joint
distribution function F . Since Ȳk(t) = D̄k(t)− S̄(t) = ā(t)− X̄k(t)− S̄(t) for t ≥ 0 and k = 1, ...,K,
it is a functional of both Fk and F . However, as the FCLT (Theorem 4.1) below shows, the limits
for all these processes in the diffusion scale will depend on the joint distribution F .

When ā(t) =
∫ t

0 λ(s)ds and the service times are exponential (independent or dependent), where

λ(·) is a positive function, for each k = 1, ...,K, the fluid limit X̄k in (3.7) and (3.12) becomes an
ordinary differential equation (ODE) [42], but the fluid limit Ȳk in (3.10) does not have an ODE
representation due to the dependence of the fluid limit S̄ upon the minimum of the entering service
fluid limits of all the parallel stations.

When the arrival rate is constant and each service station is underloaded or critically loaded, we
give a corollary on the steady states of the fluid limits. The proof follows from a direct calculation
and is omitted. It is evident that correlation among service times of parallel tasks only affects the
steady state of ȲYY but not that of X̄XX.
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Corollary 3.1. Under Assumptions 1-3, if the arrival rate is constant, ā(t) = λt, for λ satisfying
0 < λ ≤ Nkµk for all k = 1, ...,K,

(X̄XX(t), ȲYY (t), Q̄QQ(t), B̄BB(t))→ (X̄XX(∞), ȲYY (∞), Q̄QQ(∞), B̄BB(∞)) as t→∞,

and
1

t
(D̄DD(t), ĒEE(t), S̄(t))→ λλλ := (λ, ..., λ) as t→∞,

where

X̄k(∞) = B̄k(∞) = λE[η1
k] = λ/µk, Ȳk(∞) = λ(E[η1

m]− E[η1
k]), Q̄k(∞) = 0.

3.1. Numerical Examples. We give two numerical examples to show the effectiveness of fluid
approximations comparing with simulations, when K = 2. We let the arrival process be Poisson
with time-varying rate λ(t) = 200 + 120 sin(t), t ≥ 0. The numbers of servers in stations 1 and 2
are N1 = 300 and N2 = 340, respectively. In the first numerical example, the service times of the
two parallel tasks are assumed to have a bivariate Marshall-Olkin exponential distribution [37]. A
bivariate Marshall-Olkin exponential distribution function F (x, y) for the random vector (η1, η2)
can be written as F c(x, y) := P (η1 > x, η2 > y) = exp(−µ1x− µ2y − µ12(x ∨ y)), x, y ≥ 0, where
three parameters µ1, µ2, µ12 are such that the two marginals are exponential with rates µ1 + µ12

and µ2 + µ12 and their correlation ρ = µ12/(µ1 + µ2 + µ12) ∈ [0, 1]. We denote MO(λ1, λ2, ρ)
for a bivariate Marshall-Olkin exponential distribution, where λ1 and λ2 are the rates for the
marginals, and ρ is the correlation parameter, for which the parameters µ1 = (λ1 − ρλ2)/(1 + ρ),
µ2 = (λ2 − ρλ1)/(1 + ρ) and µ12 = (ρ(λ1 + λ2))/(1 + ρ). For our first numerical example, we set
the service times to be MO(1, 0.9, ρ) such that the service times of the two parallel tasks have
exponential marginals with means 1 and 10/9 in stations 1 and 2, respectively, and their correlation
is ρ. The numerical results with ρ = 0 and ρ = 0.5 are provided in Figure 2, marked with “ind.” and
“corr.”, respectively. In the second numerical example, we let the service times of the two parallel
tasks have a bivariate Marshall-Olkin hyperexponential distribution [44], which is a mixture of two
independent bivariate Marshall-Olkin exponential distributions. Specifically, we take a mixture of
MO(4/5, 1, ρ1) with probability 0.4 and MO(6/5, 27/32, ρ2) with probability 0.6, such that the two
parallel service times have hyperexponential marginals with the same means as the first example.
By setting ρ1 = ρ2 = 0, we have two independent parallel service times, and by setting ρ1 = 0.7 and
ρ2 = 521/1232, we get the correlation between the two parallel service times to be 0.5. In Figure 3,
we show the numerical results with ρ = 0 (“ind.”) and ρ = 0.5 (“corr.”). To calculate the simulated
values, we simulated the system up to time 20 with 500 independent replications starting with an
empty system. We make two remarks from numerical results. First, the fluid approximations match
very well with the simulated results. Second, the positive correlation among parallel service times
does not affect X̄k, but reduces Ȳk, for k = 1, 2. The maximum relative errors of the simulated
values and the corresponding numerical solutions of the fluid models over the time interval [0, 20]
are less than 3% in Figures 2 and 3.

4. FCLT in the Halfin-Whitt regime

In this section, we study the fork-join network with NES in the Halfin-Whitt regime, which
requires that each service station operates in a critically loaded regime asymptotically. Specifically,
we assume the following. Let λn be the arrival rate of jobs such that λ̄n := λn/n→ λ > 0 as n→∞,
and set Nn

k := nNk, where Nk ∈ N, and ρnk := λn/(µkN
n
k ) for each k = 1, ...,K.

Assumption 4. For each k = 1, ...,K, λ = Nkµk and
√
n(1− ρnk)→ βk > 0, as n→∞.

The arrival processes An = {An(t) : t ≥ 0} satisfy an FCLT.
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Figure 2. Comparison of fluid approximations with simulations when the service
times have the Marshall-Olkin bivariate exponential distributions with correlation
ρ = 0 and ρ = 0.5. The figure shows the simulated values of Xi and Yi, i = 1, 2, and
their corresponding fluid approximations (solid lines for ρ = 0.5 and dashed lines for
ρ = 0). The values for the Xi are the same when ρ = 0 and ρ = 0.5, while the values
of Yi when ρ = 0.5 are smaller than those when ρ = 0.
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Figure 3. Comparison of fluid approximations with simulations when the service
times have the Marshall-Olkin bivariate hyperexponential distributions with corre-
lation ρ = 0 and ρ = 0.5 (solid lines for ρ = 0.5 and dashed lines for ρ = 0). The
figure shows the simulated values of Xi and Yi, i = 1, 2, and their corresponding
fluid approximations. The same observations can be made as in Figure 2.
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Assumption 5. There exists a stochastic process Â with continuous sample paths satisfying

(4.1) Ân(t) :=
An(t)− λnt√

n
⇒ Â(t) in D as n→∞.

It follows from (4.1) that we have the associated FLLN:

(4.2) Ān(t)⇒ λt in D as n→∞.

We now describe the non-empty initial conditions. Due to the complexity caused by initial
conditions, we focus on the case of K = 2, but our approach can be extended to K > 2. For
convenience, we use the notation k′ to denote its counterpart, i.e., k′ = 1 (k′ = 2, respectively) if k = 2
(k = 1, respectively), for k = 1, 2. At time 0−, there are Xn

k (0) tasks at service station k, and Y n
k (0)

tasks in its associated waiting buffer for synchronization, for k = 1, 2. Let XXXn(0) := (Xn
1 (0), Xn

2 (0))
and YYY n(0) := (Y n

1 (0), Y n
2 (0)). Recall the flow balance equation (2.5). At time 0−,

(4.3) Xn
k (0) + Y n

k (0) = Xn
k′(0) + Y n

k′(0), k = 1, 2,

which is equal to the number of jobs in the system. Note that Xn
k (0) ≥ Y n

k′(0) for each k = 1, 2,
since tasks in the waiting buffer associated with station k′ for synchronization must be in station k,
either in service or in queue. Let Bn

k (0) := min(Xn
k (0), Nn

k ) and Qnk(0) := (Xn
k (0)−Nn

k )+ be the
number of tasks in service (busy servers) and the queue length at station k at time 0−, respectively,
k = 1, 2. We also assume that Y n

k′(0) ≤ Bn
k (0) for k = 1, 2. This is not a restrictive assumption,

because in the Halfin-Whitt regime, waiting times for service at each station are O(1/
√
n) and

service times are O(1), and jobs that have completed tasks in one station and joined its waiting
buffer for synchronization have their associated tasks receiving service in the other station with
probability one asymptotically.

Let Jn(0) := mink=1,2{Bn
k (0) − Y n

k′(0)} be the number of jobs whose both tasks are in service
at time 0−. Then Znk (0) := Bn

k (0) − Y n
k′(0) − Jn(0) represents the number of jobs in the system

at time 0− whose task k is in service but whose task k′ is in queue waiting for service, k = 1, 2.
Let In(0) := Qn1 (0) ∧Qn2 (0) be the number of jobs (if any) whose both tasks are in queue at their
service stations at time 0−. Then Rnk (0) := Qnk(0)− In(0) represents the number of jobs (if any)
whose task k is waiting in queue for service while whose task k′ is in service, k = 1, 2. (Note that
our assumption above implies that if a job is waiting in queue at station k, its parallel task can
be either in queue or in service at station k′.) By our definition, we can see that Znk (0) = Rnk′(0),
k = 1, 2. Set RRRn(0) := (Rn1 (0), Rn2 (0)) and ZZZn(0) := (Zn1 (0), Zn2 (0)). We also obtain a decomposition
for Xn

k (0):

(4.4) Xn
k (0) = Bn

k (0) +Qnk(0) = Y n
k′(0) + Jn(0) + Znk (0) + In(0) +Rnk (0), k = 1, 2.

We let {w̃n,ik : i = 1, ..., Qnk(0)} be the sequence of remaining waiting times of the tasks in station

k at time 0−, k = 1, 2. It is in the order of their positions in queue: w̃n,1k is the remaining waiting

time of the task in the front of the queue while w̃
n,Qnk (0)

k is that for the task in the end of the queue

at station k at time 0−, k = 1, 2. Let {η̃ik : i = 1, ..., Bn
k (0)} be the sequence of remaining service

times of the tasks in station k at time 0−, for k = 1, 2. Let {ηi,Qk : i = 1, ..., Qnk(0)} be the sequence
of service times of the tasks in station k that are in queue at time 0−, k = 1, 2. Without abuse of

notation, we use {η̃i,Ykk : i = 1, ..., Y n
k′ (0)}, {η̃i,Jk : i = 1, ..., Jn(0)} and {η̃i,Zk : i = 1, ..., Znk (0)}, which

are partitioning subsets of {η̃ik : i = 1, ..., Bn
k (0)}, to represent the remaining service times of the

tasks in station k at time 0− corresponding to the quantities Y n
k′(0), Jn(0) and Znk (0), respectively,

k = 1, 2. Similarly, we use {w̃n,i,Ik : i = 1, ..., In(0)} and {w̃n,i,Rk : i = 1, ..., Rnk (0)}, which are

partitioning subsets of {w̃n,ik : i = 1, ..., Qnk(0)}, to represent the remaining waiting times of the
tasks in station k at time 0− corresponding to the quantities In(0) and Rnk (0), respectively, k = 1, 2.

Finally, we use {ηi,Ik : i = 1, ..., In(0)} and {ηi,Rk : i = 1, ..., Rnk (0)}, which are partitioning subsets of
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{ηi,Qk : i = 1, ..., Qnk(0)}, to represent the service times of the tasks in station k corresponding to the
quantities In(0) and Rnk (0) in queue at time 0−, respectively, k = 1, 2. We assume that these initial
quantities are independent of the arrival process An and the service times of new arrivals after time
0.

We can now give a representation for the processes XXXn, YYY n and Sn: for t ≥ 0 and k = 1, 2,

Xn
k (t) =

Bnk (0)∑
i=1

1(η̃ik > t) +

Qnk (0)∑
i=1

1(w̃n,ik + ηi,Qk > t) +

An(t)∑
i=1

1(τni + wn,ik + ηik > t),(4.5)

Sn(t) =

Y n2 (0)∑
i=1

1(η̃i,Y11 ≤ t) +

Y n1 (0)∑
i=1

1(η̃i,Y22 ≤ t) +

Jn(0)∑
i=1

1(η̃i,Jj ≤ t,∀j)(4.6)

+

Zn1 (0)∑
i=1

1(η̃i,Z1 ≤ t, w̃n,i,R2 + ηi,R2 ≤ t) +

Zn2 (0)∑
i=1

1(w̃n,i,R1 + ηi,R1 ≤ t, η̃i,Z2 ≤ t)

+

In(0)∑
i=1

1(w̃n,i,Ij + ηi,Ij ≤ t,∀j) +

An(t)∑
i=1

1(τni + wn,ij + ηij ≤ t,∀j),

and

Y n
k (t) = Y n

k (0) +Xn
k (0) +An(t)−Xn

k (t)− Sn(t).(4.7)

We use the convention that
∑0

i=1 ≡ 0 throughout the paper.
We impose the following assumptions on the initial quantities.

Assumption 6. There exists (Ȳ1(0), Ȳ2(0)) ∈ R2
+ such that

(X̄XX
n
(0), ȲYY

n
(0)) := n−1(XXXn(0),YYY n(0))⇒ (X̄XX(0), ȲYY (0)) in R4 as n→∞,

where X̄XX(0) := (N1, N2) and ȲYY (0) := (Ȳ1(0), Ȳ2(0)).

There exist random vectors X̂XX(0) := (X̂1(0), X̂2(0)) ∈ R2 and ŶYY (0) := (Ŷ1(0), Ŷ2(0)) ∈ R2 such
that

(X̂XX
n
(0), ŶYY

n
(0)) :=

√
n(X̄XX

n
(0)− X̄XX(0), ȲYY

n
(0)− ȲYY (0))⇒ (X̂XX(0), ŶYY (0)) in R4 as n→∞.

This assumption implies that the associated fluid-scaled initial quantities

(J̄n(0), Z̄ZZ
n
(0), Īn(0), R̄RR

n
(0)) := n−1(Jn(0),ZZZn(0), In(0),RRRn(0))⇒ (J̄(0), Z̄ZZ(0), Ī(0), R̄RR(0))

in R6 as n→∞, where

J̄(0) := N1 − Ȳ2(0) = N2 − Ȳ1(0), Z̄ZZ(0) := (Z̄1(0), Z̄2(0)) := (0, 0), Ī(0) := 0, R̄RR(0) := (0, 0).

Define the associated diffusion-scaled quantities (Ĵn(0), ẐZZ
n
(0), În(0), R̂RR

n
(0)) by

Ĵn(0) :=
Jn(0)− nJ̄(0)√

n
, Ẑnk (0) :=

Znk (0)√
n
, În(0) :=

In(0)√
n
, R̂nk (0) :=

Rnk (0)√
n
, k = 1, 2.

Then Assumption 6 implies that(
Ĵn(0), ẐZZ

n
(0), În(0), R̂RR

n
(0)
)
⇒
(
Ĵ(0), ẐZZ(0), Î(0), R̂RR(0)

)
in R6 as n→∞,

where

Ĵ(0) := min
k=1,2

{−(X̂k(0))− − Ŷk′(0)}, Ẑk(0) := −(X̂k(0))− − Ŷk′(0)− Ĵ(0), k = 1, 2,

Î(0) := min
k=1,2

(X̂k(0))+, R̂k(0) := (X̂k(0))+ − Î(0), k = 1, 2.
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Let

Fk,e(t) :=
1

E[η1
k]

∫ t

0
F ck(s)ds, t ≥ 0,

be the equilibrium distribution associated with Fk, k = 1, 2.

Assumption 7. For k = 1, 2, {η̃ik : i ∈ N} is a sequence of i.i.d. random variables with distribution

Fk,e and for each i ∈ N, η̃i1 and η̃i2 are independent. {ηi,Qk : i ∈ N} is a sequence of i.i.d. random

variables with distribution Fk for each i ∈ N and k = 1, 2. {(ηi,I1 , ηi,I2 ) : i ∈ N} is a sequence of i.i.d.

random vectors with a joint distribution F (·, ·). {(ηi,Rk , η̃i,Zk′ ) : i ∈ N} is a sequence of i.i.d. random
vectors with independent components, k = 1, 2.

Note that in Assumption 6, we have assumed that the system starts from stationarity (in the
fluid-scale steady state). Here in Assumption 7, the remaining service times of the tasks in service
are assumed to have the associated equilibrium distributions, and they are also assumed to be
independent for the two tasks. For jobs with both tasks in queue, we assume that their service
vectors have a joint distribution F (·, ·), as the new arrivals. For jobs with one task in service and
the other in queue, we assume that the task in service has the associated equilibrium distribution,
the task in queue has the same marginal distributions as the new arrivals, and both tasks are
independent.

Finally, we also make an assumption for the residual waiting times {w̃n,ik : i = 1, ..., Qnk(0)},
k = 1, 2.

Assumption 8. The residual waiting times of the tasks in queue {w̃n,ik : i = 1, ..., Qnk(0)}, k = 1, 2,
converge to zero a.s. as n→∞.

We define the diffusion-scaled processes X̂XX
n

:= (X̂n
1 , X̂

n
2 ), ŶYY

n
:= (Ŷ n

1 , Ŷ
n

2 ) and Ŝn by

(4.8) X̂n
k (t) :=

Xn
k (t)−Nn

k√
n

, Ŷ n
k (t) :=

Y n
k (t)− Ỹ n

k (t)√
n

, Ŝn(t) :=
Sn(t)− S̃n(t)√

n
, t ≥ 0,

for k = 1, 2, where

(4.9) S̃n(t) := nS̄0(t) + λ̄n
∫ t

0

∫ t

0
((t− s1) ∧ (t− s2)) dF (s1, s2),

(4.10) S̄0(t) := Ȳ2(0)F1,e(t) + Ȳ1(0)F2,e(t) + J̄(0)F1,e(t)F2,e(t),

(4.11) Ỹ n
k (t) := nȲk(0) + λnt− S̃n(t).

From the balance equation for Y n
k in (4.7), we can rewrite Ŷ n

k as

(4.12) Ŷ n
k (t) = Ŷ n

k (0) + X̂n
k (0) + Ân(t)− X̂n

k (t)− Ŝn(t), t ≥ 0, k = 1, 2.

Recall Enk (t) is defined as the cumulative number of tasks entering service by time t ≥ 0 at station
k, k = 1, 2, assuming the system starts empty in §3. Without abuse of notation, in §4 and §6 related
to the FCLT, we let Enk (t) be the number of new arrivals after time 0 whose task k has entered
service by time t ≥ 0 at station k, k = 1, 2.

Define the diffusion-scaled processes (ÊEE
n
, Q̂QQ

n
, B̂BB

n
, D̂DD

n
), ÊEE

n
:= (Ên1 , Ê

n
2 ), Q̂QQ

n
:= (Q̂n1 , Q̂

n
2 ), B̂BB

n
:=

(B̂n
1 , B̂

n
2 ) and D̂DD

n
:= (D̂n

1 , D̂
n
2 ), by

Ênk (t) :=
Enk (t)− λnt√

n
, Q̂nk(t) := (X̂n

k (t))+, B̂n
k (t) := −(X̂n

k (t))−,

D̂n
k (t) := X̂n

k (0) + Ân(t)− X̂n
k (t), t ≥ 0, k = 1, 2.(4.13)
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For s1, s2 ≥ 0, let

Ên(s1, s2) :=
1√
n

((En1 (s1) ∧ En2 (s2))− λn(s1 ∧ s2))

= (Ên1 (s1) + (λn/
√
n)(s1 − s1 ∧ s2)) ∧ (Ên2 (s2) + (λn/

√
n)(s2 − s1 ∧ s2)).(4.14)

Before we present the FCLT for the fork-join network with NES in the Halfin-Whitt regime,
we provide some preliminaries for the limit processes. The limit processes will be functionals of a
generalized multiparameter Kiefer process, as a limit of the multiparameter sequential empirical
process driven by the service time vectors of new arrivals. Define the multiparameter sequential
empirical processes K̂n := {K̂n(t1, t2,xxx) : t1 ≥ 0, t2 ≥ 0,xxx ∈ R2

+} by

(4.15) K̂n(t1, t2,xxx) :=
1√
n

bnt1c∧bnt2c∑
i=1

(1(ηηηi ≤ xxx)− F (xxx)).

We prove the convergence of K̂n in the space D([0,∞)2,D([0,∞)2,R)) endowed with a generalized
Skorohod J1 topology defined in [19] in Proposition 4.1. This proposition generalizes Lemma 3.1 of
[29] to the multiparameter setting and Theorem 3.1 in [33], and its proof is provided in §6.1.

The processes K̂n and their limit K̂ are much relevant to the vast literature in empirical processes
and Gaussian random fields (see, e.g., [55] and [1]). It is worth noting that the time domain

(t1, t2) of the processes K̂n and K̂ are two-dimensional, unlike the standard sequential empirical
processes studied in the literature. This unique feature arises from the fork-join network model, in
order to provide representations for the system dynamics and characterize the limit processes (see
(4.26)–(4.27) in Theorem 4.1 and (5.7)). Sequential empirical processes have played an important
role in studying many-server queueing models, as first observed by Krichagina and Puhalskii [29],
and further developed in [51, 50, 38, 43, 45, 46, 47]. It is also worth noting that in these papers,
the weak convergence of the associated sequential empirical processes in the space D([0,∞),D) with
the Skorohod J1 topology is required as first observed in [29]. For the fork-join networks with NES,
the weak convergence in the space D([0,∞)2,D([0,∞)2,R)) in a generalized Skorohod J1 topology
is required in the proofs of the FCLT.

Proposition 4.1. Under Assumption 1,

(4.16) K̂n(t1, t2,xxx)⇒ K̂(t1, t2,xxx) in D([0,∞)2,D([0,∞)2,R)) as n→∞,

where K̂(t1, t2,xxx) is a continuous Gaussian random field, called a generalized multiparameter Kiefer

process, with mean E[K̂(t1, t2,xxx)] = 0 and covariance function

(4.17) Cov(K̂(s1, s2,xxx), K̂(t1, t2, yyy)) = (s1 ∧ s2 ∧ t1 ∧ t2)(F (xxx ∧ yyy)− F (xxx)F (yyy)),

for sk, tk ≥ 0, k = 1, 2, and xxx,yyy ∈ R2
+.

