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Abstract. We provide new proofs for two functional central limit theorems, and prove
strong approximations for the cumulative “on” times in alternating renewal processes. The
proofs rely on a first-passage-time representation of the cumulative “on” time process. As an
application, we establish strong approximations for the queueing process in a single-server
fluid queue with “on–off” sources.

1. Introduction

Consider an alternating renewal process N = {N(t) : t ≥ 0} with i.i.d. alternating “on-off”
cycles {(Ui, Vi) : i ∈ N}, where the Ui and Vi are “on” and “off” durations in the ith cycle,
i ∈ N. Assume that the process starts at the beginning of an “on” period. Let mu = E[U1] ∈
(0,∞) and mv = E[V1] ∈ (0,∞), and σ2

u = V ar(U1) < ∞ and σ2
v = V ar(V1) < ∞. Let

Ti =
∑i

k=1(Uk + Vk) for i ∈ N and T0 ≡ 0. Then N(t) = max{i ≥ 0 : Ti ≤ t} for t ≥ 0.
Define the indicator process ξ = {ξ(t) : t ≥ 0} by

ξ(t) :=

{
1 if Ti ≤ t < Ti + Ui+1,

0 if Ti + Ui+1 ≤ t < Ti+1,

for each i ∈ N. When ξ(t) = 1, the process is in the “on” period and otherwise the process
is in the “off” period. Define the cumulative “on” and “off” processes X = {X(t) : t ≥ 0}
and Y = {Y (t) : t ≥ 0}, respectively, by

X(t) :=

∫ t

0
1(ξ(s) = 1)ds =

∫ t

0
ξ(s)ds, (1.1)

Y (t) :=

∫ t

0
1(ξ(s) = 0)ds =

∫ t

0
(1− ξ(s))ds = t−X(t).

We focus on the analysis of the cumulative “on” time process X. It is well known (see, e.g.,
Example 3.6(A) of Section 3.6 in [18]) that

lim
t→∞

E[X(t)]

t
= γu, lim

t→∞

E[Y (t)]

t
= γv = 1− γu,

where

γu :=
mu

mu +mv
. (1.2)
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Representation of the Cumulative “On” Time as the First Passage Time. The process
X can be represented as the first passage time for the random walk associated with the
“on–off” cycle times, as observed in [23]. Let Nu = {Nu(t) : t ≥ 0} be defined by

Nu(t) := max{k ≥ 0 : Tu,k ≤ t}, Tu,k :=
k∑
i=1

Ui, k ∈ N, Tu,0 := 0. (1.3)

Define the compound processes Zu = {Zu(t) : t ≥ 0} by

Zu(t) :=

Nu(t)∑
k=1

Vk, t ≥ 0. (1.4)

Then we can write X(t) directly as

X(t) = inf{s > 0 : Zu(s) > t− s}, t ≥ 0.

Now define an auxiliary process Žu = {Žu(t) : t ≥ 0} by

Žu(t) := Zu(t) + t, t ≥ 0. (1.5)

Thus, we obtain the following representation of the process X as the first passage time of
the process Žu:

X(t) = inf{s > 0 : Žu(s) > t}, t ≥ 0. (1.6)

In this paper, we first review two functional central limit theorems (FCLTs) for the
cumulative “on” time process X and provide new proofs for these FCLTs (Theorems 2.1
and 2.2 in Section 2). In Theorem 2.1, the “on” and “off” times are of the same order and
the result is stated in [21, Theorem 8.3.1] (ours is a slight modifcation) and its proof is
given in Section 5.3 of [22]. That proof applies Theorem 12.5.1 (iv) of [21] by controlling
the oscillations of the cumulative “on” time process in the Skorohod M1 topology. Our new
proof takes advantage of the first passage time representation in (1.6) and thus applies the
continuous mapping theorem for the inverse mapping with centering [21, Theorem 13.7.2].
This result has been used in establishing FCLTs for the queues with “on–off” sources (see,
e.g., [20] and a good review in Section 8 of [21]).

In Theorem 2.2, the “on” and “off” times are of different orders, in particular, the “off”
times are asymptotically negligible comparing with the “on” times. The result has been used
in queueing systems with service interruptions and server vacations for single-server queues
and networks [4, 11, 12, 21]. A similar result is also used for many-server queueing systems
with service interruptions [14, 15, 16, 17]. This theorem can be proved with the argument
as in the proof of Theorem 14.7.3 in [21]. The proof can also be done with an explicit
construction of the parametric representations for the Skorohod M1 topology (see Section
5.4 in [16]). Here we provide a new proof by applying the continuous mapping theorem to
the inverse mapping with centering using the representation in (1.6) . The new proofs for
these two FCLTs for the cumulative “on” time processes provide important insights on their
understanding and future applications.