We define the processes Ŵk := {Ŵk(t) : t ≥ 0}, Ŵ c
k := {Ŵ c

k(t) : t ≥ 0} and Ŵ := {Ŵ (t) : t ≥ 0}
as integral functionals of K̂: for t ≥ 0, k = 1, 2,

(4.18) Ŵk(t) :=

∫ t

0

∫ t

0

∫
R2
+

1(sk + xk ≤ t)dK̂(λs1, λs2,xxx),

(4.19) Ŵ (t) :=

∫ t

0

∫ t

0

∫
R2
+

1(sj + xj ≤ t,∀j)dK̂(λs1, λs2,xxx),

and

Ŵ c
k(t) := Ŵk(t)− Ŵ (t) =

∫ t

0

∫ t

0

∫
R2
+

1(sk + xk ≤ t, sk′ + xk′ > t)dK̂(λs1, λs2,xxx),(4.20)
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where the integrals are defined in the sense of mean-square limits (see the precise definition in §6.2).

Proposition 4.2. The processes Ŵk, Ŵ c
k and Ŵ are well-defined continuous Gaussian processes

with mean zero, and for 0 ≤ s < t and k = 1, 2,

E[(Ŵk(t)− Ŵk(s))
2] = λ

∫ t

0
(Fk(t− u)− Fk(s− u))(1− Fk(t− u) + Fk(s− u))du,

E[(Ŵ (t)− Ŵ (s))2] = λ

∫ t

0

∫ t

0
[∆F ((s− s1, s− s2); (t− s1, t− s2))]

× [1−∆F ((s− s1, s− s2); (t− s1, t− s2))]d(s1 ∧ s2),(4.21)

E[(Ŵ c
k(t)− Ŵ c

k(s))2] = E[(Ŵk(t)− Ŵk(s))
2] + E[(Ŵ (t)− Ŵ (s))2]

− 2λ

∫ t

0

∫ t

0
[F (t− s1, t− s2)− Fk,k′(s− sk, t− sk′)

+ (Fk(t− sk)− Fk(s− sk))(F (s− s1, s− s2)− F (t− s1, t− s2))]d(s1 ∧ s2),

and covariance functions

Cov(Ŵk(t), Ŵk′(t)) = λ

∫ t

0

∫ t

0
[F (t− s1, t− s2)− Fk(t− sk)Fk′(t− sk′)]d(s1 ∧ s2),

Cov(Ŵk(t), Ŵ
c
k′(t)) = λ

∫ t

0

∫ t

0
[Fk(t− sk)F (t− s1, t− s2)− Fk(t− sk)Fk′(t− sk′)]d(s1 ∧ s2),

Cov(Ŵk(t), Ŵ (t)) = λ

∫ t

0

∫ t

0
[F (t− s1, t− s2)− Fk(t− sk)F (t− s1, t− s2)]d(s1 ∧ s2),

Cov(Ŵ c
k(t), Ŵ (t)) = λ

∫ t

0

∫ t

0
[(F (t− s1, t− s2))2 − Fk(t− sk)F (t− s1, t− s2)]d(s1 ∧ s2),

where Fk,k′(x, y) := P (ηik ≤ x, ηik′ ≤ y) for x, y ∈ R+, and

∆F (xxx;yyy) := F (y1, y2)− F (x1, y2)− F (y1, x2) + F (x1, x2), xxx,yyy ∈ R2
+, xxx ≤ yyy.

In addition, let Û := {Û(ttt) : ttt ∈ R2
+} be a continuous two-parameter Gaussian process with mean

zero and covariance function:

(4.22) Cov(Û(sss), Û(ttt)) = (F1,e(s1 ∧ t1)F2,e(s2 ∧ t2)− F1,e(s1)F2,e(s2)F1,e(t1)F2,e(t2)),

for sss := (s1, s2) ∈ R2
+ and ttt := (t1, t2) ∈ R2

+. Define Ûk := {Ûk(t) : t ≥ 0}, for k = 1, 2, by

(4.23) Û1(t) := Û(t,∞), Û2(t) := Û(∞, t), t ≥ 0,

and without abuse of notation, we denote Û(t) = Û(t, t), t ≥ 0. Note that the processes Ŵk, Ŵ
c
k

and Ŵ are independent with Û , as well as Ûk, k = 1, 2.
We are now ready to state the FCLT.

Theorem 4.1. Under Assumptions 1 and 4-8,

(4.24)
(
Ân, X̂XX

n
, ŶYY

n
, Ŝn, ÊEE

n
, Q̂QQ

n
, B̂BB

n
, D̂DD

n
)
⇒
(
Â, X̂XX, ŶYY , Ŝ, ÊEE,Q̂QQ,B̂BB,D̂DD

)
in D14 as n→∞, where Â is in (4.1), X̂XX, ŶYY and Ŝ are the unique solutions to the following set of
stochastic integral equations: for t ≥ 0 and k = 1, 2,

X̂k(t) = X̂0
k(t)−NkβkFk,e(t)− J̄(0)1/2Ûk(t)− Ȳk′(0)1/2B̂0,k(Fk,e(t))
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+

∫ t

0
(X̂k(t− s))+dFk(s) +

∫ t

0
F ck(t− s)dÂ(s)− Ŵk(t),(4.25)

Ŷk(t) = Ŷ 0
k (t) +NkβkFk,e(t)− Ȳk(0)1/2B̂0,k′(Fk′,e(t)) + J̄(0)1/2(Ûk(t)− Û(t))

−
∫ t

0
(X̂k(t− s))+dFk(s) +

∫ t

0
Fk(t− s)dÂ(s) + Ŵ c

k(t)− Ψ̂(t),(4.26)

Ŝ(t) = Ŝ0(t) + Ȳ2(0)1/2B̂0,1(F1,e(t)) + Ȳ1(0)1/2B̂0,2(F2,e(t)) + J̄(0)1/2Û(t) + Ŵ (t) + Ψ̂(t),(4.27)

and ÊEE
n

, Q̂QQ
n

, B̂BB
n

and D̂DD
n

are given as follows:

(4.28) Êk(t) = Â(t)− (X̂k(t))
+, D̂k(t) = X̂k(0) + Â(t)− X̂k(t),

Q̂k(t) = (X̂k(t))
+, B̂k(t) = −(X̂k(t))

−,

where

X̂0
k(t) := X̂k(0)F ck,e(t) + (X̂k(0))+(F ck(t)− F ck,e(t)),(4.29)

Ŝ0(t) :=

2∑
k=1

(Ŷk′(0)Fk,e(t) + Ẑk′(0)Fk(t)Fk′,e(t)) + Ĵ(0)F1,e(t)F2,e(t) + Î(0)Fm(t),(4.30)

Ŷ 0
k (t) := Ŷk(0) + X̂k(0)Fk,e(t) + (X̂k(0))+(Fk(t)− Fk,e(t))− Ŝ0(t),(4.31)

the processes B̂0,k := {B̂0,k(t) : t ≥ 0}, k = 1, 2, are independent standard Brownian bridges, the

process Û is a continuous two-parameter Gaussian process defined above with the processes Û1 and
Û2 defined in (4.23), and the processes Ŵk, Ŵ c

k and Ŵ are defined in (4.18), (4.20) and (4.19),

and B̂0,k is independent of Û and Ŵk, Ŵ c
k and Ŵ , and the process Ψ̂ := {Ψ̂(t) : t ≥ 0} defined by

(4.32) Ψ̂(t) :=

∫ t

0

∫ t

0
Ê(t− s1, t− s2)dF (s1, s2),

is a well-defined continuous process, where, for s1, s2 ≥ 0,

(4.33) Ê(s1, s2) := Ê1(s1)1(s1 < s2) + Ê2(s2)1(s2 < s1) + (Ê1(s1) ∧ Ê2(s2))1(s1 = s2).

It is worth noting that we have generalized the methodology in Reed [51] for G/GI/N queues
to non-Markovian multi-server fork-join networks with NES. The limit processes are shown to be
of convolution type, driven by Gaussian random fields. We remark that the limit processes X̂k,
k = 1, 2, have the same structure as the unique solution to an integral convolution equation, as
shown in Reed [51], but are also different because they are both driven by the same generalized

multiparameter Kiefer process K̂ defined in Proposition 4.1. These two limiting processes X̂k,
k = 1, 2, are correlated because of the correlated service times of the parallel tasks of each job,
which is captured by the process K̂, as well as the same arrival limit process Â. In fact, these
two processes K̂ and Â as well as the limits associated with the initial quantities are the driving
stochastic components of all the limit processes in (4.25)–(4.28).

5. Proof of Fluid Limit

In this section, we prove Theorem 3.1. For conciseness, we only show the case when K = 2. The
argument can be easily generalized to the fork-join system with K > 2 parallel service stations. We
first give a representation for the fluid-scaled processes X̄XX

n
, ȲYY

n
and S̄n. Recall that the systems are

assumed to start from empty in Theorem 3.1.
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Lemma 5.1. The processes XXXn in (3.2), YYY n in (3.3) and Sn in (3.4) can be represented as

Xn
k (t) = Mn

k (t) +

∫ t

0
F ck(t− s)dAn(s) +

∫ t

0
(Xn

k (t− s)−Nn
k )+dFk(s), t ≥ 0,(5.1)

Y n
k (t) =

∫ t

0
Fk(t− s)dAn(s)−

∫ t

0
(Xn

k (t− s)−Nn
k )+dFk(s)−Mn

k (t)− V n(t)(5.2)

−
∫ t

0

∫ t

0
(En1 (t− s1) ∧ En2 (t− s2)) dF (s1, s2), t ≥ 0,

Sn(t) = V n(t) +

∫ t

0

∫ t

0
(En1 (t− s1) ∧ En2 (t− s2)) dF (s1, s2), t ≥ 0,(5.3)

for k = 1, 2, where

Mn
k (t) :=

An(t)∑
i=1

(
1(τni + wn,ik + ηik > t)− F ck(t− τni − w

n,i
k )
)
, t ≥ 0,(5.4)

V n(t) :=

An(t)∑
i=1

(
1(τni + wn,ik + ηik ≤ t, k = 1, 2)− F (t− τni − w

n,i
1 , t− τni − w

n,i
2 )
)
, t ≥ 0.(5.5)

Proof. The representation for Xn
k in (5.1) follows from Proposition 2.1 in [51]. We first prove (5.3)

holds. By (3.4) and (5.5), we have

Sn(t) = V n(t) +

An(t)∑
i=1

F (t− τni − w
n,i
1 , t− τni − w

n,i
2 ), t ≥ 0.

Observe that, for t ≥ 0,

An(t)∑
i=1

F (t− τni − w
n,i
1 , t− τni − w

n,i
2 )

=

An(t)∑
i=1

∫ t

0

∫ t

0
1(sk ≤ t− τni − w

n,i
k , k = 1, 2)dF (s1, s2)

=

An(t)∑
i=1

∫ t

0

∫ t

0
1(τni + wn,ik ≤ t− sk, k = 1, 2)dF (s1, s2)

=

∫ t

0

∫ t

0

An(t)∑
i=1

1(τni + wn,ik ≤ t− sk, k = 1, 2)dF (s1, s2)

=

∫ t

0

∫ t

0
(En1 (t− s1) ∧ En2 (t− s2)) dF (s1, s2).

Thus, we have derived (5.3). Finally, (5.2) follows from (2.3), (5.1) and (5.3). �

By Theorem 4.1 in [51], we have the following lemma for the convergence of (X̄XX
n
, ĒEE

n
).

Lemma 5.2. Under Assumptions 1-3,

(5.6) (X̄XX
n
, ĒEE

n
)⇒ (X̄XX,ĒEE)

in D4 as n→∞, where X̄XX and ĒEE are the unique solutions to (3.7) and (3.8), respectively.
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We next prove the convergence of S̄n. We observe that the process V n in (5.5) can be represented
as follows:

(5.7) V n(t) = n

∫ t

0

∫ t

0

∫
R2
+

1(sj + xj ≤ t,∀j)dK̄n(Ēn1 (s1), Ēn2 (s2),xxx), t ≥ 0,

where the process K̄n := {K̄n(t1, t2,xxx) : t1 ≥ 0, t2 ≥ 0,xxx ∈ R2
+} is defined by

(5.8) K̄n(t1, t2,xxx) :=
1√
n
K̂n(t1, t2,xxx), t1, t2 ∈ R+, xxx ∈ R2

+,

where K̂n(t1, t2,xxx) is defined in (4.15). The integral in (5.7) is well-defined as a Stieltjes integral.
The following lemma follows directly from Proposition 4.1.

Lemma 5.3. Under Assumption 1,

K̄n ⇒ 0 in D([0,∞)2,D([0,∞)2,R)) as n→∞.

Note that the processes K̄n(t1, t2,xxx) have the following decomposition: for t1 ≥ 0, t2 ≥ 0 and
xxx ∈ R2

+,
K̄n(t1, t2,xxx) = K̄n

1 (t1, t2,xxx) + K̄n
2 (t1, t2,xxx),

where

K̄n
1 (t1, t2,xxx) :=

1

n

bnt1c∧bnt2c∑
i=1

(
1(ηηηi ≤ xxx)−

∫ x1

0

∫ x2

0

1(ηηηi > uuu)

F c(uuu)
dF (uuu)

)
,(5.9)

K̄n
2 (t1, t2,xxx) :=

1

n

bnt1c∧bnt2c∑
i=1

(∫ x1

0

∫ x2

0

1(ηηηi > uuu)− F c(uuu)

F c(uuu)
dF (uuu)

)
.(5.10)

We then decompose V n into two processes, Gn := {Gn(t) : t ≥ 0} and Hn := {Hn(t) : t ≥ 0} as
follows:

(5.11) V n(t) = Hn(t) +Gn(t), t ≥ 0,

where

Hn(t) := n

∫ t

0

∫ t

0

∫
R2
+

1(sj + xj ≤ t,∀j)dK̄n
1 (Ēn1 (s1), Ēn2 (s2),xxx), t ≥ 0,(5.12)

Gn(t) := n

∫ t

0

∫ t

0

∫
R2
+

1(sj + xj ≤ t,∀j)dK̄n
2 (Ēn1 (s1), Ēn2 (s2),xxx), t ≥ 0.(5.13)

Define the fluid-scaled processes H̄n := n−1Hn and Ḡn := n−1Gn. We next show the convergence
of the processes H̄n and Ḡn.

Lemma 5.4. Under Assumptions 1-3,

(H̄n, Ḡn)⇒ (0, 0) in D2 as n→∞.

We first prove the convergence H̄n ⇒ 0 in D as n→∞ in Lemma 5.4. Let τ̂n,ij be the time at
which task j of job i enters service after time 0, i.e.,

τ̂n,ij = inf{t ≥ 0 : Enj (t) ≥ i}, j = 1, 2.

We denote F̃ to be the distribution function of maxj(τ̂
n,i
j + ηij) conditional on τ̂n,i1 and τ̂n,i2 , i.e.,

F̃ (t) := F (t− τ̂n,i1 , t− τ̂n,i2 ) for t ≥ 0. Note that F̃ depends on n and i and we omit n and i below

for conciseness. Let F̃ c := 1− F̃ . Define

Hn,i(t) := 1(ηij ≤ t− τ̂
n,i
j , ∀j)−

∫ ηi1∧(t−τ̂n,i1 )+

0

∫ ηi2∧(t−τ̂n,i2 )+

0

1

F c(uuu)
dF (uuu), t ≥ 0,(5.14)
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H̃n,i(t) := 1(ηij ≤ t− τ̂
n,i
j , ∀j)−

∫ t

0

1
(

maxj(τ̂
n,i
j + ηij) > u

)
F̃ c(u)

dF̃ (u), t ≥ 0,(5.15)

and, for each κ ≥ 1,

(5.16) Hn
κ (t) :=

En1 (t)∧En2 (t)∧κ∑
i=1

Hn,i(t), t ≥ 0.

Denote Hn,i := {Hn,i(t) : t ≥ 0}, H̃n,i := {H̃n,i(t) : t ≥ 0} and Hn
κ := {Hn

κ (t) : t ≥ 0}. Let
{ξni := τni − τni−1, i ≥ 1} be the interarrival times between the (i− 1)th and ith jobs arriving to the
system. Define the filtration Hn := {Hnt : t ≥ 0} by

Hnt := σ
(
1(ηij ≤ s− τ̂

n,i
j , ∀j), s ≤ t, i = 1, ..., En1 (t) ∧ En2 (t)

)
∨ σ

(
Enj (s), s ≤ t,∀j

)
∨ σ (ξni , i ≥ 1) ∨N ,

(5.17)

where N includes all the null sets. It is easy to verify that Hn is actually a filtration and satisfies
the usual conditions [23]. We first state the martingale property of Hn,i and H̃n,i in Lemma 5.5,
whose proof can be found in §8.

Lemma 5.5. Under Assumptions 1-3, the processes Hn,i and H̃n,i are Hn-martingales.

Next, we will show the process H̃n,i is an martingale with respect to the filtration Hn.

Lemma 5.6. Under Assumptions 1-3, for each κ ≥ 1, the process Hn
κ is an Hn-square-integrable

martingale with predictable quadratic variation process

〈Hn
κ 〉(t) =

En1 (t)∧En2 (t)∧κ∑
i=1

∫ ηi1∧(t−τ̂n,i1 )+

0

∫ ηi2∧(t−τ̂n,i2 )+

0

1

F c(uuu)
dF (uuu), t ≥ 0.

Proof of Lemma 5.6. By the definition of Hn
κ in (5.16) and Lemma 5.5, Hn

κ is Hn-adapted and an
Hn-martingale. Note that, for each t ≥ 0,

|Hn,i(t)| ≤ 1 +

∫ ηi1

0

∫ ηi2

0

1

F c(uuu)
dF (uuu), a.s.

By Lemma 4.3 in [33], we have E
[
|Hn,i(t)|2

]
<∞, for t ≥ 0.

It is easy to check that the second terms (without the minus) on the RHS of (5.14) and (5.15)
are predictable with respect to the filtration Hn, and thus are compensators for the point process

{1(maxj=1,2(τ̂n,ij + ηij) ≤ t) : t ≥ 0}. By the uniqueness of Doob-Mayer decomposition (see, e.g.,

Theorem 4.10 in [23]) in the sense of indistinguishability, Hn,i and H̃n,i are indistinguishable and
we can write

Hn
κ (t) =

En1 (t)∧En2 (t)∧κ∑
i=1

H̃n,i(t), t ≥ 0.

Thus, it suffices to prove the following two claims:

(i) The predictable quadratic variation process of H̃n,i is given by

〈H̃n,i〉(t) =

∫ t

0

1
(

maxj(τ̂
n,i
j + ηij) > u

)
F̃ c(u)

dF̃ (u).

(ii) The martingales Hn,i and Hn,j are orthogonal for i 6= j, i.e., the product Hn,iHn,j is an
Hn-martingale, or equivalently, the predictable quadratic covariation 〈Hn,i, Hn,j〉(t) = 0
for t ≥ 0 (see Proposition 4.15 of Chapter I in Jacod and Shiryaev [20]).
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The proof of claim (i) follows a similar argument as part 2 of Lemma A.1 in [51]. We provide the
details here for completeness. Since the second term on the RHS of (5.15) is Hn-predictable, by
Proposition 1 of Chapter 3.4 in Liptser and Shiryaev [32], the Hn-predictable measure of the jumps

of the process {1(τ̂n,ij + ηij ≤ t,∀j) : t ≥ 0} is

νn,i([0, t], C) = {1 ∈ C}
∫ t

0
1

(
0 < u ≤ max

j
(τ̂n,ij + ηij)

)
dF̃ (u)

F̃ c(u)
, t ≥ 0,

where C is a Borel set in R, and thus, the predictable quadratic-variation process of H̃n,i is (see,
e.g., Problem 11 of Chapter 4.1 in Liptser and Shiryaev [32])

〈H̃n,i〉(t) =

∫ t

0

∫
R
x2νn,i(du, dx)−

∑
0<u≤t

(∫
R
xνn,i({u}, dx)

)2

=

∫ t

0
1

(
0 < u ≤ max

j
(τ̂n,ij + ηij)

)
dF̃ (u)

F̃ c(u)
−
∑

0<u≤t
1

(
0 < u ≤ max

j
(τ̂n,ij + ηij)

)(
∆F̃ (u)

F̃ c(u)

)2

=

∫ t

0

1
(

maxj(τ̂
n,i
j + ηij) > u

)
F̃ c(u)

dF̃ (u), t ≥ 0.

This completes the proof of claim (i).
We now focus on the proof of claim (ii), i.e., the martingale property for Hn,iHn,j . It is sufficient

to show, for s < t, j < i,

(5.18) 1(τ̂n,i1 ∨ τ̂n,i2 > s)E
[
Hn,i(t)Hn,j(t)|Hns

]
= 0,

and

(5.19) 1(τ̂n,i1 ∨ τ̂n,i2 ≤ s)E
[
Hn,i(t)Hn,j(t)|Hns

]
= Hn,i(s)Hn,j(s).

We first prove (5.18). Note that τ̂n,ik is an Hn-stopping time since σ(Enk (s), s ≤ t) ⊂ Hnt for each

t ≥ 0, k = 1, 2. This implies τ̂n,i1 ∨ τ̂n,i2 is also a stopping time with respect to Hn, and Hn
τ̂n,i1 ∨τ̂

n,i
2

is

well-defined. We then have

1(τ̂n,i1 ∨ τ̂n,i2 > s)E[Hn,i(t)Hn,j(t)|Hns ] = 1(τ̂n,i1 ∨ τ̂n,i2 > s)E
[
E
[
Hn,i(t)Hn,j(t)|Hn

τ̂n,i1 ∨τ̂
n,i
2

]
|Hns

]
.

Note that

E
[
Hn,i(t)Hn,j(t)|Hn

τ̂n,i1 ∨τ̂
n,i
2

]
= 1(ηj1 ≤ τ̂

n,i
1 − τ̂n,j1 , ηj2 ≤ τ̂

n,i
2 − τ̂n,j2 )E

[
Hn,i(t)Hn,j(t)|Hn

τ̂n,i1 ∨τ̂
n,i
2

]
+ 1(ηj1 > τ̂n,i1 − τ̂n,j1 , ηj2 ≤ τ̂

n,i
2 − τ̂n,j2 )E

[
Hn,i(t)Hn,j(t)|Hn

τ̂n,i1 ∨τ̂
n,i
2

]
+ 1(ηj1 ≤ τ̂

n,i
1 − τ̂n,j1 , ηj2 > τ̂n,i2 − τ̂n,j2 )E

[
Hn,i(t)Hn,j(t)|Hn

τ̂n,i1 ∨τ̂
n,i
2

]
+ 1(ηj1 > τ̂n,i1 − τ̂n,j1 , ηj2 > τ̂n,i2 − τ̂n,j2 )E

[
Hn,i(t)Hn,j(t)|Hn

τ̂n,i1 ∨τ̂
n,i
2

]
.(5.20)

Since

1(ηj1 ≤ τ̂
n,i
1 − τ̂n,j1 , ηj2 ≤ τ̂

n,i
2 − τ̂n,j2 )

and

1(ηj1 ≤ τ̂
n,i
1 − τ̂

n,j
1 , ηj2 ≤ τ̂

n,i
2 − τ̂

n,j
2 )Hn,j(t) = 1(ηj1 ≤ τ̂

n,i
1 − τ̂

n,j
1 , ηj2 ≤ τ̂

n,i
2 − τ̂

n,j
2 )Hn,j(t∧ (τ̂n,i1 ∨ τ̂

n,i
2 ))
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are Hn
τ̂n,i1 ∨τ̂

n,i
2

-measurable, it follows that

1(ηj1 ≤ τ̂
n,i
1 − τ̂n,j1 , ηj2 ≤ τ̂

n,i
2 − τ̂n,j2 )E

[
Hn,i(t)Hn,j(t)|Hn

τ̂n,i1 ∨τ̂
n,i
2

]
= E

[
1(ηj1 ≤ τ̂

n,i
1 − τ̂n,j1 , ηj2 ≤ τ̂

n,i
2 − τ̂n,j2 )Hn,i(t)Hn,j(t)|Hn

τ̂n,i1 ∨τ̂
n,i
2

]
= 1(ηj1 ≤ τ̂

n,i
1 − τ̂n,j1 , ηj2 ≤ τ̂

n,i
2 − τ̂n,j2 )Hn,j(t)E

[
Hn,i(t)|Hn

τ̂n,i1 ∨τ̂
n,i
2

]
,

and thus, the martingale property of Hn,i and Doob’s stopping theorem (see, e.g., Theorem 1.39 in
Chapter I of [23]) imply that

E
[
Hn,i(t)|Hn

τ̂n,i1 ∨τ̂
n,i
2

]
= E

[
Hn,i(τ̂n,i1 ∨ τ̂n,i2 )

]
= 0.

Thus, the first term on the RHS of (5.20) is equal to 0. We now consider the second term on the
RHS of (5.20). It can be decomposed into two terms as follows:

1(ηj1 > τ̂n,i1 − τ̂n,j1 , ηj2 ≤ τ̂
n,i
2 − τ̂n,j2 )E

[
Hn,i(t)Hn,j(t)|Hn

τ̂n,i1 ∨τ̂
n,i
2

]
= 1(ηj2 ≤ τ̂

n,i
2 − τ̂n,j2 )E

[
Hn,i(t)Hn,j(t)|Hn

τ̂n,i1 ∨τ̂
n,i
2

]
− 1(ηj1 ≤ τ̂

n,i
1 − τ̂n,j1 , ηj2 ≤ τ̂

n,i
2 − τ̂n,j2 )E

[
Hn,i(t)Hn,j(t)|Hn

τ̂n,i1 ∨τ̂
n,i
2

]
.

We only need to show the first term on the RHS of the above is equal to 0. Since 1(ηj2 ≤ τ̂
n,i
2 − τ̂

n,j
2 )

and 1(ηj2 ≤ τ̂
n,i
2 − τ̂n,j2 )Hn,j(t) = Hn,j(t ∧ τ̂n,i2 ) are both Hn

τ̂n,i1 ∨τ̂
n,i
2

-measurable,

1(ηj2 ≤ τ̂
n,i
2 − τ̂n,j2 )E

[
Hn,i(t)Hn,j(t)|Hn

τ̂n,i1 ∨τ̂
n,i
2

]
= E

[
1(ηj2 ≤ τ̂

n,i
2 − τ̂n,j2 )Hn,i(t)Hn,j(t)|Hn

τ̂n,i1 ∨τ̂
n,i
2

]
= 1(ηj2 ≤ τ̂

n,i
2 − τ̂n,j2 )Hn,j(t)E

[
Hn,i(t)|Hn

τ̂n,i1 ∨τ̂
n,i
2

]
.

Since Hn,i is an Hn-martingale, by Doob’s stopping theorem (see, e.g., Theorem 1.39 in Chapter I
of [23]),

E
[
Hn,i(t)|Hn

τ̂n,i1 ∨τ̂
n,i
2

]
= E

[
Hn,i(τ̂n,i1 ∨ τ̂n,i2 )

]
= 0.

Thus, we obtain that the second term on the RHS of (5.20) is equal to 0. The proof that the third
term on the RHS of (5.20) is 0 is analogous to that for the second term, and is omitted.

We now consider the last term on the RHS of (5.20). On the event {ηj1 > τ̂n,i1 −τ̂
n,j
1 , ηj2 > τ̂n,i2 −τ̂

n,j
2 },

we have that task k of job j has finished service after task k of job i arrives, and so the service time

vector of job j has no effect on τ̂n,ik , the time at which task k of job i enters service, for k = 1, 2.

Thus, ηηηj and τ̂n,ik are independent on the event {ηj1 > τ̂n,i1 − τ̂n,j1 , ηj2 > τ̂n,i2 − τ̂n,j2 }, for k = 1, 2.

More precisely, there exist random variables τ̌n,i1 and τ̌n,i2 , which are Borel functions of ξnr , r ≥ 1, ηηηp,

p ≥ 1, p 6= i, p 6= j, such that {ηj1 > τ̂n,i1 − τ̂
n,j
1 , ηj2 > τ̂n,i2 − τ̂

n,j
2 } = {ηj1 > τ̌n,i1 − τ̂

n,j
1 , ηj2 > τ̌n,i2 − τ̂

n,j
2 }

and {τ̂n,ik = τ̌n,ik , k = 1, 2} on either event. Thus, applying Lemma 3.6 in [29] and using the fact

that ηηηi and ηηηj are independent of τ̌n,ik and τ̂n,jk , k = 1, 2, we have

1(ηj1 > τ̂n,i1 − τ̂n,j1 , ηj2 > τ̂n,i2 − τ̂n,j2 )E
[
Hn,i(t)Hn,j(t)|Hn

τ̂n,i1 ∨τ̂
n,i
2

]
= 1(ηj1 > τ̌n,i1 − τ̂n,j1 , ηj2 > τ̌n,i2 − τ̂n,j2 )

×
E
[
1(ηj1 > τ̌n,i1 − τ̂n,j1 , ηj2 > τ̌n,i2 − τ̂n,j2 )Ȟn,i(t)Hn,j(t)|τ̌n,ik , τ̂n,jk , ∀k

]
P (ηj1 > τ̌n,i1 − τ̂n,j1 , ηj2 > τ̌n,i2 − τ̂n,j2 |τ̌

n,i
k , τ̂n,jk ,∀k)

,
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where Ȟn,i denotes Hn,i with τ̌n,ik substituted for τ̂n,ik for k = 1, 2. Furthermore, since ηηηi is

independent of τ̌n,ik , ηηηj and τ̂n,jk , k = 1, 2, we have

E
[
1(ηj1 > τ̌n,i1 − τ̂n,j1 , ηj2 > τ̌n,i2 − τ̂n,j2 )Ȟn,i(t)Hn,j(t)|τ̌n,ik , τ̂n,jk ,∀k

]
= E

[
1(ηj1 > τ̌n,i1 − τ̂n,j1 , ηj2 > τ̌n,i2 − τ̂n,j2 )Hn,j(t)|τ̌n,ik , τ̂n,jk , ∀k

]
E
[
Ȟn,i(t)|τ̌n,ik ,∀k

]
.(5.21)

By the definition of Ȟn,i and the fact that ηηηi is independent of τ̌n,ik , k = 1, 2, we note that

E[Ȟn,i(t)|τ̌n,ik ,∀k] = 0, which implies that the RHS of (5.21) is 0, and thus (5.18) holds.
We will now focus on the proof of (5.19). The proof proceeds similarly to that in Lemma 5.5. Let

Rlk be either ≤ or >, the relationship between two real numbers, for k = 1, 2, and l = i, j. We then
have a decomposition for (5.19) by

1(τ̂n,i1 ∨ τ̂n,i2 ≤ s)E
[
Hn,i(t)Hn,j(t)|Hns

]
=

∑
Ri1,Ri2,R

j
1,R

j
2

1(ηikRik(s− τ̂
n,i
k ), s− τ̂n,ik ≥ 0,∀k)1(ηjkR

j
k(s− τ̂

n,j
k ),∀k)E

[
Hn,i(t)Hn,j(t)|Hns

]
,

where the summation
∑
Ri1,Ri2,R

j
1,R

j
2

denotes the sum of all the cases for the relationships Rlk, for

l = i, j and k = 1, 2. In order to prove (5.19), it is enough to check for each Rik and Rjk, k = 1, 2,

1(ηikRik(s− τ̂
n,i
k ), s− τ̂n,ik ≥ 0,∀k)1(ηjkR

j
k(s− τ̂

n,j
k ), ∀k)E

[
Hn,i(t)Hn,j(t)|Hns

]
= 1(ηikRik(s− τ̂

n,i
k ), s− τ̂n,ik ≥ 0, ∀k)1(ηjkR

j
k(s− τ̂

n,j
k ),∀k)Hn,i(s)Hn,j(s).

Here we only focus on proving the following two equations:

1(ηi1 ≤ s− τ̂
n,i
1 , ηi2 > s− τ̂n,i2 ≥ 0)1(ηj1 > s− τ̂n,j1 ≥ 0, ηj2 ≤ s− τ̂

n,j
2 )E

[
Hn,i(t)Hn,j(t)|Hns

]
= 1(ηi1 ≤ s− τ̂

n,i
1 , ηi2 > s− τ̂n,i1 ≥ 0)1(ηj1 > s− τ̂n,j1 ≥ 0, ηj2 ≤ s− τ̂

n,j
2 )Hn,i(s)Hn,j(s),(5.22)

and

1(ηi1 > s− τ̂n,i1 ≥ 0, ηi2 > s− τ̂n,i2 ≥ 0)

× 1(ηj1 > s− τ̂n,j1 ≥ 0, ηj2 > s− τ̂n,j2 ≥ 0)E
[
Hn,i(t)Hn,j(t)|Hns

]
= 1(ηi1 > s− τ̂n,i1 ≥ 0, ηi2 > s− τ̂n,i2 ≥ 0)

× 1(ηj1 > s− τ̂n,j1 ≥ 0, ηj2 > s− τ̂n,j2 ≥ 0)Hn,i(s)Hn,j(s),(5.23)

and the proof of the other cases can be carried out similarly.
For (5.22), we first observe that

1(ηi1 ≤ s− τ̂
n,i
1 , ηi2 > s− τ̂n,i2 ≥ 0)1(ηj1 > s− τ̂n,j1 ≥ 0, ηj2 ≤ s− τ̂

n,j
2 )

=
[
1(ηi1 ≤ s− τ̂

n,i
1 )− 1(ηi1 ≤ s− τ̂

n,i
1 , ηi2 ≤ s− τ̂

n,i
2 )
]

×
[
1(ηj2 ≤ s− τ̂

n,j
2 )− 1(ηj1 ≤ s− τ̂

n,j
1 , ηj2 ≤ s− τ̂

n,j
2 )

]
= 1(ηi1 ≤ s− τ̂

n,i
1 )1(ηj2 ≤ s− τ̂

n,j
2 )− 1(ηi1 ≤ s− τ̂

n,i
1 , ηi2 ≤ s− τ̂

n,i
2 )1(ηj2 ≤ s− τ̂

n,j
2 )

− 1(ηi1 ≤ s− τ̂
n,i
1 )1(ηj1 ≤ s− τ̂

n,j
1 , ηj2 ≤ s− τ̂

n,j
2 )

+ 1(ηi1 ≤ s− τ̂
n,i
1 , ηi2 ≤ s− τ̂

n,i
2 )1(ηj1 ≤ s− τ̂

n,j
1 , ηj2 ≤ s− τ̂

n,j
2 ).

Thus, we obtain

1(ηi1 ≤ s− τ̂
n,i
1 , ηi2 > s− τ̂n,i2 ≥ 0)1(ηj1 > s− τ̂n,j1 ≥ 0, ηj2 ≤ s− τ̂

n,j
2 )E

[
Hn,i(t)Hn,j(t)|Hns

]
= 1(ηi1 ≤ s− τ̂

n,i
1 )1(ηj2 ≤ s− τ̂

n,j
2 )E

[
Hn,i(t)Hn,j(t)|Hns

]
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− 1(ηi1 ≤ s− τ̂
n,i
1 , ηi2 ≤ s− τ̂

n,i
2 )1(ηj2 ≤ s− τ̂

n,j
2 )E

[
Hn,i(t)Hn,j(t)|Hns

]
− 1(ηi1 ≤ s− τ̂

n,i
1 )1(ηj1 ≤ s− τ̂

n,j
1 , ηj2 ≤ s− τ̂

n,j
2 )E

[
Hn,i(t)Hn,j(t)|Hns

]
+ 1(ηi1 ≤ s− τ̂

n,i
1 , ηi2 ≤ s− τ̂

n,i
2 )1(ηj1 ≤ s− τ̂

n,j
1 , ηj2 ≤ s− τ̂

n,j
2 )E

[
Hn,i(t)Hn,j(t)|Hns

]
.(5.24)

Since 1(ηi1 ≤ s − τ̂n,i1 ), 1(ηj2 ≤ s − τ̂n,j2 ), 1(ηi1 ≤ s − τ̂n,i1 )Hn,i(t) = 1(ηi1 ≤ s − τ̂n,i1 )Hn,i(s) and

1(ηj2 ≤ s− τ̂
n,j
2 )Hn,j(t) = 1(ηj2 ≤ s− τ̂

n,j
2 )Hn,j(s) are Hns -measurable, we then have

1(ηi1 ≤ s− τ̂
n,i
1 )1(ηj2 ≤ s− τ̂

n,j
2 )E

[
Hn,i(t)Hn,j(t)|Hns

]
= 1(ηi1 ≤ s− τ̂

n,i
1 )1(ηj2 ≤ s− τ̂

n,j
2 )E

[
1(ηi1 ≤ s− τ̂

n,i
1 )Hn,i(t)1(ηj2 ≤ s− τ̂

n,j
2 )Hn,j(t)|Hns

]
= 1(ηi1 ≤ s− τ̂

n,i
1 )1(ηj2 ≤ s− τ̂

n,j
2 )Hn,i(s)Hn,j(s).

Similarly, we can obtain the corresponding results for the other terms on the RHS of (5.24), which
completes the proof of (5.22).

Next, we focus on the proof of (5.23). Since

{s− τ̂n,i1 ≥ 0, s− τ̂n,i2 ≥ 0, ηj1 > s− τ̂n,j1 , ηj2 > s− τ̂n,j2 } ⊂ {η
j
1 > τ̂n,i1 − τ̂n,j1 , ηj2 > τ̂n,i2 − τ̂n,j2 },

it follows as above that

{s− τ̂n,i1 ≥ 0, s− τ̂n,i2 ≥ 0, ηj1 > s− τ̂n,j1 , ηj2 > s− τ̂n,j2 }

= {s− τ̌n,i1 ≥ 0, s− τ̌n,i2 ≥ 0, ηj1 > s− τ̂n,j1 , ηj2 > s− τ̂n,j2 }

and {τ̂n,ik = τ̌n,ik , ∀k} on either event. Hence,

1(ηi1 > s− τ̂n,i1 ≥ 0, ηi2 > s− τ̂n,i2 ≥ 0)

× 1(ηj1 > s− τ̂n,j1 ≥ 0, ηj2 > s− τ̂n,j2 ≥ 0)E
[
Hn,i(t)Hn,j(t)|Hns

]
= 1(ηi1 > s− τ̌n,i1 ≥ 0, ηi2 > s− τ̌n,i2 ≥ 0)

× 1(ηj1 > s− τ̂n,j1 ≥ 0, ηj2 > s− τ̂n,j2 ≥ 0)E
[
Ȟn,i(t)Hn,j(t)|Hns

]
,(5.25)

where ηηηi and ηηηj are independent of τ̌n,ik and τ̂n,jk for k = 1, 2. Analogous to the proof of Lemma 5.5,
we have

Hns ∩ {ηik > s− τ̌n,ik ≥ 0, ∀k} ∩ {ηjk > s− τ̂n,jk ≥ 0,∀k}

⊂ (σ(ξnr , r ≥ 1, ηηηp, p ≥ 1, p 6= i, p 6= j) ∨ σ(τ̌n,ik , τ̂n,jk ,∀k) ∨N )

∩ {ηik > s− τ̌n,ik ≥ 0,∀k} ∩ {ηjk > s− τ̂n,jk ≥ 0,∀k},
where N includes all null sets. Applying (5.25) and Lemma 3.6 in [29], we have

1(ηi1 > s− τ̂n,i1 ≥ 0, ηi2 > s− τ̂n,i2 ≥ 0)

× 1(ηj1 > s− τ̂n,j1 ≥ 0, ηj2 > s− τ̂n,j2 ≥ 0)E
[
Hn,i(t)Hn,j(t)|Hns

]
= 1(ηi1 > s− τ̌n,i1 ≥ 0, ηi2 > s− τ̌n,i2 ≥ 0)1(ηj1 > s− τ̂n,j1 ≥ 0, ηj2 > s− τ̂n,j2 ≥ 0)

×
E
[
1(ηik > s− τ̌n,ik ≥ 0, ∀k)1(ηjk > s− τ̂n,jk ≥ 0,∀k)Ȟn,i(t)Hn,j(t)|τ̌n,ik , τ̂n,jk , ∀k

]
P
(
ηik > s− τ̌n,ik ≥ 0, ηjk > s− τ̂n,jk ≥ 0,∀k|τ̌n,ik , τ̂n,jk , ∀k

) .(5.26)

Recall that ηηηi and ηηηj are independent of τ̌n,ik and τ̂n,jk for k = 1, 2. We then obtain

E
[
1(ηik > s− τ̌n,ik ≥ 0,∀k)1(ηjk > s− τ̂n,jk ≥ 0, ∀k)Ȟn,i(t)Hn,j(t)|τ̌n,ik , τ̂n,jk , ∀k

]
= E

[
1(ηik > s− τ̌n,ik ≥ 0,∀k)Ȟn,i(t)|τ̌n,ik ,∀k]E[1(ηjk > s− τ̂n,jk ≥ 0, ∀k)Hn,j(t)|τ̂n,jk ,∀k

]
,(5.27)
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and

P
(
ηik > s− τ̌n,ik ≥ 0, ηjk > s− τ̂n,jk ≥ 0, ∀k|τ̌n,ik , τ̂n,jk , ∀k

)
= P

(
ηik > s− τ̌n,ik ≥ 0, ∀k|τ̌n,ik ,∀k

)
P
(
ηjk > s− τ̂n,jk ≥ 0, ∀k|τ̂n,jk , ∀k

)
.(5.28)

By Lemma 3.6 of [29] and an analogous argument in the proof of Lemma 5.5, we have

1(ηik > s− τ̌n,ik ≥ 0,∀k)
E
[
1(ηik > s− τ̌n,ik ≥ 0, ∀k)Ȟn,i(t)|τ̌n,ik ,∀k

]
P
(
ηik > s− τ̌n,ik ≥ 0,∀k|τ̌n,ik , ∀k

)
= 1(ηik > s− τ̌n,ik ≥ 0,∀k)E

[
Ȟn,i(t)|Hns

]
,

and

1(ηjk > s− τ̂n,jk ≥ 0,∀k)
E
[
1(ηjk > s− τ̂n,jk ≥ 0, ∀k)Hn,j(t)|τ̂n,jk ,∀k

]
P
(
ηjk > s− τ̂n,jk ≥ 0, ∀k|τ̂n,jk ,∀k

)
= 1(ηjk > s− τ̂n,jk ≥ 0, ∀k)E[Hn,j(t)|Hns ].

Combining (5.26)-(5.28), and noting the fact that τ̌n,ik = τ̂n,ik , k = 1, 2, on the event

{s− τ̂n,ik ≥ 0, ηjk > s− τ̂n,jk ,∀k} = {s− τ̌n,ik ≥ 0, ηjk > s− τ̂n,jk , ∀k},

as well as the martingale property of Hn,i and Hn,j , we obtain

1(ηi1 > s− τ̂n,i1 ≥ 0, ηi2 > s− τ̂n,i2 ≥ 0)1(ηj1 > s− τ̂n,j1 ≥ 0, ηj2 > s− τ̂n,j2 ≥ 0)E
[
Hn,i(t)Hn,j(t)|Hns

]
= 1(ηik > s− τ̂n,ik ≥ 0, ∀k)E[Hn,i(t)|Hns ]1(ηjk > s− τ̂n,jk ≥ 0,∀k)E[Hn,j(t)|Hns ]

= 1(ηik > s− τ̂n,ik ≥ 0, ∀k)1(ηjk > s− τ̂n,jk ≥ 0,∀k)Hn,i(s)Hn,j(s),

which completes the proof of (5.23). Thus, we have shown Lemma 5.6 holds. �

Proof of the convergence H̄n ⇒ 0 in Lemma 5.4. Fix T > 0. For each ε > 0, by Lemma 5.6, we
have that for each κ ∈ N,

P

(
sup

0≤t≤T
|H̄n(t)| > ε

)
≤ P

(
Ēn1 (T ) ∧ Ēn2 (T ) > κ

)
+ P

(
sup

0≤t≤T

∣∣H̄n
κn(t)

∣∣ > ε

)
.

Lemma 5.2 implies that the processes (Ēn1 , Ē
n
2 ) are stochastically bounded, and thus, for κ sufficiently

large, the first term on the RHS of the inequality above goes to 0 as n→∞. We only need to show
the second term converges to 0 as n→∞. By the Lenglart-Rebolledo inequality [32], it follows that
for any γ > 0,

P

(
sup

0≤t≤T

∣∣H̄n
κn(t)

∣∣ > ε

)
≤ γ

ε2
+ P

(
〈H̄n

κn〉(T ) > γ
)
.

Recall from Lemma 5.6 that

〈H̄n
κn〉(T ) =

1

n2

En1 (T )∧En2 (T )∧(κn)∑
i=1

∫ ηi1∧(T−τ̂n,i1 )+

0

∫ ηi2∧(T−τ̂n,i2 )+

0

1

F c(uuu)
dF (uuu).