We prove the strong approximations for the cumulative “on” time processes (Theorem
3.1). Although strong approximations for renewal processes have been well studied and
applied in queueing theory [3, 5, 6, 7, 8, 9, 10, 19], strong approximations for the cumulative
“on” time processes in alternating renewal processes have remained open in the literature.
The first-passage-time representation of the cumulative “on” time process in (1.6) plays a
key role in establishing the strong approximations, since some existing results and proof
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techniques in [5, 6] on renewal processes and the inverse mapping can be applied and/or
adapted for our purpose. In Theorem 3.1, we obtain the probability bounds and almost sure
properties under the condition of either finite moment generating functions of the “on” and
“off” times in a neighborhood of zero or their finite moments of order higher than two.

As an application, the strong approximations of the cumulative “on” time process are
applied to a single-server fluid queue with “on–off” sources. Under the proper assumptions
on the strong approximations of the input processes, we obtain the strong approximations
of the queueing process by a reflected Brownian motion in the critically loaded regime or a
Brownian motion in the overloaded regime (Theorem 3.2). Heavy-traffic approximations
for fluid queues with “on–off” sources have been well studied in the literature (see a good
review in Section 8 of [21]). However, strong approximations for fluid queues with “on–off”
sources have remained open. To the best of our knowledge, Theorem 3.2 is the first result
on this subject.

1.1. Notation. We use Rk (and Rk+), k ≥ 1, to denote real-valued k-dimensional (nonneg-
ative) vectors, and write R and R+ for k = 1. Let N denote the natural numbers. For
x, y ∈ R, x ∨ y = max{x, y}, x ∧ y = min{x, y}, x+ = max{x, 0} and x− = max{−x, 0}.
Let Dk = D([0,∞),Rk) denote the Rk-valued function space of all right continuous func-
tions on [0,∞) with left limits everywhere in (0,∞). Denote D ≡ D1. Let (D, J1) and
(D,M1) denote the space D equipped with Skorohod J1 and M1 topology, respectively. Let
(Dk, J1) = (D, J1)× · · · × (D, J1) be the k-fold product of (D, J1) with the product topology.
Similarly, let (Dk,M1) = (D,M1)× · · · × (D,M1) be the k-fold product of (D,M1) with the
product topology. Notations→ and⇒ mean convergence of real numbers and convergence in

distributions. Let “
d
=” denote “equal in distribution” and “:=” be “definition by equation”.

The abbreviation a.s. means almost surely. All random variables and processes are defined
on a common probability space (Ω,F , P ).

2. Functional Central Limit Theorems

In this section we state the two FCLTs for the diffusion-scaled processes of X and provide
new proofs for them. We index the quantities and processes with n and use n as a scaling
parameter, and let n→∞.

2.1. “On” and “off” times of the same order. We assume that the “on” and “off” times
{(Unk , V n

k ) : k ∈ N} are of the same order, and for the simplicity of exposition, we set them to
be independent of n in the scaling below. Note that the random vectors {(Unk , V n

k ) : k ∈ N}
are i.i.d. and each pair Unk and V n

k , k ∈ N, can be correlated.
Define the partial sums associated with the “on” and “off” times

Su,n :=
n∑
k=1

Uk, Sv,n :=
n∑
k=1

Vk, n ∈ N,

and the corresponding processes: for each n ∈ N,

Su,n(t) :=

bntc∑
k=1

Uk, Sv,n(t) :=

bntc∑
k=1

Vk, t ≥ 0.

We make the following assumption on these partial sum processes. Let Disc(X ) be the
random set of discontinuities in R+ of any stochastic process X .
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Assumption 1. There exist positive constants αu ∈ (1, 2] and αv ∈ (1, 2] and stochastic

processes S̃u and S̃v such that

P (Disc(S̃u) ∩Disc(S̃v) = ∅) = 1,

and

(S̃u,n, S̃v,n)⇒ (S̃u, S̃v) in (D2, M1) as n→∞, (2.1)

where the processes S̃u,n = {S̃u,n(t) : t ≥ 0} and S̃v,n = {S̃v,n(t) : t ≥ 0} are defined by

S̃u,n(t) := n−1/αu(Su,n(t)−munt), t ≥ 0,

and

S̃v,n(t) := n−1/αv(Sv,n(t)−mvnt), t ≥ 0.