Hence,

〈H̄n
κn〉(T ) ≤ 1

n2

En1 (T )∧En2 (T )∑
i=1

∫ ηi1

0

∫ ηi2

0

1

F c(uuu)
dF (uuu).
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Note that, by Fubini’s theorem,

(5.29) E

[∫ ηi1

0

∫ ηi2

0

1

F c(uuu)
dF (uuu)

]
= 1.

It follows by the FLLN that

1

n2

bn·c∑
i=1

∫ ηi1

0

∫ ηi2

0

1

F c(uuu)
dF (uuu)⇒ 0 in D as n→∞.

Thus, by Lemma 5.2, the continuous mapping theorem [7] and the random time change theorem
[7], we have

P
(
〈H̄n

κn〉(T ) > γ
)
→ 0 as n→∞,

which completes the proof. �

Next, we will prove the convergence Ḡn ⇒ 0 in D as n → ∞ in Lemma 5.4. We follow a
similar argument in Lemma A.3 in [51] to prove the convergence of Ḡn, but generalize that to the
multiparameter setting.

We introduce a multiparameter process T̃n := {T̃n(t1, t2,xxx) : t1 ≥ 0, t2 ≥ 0,xxx ∈ R2
+} defined by

(5.30) T̃n(t1, t2,xxx) :=
1

n

En1 (t1)∧En2 (t2)∑
i=1

(1(ηηηi ≥ xxx)− F c(xxx)), t1, t2 ≥ 0, xxx ∈ R2
+.

Following a similar argument as in Lemma 5.3, we obtain the following lemma.

Lemma 5.7. Under Assumptions 1-3,

T̃n ⇒ 0 in D([0,∞)2,D([0,∞)2,R)) as n→∞.

We also define the mapping φ : D([0,∞)2,D([0,∞)2,R))→ D by

φ(u)(t) :=

∫ t

0

∫ t

0

u(t− x1, t− x2,xxx)1(F c(xxx) ≥ ε)
F c(xxx)

dF (xxx),

for some ε ∈ (0, 1) and for t ≥ 0 and u ∈ D([0,∞)2,D([0,∞)2,R)). The next lemma shows the
continuity property of this mapping.

Lemma 5.8. Suppose un, u ∈ D([0,∞)2,D([0,∞)2,R)) and u is continuous. If un → u as n→∞,
then φ(un)→ φ(u) as n→∞.

Proof. Since u is continuous, by the definition of φ, φ(u)(·) is also continuous in space D. To show
the continuity of the mapping φ, it is sufficient to show that for T > 0,

sup
0≤t≤T

|φ(un)(t)− φ(u)(t)| → 0 as n→∞.

Denote the set A := {xxx ∈ R2
+ : F c(xxx) ≥ ε} and let CA :=

∫
A dF (xxx) > 0 be a positive constant. Note

that

sup
0≤t≤T

|φ(un)(t)− φ(u)(t)|

= sup
0≤t≤T

∣∣∣∣∫ t

0

∫ t

0

(un(t− x1, t− x2,xxx)− u(t− x1, t− x2,xxx))1(F c(xxx) ≥ ε)
F c(xxx)

dF (xxx)

∣∣∣∣
≤ sup

0≤t1,t2≤T
xxx∈A

|un(t1, t2,xxx)− u(t1, t2,xxx)|
∣∣∣∣∫ T

0

∫ T

0

1(F c(xxx) ≥ ε)
F c(xxx)

dF (xxx)

∣∣∣∣
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≤ sup
0≤t1,t2≤T

xxx∈A

|un(t1, t2,xxx)− u(t1, t2,xxx)|CA
ε
.

The convergence of un and the continuity of u imply that the RHS of the above inequality goes to 0
as n→∞. Therefore, the continuity of the mapping φ follows. �

Proof of of the convergence Ḡn ⇒ 0 in Lemma 5.4. We first rewrite Ḡn in (5.13) as

Ḡn(t) =

∫ t

0

∫ t

0

T̃n(t− x1, t− x2,xxx)

F c(xxx)
dF (xxx), t ≥ 0.

Fix ε ∈ (0, 1). We decompose Ḡn as follows: for t ≥ 0,

Ḡn(t) = Ḡn,ε1 (t) + Ḡn,ε2 (t),

where

Ḡn,ε1 (t) :=

∫ t

0

∫ t

0

T̃n(t− x1, t− x2,xxx)1(F c(xxx) ≥ ε)
F c(xxx)

dF (xxx),

Ḡn,ε2 (t) :=

∫ t

0

∫ t

0

T̃n(t− x1, t− x2,xxx)1(F c(xxx) < ε)

F c(xxx)
dF (xxx).

Now it suffices to prove the following two claims:

(i) Ḡn,ε1 (t)⇒ 0 in D as n→∞;
(ii) For each δ > 0 and T > 0, limε→0 limn→∞ P

(
sup0≤t≤T |Ḡ

n,ε
2 (t)| > δ

)
= 0.

By Lemmas 5.7 and 5.8, we can conclude (i) holds. We now focus on proving (ii). Without abuse

of notation, we denote T̃n(t,xxx) := T̃n(t, t,xxx) for t ≥ 0 and xxx ∈ R2
+. Recall the definition of T̃n in

(5.30). We obtain, for any κ > 0,

P

(
sup

0≤t≤T
|Ḡn,ε2 (t)| > δ

)

≤ P (Ēni (T ) > κT,∀i) + P

(∫ t

0

∫ t

0

1(F c(xxx) < ε)

F c(xxx)
sup

0≤t1,t2≤κT
|T̃n(t1, t2,xxx)|dF (xxx) > δ

)
≤ P (Ēni (T ) > κT,∀i)

+ P

(∫ t

0

∫ t

0

1(F c(xxx) < ε)

F c(xxx)

(
sup

0≤t1≤t2≤κT
|T̃n(t1, t2,xxx)|+ sup

0≤t2≤t1≤κT
|T̃n(t1, t2,xxx)|

)
dF (xxx) > δ

)

≤ P (Ēni (T ) > κT,∀i) + 2P

(∫ t

0

∫ t

0

1(F c(xxx) < ε)

F c(xxx)
sup

0≤t≤κT
|T̃n(t,xxx)|dF (xxx) >

δ

2

)
.

For κ sufficiently large, by Lemma 5.2, we have the first term on the RHS of the above inequality
converges to 0 as n→∞. For the second term, we proceed as that in Lemma 6.5 in [33] and can
show this term also goes to 0 when n→∞ and ε→ 0, which completes the proof. �

Proof of Theorem 3.1. By Lemma 5.2, and the balance equations in (2.1), (2.2) and (2.4), we obtain
the joint convergence of (Ān, X̄XX

n
, ĒEE

n
, Q̄QQ

n
, B̄BB

n
, D̄DD

n
)⇒ (ā, X̄XX,ĒEE,Q̄QQ,B̄BB,D̄DD) as n→∞ where the limits

are given in (3.1), (3.7), (3.8) and (3.11).
Now to show the weak convergence of S̄n, by (5.3), it is sufficient to show

(5.31) V̄ n ⇒ 0 in D as n→∞,
and

(5.32)

∫ t

0

∫ t

0

(
Ēn1 (t− s1) ∧ Ēn2 (t− s2)

)
dF (s1, s2)⇒

∫ t

0

∫ t

0

(
Ē1(t− s1) ∧ Ē2(t− s2)

)
dF (s1, s2)
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in D as n → ∞. By the decomposition of V n in (5.11), Lemma 5.4 and the continuous mapping
theorem [7], we can conclude (5.31) holds.

To prove (5.32), we define a mapping ψ : D2 → D by

ψ(x1, x2)(t) :=

∫ t

0

∫ t

0
(x1(t− s1) ∧ x2(t− s2)) dF (s1, s2), x1, x2 ∈ D and t ≥ 0.

By the weak convergence of ĒEE
n
, it suffices to show the mapping ψ is continuous at all continuity

points in D2 and thus, applying the continuous mapping theorem [7], we can conclude the convergence
in (5.32). We now prove the continuity property of the mapping ψ. Suppose xn1 , x

n
2 ∈ D satisfy

(xn1 , x
n
2 )→ (x1, x2) in D2 as n→∞,

where xj is continuous in D for j = 1, 2. Recall that we endow the product metric space with the
maximum metric of each component space. Since xj is continuous, by the definition of ψ, ψ(x1, x2)(·)
is also continuous in D. To show the continuity of the mapping, it is sufficient to show that for
T > 0,

sup
0≤t≤T

|ψ(xn1 , x
n
2 )(t)− ψ(x1, x2)(t)| → 0, as n→∞.

Note the fact that for a, b ∈ R,

(5.33) a ∧ b =
1

2
(a+ b− |a− b|).

Now, for the fixed T > 0,

sup
0≤t≤T

|ψ(xn1 , x
n
2 )(t)− ψ(x1, x2)(t)|

= sup
0≤t≤T

∣∣∣∣∫ t

0

∫ t

0
[xn1 (t− s1) ∧ xn2 (t− s2)− x1(t− s1) ∧ x2(t− s2)]dF (s1, s2)

∣∣∣∣
≤ sup

0≤t≤T

∫ t

0

∫ t

0
|xn1 (t− s1) ∧ xn2 (t− s2)− x1(t− s1) ∧ x2(t− s2)|dF (s1, s2)

≤ Fm(T ) sup
0≤s1,s2≤T

|xn1 (s1) ∧ xn2 (s2)− x1(s1) ∧ x2(s2)|

=
Fm(T )

2
sup

0≤s1,s2≤T

∣∣∣xn1 (s1) + xn2 (s2)− |xn1 (s1)− xn2 (s2)|

− (x1(s1) + x2(s2)− |x1(s1)− x2(s2)|)
∣∣∣

≤ Fm(T )

2

(
2∑
i=1

sup
0≤s≤T

|xni (s)− xi(s)|+ sup
0≤s1,s2≤T

∣∣|xn1 (s1)− xn2 (s2)| − |x1(s1)− x2(s2)|
∣∣) .(5.34)

Since

sup
0≤s1,s2≤T

∣∣|xn1 (s1)− xn2 (s2)| − |x1(s1)− x2(s2)|
∣∣ ≤ 2∑

i=1

sup
0≤s≤T

|xni (s)− xi(s)|,

we further obtain through (5.34),

sup
0≤t≤T

|ψ(xn1 , x
n
2 )(t)− ψ(x1, x2)(t)| ≤ Fm(T )

2∑
i=1

sup
0≤s≤T

|xni (s)− xi(s)|.

The convergence of xn1 and xn2 and the continuity of x1 and x2 imply the RHS of the above inequalty
converges to 0 as n→∞, which completes the proof of the continuity of the mapping ψ.

Finally, the proof of the convergence of ȲYY
n

follows from the balance equation (2.3) and the
continuous mapping theorem [7]. The uniqueness of all these processes follows from the uniqueness
of X̄k, k = 1, 2. �
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6. Proof of FCLT

In this section, we prove Theorem 4.1. We start by proving Propositions 4.1 and 4.2 in §§6.1 and
6.2, respectively. We then give some preliminary results in §6.3. We prove the convergence of the
processes Ŵn, Ŵn

k and Ŵn,c
k in §6.4, k = 1, 2. The convergence of the initial quantities is proved in

§6.5. We complete the proof of Theorem 4.1 in §6.6.

6.1. Proof of Proposition 4.1. We first define a multiparameter sequential empirical process
Ŭn := {Ŭn(t1, t2,xxx) : t1 ≥ 0, t2 ≥ 0,xxx ∈ [0, 1]2} by

(6.1) Ŭn(t1, t2,xxx) :=
1√
n

bnt1c∧bnt2c∑
i=1

(1(ξξξi ≤ xxx)−H(xxx)), t1, t2 ≥ 0, xxx ∈ [0, 1]2,

where {ξξξi := (ξi1, ξ
i
2) : i ∈ N} is a sequence of i.i.d. random vectors with joint distribution function

H(·) and uniform marginals over [0, 1]. Define FFF : R2
+ → [0, 1]2 with FFF (xxx) = (F1(x1), F2(x2)). By

Sklar’s theorem [52], for any multivariate distribution function F , there exists a unique multivariate
distribution function H (called “copula”) with uniform marginals on [0, 1] such that F (xxx) = H(FFF (xxx))
when the marginal distribution functions Fk, k = 1, 2, are continuous. Then, we can write

K̂n(t1, t2,xxx) = Ŭn(t1, t2,FFF (xxx)), t1, t2 ∈ R+, xxx ∈ R2
+.

To prove Proposition 4.1, it suffices to show that

(6.2) Ŭn(t1, t2,xxx)⇒ Ŭ(t1, t2,xxx) in D([0,∞)2,D2) as n→∞,

where Ŭ(t,xxx) is a continuous Gaussian random field with mean E[Ŭ(t1, t2,xxx)] = 0 and covariance
function

Cov(Ŭ(s1, s2,xxx), Ŭ(t1, t2, yyy)) = (s1 ∧ s2 ∧ t1 ∧ t2)(H(xxx ∧ yyy)−H(xxx)H(yyy)).

We proceed by proving that the finite-dimensional distributions of Ŭn converge weakly to those
of Ŭ , and {Ŭn : n ≥ 1} is tight. Denote Ŭn(t1, t2) := Ŭn(t1, t2, ·) for t1, t2 ∈ [0,∞). Without

abuse of notation, we let Ŭn(t) := Ŭn(t, t, ·) for t ≥ 0. In order to show the convergence of the

finite-dimensional distributions of Ŭn, it suffices to prove for any l ∈ N and tttk := (tk1, t
k
2), where

tk1, t
k
2 ∈ [0,∞) and k = 1, ..., l,

(6.3) (Ŭn(t11, t
1
2), ..., Ŭn(tl1, t

l
2))⇒ (Ŭ(t11, t

1
2), ..., Ŭ(tl1, t

l
2)) in Dl2 as n→∞.

By the definition of Ŭn, it is equivalent to prove

(6.4) (Ŭn(t11 ∧ t12), ..., Ŭn(tl1 ∧ tl2))⇒ (Ŭ(t11 ∧ t12), ..., Ŭ(tl1 ∧ tl2)) in Dl2 as n→∞,

which follows directly from Theorem 3.1 of [33].

Now, we focus on the tightness of Ŭn. From Corollary 4.2 of [19], it is equivalent to show that
there exists a sequence {αααl := (αl1, α

l
2) ∈ R2

+ : l ≥ 1} satisfying mink α
l
k →∞ as l→∞ such that

(i) for each αααl and every ε > 0 there exists a compact set Ml,ε ⊂ D2 such that

P (Ŭn(t1, t2) ∈Ml,ε,∀ttt ∈ [0, αl1]× [0, αl2]) > 1− ε, n ≥ 1;

(ii) for each l ≥ 1,

lim
δ→0

lim sup
n→∞

P (ωααα
l

δ (Ŭn) ≥ ε) = 0,

where

ωααα
l

δ (Ŭn) := inf
∆
αααl

(δ)
max

B∈∆
αααl

(δ)
ωŬn(B),

and ωŬn(B) := supsss,ttt∈B dD2(Ŭn(s1, s2), Ŭn(t1, t2)), and dD2 is the metric in space D2.
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Recall from Theorem 3.1 of [33] that the processes Ün := {Ü(t,xxx) := Ŭn(t, t,xxx) : t ≥ 0 and xxx ∈
[0, 1]2} are tight in D([0,∞),D2). Let Ün(t) := Ün(t, ·) for t ≥ 0. From Corollary 4.1 of [19] we
have that there exists a sequence {αl0 ∈ R+ : l ≥ 1} satisfying αl0 →∞ as l→∞ such that

(i’) for each αl0 and every ε > 0 there exists a compact set Ml,ε ⊂ D2 such that

P (Ün(t) ∈Ml,ε, ∀t ∈ [0, αl0]) > 1− ε, n ≥ 1;

(ii’) for each l ≥ 1,

lim
δ→0

lim sup
n→∞

P (ω
αl0
δ (Ün) ≥ ε) = 0,

where

ω
αl0
δ (Ŭn) := inf

∆
αl0

(δ)
max

B∈∆
αl0

(δ)
ωÜn(B),

and ωÜn(B) := sups,t∈B dD2(Ün(s), Ün(t)).

We set αααl = (αl0, α
l
0) for l ≥ 0. By the definition of Ŭn in (6.1), we see that conditions (i’) and (ii”)

imply (i) and (ii) hold, respectively. Therefore, the tightness of Ŭn holds, which completes the proof
of Proposition 4.1. 2

6.2. Proof of Proposition 4.2. Here we only focus on the process Ŵ , and the other processes
can be analyzed similarly. We first show Ŵ is well-defined.

We introduce some notations here. For a set J , let |J | be the cardinality of J . Let J 1
k and

J 2
N−k be the partition of A := {1, ..., N}, where N is a positive integer, J 1

k ∩ J 2
N−k = ∅, |J 1

k | = k

and |J 2
N−k| = N − k. Let Φ : RN → R. For xxx,yyy,zzz ∈ RN , define ΦJ

1
k ,J

2
N−k(xxx;yyy) := Φ(zzz), where

zj = xj for j ∈ J 1
k and zj = yj for j ∈ J 2

N−k. Then, we define

∆Φ(xxx;yyy) :=
N∑
k=0

(−1)k
∑

J 1
k ,J

2
N−k partitions of A

ΦJ
1
k ,J

2
N−k(xxx;yyy).(6.5)

In the rest of the paper, we will use ∆K̂n and ∆K̂ as defined in (6.5) when N = 4. Notation ∆F is
defined as (6.5) when N = 2.

By the definition of mean-square integrals, we have

lim
l→∞

E[(Ŵ (t)− Ŵ (l)(t))2] = 0, t ≥ 0,

where

(6.6) Ŵ (l)(t) :=

∫ t

0

∫ t

0

∫
R2
+

1
(l)
t (s1, s2,xxx)dK̂(λs1, λs2,xxx), t ≥ 0,

with

1
(l)
t (s1, s2,xxx) :=

l∑
i=1

l∑
j=1

[1(sli−1 < s1 ≤ sli, slj−1 < s2 ≤ slj)1(xj ≤ t− slj ,∀j)], t ≥ 0,(6.7)

and 0 = sl0 < sl1 < ... < sll = t satisfying max1≤i≤l |sli− sli−1| → 0 as l→∞. We call {sli : 0 ≤ i ≤ l}
is a partition of [0, t]. Define Ŵ (`)(t) and its associated partition {s`i : 0 ≤ i ≤ `} of [0, t] similarly,

t ≥ 0. To show Ŵ is well-defined, it suffices to prove

(6.8) lim
l,`→∞

E[(Ŵ (l)(t)− Ŵ (`)(t))2] = 0, t ≥ 0.

Without loss of generality, we assume that the partition {s`i : 0 ≤ i ≤ `} of [0, t] is finer than the
partition {sli : 0 ≤ i ≤ l}. By (6.6), for t ≥ 0,

Ŵ (l)(t)− Ŵ (`)(t)



A FORK-JOIN NETWORK IN THE HALFIN-WHITT REGIME 29

=
l∑

i=1

l∑
j=1

∑
p:sli−1<s

`
p≤sli

∑
q:slj−1<s

`
q≤slj

∆K̂((λs`p−1, λs
`
q−1, t− sli, t− slj); (λs`p, λs

`
q, t− s`p, t− s`q)).

By the definition of K̂, we can easily obtain that for 0 ≤ s1 ≤ t1, 0 ≤ s2 ≤ t2 and 000 ≤ xxx ≤ yyy,

E[(∆K̂((s1, s2,xxx); (t1, t2, yyy)))2] = [(t1 − s1) ∧ (t2 − s2)]∆F (xxx;yyy)(1−∆F (xxx;yyy)),(6.9)

and for 0 ≤ s′1 ≤ t′1, 0 ≤ s′2 ≤ t′2, 000 ≤ xxx′ ≤ yyy′, t1 ≤ s′1 and t2 ≤ s′2,

E[∆K̂((s1, s2,xxx); (t1, t2, yyy))∆K̂((s′1, s
′
2,xxx
′); (t′1, t

′
2, yyy
′))] = 0.(6.10)

By (6.9) and (6.10), we have, for t ≥ 0,

E[(Ŵ (l)(t)− Ŵ (`)(t))2]

=

l∑
i=1

l∑
j=1

∑
p:sli−1<s

`
p≤sli

∑
q:slj−1<s

`
q≤slj

λ[(s`p − s`p−1) ∧ (s`q − s`q−1)]

×∆F ((t− sli, t− slj); (t− s`p, t− s`q))(1−∆F ((t− sli, t− slj); (t− s`p, t− s`q)))

≤
l∑

i=1

l∑
j=1

∑
p:sli−1<s

`
p≤sli

∑
q:slj−1<s

`
q≤slj

λ[(s`p − s`p−1) ∧ (s`q − s`q−1)]

×∆F ((t− sli, t− slj); (t− s`p, t− s`q))

≤
l∑

i=1

l∑
j=1

λ[(sli − sli−1) ∧ (slj − slj−1)]∆F ((t− sli, t− slj); (t− sli−1, t− slj−1))

≤ max
1≤i≤l

max
1≤j≤l

λ[(sli − sli−1) ∧ (slj − slj−1)].

Since max1≤i≤l(s
l
i − sli−1)→ 0 as l→∞, we have proved (6.8), which implies that the process Ŵ is

well-defined.
Recall from (4.16) that K̂ is Gaussian with mean 0. Then, for a fixed t ≥ 0, Ŵ (l)(t) is normally

distributed with mean 0. By the definition of Ŵ , Ŵ (l) converges to Ŵ in probability as l → ∞.
Recall the fact that if a sequence of normally distributed random variables in probability converges
to a random variable, the limit is also a normal random variable (see, e.g., Lemma 4.9.4 of [32]).

Thus, Ŵ (t) is normally distributed, t ≥ 0, which implies the process Ŵ is Gaussian.

Next, we will show (4.21) holds. By the definition of the process Ŵ , we see

(6.11) E[(Ŵ (t)− Ŵ (s))2] = lim
l→∞

E[(Ŵ (l)(t)− Ŵ (l)(s))2],

where we assume the same partition {sli : 0 ≤ i ≤ l} of [0, t] is applied for Ŵ (l)(t) and Ŵ (l)(s) for
0 ≤ s ≤ t. By (6.6), it is easy to see that

Ŵ (l)(t)− Ŵ (l)(s) =

l∑
i=1

l∑
j=1

∆K̂((sli−1, s
l
j−1, s− sli, s− slj); (sli, s

l
j , t− sli, t− slj)), t ≥ s ≥ 0,

where we set K̂(s1, s2, x1, x2) = 0 if x1 < 0 or x2 < 0. Thus, together with (6.9) and (6.10), we
obtain

E[(Ŵ (l)(t)− Ŵ (l)(s))2] =
l∑

i=1

l∑
j=1

λ[(sli − sli−1) ∧ (slj − slj−1)]∆F ((s− sli, s− slj); (t− sli, t− slj))

× (1−∆F ((s− sli, s− slj); (t− sli, t− slj))), t ≥ s ≥ 0.
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By Lebesgue’s theorem, we have

lim
l→∞

E[(Ŵ (l)(t)− Ŵ (l)(s))2] = λ

∫ t

0

∫ t

0
[∆F ((s− s1, s− s2); (t− s1, t− s2))

× (1−∆F ((s− s1, s− s2); (t− s1, t− s2)))] d(s1 ∧ s2), t ≥ s ≥ 0,

which by (6.11) implies that (4.21) holds.

We now prove the process Ŵ is continuous. Note that (4.21) indicates Ŵ is continuous in

probability. To show the process Ŵ has continuous sample paths a.s., by Lemma 4.9.6 of [32], it is
sufficent to prove that for any partition {sli : 0 ≤ i ≤ l} of [0, t],

(6.12) lim
L→∞

lim sup
l→∞

P

(
l∑

i=1

(Ŵ (sli)− Ŵ (sli−1))2 ≥ L

)
= 0.

By Markov inequality and (4.21), we note that

P

(
l∑

i=1

(Ŵ (sli)− Ŵ (sli−1))2 ≥ L

)

≤ 1

L

l∑
i=1

E[(Ŵ (sli)− Ŵ (sli−1))2]

=
λ

L

l∑
i=1

∫ t

0

∫ t

0
[∆F ((sli−1 − s1, s

l
i−1 − s2); (sli − s1, s

l
i − s2))

× (1−∆F ((sli−1 − s1, s
l
i−1 − s2); (sli − s1, s

l
i − s2)))]d(s1 ∧ s2)

≤ λ

L

l∑
i=1

∫ t

0

∫ t

0
[∆F ((sli−1 − s1, s

l
i−1 − s2); (sli − s1, s

l
i − s2))]d(s1 ∧ s2)

≤ λt

L
.

Therefore, we see (6.12) holds, which implies that Ŵ is a continuous process. By an analogous

approach proving (4.21), we can also show the covariance functions among Ŵk, Ŵ
c
k , k = 1, 2, and

Ŵ . We omit the details here for brevity. 2

6.3. Preliminaries. In this section, we will establish some preliminary results in order to prove
Theorem 4.1. We first give representations for the processes XXXn, YYY n and Sn. Define the empirical
processes driven by the residual service times {η̃ik : i ≥ 1}, for k = 1, 2, by

(6.13) Ûn,Yk (x) :=
1√
n

bn(Ȳ n
k′ (0))c∑
i=1

(1(η̃i,Ykk ≤ x)− Fk,e(x)), x ≥ 0,

and define the empirical process driven by the residual service vector {ηηηi,J : i ≥ 1} as follows:

(6.14) Ûn(xxx) :=
1√
n

bn(J̄n(0))c∑
i=1

(1(η̃ηηi,J ≤ xxx)− F1,e(x1)F2,e(x2)), xxx ≥ 000.

Without abuse of notation, we write Ûn(t) ≡ Ûn(t, t) for t ≥ 0. Let Ûn1 (t) := Ûn(t,∞) and

Ûn2 (t) := Ûn(∞, t), t ≥ 0.
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Lemma 6.1. The processes X̂XX
n

, ŶYY
n

and Ŝn defined in (4.8) have the following representations: for
t ≥ 0 and k = 1, 2,

X̂n
k (t) = X̂n,0

k (t)−Nk

√
n(1− ρnk)Fk,e(t)− Ûnk (t)− Ûn,Yk (t)− V̂ n,0

k (t)(6.15)

− Ŵn
k (t) +

∫ t

0
F ck(t− s)dÂn(s) +

∫ t

0
(X̂n

k (t− s))+dFk(s),

Ŷ n
k (t) = Ŷ n,0

k (t)− Ûn,Yk′ (t) +Nk

√
n(1− ρnk)Fk,e(t) + Ûnk (t)− Ûn(t)−

∫ t

0
(X̂n

k (t− s))+dFk(s)

+ V̂ n,0
k (t)− V̂ n,0(t) + Ŵn,c

k (t)− M̂n,0(t)− Ψ̂n(t) +

∫ t

0
Fk(t− s)dÂn(s),(6.16)

Ŝn(t) = Ŝn,0(t) + Ûn,Y1 (t) + Ûn,Y2 (t) + Ûn(t) + V̂ n,0(t) + M̂n,0(t) + Ŵn(t) + Ψ̂n(t),(6.17)

where

X̂n,0
k (t) := X̂n

k (0)F ck,e(t) + (X̂n
k (0))+(F ck(t)− F ck,e(t)),(6.18)

Ŝn,0(t) := Ŷ n
2 (0)F1,e(t) + Ŷ n

1 (0)F2,e(t) + Ẑn2 (0)F1(t)F2,e(t) + Ẑn1 (0)F1,e(t)F2(t)(6.19)

+ Ĵn(0)F1,e(t)F2,e(t) + În(0)Fm(t),

Ŷ n,0
k (t) := Ŷ n

k (0) + X̂n
k (0)Fk,e(t) + (X̂n

k (0))+(Fk(t)− Fk,e(t))− Ŝn,0(t),(6.20)

Ŵn
k (t) :=

1√
n

An(t)∑
i=1

(1(τni + wn,ik + ηik ≤ t)− Fk(t− τni − w
n,i
k )),(6.21)

Ŵn(t) :=
1√
n

An(t)∑
i=1

(1(τni + wn,ij + ηij ≤ t,∀j)− F (t− τni − w
n,i
1 , t− τni − w

n,i
2 )),(6.22)

Ŵn,c
k (t) := Ŵn

k (t)− Ŵn(t),(6.23)

Ψ̂n(t) :=
1√
n

An(t)∑
i=1

F (t− τni − w
n,i
1 , t− τni − w

n,i
2 )(6.24)

− λn√
n

∫ t

0

∫ t

0
((t− s1) ∧ (t− s2))dF (s1, s2),

M̂n,0(t) :=
1√
n

Zn1 (0)∑
i=1

(F1,e(t)F2(t− w̃n,i,R2 )− F1,e(t)F2(t))(6.25)

+
1√
n

Zn2 (0)∑
i=1

(F1(t− w̃n,i,R1 )F2,e(t)− F1(t)F2,e(t))

+
1√
n

In(0)∑
i=1

(F (t− w̃n,i,I1 , t− w̃n,i,I2 )− Fm(t)),

V̂ n,0
k (t) :=

1√
n

Znk (0)∑
i=1

(1(η̃i,Zk ≤ t)− Fk,e(t))(6.26)
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+
1√
n

Qnk (0)∑
i=1

(1(w̃n,ik + ηi,Qk ≤ t)− Fk(t− w̃n,ik )),

V̂ n,0(t) :=
1√
n

Zn1 (0)∑
i=1

(1(η̃i,Z1 ≤ t, w̃n,i,R2 + ηi,R2 ≤ t)− F1,e(t)F2(t− w̃n,i,R2 ))(6.27)

+
1√
n

Zn2 (0)∑
i=1

(1(w̃n,i,R1 + ηi,R1 ≤ t, η̃i,Z2 ≤ t)− F1(t− w̃n,i,R1 )F2,e(t))

+
1√
n

In(0)∑
i=1

(1(w̃n,i,Ij + ηi,Ij ≤ t,∀j)− F (t− w̃n,i,I1 , t− w̃n,i,I2 )).

Proof. From the system dynamic equation of Xn
k (t) in (4.5) and the decomposition of Xn

k (0) in
(4.4), we obtain, for k = 1, 2, and t ≥ 0,

Xn
k (t)−Nn

k =

Y n
k′ (0)∑
i=1

(1(η̃i,Ykk > t)− F ck,e(t)) +

Znk (0)∑
i=1

(1(η̃i,Zk > t)− F ck,e(t))

+

Jn(0)∑
i=1

(1(η̃i,Jk > t)− F ck,e(t)) +

Qnk (0)∑
i=1

(1(w̃n,ik + ηi,Qk > t)− F ck(t− w̃n,ik ))

+

An(t)∑
i=1

(1(τni + wn,ik + ηik > t)− F ck(t− τni − w
n,i
k )) + Y n

k′(0)F ck,e(t)

+ Znk (0)F ck,e(t) + Jn(0)F ck,e(t) +

Qnk (0)∑
i=1

F ck(t− w̃n,ik )

+

An(t)∑
i=1

F ck(t− τni − w
n,i
k )−Nn

k

= −
√
nÛn,Yk (t)−

√
nÛnk (t)−

√
nŴn

k (t) +Bn
k (0)F ck,e(t) +

Qnk (0)∑
i=1

F ck(t− w̃n,ik )

+

Znk (0)∑
i=1

(1(η̃i,Zk > t)− F ck,e(t)) +

Qnk (0)∑
i=1

(1(w̃n,ik + ηi,Qk > t)− F ck(t− w̃n,ik ))

+

An(t)∑
i=1

(F ck(t− τni − w
n,i
k )− F ck(t− τni )) +

An(t)∑
i=1

F ck(t− τni )−Nn
k .

We then have

Xn
k (t)−Nn

k = −
√
n(Ûn,Yk (t) + Ûnk (t) + Ŵn

k (t) + V̂ n,0
k (t)) +Bn

k (0)F ck,e(t) +

Qnk (0)∑
i=1

F ck(t− w̃n,ik )

+

An(t)∑
i=1

(F ck(t− τni − w
n,i
k )− F ck(t− τni )) +

∫ t

0
F ck(t− s)dAn(s)−Nn

k , t ≥ 0.(6.28)
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Note that, by Propostion 2.1 of [51], we have, for t ≥ 0 and k = 1, 2,

An(t)∑
i=1

(F ck(t− τni − w
n,i
k )− F ck(t− τni ))

=

∫ t

0
(Xn

k (t− s)−Nn
k )+dFk(s)−

Qnk (0)∑
i=1

(F ck(t− w̃n,ik )− F ck(t)).

Thus, following from (6.28), we obtain, for t ≥ 0,

Xn
k (t)−Nn

k = −
√
n(Ûn,Yk (t) + Ûnk (t) + Ŵn

k (t) + V̂ n,0
k (t)) +

∫ t

0
(Xn

k (t− s)−Nn
k )+dFk(s)

+Qnk(0)F ck(t) +Bn
k (0)F ck,e(t)−Nn

k +

∫ t

0
F ck(t− s)dAn(s).(6.29)

Notice that, for t ≥ 0 and k = 1, 2,

Qnk(0)F ck(t) +Bn
k (0)F ck,e(t)−Nn

k +

∫ t

0
F ck(t− s)dAn(s)(6.30)

= Qnk(0)F ck(t) + (Xn
k (0)−Qnk(0))F ck,e(t)−Nn

k

+

∫ t

0
F ck(t− s)d(An(s)− λns) + λn

∫ t

0
F ck(t− s)ds

= Qnk(0)(F ck(t)− F ck,e(t)) + (Xn
k (0)−Nn

k )F ck,e(t)

−Nn
k (1− ρnk)Fk,e(t) +

√
n

∫ t

0
F ck(t− s)dÂn(s).

Plugging (6.30) into (6.29), and dividing
√
n on both sides of (6.29), we then obtain (6.15) holds.

Next, to derive the representation of Ŝn, we center each term in (4.6) by its mean conditional on
arrival times, residual waiting times and waiting times, and by some algebraic manipulations, we
obtain, for t ≥ 0,

Sn(t)− S̃n(t) = (Y n
2 (0)− nȲ2(0))F1,e(t) + (Y n

1 (0)− nȲ1(0))F2,e(t) + Zn2 (0)F1(t)F2,e(t)

+ Zn1 (0)F1,e(t)F2(t) + (Jn1 (0)− nJ̄(0)) ∧ (Jn2 (0)− nJ̄(0))F1,e(t)F2,e(t)

+ In(0)Fm(t) +
√
n
(
Ûn,Y1 (t) + Ûn,Y2 (t) + Ûn(t) + V̂ n,0(t)

+Ŵn(t) + M̂n,0(t) + Ψ̂n(t)
)
.

Dividing
√
n on both sides of the previous equation, we then have (6.17).

To show the representation of Ŷ n
k , k = 1, 2, by (4.7) and the definition of Ỹ n

k in (4.11), we have,
for t ≥ 0,

Y n
k (t)− Ỹ n

k (t) = (Y n
k (0)− nȲk(0)) + (Xn

k (0)−Nn
k ) + (An(t)− λnt)

− (Xn
k (t)−Nn

k )− (S(t)− S̃n(t)).(6.31)

Dividing
√
n on both sides of (6.31), and plugging (6.15) and (6.17), we obtain (6.16). �

Let Ēnk := n−1Enk , k = 1, 2. The weak convergence of Ēnk , k = 1, 2, is established in Lemma 6.2.

Lemma 6.2. Under Assumptions 1 and 4-8,

(Ēn1 , Ē
n
2 )⇒ (ā, ā) in D2 as n→∞,

where ā(t) = λt, t ≥ 0, is the fluid limit of the arrival process.
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Proof. Note that, for k = 1, 2,

An(t)− (Xn
k (t)−Nn

k )+ ≤ Enk (t) ≤ An(t), t ≥ 0, a.s.

Thus, for each T > 0 and ε > 0,

P

(
sup

0≤t≤T
|Ēnk (t)− ā(t)| > ε

)
≤ P

(
sup

0≤t≤T
|Ān(t)− ā(t)| > ε

2

)
+ P

(
sup

0≤t≤T
|Ēnk (t)− Ān(t)| > ε

2

)

≤ P

(
sup

0≤t≤T
|Ān(t)− ā(t)| > ε

2

)
+ P

(
sup

0≤t≤T
|(X̄n

k (t)− N̄n
k )+| > ε

2

)
.(6.32)

From Assumptions 4 and 5, we first see that the first term on the RHS of (6.32) goes to 0 as n→∞.
Also, by Assumption 6 and Corollary 5.1 of [51], we have X̄n

k ⇒ Nk in D as n→∞, which implies
that (X̄n

k (t)− N̄n
k )+ ⇒ 0 in D as n→∞. Thus, the second term on the RHS of (6.32) converges to

0 as n→∞. Hence, we obtain that for k = 1, 2, Ēnk ⇒ ā in D as n→∞. Since ā is a deterministic
function in R+, by Theorem 11.4.5 of [58] we see that Lemma 6.2 holds. �

Lemma 6.2 directly implies the stochastic boundedness of the processes Ēnk , k = 1, 2, which is
stated below.

Lemma 6.3. For each k = 1, 2, and T ≥ 0, there exists a κ ≥ 0 such that

P (Ēnk (T ) ≥ κ)→ 0 as n→∞.

6.4. Convergence of Ŵn, Ŵn
k and Ŵn,c

k . It follows from the definitions of Ŵn in (6.22), Ŵn
k in

(6.21), Ŵn,c
k in (6.23) and Enk , k = 1, 2, that

(6.33) Ŵn(t) =

∫ t

0

∫ t

0

∫
R2
+

1(sj + xj ≤ t,∀j)dK̂n(Ēn1 (s1), Ēn2 (s2),xxx), t ≥ 0,

(6.34) Ŵn
k (t) =

∫ t

0

∫ t

0

∫
R2
+

1(sk + xk ≤ t)dK̂n(Ēn1 (s1), Ēn2 (s2),xxx), t ≥ 0,

and

Ŵn,c
k (t) = Ŵn

k (t)− Ŵn(t)(6.35)

=

∫ t

0

∫ t

0

∫
R2
+

1(sk + tk ≤ t, sk′ + tk′ > t)dK̂n(Ēn1 (s1), Ēn2 (s2),xxx), t ≥ 0.

The integrals above are well-defined as Stieltjes integrals for functions of bounded variation as
integrators. We will first prove the tightness of these processes. Here we focus on showing the
tightness of Ŵn, as the tightness of Ŵn

k and Ŵn,c
k , k = 1, 2, follows from a similar argument.

Note that
K̂n(t1, t2,xxx) = K̂n

1 (t1, t2,xxx) + K̂n
2 (t1, t2,xxx), t1, t2 ≥ 0, xxx ∈ R2

+,

where for t1, t2 ≥ 0, xxx ∈ R2
+ and i = 1, 2,

(6.36) K̂n
i (t1, t2,xxx) :=

√
nK̄n

i (t1, t2,xxx),

and K̄n
i (t1, t2,xxx) are defined in (5.9) and (5.10). We then decompose Ŵn into two processes,

Ĝn := {Ĝn(t) : t ≥ 0} and Ĥn := {Ĥn(t) : t ≥ 0} as follows:

(6.37) Ŵn(t) = Ĥn(t) + Ĝn(t), t ≥ 0,

where

Ĥn(t) :=

∫ t

0

∫ t

0

∫
R2
+

1(sj + xj ≤ t,∀j)dK̂n
1 (Ēn1 (s1), Ēn2 (s2),xxx), t ≥ 0,(6.38)
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Ĝn(t) :=

∫ t

0

∫ t

0

∫
R2
+

1(sj + xj ≤ t,∀j)dK̂n
2 (Ēn1 (s1), Ēn2 (s2),xxx), t ≥ 0.(6.39)

Set Ĥn := {Ĥn(t) : t ≥ 0} and Ĝn := {Ĝn(t) : t ≥ 0}. We prove the tightness property for Ĥn

and Ĝn in the next lemma.

Lemma 6.4. Under Assumptions 1 and 4-8, the sequences {Ĥn : n ≥ 1} and {Ĝn : n ≥ 1} are
tight.

Before proving the lemma, we present some preliminary results. We use the notation τ̂n,ij to be

the time at which task j of job i enters service after time 0−, i.e., τ̂n,ij = inf{t ≥ 0 : Enj (t) ≥ i},
j = 1, 2. Recall the definition of the processes Hn,i(t) in (5.14), t ≥ 0. We define the filtration
Hn := {Hnt : t ≥ 0} by

Hnt := σ(Xn
j (0), Y n

j (0),∀j) ∨ σ
(
1(ηij ≤ s− τ̂

n,i
j ,∀j), s ≤ t, i = 1, ..., En1 (t) ∧ En2 (t)

)
∨ σ(Enj (s), s ≤ t,∀j) ∨ σ(ξni , i ≥ 1) ∨N ,

(6.40)

where N includes all the null sets. Note that here we include the initial quantities in the filtration
Hn := {Hnt : t ≥ 0} in (5.17). It is easy to verify that Hn is a filtration and satisfies the usual
conditions [23].

Define

(6.41) Ĥn
κ (t) :=

1√
n

En1 (t)∧En2 (t)∧κ∑
i=1

Hn,i(t)

for κ ∈ N and t ≥ 0. Set Ĥn
κ := {Ĥn

κ (t) : t ≥ 0}. We first state the martingale property of Ĥn
κ in

Lemma 6.5. The proof is identical to that of Lemma 5.6, so we omit the details here for brevity.

Lemma 6.5. Under Assumptions 1 and 4-8, for each κ ≥ 1, the process Ĥn
κ is an Hn-square-

integrable martingale with the predictable quadratic variation process

〈Ĥn
κ 〉(t) =

1

n

En1 (t)∧En2 (t)∧κ∑
i=1

∫ ηi1∧(t−τ̂n,i1 )+

0

∫ ηi2∧(t−τ̂n,i2 )+

0

1

F c(uuu)
dF (uuu), t ≥ 0.

Define a multiparameter process T̂n := {T̂n(t1, t2,xxx) : t1 ≥ 0, t2 ≥ 0,xxx ∈ R2
+} by

(6.42) T̂n(t1, t2,xxx) :=
1√
n

En1 (t1)∧En2 (t2)∑
i=1

(1(ηηηi ≥ xxx)− F c(xxx)), t1, t2 ≥ 0, xxx ∈ R2
+.

We then obtain the convergence of the processes T̂n following from a similar argument as Proposition
4.1.

Lemma 6.6. Under Assumptions 1 and 4-8,

T̂n ⇒ T̂ in D([0,∞)2,D([0,∞)2,R)) as n→∞,

where T̂ (t1, t2,xxx) is a continuous Gaussian random field with mean function E[T̂ (t1, t2,xxx)] = 0 and
covariance function

Cov(T̂ (t1, t2,xxx), T̂ (s1, s2, yyy)) = [(t1 ∧ t2) ∧ (s1 ∧ s2)](F c(xxx ∨ yyy)− F c(xxx)F c(yyy)),

for ti, si ≥ 0, i = 1, 2, and xxx,yyy ∈ R2
+.
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We can then rewrite Ĝn in (6.39) as

Ĝn(t) =

∫ t

0

∫ t

0

T̂n(t− x1, t− x2,xxx)

F c(xxx)
dF (xxx), t ≥ 0.

We are now ready to prove Lemma 6.4.

Proof of Lemma 6.4. We first prove the tightness of {Ĥn}. We follow the argument of Lemma 3.7

of [29] by using Aldous’ sufficient condition (see, e.g., [7]) to verify the tightness of {Ĥn : n ≥ 1}.
This requires us to check for L > 0 and ε > 0,

(6.43) lim
κ̃→∞

lim sup
n→∞

P

(
sup

0≤t≤L
|Ĥn(t)| > κ̃

)
= 0,

and

(6.44) lim
δ→0

lim sup
n→∞

sup
τ∈CnL

P

(
sup

0≤t≤δ
|Ĥn(τ + t)− Ĥn(t)| > ε

)
= 0,

where CnL is the set of all Hn-stopping times bounded by L, where the filtration Hn is defined in
(6.40). Since the proofs of (6.43) and (6.44) are analogous, we only verify (6.44) here. Fix T > 0.
For each ε > 0 and κ ∈ N, by Lemma 6.5, we have

P

(
sup

0≤t≤T
|Ĥn(τ + t)− Ĥn(τ)| > ε

)
≤ P

(
Ēn1 (T ) ∧ Ēn2 (T ) > κ

)
+ P

(
sup

0≤t≤T

∣∣∣Ĥn
κn(τ + t)− Ĥn

κn(τ)
∣∣∣ > ε

)
.