Define the diffusion-scaled processes X̃n = {X̃n(t) : t ≥ 0},

X̃n(t) := n−1/(αu∧αv)(X(nt)− γunt), t ≥ 0.

We prove the following FCLT for the processes X̃n.

Theorem 2.1. Under Assumption 1,

X̃n ⇒ X̃ in (D, M1) as n→∞, (2.2)

where the limit process X̃ = {X̃(t) : t ≥ 0} is given by

X̃(t) :=


−γuS̃v(m−1

u γut) if αu > αv,

γvS̃u(m−1
u γut) if αu < αv,

−γuS̃v(m−1
u γut) + γvS̃u(m−1

u γut) if αu = αv.

(2.3)

Proof. Define the diffusion-scaled process Žnu = {Žnu (t) : t ≥ 0} by

Žnu (t) := n−1/(αu∧αv)
(
Žu(nt)− γ−1

u nt
)
, t ≥ 0.

It follows from simple algebra that for each t ≥ 0,

Žnu (t) = n−1/(αu∧αv)
(
Zu(nt)− mv

mu
nt
)

= n−1/(αu∧αv)

Nu(nt)∑
i=1

(Vi −mv) +mvn
−1/(αu∧αv)(Nu(nt)−m−1

u nt).

By the continuity of the inverse mapping with centering [21, Theorem 13.7.2] and the

convergence of S̃u,n ⇒ S̃u in (2.1), we obtain that

n−1/αu(Nu(nt)−m−1
u nt)⇒ −m−1

u S̃u(m−1
u t) in (D, M1) as n→∞.

This also implies that

n−1Nu(nt)⇒ m−1
u t in (D, M1) as n→∞.

By the convergence of S̃v,n ⇒ S̃v in (2.1) and the continuity of the composition mapping
[21, Theorem 13.2.3], we obtain that

n−1/αv

Nu(nt)∑
i=1

(Vi −mv)⇒ S̃v(m
−1
u t) in (D, M1) as n→∞.
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Thus, by the continuity of addition for Skorohod M1 topology ([21], Corollary 12.7.1), we
have

Žnu (t)⇒ Žu(t) in (D, M1) as n→∞,
where

Žu(t) :=


S̃v(m

−1
u t) if αu > αv,

−mvm
−1
u S̃u(m−1

u t) if αu < αv,

S̃v(m
−1
u t)−mvm

−1
u S̃u(m−1

u t) if αv = αu.

We next apply Theorem 13.7.2 in [21] to Žnu and X̃n. Note that we use the centering
function of Žnu , i.e., γ−1

u t = (mv/mu + 1)t for t ≥ 0. Thus we obtain that

X̃n(t)⇒ −γuŽu(γut) in (D, M1) as n→∞.
It is evident that X̃(t) = −γuŽu(γut) as given in (2.3). This completes the proof of the
theorem. �

2.2. Asymptotically negligible “off” times. We now focus on the case where the “off”
times are asymptotically negligible comparing with the “on” times (the opposite can be
analyzed analogously). We make the following assumption.

Assumption 2. There exist a positive constant κv ∈ [1/2, 1) and a sequence of i.i.d. positive

random vectors {(Ûk, V̂k) : k ∈ N} such that

{(n−1Unk , n
−κvV n

k ) : k ∈ N} → {(Ûk, V̂k) : k ∈ N} in (R2)∞ as n→∞,

and
∑∞

k=1 Ûk =∞ with probability one.

Note that Ûk and V̂k can be correlated for each k ∈ N. Let the counting process
N̂u = {N̂u(t) : t ≥ 0} associated with limiting “on” times {Ûk : k ∈ N} be defined by

N̂u(t) := max{k ≥ 0 : T̂u,k ≤ t}, T̂u,k :=
k∑
i=1

Ûi, T̂u,0 := 0. (2.4)

Let Xn be the cumulative “on” time process degenerated by the sequence {(Unk , V n
k ) : k ∈

N}, as defined in (1.1). Let Nn
u , Znu and Žnu be the corresponding processes as defined in (1.3),

(1.4) and (1.5), respectively. Define the diffusion-scaled processes X̃n
v = {X̃n

v (t) : t ≥ 0} by

X̃n
v (t) := n−κv(Xn(nt)− nt), t ≥ 0.