Lemma 6.3 implies that for κ sufficiently large, the first term on the RHS of the inequality above
goes to 0 as n→∞. Next, we only need to show the second term converges to 0 as n→∞. By the
Lenglart-Rebolledo inequality [32], it follows that for any γ > 0,

P

(
sup

0≤t≤T

∣∣∣Ĥn
κn(τ + t)− Ĥn

κn(τ)
∣∣∣ > ε

)
≤ γ

ε2
+ P

(
〈Ĥn

κn〉(τ + T )− 〈Ĥn
κn〉(τ) > γ

)
.

Note from Lemma 6.5 that

〈Ĥn
κn〉(τ + T )− 〈Ĥn

κn〉(τ) ≤ 1

n
sup

s≤L,|t−s|≤T

En1 (t)∧En2 (t)∑
i=En1 (s)∧En2 (s)+1

∫ ηi1

0

∫ ηi2

0

1

F c(uuu)
dF (uuu).

It follows (5.29) and the FLLN that

1

n

bntc∑
i=1

∫ ηi1

0

∫ ηi2

0

1

F c(uuu)
dF (uuu)⇒ t in D as n→∞.

This convergence being uniform in t on bounded intervals together with Lemma 6.2 implies that

lim
T→0

lim sup
n→∞

P

 1

n
sup

s≤L,|t−s|≤T

En1 (t)∧En2 (t)∑
i=En1 (s)∧En2 (s)+1

∫ ηi1

0

∫ ηi2

0

1

F c(uuu)
dF (uuu) > γ

 = 0,

from which we obtain

P
(
〈Ĥn

κn〉(τ + T )− 〈Ĥn
κn〉(τ) > γ

)
→ 0 as n→∞,

which completes the proof of the tightness of {Ĥn}.
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Next, we will prove the tightness of {Ĝn}. For ε > 0 and t ≥ 0, we decompose Ĝn as

Ĝn(t) = Ĝn,ε1 (t) + Ĝn,ε2 (t),

where

Ĝn,ε1 (t) :=

∫ t

0

∫ t

0

T̂n(t− x1, t− x2,xxx)1(F c(xxx) ≥ ε)
F c(xxx)

dF (xxx),

Ĝn,ε2 (t) :=

∫ t

0

∫ t

0

T̂n(t− x1, t− x2,xxx)1(F c(xxx) < ε)

F c(xxx)
dF (xxx).

To show the tightness of {Ĝn}, by Lemma 3.32 of Chapter VI in [29], it suffices to prove the
following:

(i) {Ĝn,ε1 : n ≥ 1} is tight;

(ii) For each δ > 0 and T > 0, limε→0 limn→∞ P
(

sup0≤t≤T |Ĝ
n,ε
2 (t)| > δ

)
= 0.

The rest of the proof proceeds analogously as in Lemma 6.6 of [33] and Lemma 3.4 of [29] by
applying Lemma 6.6. We omit the details here for brevity. �

To proceed with the proof for the convergence of Ŵn, Ŵn
k and Ŵn,c

k , k = 1, 2, we need to show

the convergence of the finite-dimensional distributions of Ŵn, Ŵn
k and Ŵn,c

k , k = 1, 2. Recall
Lemma 5.2 of [29]. For x1, x2 ≥ 0 and yyy := (y1, y2) ∈ R2

+, let χi(x1, x2, yyy), i ∈ N, be real-valued

bounded Borel functions such that E[χi(x1, x2, ηηη
i)] = 0. Define the processes ζnκ := {ζnκ (t) : t ≥ 0}

and 〈ζnκ 〉 := {〈ζnκ 〉(t) : t ≥ 0}, κ ∈ N, by

(6.45) ζnκ (t) :=

En1 (t)∧En2 (t)∧κ∑
i=1

χi(τ̂
n,i
1 , τ̂n,i2 , ηηηi) and 〈ζnκ 〉(t) :=

En1 (t)∧En2 (t)∧κ∑
i=1

χ̄i(τ̂
n,i
1 , τ̂n,i2 ),

where χ̄i(x1, x2) := E[(χi(x1, x2, ηηη
i))2]. We also set the σ-fields F̂nt := σ(τ̂n,i1 , τ̂n,i2 , ηηηi, 1 ≤ i ≤ btc)∨N

and Fnt := σ((τ̂n,i1 ∨ τ̂
n,i
2 )∧(τ̂

n,En1 (t)∧En2 (t)+1
1 ∨ τ̂n,E

n
1 (t)∧En2 (t)+1

2 ), ηηηi∧(En1 (t)∧En2 (t)), i ≥ 1)∨N , and define

the filtrations F̂n := {F̂nt : t ≥ 0} and Fn := {Fnt : t ≥ 0}, where N includes all the null sets. We
can then show the following results.

Lemma 6.7. (i) τ̂n,i1 ∨ τ̂n,i2 , i = 1, 2, ..., are Fn-stopping times, and the following inclusions

hold: Fn
τ̂n,i1 ∨τ̂

n,i
2

⊃ F̂ni+1, Gni ⊂ F̂ni , where Gni := σ(B ∩ {τ̂n,i1 ∨ τ̂n,i2 > t}, t ≥ 0,B ∈ Fnt );

(ii) The process En1 ∧ En2 := {En1 (t) ∧ En2 (t) : t ≥ 0} is Fn-predicatable;
(iii) The processes ζnκ , κ = 1, 2, ..., are Fn-square-integrable martingales with the processes 〈ζnκ 〉

as predictable quadratic-variation processes.

Proof. The proof follows from a similar argument as the proof of Lemma 5.2 of [29]. �

Now, we are ready to prove the convergence of Ŵn, joint with Ŵk and Ŵ c
k , k = 1, 2.

Lemma 6.8. Under Assumptions 1 and 4-8,

(Ŵn
1 , Ŵ

n
2 , Ŵ

n,c
1 , Ŵn,c

2 , Ŵn)⇒ (Ŵ1, Ŵ2, Ŵ
c
1 , Ŵ

c
2 , Ŵ ) in D5 as n→∞,

where Ŵk, Ŵ c
k and Ŵ are defined in (4.18), (4.20) and (4.19), k = 1, 2, respectively.

Proof. Lemma 6.4 imply the tightness of Ŵn. And a similar argument can also be used to show the
tightness of Ŵn

k , Ŵn,c
k , k = 1, 2. Define the processes W̃n := {W̃n(t) : t ≥ 0}, W̃n

k := {W̃n
k (t) : t ≥ 0}

and W̃n,c
k := {W̃n,c

k (t) : t ≥ 0}, k = 1, 2, by

(6.46) W̃n(t) :=

∫ t

0

∫ t

0

∫
R2
+

1(sj + xj ≤ t,∀j)dK̂n(λs1, λs2,xxx), t ≥ 0,
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(6.47) W̃n
k (t) :=

∫ t

0

∫ t

0

∫
R2
+

1(sk + xk ≤ t)dK̂n(λs1, λs2,xxx), t ≥ 0, k = 1, 2,

and

W̃n,c
k (t) :=

∫ t

0

∫ t

0

∫
R2
+

1(sk + xk ≤ t, sk′ + xk′ > t)dK̂n(λs1, λs2,xxx), t ≥ 0.(6.48)

Tightness of W̃n, W̃n
k and W̃n,c

k , k = 1, 2, can be proved similarly.
It remains to establish their joint convergence in finite-dimensional distributions. For that, let

(6.49) Ŵn,(l)(t) :=
l∑

i=1

l∑
j=1

∆K̂n((Ēn1 (sli−1), Ēn2 (slj−1),000); (Ēn1 (sli), Ē
n
2 (slj), t− sli, t− slj)),

(6.50)

Ŵ
n,(l)
k (t) :=

l∑
i=1

l∑
j=1

∆K̂n
(k)((Ē

n
1 (sli−1), Ēn(slj−1),000); (Ēn1 (sli), Ē

n
2 (slj), t− sli, t− slj)), k = 1, 2,

and

(6.51) Ŵ
n,c,(l)
k (t) := Ŵ

n,(l)
k (t)− Ŵn,(l)(t), k = 1, 2,

where 0 = sl0 < sl1 < ... < sll = t and max1≤i≤l |sli − sli−1| → 0 as l → ∞, and K̂n
(1)(t1, t2,xxx) :=

K̂n(t1, t2, x1,∞) and K̂n
(2)(t1, t2,xxx) := K̂n(t1, t2,∞, x2) for t1, t2 ∈ R+ and xxx ∈ R2

+.

We also define in analogy, for t ≥ 0,

Ŵ (l)(t) :=
l∑

i=1

l∑
j=1

∆K̂((λsli−1, λs
l
j−1,000); (λsli, λs

l
j , t− sli, t− slj)),

Ŵ
(l)
k (t) :=

l∑
i=1

l∑
j=1

∆K̂(k)((λs
l
i−1, λs

l
j−1,000); (λsli, λs

l
j , t− sli, t− slj)), k = 1, 2,

(6.52) Ŵ
c,(l)
k (t) := Ŵ

(l)
k (t)− Ŵ (l)(t), k = 1, 2,

W̃n,(l)(t) :=

l∑
i=1

l∑
j=1

∆K̂n((λsli−1, λs
l
j−1,000); (λsli, λs

l
j , t− sli, t− slj)),

W̃
n,(l)
k (t) :=

l∑
i=1

l∑
j=1

∆K̂n
(k)((λs

l
i−1, λs

l
j−1,000); (λsli, λs

l
j , t− sli, t− slj)), k = 1, 2,

and

(6.53) W̃
n,c,(l)
k (t) := W̃

n,(l)
k (t)− W̃n,(l)(t), k = 1, 2,

where K̂(1)(t1, t2,xxx) := K̂(t1, t2, x1,∞) and K̂(2)(t1, t2,xxx) := K̂(t1, t2,∞, x2) for t1, t2 ∈ R+ and

xxx ∈ R2
+. Set W̃

n,(l)
k := {W̃n,(l)

k (t) : t ≥ 0}, W̃n,c,(l)
k := {W̃n,c,(l)

k (t) : t ≥ 0}, Ŵ (l)
k := {Ŵ (l)

k (t) : t ≥ 0},
Ŵ

c,(l)
k := {Ŵ c,(l)

k (t) : t ≥ 0}, k = 1, 2, W̃n,(l) := {W̃n,(l)(t) : t ≥ 0} and Ŵ (l) := {Ŵ (l)(t) : t ≥ 0}.
Since Ŵ (l) converges to Ŵ as l → ∞ in probability by definition, in order to show the joint
convergence in finite dimensional distributions it is sufficient to show the following conditions:

(a) (W̃
n,(l)
1 , W̃

n,(l)
2 , W̃

n,c,(l)
1 , W̃

n,c,(l)
2 , W̃n,(l))

df⇒ (Ŵ
(l)
1 , Ŵ

(l)
2 , Ŵ

c,(l)
1 , Ŵ

c,(l)
2 , Ŵ (l)) as n→∞;
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(b) For γ > 0 and t > 0,

lim
l→∞

lim sup
n→∞

P (|Ŵn,(l)(t)− Ŵn(t)| > γ) = 0,(6.54)

lim
l→∞

lim sup
n→∞

P (|W̃n,(l)(t)− W̃n(t)| > γ) = 0,

lim
l→∞

lim sup
n→∞

P (|Ŵn,(l)
k (t)− Ŵn

k (t)| > γ) = 0, k = 1, 2,

lim
l→∞

lim sup
n→∞

P (|W̃n,(l)
k (t)− W̃n

k (t)| > γ) = 0, k = 1, 2,

lim
l→∞

lim sup
n→∞

P (|W̃n,c,(l)
k (t)− W̃n,c

k (t)| > γ) = 0, k = 1, 2;

(c) For T > 0 and ε > 0,

lim
n→∞

P

(
sup

0≤t≤T
|W̃n,(l)(t)− Ŵn,(l)(t)| > ε

)
= 0,

lim
n→∞

P

(
sup

0≤t≤T
|W̃n,(l)

k (t)− Ŵn,(l)
k (t)| > ε

)
= 0, k = 1, 2,

lim
n→∞

P

(
sup

0≤t≤T
|W̃n,c,(l)

k (t)− Ŵn,c,(l)
k (t)| > ε

)
= 0, k = 1, 2.

First, we focus on the proof of (a). For any t1,i, t2,j tp ≥ 0, c1,i, c2,j and cp ∈ R and positive integers
I1, I2 and I3, for i = 1, ..., I1, j = 1, ..., I2 and p = 1, ..., I3, since the distribution function F is
continuous by Assumption 1, by the weak convergence of K̂n to K̂ as n→∞ and the continuity of
K̂, we immediately see that, as n→∞,

2∑
k=1

Ik∑
i=1

ck,iW̃
n,(l)
k (tk,i) +

I3∑
p=1

W̃n,(l)(tp)⇒
2∑

k=1

Ik∑
i=1

ck,iŴ
(l)
k (tk,i) +

I3∑
p=1

cpŴ
(l)(tp).

By the Cramér-Wold theorem (see, e.g., Theorem 3.95 of [13]), we see

(W̃
n,(l)
1 , W̃

n,(l)
2 , W̃n,(l))

df⇒ (Ŵ
(l)
1 , Ŵ

(l)
2 , Ŵ (l)) as n→∞.

By (6.52) and (6.53), together with the continuous mapping theorem [7], we conclude that (a) holds.
We will next prove (b). For brevity, we here only provide the proof for (6.54), as other proofs

follow similarly. For the points 0 = sl0 < sl1 < ... < sll = t satisfying max1≤i≤l |sli − sli−1| → 0 as
l→∞, let

χi(x1, x2, yyy) =
l∑

p=1

l∑
j=1

1(slp−1 < x1 ≤ slp)1(slj−1 < x2 ≤ slj)

× (1(t− slp < y1 ≤ t− x1, t− slj < y2 ≤ t− x2)

−∆F ((t− slp, t− slj); (t− x1, t− x2))).

Then it is easy to verify that

χ̄i(x1, x2) = E[(χi(x1, x2, ηηη
i))2]

=
l∑

p=1

l∑
j=1

1(slp−1 < x1 ≤ slp)1(slj−1 < x2 ≤ slj)

×∆F ((t− slp, t− slj); (t− x1, t− x2))(1−∆F ((t− slp, t− slj); (t− x1, t− x2))).
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Recall from (6.45), by (6.33) and (6.49), for κ ∈ N,

(6.55)
1√
n
ζnκ (t) = Ŵn(t)− Ŵn,(l)(t) on {En1 (t) ∧ En2 (t) ≤ κ}.

Hence, we have

1

n
〈ζnκ 〉(t) ≤

1

n

En1 (t)∧En2 (t)∑
i=1

l∑
p=1

l∑
j=1

1(slp−1 < τ̂n,i1 ≤ slp)1(slj−1 < τ̂n,i2 ≤ slj)

×∆F ((t− slp, t− slj); (t− slp−1, t− slj−1))

=
1

n

l∑
p=1

l∑
j=1

[(En1 (slp)− En1 (slp−1)) ∧ (En2 (slj)− En2 (slj−1))]

×∆F ((t− slp, t− slj); (t− slp−1, t− slj−1))

≤ sup
1≤p≤l

sup
1≤j≤l

[(Ēn1 (slp)− Ēn1 (slp−1)) ∧ (Ēn2 (slj)− Ēn2 (slj−1))].

Then, by Lemma 6.7 with the Lenglart-Rebolledo inequality (see, e.g., [32]), we have that for any
κ ∈ N, γ > 0 and ε > 0,

P (|Ŵn,(l)(t)− Ŵn(t)| > γ) ≤ P (En1 (t) ∧ En2 (t) > nκ) + P (n−1/2|ζnκ (t)| > γ)

≤ P (Ēn1 (t) ∧ Ēn2 (t) > κ) +
ε

γ2

+ P

(
sup

1≤p≤l
sup

1≤j≤l
[(Ēn1 (slp)− Ēn1 (slp−1)) ∧ (Ēn2 (slj)− Ēn2 (slj−1))] > ε

)
.

By Lemma 6.2 and the fact that max1≤i≤l |sli − sli−1| → 0 as l → ∞, we have both terms on the
RHS of the above inequality vanish, i.e.,

lim
κ→∞

lim sup
n→∞

P (Ēn1 (t) ∧ Ēn2 (t) > κ) = 0,

lim
l→∞

lim sup
n→∞

P

(
sup

1≤p≤l
sup

1≤j≤l
[(Ēn1 (slp)− Ēn1 (slp−1)) ∧ (Ēn2 (slj)− Ēn2 (slj−1))] > ε

)
= 0,

which completes of the proof of (b). It is quite straightforward to see that (c) also holds, since K̂ is
continuous.

In summary, we have shown that(
Ŵn

1 , Ŵ
n
2 , W̃

n
1 , W̃

n
2 , Ŵ

n,c
1 , Ŵn,c

2 , W̃n,c
1 , W̃n,c

2 , Ŵn, W̃n
)

⇒
(
Ŵ1, Ŵ2, Ŵ1, Ŵ2, Ŵ

c
1 , Ŵ

c
2 , Ŵ

c
1 , Ŵ

c
2 , Ŵ , Ŵ

)
in D10 as n→∞.(6.56)

Thus Lemma 6.8 has been proved. �

6.5. Convergence of the Initial Quantities. In this section, we prove the weak convergence of
the initial quantities. We first define Ên,ek := {Ên,e(t) : t ≥ 0}, k = 1, 2, by

(6.57) Ên,ek (t) :=
1√
n

Qnk (0)∑
i=1

1(w̃n,ik > t), t > 0, and Ên,ek (0) := 0.

Let M̂n,0 := {M̂n,0(t) : t ≥ 0}, where M̂n,0(t) for t ≥ 0 is defined in (6.25).

Lemma 6.9. Under Assumptions 1 and 4-8,

(Ên,e1 , Ên,e2 , M̂n,0)⇒ (0, 0, 0) in D3 as n→∞.



A FORK-JOIN NETWORK IN THE HALFIN-WHITT REGIME 41

Proof. By the definition of Ên,ek , k = 1, 2, it is sufficient to show that for ε > 0 and 0 < T1 < T2,

lim
n→∞

P

(
sup

T1≤t≤T2

∣∣∣Ên,ek (t)
∣∣∣ > ε

)
= 0.

Recall that in the sequence {w̃n,ik : i = 1, ..., Qnk(0)}, w̃n,1k represents the residual waiting time of the

task in the front of the queue and w̃
n,Qnk (0)

k represents that of the task in the end of the queue at
station k at time 0−, k = 1, 2. Under the non-idling FCFS discipline, k = 1, 2,

(6.58) w̃n,1k ≤ w̃n,2k ≤ ... ≤ w̃n,Q
n
k (0)

k , a.s.

We thus obtain, for k = 1, 2,

P

(
sup

T1≤t≤T2

∣∣∣Ên,ek (t)
∣∣∣ > ε

)
≤ P

(
sup

T1≤t≤T2

∣∣∣Q̂nk(0)1(w̃
n,Qnk (0)

k > t)
∣∣∣ > ε

)
≤ P

(∣∣∣Q̂nk(0)1(w̃
n,Qnk (0)

k > T1)
∣∣∣ > ε

)
= P

(∣∣∣Q̂nk(0)1(w̃
n,Qnk (0)

k > T1)
∣∣∣ > ε, w̃

n,Qnk (0)

k > T1

)
≤ P

(
w̃
n,Qnk (0)

k > T1

)
.(6.59)

Assumption 8 implies that the RHS of (6.59) converges to 0 as n→∞, which completes the proof

of the convergence of (Ên,e1 , Ên,e2 ).

Define M̂n,0
k := {M̂n,0

k (t) : t ≥ 0} by

M̂n,0
k (t) :=

1√
n

Znk (0)∑
i=1

(Fk,e(t)Fk′(t− w̃n,i,Rk′ )− Fk,e(t)Fk′(t)), t ≥ 0, k = 1, 2,

and

M̂n,0
3 (t) :=

1√
n

In(0)∑
i=1

(F (t− w̃n,i,I1 , t− w̃n,i,I2 )− Fm(t)).

To show M̂n,0 ⇒ 0, by the definition of M̂n,0 in (6.25), Theorem 11.4.5 of [58] and the continuous
mapping theorem [7], it suffices to show that for k = 1, 2, 3,

M̂n,0
k ⇒ 0 in D as n→∞.

Here we only provide the proof for the weak convergence of M̂n,0
3 for brevity, as the proofs for M̂n,0

1

and M̂n,0
2 are similar.

Denote w̃n,l,Im := maxk=1,2 w̃
n,l,I
k for l = 1, · · · , In(0). By (6.58), we first obtain, for each t ≥ 0,

(6.60) |M̂n,0
3 (t)| ≤ 1√

n

In(0)∑
i=1

(Fm(t)− Fm(t− w̃n,l,Im )) ≤ În(0)(Fm(t)− Fm(t− w̃n,In(0),I
m )).

Note the fact that, under Assumption 8, the sequence of {w̃n,l,Im : l = 1, ..., In(0)} converges to 0
a.s. as n→∞, and Fm is uniformly continuous by Assumption 1 and Theorem 1 of [36]. Together

with (6.60), it is easy to see, when n is sufficiently large, for each t ≥ 0, |M̂n,0
3 (t)| ≤ În(0)γn, a.s.,

where {γn : n ≥ 1} is a sequence of random variables converging to 0 a.s. as n→∞. Moreover, we

have that sup0≤t≤T |M̂
n,0
3 (t)| ≤ În(0)γn for each T > 0 a.s. Since În(0)⇒ Î(0) in R as n→∞, we

have that În(0)γn ⇒ 0 in R as n→∞. Therefore, we obtain that M̂n,0
3 ⇒ 0 in D as n→∞. This

completes the proof of the Lemma. �
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Lemma 6.10. Under Assumptions 1 and 4-8,

(V̂ n,0
1 , V̂ n,0

2 , V̂ n,0)⇒ (0, 0, 0) in D3 as n→∞.

Proof. We start with the proof of the convergence of V̂ n,0
k for k = 1, 2. By Theorem 11.4.5 in [58]

and the continuous mapping theorem in [7], it suffices to show that for k = 1, 2,

(6.61)
1√
n

Znk (0)∑
i=1

(1(η̃i,Zk ≤ t)− Fk,e(t))⇒ 0 in D as n→∞,

and

(6.62)
1√
n

Qnk (0)∑
i=1

(1(w̃n,ik + ηi,Qk ≤ t)− Fk(t− w̃n,ik ))⇒ 0 in D as n→∞.

We first prove (6.61) holds. Let

Ǔnk (t) :=
1√
n

n∑
i=1

(1(η̃i,Zk ≤ t)− Fk,e(t)), t ≥ 0,

and Ǔnk := {Ǔnk (t) : t ≥ 0}. By Lemma 3.1 of [29] and Assumption 6, we obtain

(Ǔnk (t), Z̄nk (0))⇒ (B̂0,k(Fk,e(t)), 0) in D× R as n→∞.

Thus, the random time change theorem [7] implies (6.61) holds.

Before proving (6.62), we let En,Qk (t) be the cumulative number of initial jobs whose task k
is in queue waiting for service at time 0−, and has entered service by time t ≥ 0, k = 1, 2. Set

En,Qk := {En,Qk (t) : t ≥ 0} and Ēn,Qk := En,Qk /n. Note that, for k = 1, 2, 0 ≤ Ēn,Qk (t) ≤ Q̄nk(0) for
t ≥ 0, a.s. By Assumption 6 we easily see that Q̄nk(0)⇒ 0 in R as n→∞, which implies that for
k = 1, 2,

Ēn,Qk ⇒ 0 in D as n→∞.
For k = 1, 2, let

Ṽ n
k (s, x) :=

1√
n

bnsc∑
i=1

(1(ηi,Qk ≤ x)− Fk(x)), s, x ≥ 0.

We can rewrite the second term on the RHS of V̂ n,0
k in (6.26) by

1√
n

Qnk (0)∑
i=1

(1(w̃n,ik + ηi,Qk ≤ t)− Fk(t− w̃n,ik )) =

∫ t

0

∫ t

0
1(s+ x ≤ t)dṼ n

k (Ēn,Qk (s), x), t ≥ 0.

From Proposition 5.1 in [51], we see that∫ t

0

∫ t

0
1(s+ x ≤ t)dṼ n

k (s, x)⇒
∫ t

0

∫ t

0
1(s+ x ≤ t)dṼk(s, x) in D as n→∞,

where Ṽk = {Ṽk(t, x) : t ≥ 0, x ≥ 0} is a standard Kiefer process, and the integral limit above is
defined in the mean-square limit sense, similar to those in §6.2. Furthermore, analogous to Lemma
6.8, we obtain ∫ t

0

∫ t

0
1(s+ x ≤ t)dṼ n

k (Ēn,Qk (s), x)⇒ 0 in D as n→∞,

which implies (6.62) holds.
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In the rest of the proof, we will show the convergence V̂ n,0 ⇒ 0. It suffices to show each term
in (6.27) weakly converges to 0. Since the first two terms in (6.27) are symmetric, without loss of
generality, we here only show

1√
n

Zn1 (0)∑
i=1

(1(η̃i,Z1 ≤ t, w̃n,i,R2 + ηi,R2 ≤ t)− F1,e(t)F2(t− w̃n,i,R2 ))⇒ 0 in D as n→∞.

We prove the convergence by showing the upper and lower bounds in (6.63) and (6.64), respectively,
converge to zero. Note that

1√
n

Zn1 (0)∑
i=1

(
1(η̃i,Z1 ≤ t, w̃n,i,R2 + ηi,R2 ≤ t)− F1,e(t)F2(t− w̃n,i,R2 )

)

≥ 1√
n

Zn1 (0)∑
i=1

(
1(w̃n,i,R2 + η̃i,Z1 ≤ t, w̃n,i,R2 + ηi,R2 ≤ t)− F1,e(t− w̃n,i,R2 )F2(t− w̃n,i,R2 )

)

+
1√
n

Zn1 (0)∑
i=1

(F1,e(t− w̃n,i,R2 )− F1,e(t)), t ≥ 0, a.s.(6.63)

We first show the RHS of (6.63) weakly converges to 0 as n →∞. By Theorem 11.4.5 in [58], it
suffices to show the two terms on the RHS of (6.63) weakly converge to 0 as n→∞ separately. We
first consider the first term on the RHS of (6.63).

Denote

K̃n(t,xxx) :=
1√
n

bntc∑
i=1

(1(η̃i,Z1 ≤ x1, η
i,R
2 ≤ x2)− F1,e(x1)F2(x2)), t ≥ 0, xxx ∈ R2

+,

and K̃n := {K̃n(t,xxx) : t ≥ 0,xxx ∈ R2
+}. Let En,Zk (t) be the cumulative number of initial jobs whose

task k is in queue waiting for service at time 0−, and has entered service by time t ≥ 0, but whose

task k′ is in service at time 0−. Set En,Zk := {En,Zk (t) : t ≥ 0} and Ēn,Zk := En,Zk /n. Note that, for

k = 1, 2, 0 ≤ Ēn,Zk (t) ≤ Z̄nk′(0) for t ≥ 0, a.s. By Assumption 6 we easily see that Z̄nk (0)⇒ 0 in R
as n→∞, which implies that for k = 1, 2,

Ēn,Zk ⇒ 0 in D as n→∞.

We rewrite the first term on the RHS of (6.63) by

1√
n

Zn1 (0)∑
i=1

(
1(w̃n,i,R2 + η̃i,Z1 ≤ t, w̃n,i,R2 + ηi,R2 ≤ t)− F1,e(t− w̃n,i,R2 )F2(t− w̃n,i,R2 )

)
=

∫ t

0

∫
R2
+

1(s+ xj ≤ t,∀j)dK̃n(Ēn,Z2 (s),xxx).

By Theorem 3.3 in [33], we obtain that∫ t

0

∫
R2
+

1(s+ xj ≤ t,∀j)dK̃n(s,xxx)⇒
∫ t

0

∫
R2
+

1(s+ xj ≤ t,∀j)dK̃(s,xxx) in D as n→∞,

where K̃ := {K̃(t,xxx) : t ≥ 0,xxx ∈ R2
+} is a generalized Kiefer process with mean 0, and the covariance

structure, for s, t ∈ R+ and xxx,yyy ∈ R2
+,

Cov(K̃(s,xxx), K̃(t, yyy)) = (s ∧ t) (F1,e(x1 ∧ y1)F2(x2 ∧ y2)− F1,e(x1)F2(x2)F1,e(y1)F2(y2)) ,
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and the integral limit above is defined in the mean-square limit sense, similar to those in §6.2.
Furthermore, analogous to Lemma 6.8, we obtain∫ t

0

∫
R2
+

1(s+ xj ≤ t,∀j)dK̃n(Ēn,Z2 (s),xxx)⇒ 0 in D as n→∞.

Thus, the first term on the RHS of (6.63) weakly converges to 0 as n→∞. The weak convergence

of the second term on the RHS of (6.63) is similar to the proof of the convergence M̂n,0 ⇒ 0 in
Lemma 6.9, and we omit the details here for brevity.

On the other hand, we also have

1√
n

Zn1 (0)∑
i=1

(
1(η̃i,Z1 ≤ t, w̃n,i,R2 + ηi,R2 ≤ t)− F1,e(t)F2(t− w̃n,i,R2 )

)

≤ 1√
n

Zn1 (0)∑
i=1

(
1(η̃i,Z1 ≤ t, ηi,R2 ≤ t)− F1,e(t)F2(t)

)

+
1√
n

Zn1 (0)∑
i=1

(F2(t)− F2(t− w̃n,i,R2 )), t ≥ 0, a.s.(6.64)

Following an analogous argument to show the terms on the RHS of (6.63) weakly converge to 0, we
can also show the RHS of (6.64) weakly converges to 0.

Now, we are ready to prove the convergence V̂ n,0 ⇒ 0. It suffices to show that for T > 0 and
ε > 0,

lim
n→∞

P

 sup
0≤t≤T

∣∣∣∣∣∣ 1√
n

Zn1 (0)∑
i=1

(1(η̃i,Z1 ≤ t, w̃n,i,R2 + ηi,R2 ≤ t)− F1,e(t)F2(t− w̃n,i,R2 ))

∣∣∣∣∣∣ > ε

 = 0.

Note that

P

 sup
0≤t≤T

∣∣∣∣∣∣ 1√
n

Zn1 (0)∑
i=1

(1(η̃i,Z1 ≤ t, w̃n,i,R2 + ηi,R2 ≤ t)− F1,e(t)F2(t− w̃n,i,R2 ))

∣∣∣∣∣∣ > ε


≤ P

 sup
0≤t≤T

∣∣∣ 1√
n

Zn1 (0)∑
i=1

(
1(η̃i,Z1 ≤ t, ηi,R2 ≤ t)− F1,e(t)F2(t)

)

+
1√
n

Zn1 (0)∑
i=1

(F2(t)− F2(t− w̃n,i,R2 ))
∣∣∣ > ε


+ P

 sup
0≤t≤T

∣∣∣ 1√
n

Zn1 (0)∑
i=1

(
1(w̃n,i,R2 + η̃i,Z1 ≤ t, w̃n,i,R2 + ηi,R2 ≤ t)− F1,e(t− w̃n,i,R2 )F2(t− w̃n,i,R2 )

)

+
1√
n

Zn1 (0)∑
i=1

(F1,e(t− w̃n,i,R2 )− F1,e(t))
∣∣∣ > ε

 .

By the fact that the terms on the RHS of (6.64) and (6.63) weakly converge to 0, we obtain that
the RHS of the above inequality goes to 0 as n→∞.

Next, we will focus on proving that the third term in (6.27) weakly converges to 0 as n→∞. Let

En,Ik (t) be the cumulative number of initial jobs, whose task k has entered service by time t ≥ 0,

but whose both tasks are in queue waiting for service at time 0−. Set En,Ik := {En,Ik (t) : t ≥ 0}
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and Ēn,Ik := En,Ik /n, k = 1, 2. Note that, for k = 1, 2, 0 ≤ Ēn,Ik (t) ≤ Īn(0) for t ≥ 0, a.s. Since by
Assumption 6 Īn(0)⇒ 0 in R as n→∞, we have, for k = 1, 2,

(6.65) Ēn,Ik ⇒ 0 in D as n→∞.
Let

Ṽ n(t1, t2,xxx) :=
1√
n

bnt1c∧bnt2c∑
i=1

(1(ηi,Ij ≤ xxx,∀j)− F (xxx)), t1, t2 ≥ 0, xxx ∈ R2
+.

We can rewrite the third term on the RHS of V̂ n,0 in (6.27) by

1√
n

In(0)∑
i=1

(1(w̃n,i,Ij + ηi,Ij ≤ t,∀j)− F (t− w̃n,i,I1 , t− w̃n,i,I2 ))

=

∫ t

0

∫ t

0

∫
R2
+

1(sj + xj ≤ t,∀j)dṼ n(Ēn,I1 (s1), Ēn,I2 (s2),xxx), t ≥ 0.

Analogous to Lemma 6.8, together with (6.65), we can see that the term on the RHS of the previous
equation weakly converges to 0 as n→∞, which further implies the weak convergence of the third
term on the RHS of V̂ n,0 in (6.27) to 0. Thus, we have completed the proof of Lemma 6.10. �

Lemma 6.11. Under Assumptions 1 and 4-8, we have(
Ûn,Y1 (t), Ûn,Y2 (t), V̂ n,0

1 (t), V̂ n,0
2 (t), V̂ n,0(t), M̂n,0(t), Ûn(ttt)

)
⇒
(
Ȳ2(0)

1/2
B̂0,1(F1,e(t)), Ȳ1(0)

1/2
B̂0,2(F2,e(t)), 0, 0, 0, 0, J̄(0)1/2Û(ttt)

)
in D6 × D([0,∞)2,R) as n → ∞, where the processes B̂0,k := {B̂0,k(t) : t ≥ 0}, k = 1, 2, and the

process Û := {Û(ttt) : ttt ∈ R2
+} are defined in Theorem 4.1.

Proof. For k = 1, 2, let
(6.66)

Ũn,Yk (t) :=
1√
n

bnȲk′ (0)c∑
i=1

(1(η̃i,Ykk ≤ t)−Fk,e(t)), Ũn(ttt) :=
1√
n

bnJ̄(0)c∑
i=1

(1(η̃ηηi,J ≤ ttt)−F1,e(t1)F2,e(t2)).

Set Ũn,Yk := {Ũn,Yk (t) : t ≥ 0}, k = 1, 2, and Ũn := {Ũn(ttt) : ttt ∈ R2
+}.

By Lemma 3.1 of [29] and Assumption 6, with the random time change theorem [7], since Ũn,Yk ,

k = 1, 2, and Ũn are independent by definition, we first obtain

Ûn,Yk (t)⇒ Ȳk′(0)
1/2
B̂0,k(Fk,e(t)) in D as n→∞,

Ûn ⇒ J̄(0)1/2Û in D([0,∞)2,R) as n→∞,
and (

Ũn,Y1 (t), Ũn,Y2 (t), Ũn(ttt)
)
⇒
(
Ȳ2(0)

1/2
B̂0,1(F1,e(t)), Ȳ1(0)

1/2
B̂0,2(F2,e(t)), J̄(0)1/2Û(ttt)

)
in D2 × D([0,∞)2,R) as n→∞. In order to prove the convergence of Ũn,Yk , Ũn, joint with Ûn,Yk ,

Ûn, k = 1, 2, it suffices to check, for each T > 0 and γ > 0,

lim
n→∞

P

(
sup

0≤t≤T
|Ũn,Yk (t)− Ûn,Yk (t)| > γ

)
= 0, k = 1, 2,

lim
n→∞

P

(
sup

0≤t1,t2≤T
|Ũn(ttt)− Ûn(ttt)| > γ

)
= 0.
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The above equations are evident as B̂0,k(Fk,e(·)) and Û are all continuous, k = 1, 2. Thus, we have(
Ũn,Y1 (t) , Ũn,Y2 (t), Ûn,Y1 (t), Ûn,Y2 (t), Ũn(ttt), Ûn(ttt)

)
⇒
(
Ȳ2(0)

1/2
B̂0,1(F1,e(t)), Ȳ1(0)

1/2
B̂0,2(F2,e(t)), Ȳ2(0)

1/2
B̂0,1(F1,e(t)),

Ȳ1(0)
1/2
B̂0,2(F2,e(t)), J̄(0)1/2Û(ttt), J̄(0)1/2Û(ttt)

)
(6.67)

in D4 × D2([0,∞)2,R) as n→∞. Further, by Lemma 6.10, together with Theorem 11.4.5 of [58],
we obtain(

Ũn,Y1 (t) , Ũn,Y2 (t), Ûn,Y1 (t), Ûn,Y2 (t), V̂ n,0
1 (t), V̂ n,0

2 (t), V̂ n,0(t), M̂n,0(t), Ũn(ttt), Ûn(ttt)
)

⇒
(
Ȳ2(0)

1/2
B̂0,1(F1,e(t)), Ȳ1(0)

1/2
B̂0,2(F2,e(t)), Ȳ2(0)

1/2
B̂0,1(F1,e(t)),

Ȳ1(0)
1/2
B̂0,2(F2,e(t)), 0, 0, 0, 0, J̄(0)1/2Û(ttt), J̄(0)1/2Û(ttt)

)
in D8 × D2([0,∞)2,R) as n→∞, which completes the proof of Lemma 6.11. �

We can now conclude the weak convergence of the processes associated with the initial quantities

X̂XX
n,0

:= (X̂n,0
1 , X̂n,0

2 ), ŶYY
n,0

:= (Ŷ n,0
1 , Ŷ n,0

2 ) and Ŝn,0 in (4.29)–(4.31).

Lemma 6.12. Under Assumptions 1 and 4-8,(
X̂XX
n,0
, ŶYY

n,0
, Ŝn,0

)
⇒
(
X̂XX

0
, ŶYY

0
, Ŝ0
)

in D5 as n→∞,(6.68)

where X̂XX
0

:= (X̂0
1 , X̂

0
2 ), ŶYY

0
:= (Ŷ 0

1 , Ŷ
0

2 ) and Ŝ0 are defined in Theorem 4.1.

6.6. Completing the Proof of Theorem 4.1. In this section, we complete the proof of Theorem
4.1. We first provide the following lemmas for the proof.

Lemma 6.13. Under Assumptions 1 and 4-8,(
Ân(t), X̂XX

n,0
(t), ŶYY

n,0
(t), Ŝn,0(t), V̂ n,0(t), M̂n,0(t), Ûn(t), Ŵn(t), Nk

√
n(1− ρnk)Fk,e(t), V̂

n,0
k (t),

Ûn,Yk (t), Ûnk (t), Ŵn
k (t), Ŵn,c

k (t), k = 1, 2
)

⇒
(
Â(t), X̂XX

0
(t), ŶYY

0
(t), Ŝ0(t), 0, 0, J̄(0)1/2Û(t), Ŵ (t), NkβkFk,e(t), 0,

Ȳk′(0)
1/2
B̂0,k(Fk,e(t)), J̄(0)1/2Ûk(t), Ŵk(t), Ŵ

c
k(t), k = 1, 2

)
in D22 as n→∞, where all the limiting processes are defined in Theorem 4.1.

Proof. Let

(6.69) Ũn1 (t) := Ũn(t,∞), Ũn2 (t) := Ũn(∞, t), t ≥ 0,

where Ũn is defined in (6.66). Set Ũn1 := {Ũn1 (t) : t ∈ R+} and Ũn2 := {Ũn2 (t) : t ∈ R+}. Without

abuse of notation, we let Ũn(t) = Ũn(t, t), t ≥ 0. Recall Ũn,Yk is defined in (6.66), k = 1, 2.
First, by Lemmas 6.11, 6.12 and 6.8, we obtain the convergence(

Ân(t), X̂XX
n,0

(t), ŶYY
n,0

(t), Ŝn,0(t), Ũn(t), W̃n(t), Nk

√
n(1− ρnk)Fk,e(t),

Ũn,Yk (t), Ũnk (t), W̃n
k (t), W̃n,c

k (t), k = 1, 2
)

⇒
(
Â(t), X̂XX

0
(t), ŶYY

0
(t), Ŝ0(t), J̄(0)

1/2
Û(t), Ŵ (t), NkβkFk,e(t),

Ȳk′(0)
1/2
B̂0,k(Fk,e(t)), J̄(0)

1/2
Ûk(t), Ŵk(t), Ŵ

c
k(t), k = 1, 2

)
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in D18 as n→∞, since
(
X̂XX
n,0

(t), ŶYY
n,0

(t), Ŝn,0(t)
)

and the other component processes in the prelimit
above are independent of each other.

Then, by (6.56) and the maximum topology we endow on the product space, we obtain that in

the above weak convergence W̃n, Ũn(·), Ũn,Yk , Ũnk , W̃n,c
k and W̃n

k , k = 1, 2, can be replaced by Ŵn,

Ûn(·), Ûn,Yk , Ûnk , Ŵn,c
k and Ŵn

k , k = 1, 2. Recall from Lemma 6.11 that V̂ n,0
k , k = 1, 2, V̂ n,0 and

M̂n,0 weakly converge to 0 as n→∞. Following from Theorem 11.4.5 of [58], we have completed
the proof of Lemma 6.13. �

Let Γ be a continuous distribution function on R+ and let a ∈ R. For each x ∈ D, we define the
mapping φaΓ : D→ D by φaΓ(x) = z for x ∈ D, where z ∈ D is a solution to the following

(6.70) z(t) = x(t) +

∫ t

0
(z(t− s) + a)+dΓ(s), t ≥ 0.

The existence and uniqueness of the solution to (6.70) are proved in Proposition 3.1 of [51]. We also
define the mapping ψ : D3 → D3 by

(6.71) ψ(x1, x2, x3) := (φ0
F1

(x1), φ0
F2

(x2), x3), (x1, x2, x3) ∈ D3.

Recall that we endow the product metric space with the maximum metric of each component metric
space. Since the mappings φ0

F1
and φ0

F2
are both continuous in D, we immediately have the following.

Lemma 6.14. The mapping ψ defined in (6.71) is continuous in (D3, J1).

Recall the definition of Ên(·, ·) in (4.14). We then give a representation for Ψ̂n := {Ψ̂n(t) : t ≥ 0}
where Ψ̂n(t), t ≥ 0, is defined in (6.24).

Lemma 6.15. The process {Ψ̂n(t) : t ≥ 0} has the following representation:

(6.72) Ψ̂n(t) =

∫ t

0

∫ t

0
Ên(t− s1, t− s2)dF (s1, s2), t ≥ 0.

Proof. Note that by the definition of Enk , k = 1, 2, for t ≥ 0,

Ψ̂n(t) =
1√
n

An(t)∑
i=1

∫ t

0

∫ t

0
1(sj ≤ t− τni − w

n,i
j , ∀j)dF (s1, s2)

− λn√
n

∫ t

0

∫ t

0

(
min
k=1,2

{t− sk}
)
dF (s1, s2)

=
1√
n

An(t)∑
i=1

∫ t

0

∫ t

0
1(τni + wn,ij ≤ t− sj , ∀j)dF (s1, s2)

− λn√
n

∫ t

0

∫ t

0

(
min
k=1,2

{t− sk}
)
dF (s1, s2)

=
1√
n

∫ t

0

∫ t

0

(
min
k=1,2

{Enk (t− sk)}
)
dF (s1, s2)− λn√

n

∫ t

0

∫ t

0

(
min
k=1,2

{t− sk}
)
dF (s1, s2)

=

∫ t

0

∫ t

0
Ên(t− s1, t− s2)dF (s1, s2).

�

Proof of Theorem 4.1. First, by Lemma 6.13 and the continuous mapping theorem [7], we have(
Ân(t), X̂n,0

k (t)−Nk

√
n(1− ρnk)Fk,e(t)− V̂ n,0

k (t)− Ûn,Yk (t)− Ûnk (t)− Ŵn
k (t), k = 1, 2

)
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⇒
(
Â(t), X̂0

k(t)−NkβkFk,e(t)− Ȳk′(0)
1/2
B̂0,k(Fk,e(t))− J̄(0)

1/2
Ûk(t)− Ŵk(t), k = 1, 2

)
in D3 as n→∞. Define the mapping g : D3 → D5 by

(6.73) g(x1, x2, x3) := (g1(x1), g2(x2), g3(x1), g4(x3), g5(x1)), (x1, x2, x3) ∈ D3,

where g1(x1) := x1, g2(x2) := x2, g4(x3) := x3,

g3(x1)(·) :=

∫ ·
0
F c1 (· − s)dx1(s), and g5(x1)(·) :=

∫ ·
0
F c2 (· − s)dx1(s).