Theorem 2.2. Under Assumption 2,

X̃n
v ⇒ X̃v in (D, M1) as n→∞,

where the limit process X̃v = {X̃v(t) : t ≥ 0} is given by

X̃v(t) := −
N̂u(t)∑
k=1

V̂k, t ≥ 0.

Proof. Define the diffusion-scaled process Z̆nu = {Z̆nu (t) : t ≥ 0} by

Z̆nu (t) := n−κv(Žnu (nt)− nt), t ≥ 0,

where the process Žnu is as defined in (1.5). It is evident that

Z̆nu (t) = n−κvZnu (nt), t ≥ 0.
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By Assumption 2, we have

T̂nu,k := n−1
k∑
i=1

Uni ⇒ T̂u,k :=

k∑
i=1

Ûi as n→∞,

for each k ∈ N. Thus,

T̂nu (t) := n−1

[t]∑
i=1

Uni ⇒ T̂u(t) :=

[t]∑
i=1

Ûi as n→∞,

for each t ≥ 0. It is easy to see that T̂nu (t) and T̂u(t) are nondecreasing functions in D. Recall
that the convergence in M1 topology reduces to pointwise convergence on a dense subset
including 0 for nondecreasing functions in D ([21], Corollary 12.5.1). Thus, we have

T̂nu (t)⇒ T̂u(t) in (D, M1) as n→∞.

Then by the definitions of Nn
u (nt) and N̂u(t), and the continuous mapping theorem applying

to the inverse mapping ([21], Theorem 13.6.1), we obtain

Nn
u (nt)⇒ N̂u(t) in (D, M1) as n→∞,

where N̂u(t) is defined in (2.4). By the continuity of the composition mapping [21, Theorem
13.2.3], we obtain

Z̆nu ⇒ Ẑu = −X̃v in (D, M1) as n→∞.
We apply Theorem 13.7.2 in [21] to Z̆nu and X̃n

v in the M1 topology. Note that the centering
function for both processes is t→ nt for t ≥ 0. Thus we obtain

X̃n
v (t)⇒ −Ẑu = X̃v in (D, M1) as n→∞.

This completes the proof of the theorem. �

3. Strong Approximations

In this section we prove strong approximations for the cumulative “on” time process
X by applying the first-passage-time representation in (1.6), and then apply them to a
single-server fluid queue with “on–off” sources. We make the following assumptions on the
“on” and “off” times.

Assumption 3. The “on” and “off” times Uk and Vk are independent for each k. In
addition, either of the following conditions holds:

(a) The moment generating functions of U1 and V1 satisfy

E
[
eϑU1

]
<∞ and E

[
eϑV1

]
<∞, (3.1)

in a neighborhood of 0.
(b) The moments of U1 and V1 satisfy

E
[
Uβ1
]
<∞ and E

[
V β

1

]
<∞, for β > 2. (3.2)

These assumptions are in the same fashion as those used in [5, 6, 7, 9, 10] to prove strong
approximations for random walks/partial sums and renewal processes. The representation
of renewal processes via the inverse mapping of the corresponding partial sum processes is
critical in proving their strong approximations; see [6, 9, 10]. Strong approximations for
the cumulative “on” time processes seems difficult to establish directly. The representation
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via the inverse mapping of the stopped partial sum process in (1.6) makes it convenient to
applying the existing results, as in [5, 6]. We prove the following theorem.

Theorem 3.1. There exists a standard Wiener process W = {W (t) : t ≥ 0} such that

(i) under Assumption 3(a),

P

(
sup

0≤t≤T

∣∣σ−1
X (X(t)− γut)−W (t)

∣∣ > A1 log T + x

)
≤ B1e

−C1x, (3.3)

and as T →∞,

sup
0≤t≤T

∣∣σ−1
X (X(t)− γut)−W (t)

∣∣ = O(log(T )) a.s., (3.4)

where σ2
X = (σ2

v/mu +m2
vσ

2
u/m

3
u)γ

3/2
u , and A1, B1 and C1 are positive constants;

(ii) under Assumption 3(b),

P

(
sup

0≤t≤T

∣∣σ−1
X (X(t)− γut)−W (t)

∣∣ > x

)
≤ D1(T )(Tx−β + T−κ), (3.5)

for every κ > 0 and for all D2T
1/β + σ−1

u m
3/2
u ≤ x ≤ D3(T log T )1/2 + σ−1

u m
3/2
u ,

and as T →∞,

sup
0≤t≤T

∣∣σ−1
X (X(t)− γut)−W (t)

∣∣ = o(T 1/β) a.s., (3.6)

where D1(T )→ 0 as T →∞ and D2 and D3 are positive constants.