By Lemma A.9 in [51] and the metric we endow on the product metric space, it is easy to see the
mapping g is continuous. Thus, by the continuous mapping theorem [7], we see that(

Ân(t), X̂n,0
k (t)−Nk

√
n(1− ρnk)Fk,e(t)− V̂ n,0

k (t)− Ûn,Yk (t)− Ûnk (t)− Ŵn
k (t),∫ t

0
F ck (t− s)dÂn(s), k = 1, 2

)
⇒
(
Â(t), X̂0

k(t)−NkβkFk,e(t)− Ȳk′(0)
1/2
B̂0,k(F

c
k,e(t))− J̄(0)

1/2
Ûk(t)− Ŵk(t),∫ t

0
F ck(t− s)dÂ(s), k = 1, 2

)
in D5 as n→∞, which by the continuous mapping theorem [7] again implies that(

Ân(t), X̂n,0
k (t)−Nk

√
n(1− ρnk)Fk,e(t)− V̂ n,0

k (t)− Ûn,Yk (t)− Ûnk (t)

− Ŵn
k (t) +

∫ t

0
F ck(t− s)dÂn(s), k = 1, 2

)
⇒
(
Â(t), X̂0

k(t)−NkβkFk,e(t)− Ȳk′(0)
1/2
B̂0,k(Fk,e(t))− J̄(0)

1/2
Ûk(t)

− Ŵk(t) +

∫ t

0
F ck(t− s)dÂ(s), k = 1, 2

)
in D3 as n→∞. Thus, by applying the continuous mapping theorem for the mapping ψ defined in
(6.71), we obtain

(6.74)
(
Ân, X̂n

1 , X̂
n
2

)
⇒
(
Â, X̂1, X̂2

)
in D3 as n→∞,

where, for k = 1, 2,

X̂k(·) = φ0
Fk

(
X̂0
k(·)−NkβkFk,e(·)− J̄(0)

1/2
Ûk(·)− Ȳk′(0)

1/2
B̂0,k(Fk,e(·))

−Ŵk(·) +

∫ ·
0
F ck(· − s)dÂ(s)

)
,

which implies X̂k is the unique solution to (4.25) by the definition of φ0
Fk

in (6.70).
Now, by the definition of Enk , k = 1, 2, we have the balanced equation: for t > 0,

Enk (t) +

Qnk (0)∑
i=1

1(w̃n,ik ≤ t) = (Xn
k (0)−Nn

k )+ +An(t)− (Xn
k (t)−Nn

k )+.

Recall the definition of Ên,ek in (6.57). We further have

Ênk (t) = Ân(t) + Ên,ek (t)− (X̂n
k (t))+,
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where the processes Ênk , k = 1, 2, are defined in (4.13). By Lemmas 6.13 and 6.9, Theorem 11.4.5 of
[58] and (6.74), we obtain(

X̂XX
n
(0), Ân, X̂n

1 , X̂
n
2 , Ê

n,e
1 , Ên,e2

)
⇒
(
X̂XX(0), Â, X̂1, X̂2, 0, 0

)
in R2 × D5 as n→∞.

Together with the continuous mapping theorem [7], we immediately obtain

(6.75) (Ên1 , Ê
n
2 )⇒ (Ê1, Ê2) in D2 as n→∞,

where the processes Êk, k = 1, 2, are defined in (4.28).

By the definition of Ên(·, ·) in (4.14) and the joint weak convergence of (Ên1 , Ê
n
2 ), we easily obtain

the weak convergence of Ên(t1, t2) for each fixed t1, t2 ≥ 0:

Ên(t1, t2)⇒ Ê(t1, t2) in R as n→∞,

where Ê(·, ·) is defined in (4.33).

Before we establish the weak convergence of Ŝn, we first show the convergence of Ψ̂n:

(6.76) Ψ̂n ⇒ Ψ̂ in D as n→∞.

We first note that by the continuity of F and the definition of Ψ̂ in (4.32), Ψ̂ has continuous
sample paths. In order to prove (6.76), it suffices to show that for any T > 0 and ε > 0,

lim
n→∞

P

(
sup

0≤t≤T
|Ψ̂n(t)− Ψ̂(t)| > ε

)
= 0.

Note that, by Lemma 6.15,

P

(
sup

0≤t≤T
|Ψ̂n(t)− Ψ̂(t)| > ε

)

= P

(
sup

0≤t≤T
|
∫ t

0

∫ t

0
[Ên(t− s1, t− s2)− Ê(t− s1, t− s2)]dF (s1, s2)| > ε

)

≤ P

(
Fm(T ) sup

0≤s1,s2≤T
|Ên(s1, s2)− Ê(s1, s2)| > ε

)

≤ P

(
sup

0≤s1,s2≤T
|Ên(s1, s2)− Ê(s1, s2)| > ε

)

≤ P

(
sup

0≤s1≤s2≤T
|Ên(s1, s2)− Ê(s1, s2)| > ε/2

)

+ P

(
sup

0≤s2≤s1≤T
|Ên(s1, s2)− Ê(s1, s2)| > ε/2

)
.(6.77)

In the rest of the proof, we only focus on the first term on the RHS of (6.77), as the way to deal

with the second term is similar. By the definition of Ên(·, ·) in (4.14) and Ê(·, ·) in (4.33), we present
an upper bound for the first term

P

(
sup

0≤s1≤s2≤T
|Ên(s1, s2)− Ê(s1, s2)| > ε/2

)
≤ αn1 + αn2 ,

where αn1 and αn2 are defined as follows:

αn1 := P

(
sup

0≤s1≤s2≤T

∣∣∣(Ên1 (s1)− Ê1(s1))1(s1 < s2)
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+

(
min
k=1,2

Ênk (sk)− min
k=1,2

Êk(sk)

)
1(s1 = s2)

∣∣∣∣ > ε/2

)
,

αn2 := P
(
Ên(s1, s2) = Ên1 (s1)1(s1 < s2) + (Ên1 (s1) ∧ Ên2 (s2))1(s1 = s2), 0 ≤ s1 ≤ s2 ≤ T

)
.

By (6.75) and the definition of Ên(·, ·) in (4.14), we immediately see that αn2 → 0 as n→∞. By
(5.33), we obtain that

αn1 = P

(
sup

0≤s1,s2≤T

∣∣∣(Ên1 (s1)− Ê1(s1))1(s1 < s2)

+
1

2
1(s1 = s2)

[ 2∑
k=1

(Ênk (sk)− Êk(sk))− |Ên1 (s1)− Ên2 (s2)|+ |Ê1(s1)− Ê2(s2)|
]∣∣∣∣∣ > ε/2

)

≤ P

(
4 sup

0≤s≤T
|Ên1 (s)− Ê1(s)|+ 2 sup

0≤s≤T
|Ên2 (s)− Ê2(s)| > ε

)
.

By (6.75) and the fact that Êk has continuous sample paths, k = 1, 2, we obtain that for the fixed ε,

P

(
sup

0≤s≤T
|Ênk (s)− Êk(s)| > ε/8

)
= 0, k = 1, 2,

which implies that αn1 → 0 as n→∞. Therefore, we have shown (6.76) holds.

Now, we are ready to prove the weak convergence of Ŝn. By (6.76), (6.74), (6.75) and Lemma
6.13, we have(

X̂XX
n
(0), ŶYY

n
(0), Ân(t), X̂n

1 (t), X̂n
2 (t), Ûn,Y1 (t), Ûn,Y2 (t),(6.78)

Ûn(t), V̂ n,0(t), M̂n,0(t), Ŵn(t), Ψ̂n(t), Ên1 (t), Ên2 (t)
)

⇒
(
X̂XX(0), ŶYY (0), Â(t), X̂1(t), X̂2(t), Ȳ2(0)

1/2
B̂0,1(F1,e(t)), Ȳ1(0)

1/2
B̂0,2(F2,e(t)),

J̄(0)
1/2
Û(t), 0, 0, Ŵ (t), Ψ̂(t), Ê1(t), Ê2(t)

)
(6.79)

in R4 × D12 as n→∞. By the representation of Ŝn in (6.17) and the continuous mapping theorem
[7], we immediately see

(6.80)
(
X̂XX
n
(0), ŶYY

n
(0), Ân, X̂n

1 , X̂
n
2 , Ŝ

n, Ên1 , Ê
n
2

)
⇒
(
X̂XX(0), ŶYY (0), Â, X̂1, X̂2, Ŝ, Ê1, Ê2

)
in R4 × D6 as n→∞, where the process Ŝ is defined in (4.27).

Recall the representations of Q̂nk , B̂n
k and D̂n

k in (4.13) and Ŷ n
k in (4.12), k = 1, 2. The continuous

mapping theorem [7] and (6.80) imply (4.24) holds. The uniqueness of these processes follows from

the uniqueness of X̂k, k = 1, 2. �

7. Concluding Remarks

In this paper we have developed a methodology to study the multi-server fork-join networks with
the NES constraints in the Halfin–Whitt regime. The fluid limits are proved for the networks with
an empty initial condition, in which each job is split into K ≥ 2 parallel tasks, and the arrival rate
can be time-varying. In the diffusion scale, we have restricted to the networks with a stationary
initial condition, in which each job is split into K = 2 parallel tasks, and the arrival rate is constant.
It is clear from the analysis that arbitrary initial conditions cause substantial difficulties even in
order to provide a concise representation of the system dynamics when K > 2. We have generalized
the methodology in [51] for G/GI/N queues to the fork-join networks in the Halfin–Whitt regime
with K = 2. In this framework, we require that the system starts from stationarity at time 0.
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Notably in [50], for the G/GI/N queues, the initial conditions have been relaxed to be arbitrary,
but only the finite-dimensional distribution convergence is proved. On the other hand, for Gt/GI/N
queues with any arbitrary initial conditions, Kaspi and Ramanan [24, 25] have established the FLLN
and FCLT for the measure-valued processes that keep track of the amount of service each job has
received in the many-server heavy-traffic regimes. In future work it may be worth investigating if
the measure-valued processes approach can be used or developed to study multi-server fork-join
networks. In particular, it will be interesting to establish an FCLT when K > 2 and the system
starts from empty at time 0.

8. Appendix: Proof of Lemma 5.5

We first prove the martingale property of Hn,i. By the definition of Hn,i in (6.41) and the
construction of the filtration Hn in (5.17), Hn,i is Hn-adapted. Note that, for each t ≥ 0,

|Hn,i(t)| ≤ 1 +

∫ ηi1

0

∫ ηi2

0

1

F c(uuu)
dF (uuu), a.s.

By Lemma 4.3 in [33], we have E[|Hn,i(t)|] <∞, for t ≥ 0. We next show the martingale property
of Hn,i, i.e., for s < t,

E
[
Hn,i(t)|Hns

]
= Hn,i(s).

It suffices to show, for s < t,

(8.1) 1(τ̂n,i1 ∨ τ̂n,i2 > s)E
[
Hn,i(t)|Hns

]
= 0,

and

(8.2) 1(τ̂n,i1 ∨ τ̂n,i2 ≤ s)E
[
Hn,i(t)|Hns

]
= Hn,i(s).

We first prove (8.1). By the construction of Hn in (5.17), τ̂n,ij is an Hn-stopping time, j = 1, 2,

which implies τ̂n,i1 ∨ τ̂n,i2 is also an Hn-stopping time. Thus, the σ-field Hn
τ̂n,i1 ∨τ̂

n,i
2

is well-defined.

Hence,

1(τ̂n,i1 ∨ τ̂n,i2 > s)E
[
Hn,i(t)|Hns

]
= 1(τ̂n,i1 ∨ τ̂n,i2 > s)E

[
E
[
Hn,i(t)|Hn

τ̂n,i1 ∨τ̂
n,i
2

]
|Hns

]
.

Then, we claim that

(8.3) E
[
Hn,i(t)|Hn

τ̂n,i1 ∨τ̂
n,i
2

]
=
E
[
Hn,i(t)|τ̂n,ij , ∀j

]
P (ηηηi > 000|τ̂n,ij ,∀j)

= 0,

where the last equality follows from (5.14) and the independence of ηηηi and τ̂n,ij , j = 1, 2. In order to

prove the first equality in (8.3), by Lemma 3.6 in [29], we only need to show

(8.4) Hn
τ̂n,i1 ∨τ̂

n,i
2

∩{ηηηi > 000} ⊂
(
σ(ηηηr, r ≥ 1, r 6= i) ∨ σ(τ̂n,ij , j = 1, 2) ∨ σ(ξnp , p ≥ 1) ∨N

)
∩{ηηηi > 000}.

It is enough to check (8.4) for sets which generate Hn
τ̂n,i1 ∨τ̂

n,i
2

. By the definition of Hnt , t ≥ 0, in

(5.17), we note that (use, e.g., the argument in Appendix A.2 of Brémaud [9])

Hn
τ̂n,i1 ∨τ̂

n,i
2

= σ(τ̂n,rl , l = 1, 2,1(ηrj ≤ s ∧ (τ̂n,r1 ∨ τ̂n,r2 )− τ̂n,rj , ∀j), s ≥ 0, r = 1, ..., En1 (τ̂n,i1 ) ∧ En2 (τ̂n,i2 ))

∨ σ(ξnr , r ≥ 1) ∨N ,
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where N includes all the null sets. Then, for l = i, i + 1, ..., p = 1, 2, ..., s1, s2, ..., sl > 0 and

Borel sets B1, .., Bp, C
1
1 , ..., C

1
l , C2

1 , ..., C
2
l and G1, ..., Gl, since En1 (τ̂n,i1 ) ∧ En2 (τ̂n,i2 ) ≥ l > i, then

τ̂n,rj = τ̂n,ij , r = i+ 1, ..., l, j = 1, 2, we have that(
p⋂
r=1

{ξnr ∈ Br}

)
∩
{
En1 (τ̂n,i1 ) ∧ En2 (τ̂n,i2 ) ≥ l

}
∩

(
l⋂

r=1

{
τ̂n,rj ∈ Cjr , j = 1, 2

})

∩

(
l⋂

r=1

1
(
ηrj ≤ sr ∧ (τ̂n,i1 ∨ τ̂n,i2 )− τ̂n,rj , j = 1, 2

)
∈ Gr

)
∩ {ηηηi > 000}

=

(
p⋂
r=1

{ξnr ∈ Br}

)
∩

(
l⋂

r=i+1

{
τ̂n,ij = τ̂n,rj , j = 1, 2

})
∩

(
i−1⋂
r=1

{
τ̂n,rj ∈ Cjr , j = 1, 2

})

∩

(
l⋂
r=i

{
τ̂n,rj ∈ Cjr , j = 1, 2

})
∩

(
i−1⋂
r=1

1
(
ηrj ≤ sr ∧ (τ̂n,i1 ∨ τ̂n,i2 )− τ̂n,ij , j = 1, 2

)
∈ Gr

)
∩ {ηηηi > 000},

when 0 ∈ Gr, i ≤ r ≤ l, and the LHS is ∅ otherwise. We show that the event on the RHS of the

previous equation is in
(
σ(ηηηr, r ≥ 1, r 6= i) ∨ σ(τ̂n,ij , j = 1, 2) ∨ σ(ξnr , r ≥ 1) ∨ N )

)
∩ {ηηηi > 000}. It

is enough to prove that this holds for the event
⋂l
r=i+1

{
τ̂n,ij = τ̂n,rj ,∀j

}
∩ {ηηηi > 000}. We then can

proceed just as Lemma A.1 in [51], and we omit the details here. Thus, we have proved (8.1) holds.
Next, we will show (8.2). The LHS of (8.2) has the following decomposition:

1(τ̂n,i1 ∨ τ̂n,i2 ≤ s)E
[
Hn,i(t)|Hns

]
= 1(ηij ≤ s− τ̂

n,i
j ,∀j)E

[
Hn,i(t)|Hns

]
+ 1(ηi1 ≤ s− τ̂

n,i
1 , ηi2 > s− τ̂n,i2 ≥ 0)E

[
Hn,i(t)|Hns

]
+ 1(ηi1 > s− τ̂n,i1 ≥ 0, ηi2 ≤ s− τ̂

n,i
2 )E

[
Hn,i(t)|Hns

]
+ 1(ηij > s− τ̂n,ij ≥ 0,∀j)E

[
Hn,i(t)|Hns

]
.(8.5)

We start with the first term on the RHS of (8.5). Since 1(ηij ≤ s− τ̂
n,i
j , ∀j) is Hns measurable, by

(5.14) we have that

1(ηij ≤ s− τ̂
n,i
j ,∀j)Hn,i(t) = 1(ηij ≤ s− τ̂

n,i
j ,∀j)

− 1(ηij ≤ s− τ̂
n,i
j ,∀j)

∫ ηi1∧(s−τ̂n,i1 )+

0

∫ ηi2∧(s−τ̂n,i2 )+

0

1

F c(uuu)
dF (uuu).

Thus, we obtain

1(ηij ≤ s− τ̂
n,i
j ,∀j)E

[
Hn,i(t)|Hns

]
= 1(ηij ≤ s− τ̂

n,i
j , ∀j)− 1(ηij ≤ s− τ̂

n,i
j ,∀j)

∫ ηi1∧(s−τ̂n,i1 )+

0

∫ ηi2∧(s−τ̂n,i2 )+

0

1

F c(uuu)
dF (uuu)

= 1(ηij ≤ s− τ̂
n,i
j , ∀j)Hn,i(s).(8.6)

For the second term of the RHS of (8.5), we first observe that

1(ηi1 ≤ s− τ̂
n,i
1 , ηi2 > s− τ̂n,i2 ≥ 0)E

[
Hn,i(t)|Hns

]
= 1(ηi1 ≤ s− τ̂

n,i
1 )E

[
Hn,i(t)|Hns

]
− 1(ηij ≤ s− τ̂

n,i
j ,∀j)E

[
Hn,i(t)|Hns

]
.(8.7)

Since 1(ηi1 ≤ s− τ̂
n,i
1 ) is Hns -measurable, we have, by the definition of Hn,i in (5.14),

1(ηi1 ≤ s− τ̂
n,i
1 )E

[
Hn,i(t)|Hns

]
= 1(ηi1 ≤ s− τ̂

n,i
1 )Hn,i(s).(8.8)
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Combining (8.6), (8.7) and (8.8), we obtain

(8.9) 1(ηi1 ≤ s− τ̂
n,i
1 , ηi2 > s− τ̂n,i2 ≥ 0)E

[
Hn,i(t)|Hns

]
= 1(ηi1 ≤ s− τ̂

n,i
1 , ηi2 > s− τ̂n,i2 ≥ 0)Hn,i(s).

Similar to (8.9), we can show for the third term on the RHS of (8.5)

1(ηi1 > s− τ̂n,i1 ≥ 0, ηi2 ≤ s− τ̂
n,i
2 )E

[
Hn,i(t)|Hns

]
= 1(ηi1 > s− τ̂n,i1 ≥ 0, ηi2 ≤ s− τ̂

n,i
2 )Hn,i(s),

and the details of its proof are omitted for brevity.
To complete the proof of (8.2), we only need to prove the following equation for the last term on

the RHS of (8.5)

1(ηij > s− τ̂n,ij ≥ 0, ∀j)E
[
Hn,i(t)|Hns

]
= 1(ηij > s− τ̂n,ij ≥ 0,∀j)Hn,i(s).(8.10)

Observe that on the event that both tasks of job i have not completed service by time s, i.e., the

event {ηij > s− τ̂n,ij ≥ 0,∀j}, we have that ηηηi is independent of the entering-service processes Ênj ,

j = 1, 2, up to time s. Also, since ηηηi is independent of ηηηl for l 6= i, we obtain that, on the event

{ηij > s− τ̂n,ij ≥ 0, ∀j}, by the definitions of Hn in (5.17) and Hn,i in (5.14), Hn,i(t) is dependent

on Hns for t > s only through ηηηi and τ̂n,ij , j = 1, 2. More precisely, let Ẽnj (u), u ≥ 0, be the number
of tasks having entered service in station j by time u that would have occured if tasks of the job
with service vector ηηηi remained in service forever, j = 1, 2. Then, Ẽnj (u) is a Borel function of

ξnr , r ≥ 1, ηηηp, p ≥ 1, p 6= i, on the one hand, and coincides with Enj (u) for u ≤ s on the event

{ηij > s− τ̂n,ij ≥ 0, ∀j}, on the other hand. Analogous to (8.4), we can see by the definition of Hn

Hns ∩ {ηij > s− τ̂n,ij ≥ 0, ∀j} ⊂ (σ(ξnr , r ≥ 1) ∨ σ(ηηηp, p ≥ 1, p 6= i) ∨ σ(τ̂n,ij ,∀j) ∨N )

∩ {ηij > s− τ̂n,ij ≥ 0,∀j},

where N includes all the null sets. Since 1(ηij > s− τ̂n,ij ≥ 0,∀j) is Hns -measurable, by Lemma 3.6

of [29], we have

1(ηij >s− τ̂
n,i
j ≥ 0,∀j)E

[
Hn,i(t)|Hns

]
= 1(ηij > s− τ̂n,ij ≥ 0, ∀j)

E
[
1(ηij > s− τ̂n,ij ,∀j)Hn,i(t)|τ̂n,ij ,∀j

]
P (ηij > s− τ̂n,ij |τ̂

n,i
j ,∀j)

,

where 0/0 = 0. Evaluating the RHS of the above using (5.14), we have proved (8.10) holds. Thus,
we have proved the martingale property of Hn,i.

We next prove the martingale property of H̃n,i. By the definition of H̃n
k in (5.15) and the

construction of the filtration Hn in (5.17), H̃n,i is Hn-adapted. Note that, for each t ≥ 0,

|H̃n,i(t)| ≤ 1 +

∫ ∞
0

1
(

maxj(τ̂
n,i
j + ηij) > u

)
F̃ c(u)

dF̃ (u), a.s.

By Fubini’s theorem, we have E
[
|H̃n,i(t)|

]
<∞, for t ≥ 0. We next show the martingale property

of H̃n,i, i.e., for s < t,
E
[
H̃n,i(t)|Hns

]
= H̃n,i(s).

It suffices to show

(8.11) 1(τ̂n,i1 ∨ τ̂n,i2 > s)E
[
H̃n,i(t)|Hns

]
= 0,

and

(8.12) 1(τ̂n,i1 ∨ τ̂n,i2 ≤ s)E
[
H̃n,i(t)|Hns

]
= H̃n,i(s).

The proofs of (8.11) and (8.12) follow the same argument as the proof of (8.1) and (8.2), respectively,
and the details are omitted here. This completes the proof. 2
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