3.1. Application to a single-server fluid queue with “on–off” sources. We now
apply the above results to obtain strong approximations for a single-server fluid queue with
“on–off” sources. Suppose the arrival process is generated by a stochastic process R = {R(t) :
t ≥ 0} with nondecreasing sample paths and R(0) = 0, whenever the underlying alternating
renewal process is in the “on” periods. We use the same notation for the alternating renewal
process as above. Note that the process R and the alternating renewal process are assumed
to be independent. Then the cumulative arrival process A = {A(t) : t ≥ 0} is given by

A(t) := R(X(t)), t ≥ 0. (3.7)

We assume that the process R satisfies the following strong approximation properties.

Assumption 4. There exists a standard Wiener process WR = {WR(t) : t ≥ 0} such that
either of the following properties holds:

(a)

P

(
sup

0≤t≤T

∣∣σ−1
R (R(t)− rt)−WR(t)

∣∣ > A′1 log T + x

)
≤ B′1e−C

′
1x, (3.8)

for all x > 0 and as T →∞,

sup
0≤t≤T

∣∣σ−1
R (R(t)− rt)−WR(t)

∣∣ = O(log(T )) a.s., (3.9)

where r, σR, A′1, B′1 and C ′1 are positive constants.
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(b)

P

(
sup

0≤t≤T

∣∣σ−1
R (R(t)− rt)−WR(t)

∣∣ > x

)
≤ D′1(T )Tx−%, (3.10)

for all D′2T
1/% ≤ x ≤ D′3(T log T )1/2 and as T →∞,

sup
0≤t≤T

∣∣σ−1
R (R(t)− rt)−WR(t)

∣∣ = o(T 1/%) a.s., (3.11)

where %,D′2, D
′
3 are positive constants and D′1(T )→ 0 as T →∞.

Consider a single-server fluid queueing model with this arrival process A in (3.7) and a
constant service rate µ. Let Q = {Q(t) : t ≥ 0} be the queueing process. Then we can write

Q(t) = Q(0) +A(t)− µB(t), t ≥ 0, (3.12)

where B(t) is the cumulative busy time of the server by time t. We assume that the system
is work-conserving under the first-come first-served (FCFS) service discipline. For any
real-valued function x, let φ be the Skorohod mapping of x defined by

φ(x)(t) := x(t) + sup
0≤s≤t

(−x(s))+ = x(t)− inf
0≤s≤t

{x(s) ∧ 0}, t ≥ 0. (3.13)

Theorem 3.2. There exists a standard Wiener process WQ = {WQ(t) : t ≥ 0} such that

(i) under Assumptions 3(a) and 4(a), if rγu = µ,

P

(
sup

0≤t≤T

∣∣Q(t)− Q̃(t)
∣∣ > A′2 log T + x

)
≤ B′2e−C

′
2x, (3.14)

for all x > 0 and as T →∞,

sup
0≤t≤T

∣∣Q(t)− Q̃(t)
∣∣ = O(log(T )) a.s., (3.15)

and if rγu > µ,

P

(
sup

0≤t≤T

∣∣Q(t)− (rγu − µ)t− W̃ (t)
∣∣ > A′′2 log T + x

)
≤ B′′2e−C

′′
2 x, (3.16)

for all x > 0 and as T →∞,

sup
0≤t≤T

∣∣Q(t)− (rγu − µ)t− W̃ (t)
∣∣ = O(log(T )) a.s., (3.17)

where the process Q̃ = {Q̃(t) : t ≥ 0} is a reflected Brownian motion, defined by

Q̃(t) := φ(W̃ )(t), t ≥ 0, (3.18)

with W̃ = {W̃ (t) : t ≥ 0} being a Brownian motion defined by

W̃ (t) := Q(0) + θWQ(t), t ≥ 0, (3.19)

θ2 := r2σ2
X + γuσ

2
R, (3.20)

and A′2, A
′′
2, B

′
2, B

′′
2 , C ′2 and C ′′2 are positive constants;

(ii) under Assumptions 3(b) and 4(b), if rγu = µ,

P

(
sup

0≤t≤T

∣∣Q(t)− Q̃(t)
∣∣ > x

)
≤ D′4(T )(Tx−%∧1 + 1), (3.21)
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for all D′5T
1/(β∧%) + σ−1

u m
3/2
u ≤ x ≤ D′6(T log T )1/2 + σ−1

u m
3/2
u and as T →∞,

sup
0≤t≤T

∣∣Q(t)− Q̃(t)
∣∣ = o(T 1/β) a.s., (3.22)

where Q̃ is defined in (3.18), D′4(T )→ 0 as T →∞, D′5, D
′
6 are positive constants,

and if rγu > µ,

P

(
sup

0≤t≤T

∣∣Q(t)− (rγu − µ)t− W̃ (t)
∣∣ > x

)
≤ D′′4(T )(Tx−%∧1 + 1), (3.23)

for all D′′5T
1/(β∧%) + σ−1

u m
3/2
u ≤ x ≤ D′′6(T log T )1/2 + σ−1

u m
3/2
u and as T →∞,

sup
0≤t≤T

∣∣Q(t)− (rγu − µ)t− W̃ (t)
∣∣ = o(T 1/β) a.s., (3.24)

where W̃ is defined in (3.19), and D′′4(T ) → 0 as T → ∞, D′′5 , D
′′
6 are positive

constants.

Remark 3.1. The results in Theorem 3.2 can be easily extended to single-server fluid
queues with a finite number of “on–off” sources, as shown in the FCLTs for such models in
Section 5 of [20] and Section 8.3.2 of [21].

4. Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1. Let Ñu = {Ñu(t) : t ≥ 0} be the “extended” renewal process defined
by

Ñu(t) := min{k > 0 : Tu,k > t}, t ≥ 0.

Then by Theorem B in [5], there exists a standard Wiener process WÑ = {WÑ (t) : t ≥ 0}
such that under Assumption 3(a),

P

(
sup

0≤t≤T

∣∣σ−1
Ñ

(
Ñu(t)−m−1

u t
)
−WÑ (t)

∣∣ > A2 log T + x

)
≤ B2e

−C2x, (4.1)

for all x ≥ 0 and as T →∞,

sup
0≤t≤T

∣∣σ−1
Ñ

(
Ñu(t)−m−1

u t
)
−WÑ (t)

∣∣ = O(log(T )) a.s., (4.2)

and under Assumption 3(b),

P

(
sup

0≤t≤T

∣∣σ−1
Ñ

(
Ñu(t)−m−1

u t
)
−WÑ (t)

∣∣ > x

)
≤ D4(T )Tx−β, (4.3)

for all D5T
1/β ≤ x ≤ D6(T log T )1/2 and as T →∞,

sup
0≤t≤T

∣∣σ−1
Ñ

(
Ñu(t)−m−1

u t
)
−WÑ (t)

∣∣ = o(T 1/β) a.s., (4.4)

where A2, B2, C2, D5, D6 are positive constants, D4(T )→ 0 as T →∞, and σ2
Ñ

:= σ2
um
−3
u .

It is clear that Nu(t) = Ñu(t)− 1, for t ≥ 0. Thus, (4.1)–(4.4) hold with Ñu replaced by Nu,
only with changes in constants and the range for x. In particular, B2 becomes B2 exp(C2σ

−1
Ñ

)

in (4.1) and the range for x above becomes D5T
1/β + σ−1

Ñ
≤ x ≤ D6(T log T )1/2 + σ−1

Ñ
.

We next follow the similar steps in the proof of Theorem 1.1 in [5] (given by Lemma 1, 2
and 3 there) to obtain the strong approximations for Žu(t). Note that Theorem 1.1 in [5]
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cannot be applied directly, since it provides probability bounds and almost sure statements
for S(N(t)) given those of S(t) and N(t), with S(t) being a partial sum process and N(t)
an “extended” renewal process. However, in our setting, given the strong approximations
for the processes

∑
1≤k≤t Vk (by Theorem A in [5]) and the renewal process Nu(t) (in

the above paragraph), by a slight modification of the proof of Theorem 1.1 in [5], we
obtain the probability bounds and almost sure statements as (4.1)–(4.4) for Zu(t). Since
Žu(t) = Zu(t) + t for each t ≥ 0, we conclude that there exists a standard Wiener process
WŽu

= {WŽu
(t) : t ≥ 0} such that under Assumption 3(a),

P

(
sup

0≤t≤T

∣∣σ−1
Žu

(
Žu(t)− γ−1

u t
)
−WŽu

(t)
∣∣ > A3 log T + x

)
≤ B3e

−C3x, (4.5)

for all x ≥ 0 and as T →∞,

sup
0≤t≤T

∣∣σ−1
Žu

(
Žu(t)− γ−1

u t
)
−WŽu

(t)
∣∣ = O(log(T )) a.s., (4.6)

and under Assumption 3(b),

P

(
sup

0≤t≤T

∣∣σ−1
Žu

(
Žu(t)− γ−1

u t
)
−WŽu

(t)
∣∣ > x

)
≤ D7(T )Tx−β, (4.7)

for all D8T
1/β + σ−1

Ñ
≤ x ≤ D9(T log T )1/2 + σ−1

Ñ
and as T →∞,

sup
0≤t≤T

∣∣σ−1
Žu

(
Žu(t)− γ−1

u t
)
−WŽu

(t)
∣∣ = o(T 1/β) a.s., (4.8)

where A3, B3, C3, D8, D9 are positive constants, D7(T )→ 0 as T →∞, and

σ2
Žu

:= σ2
v/mu +m2

vσ
2
u/m

3
u.

Now we turn to the process X(t), which is the “inverse” process of Žu as defined in (1.6).
By applying Theorem 3.1 in [6], (4.6) and (4.8) imply (3.4) and (3.6) directly.

To prove (3.3), we modify the proof of Corollary 4.2 in [6]. By (4.5) (counterpart of (4.14)
in [6]) and a similar proof of (4.4) in [6], we obtain

P (X(T ) > 2Tγu +A4x) ≤ B4e
−C4x,

for some positive constants A4, B4 and C4. Define M(t) := inf{x ≥ 0 : γuσŽu
WŽu

(x) = t−x}
if t ≥ 0 and M(t) ≡ 0 otherwise. Then by a similar argument of (4.5) in [6], we obtain

P
(
M(γut− (A5 log T +A6x)) ≤ X(t) ≤M(γut+ (A7 log T +A8x)), 0 ≤ t ≤ T

)
≥ 1−B5e

−C5x,

for some positive constants A5, A6, A7, A8, B5 and C5. This inequality combined with
Theorem 2.1 in [6] and Lemma 1.2.1 in [7] completes the proof of (3.3).

Finally, given (4.7), we apply Theorem 4.1 in [6] to obtain (3.5). This completes the
proof. �

We next prove Theorem 3.2. We need the following lemmas. Recall θ defined in (3.20).

Lemma 4.1 (Lemma 3 in [5]). There exists a standard Wiener process WQ = {WQ(t) : t ≥ 0}
such that

P

(
sup

0≤t≤T

∣∣(σRWR(γut+ σXW (t)) + rσXW (t)
)
− θWQ(t)

∣∣ > Ã log T + x

)
≤ B̃e−C̃x, (4.9)

for any x ≥ 0, where Ã, B̃ and C̃ are positive constants.
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Lemma 4.2. Under Assumptions 3(a) and 4(a), there exists a standard Wiener process
WQ = {WQ(t) : t ≥ 0} such that

P

(
sup

0≤t≤T

∣∣R(X(t))− rγut− θWQ(t)
∣∣ > A′2 log T + x

)
≤ B′3e−C

′
3x (4.10)

for any x ≥ 0, where A′2 is as given in (3.14), and B′3, C
′
3 are positive constants.

Proof. By Lemma 4.1, there exists a standard Wiener process WQ such that (4.9) holds. By
adding and subtracting terms, we obtain that

R(X(t))−rγut−θWQ(t) =

3∑
i=1

Xi(t)+
(
rσXW (t)+σRWR(γut+σXW (t))−θWQ(t)

)
(4.11)

for t ≥ 0, where

X1(t) := R(X(t))− rX(t)− σRWR(X(t)),

X2(t) := r
(
X(t)− γut− σXW (t)

)
,

X3(t) := σR
(
WR(X(t))−WR(γut+ σXW (t))

)
.

Notice that 0 ≤ X(t) ≤ t, by Assumption 4 (a), we have

P

(
sup

0≤t≤T
|X1(t)| > A′2 log T + x

)
≤ B′3,1e

−C′3,1x, (4.12)

for positive constants B′3,1 and C ′3,1. By Theorem 3.1 (i), we obtain

P

(
sup

0≤t≤T
|X2(t)| > A′2 log T + x

)
≤ B′3,2e

−C′3,2x, (4.13)

for postive constants B′3,2 and C ′3,2. Further, by (4.13) and Lemma 1.2.1 in [7]

P

(
sup

0≤t≤T
|X3(t)| ≥ A′2 log T + x

)
≤ P

(
sup

0≤t≤T
sup

0≤s≤A′3 log T+x

|WR(t+ s)−WR(t)| ≥ 1

σR
A′2 log T +

1

σR
x

)
+B′3,2e

−C′3,2x

≤ B′3,3e
−C′3,3x, (4.14)

for positive constants B′3,3 and C ′3,3. Now, (4.10) is simply implied by (4.9) and (4.11)–(4.14)
and the proof is complete. �

Lemma 4.3. There exists a standard Wiener process W ′Q = {W ′Q(t) : t ≥ 0} such that for

any α > 3 and all ÂT 1/α ≤ x ≤ B̂(T log T )1/2,

P

(
sup

0≤t≤T

∣∣(σRWR(γut+ σXW (t)) + rσXW (t)
)
− θW ′Q(t)

∣∣ > x

)
≤ Ĉ(T )Tx−α, (4.15)

where Â, B̂ are positive constants and Ĉ(T )→ 0 as T →∞.

Proof. We follow similar steps in the proof of Lemma 3 in [5].
Let {Zi : i ≥ 1} be a sequence of i.i.d random variables with E[Z1] = rγ−1

u σ2
X and

V ar(Z1) = γ−1
u σ2

Rσ
2
X . In addition, we also assume that the c.d.f. of Z1 satisfies conditions
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(i) and (ii) in equation (1.2) of [13], as required in Theorem 4 in [13]. Also let ν(t) be a
unit-rate Poisson process independent of {Zi}.

Instead of (A.7) in [5], we use the approximation method in [13] (see Theorem 4 and its
proof in [13]) to obtain that there exists a Wiener process W ′1 = {W ′1(t) : t ≥ 0} such that

for α > 3 and all T 1/α ≤ x ≤ B̂1(T log T )1/2,

P

(
sup

0≤t≤T

∣∣∣∣( ∑
0≤i≤ν(t)

Zi − rγ−1
u σ2

Xt

)
/θ̂ −W ′1(t)

∣∣∣∣ > x

)
≤ Ĉ1(T )Tx−α, (4.16)

where
θ̂2 := γ−2

u σ2
X

(
γuσ

2
R + r2σ2

X

)
= γ−2

u σ2
Xθ

2,

B̂1 is a positive constant and Ĉ1(T )→ 0 as T →∞.
By Theorems A and B and Lemma 2 in [5], there exist two independent Wiener processes

W ′R and W ′ such that for all Â2T
1/α ≤ x ≤ B̂2(T log T )1/2,

P

(
sup

0≤t≤T

∣∣∣∣( ∑
0≤i≤ν(t)

Zi − rγ−1
u σ2

Xt

)
−
(
γ−1/2
u σRσXW

′
R(t+W (t)) + rγ−1

u σ2
XW

′(t)
)∣∣∣∣ > x

)
≤ Ĉ2(T )Tx−α, (4.17)

where Â2, B̂2 are positive constants, and Ĉ2(T )→ 0 as T →∞.

Now by (4.16)-(4.17), we obtain for all Â3T
1/α ≤ x ≤ B̂3(T log T )1/2,

P

(
sup

0≤t≤T

∣∣∣∣θ̂W ′1−(γ−1/2
u σRσXW

′
R(t+W (t))+rγ−1

u σ2
XW

′(t)
)∣∣∣∣ > x

)
≤ Ĉ3(T )Tx−α, (4.18)

where Â3, B̂3 are positive constants, and Ĉ3(T )→ 0 as T →∞.
Note that {

γ−1/2
u σRσXW

′
R(t+W (t)) + rγ−1

u σ2
XW

′(t) : t ≥ 0
}

d
=

{
σRW

′
R(γ−1

u σ2
Xt+ σXW (γ−2

u σ2
Xt)) + rσXW

′(γ−2
u σ2

Xt) : t ≥ 0
}
. (4.19)

By the time transformation γ−2
u σ2

Xt→ t for each t ≥ 0, the latter becomes{
σRW

′
R(γut+ σXW (t)) + rσXW

′(t) : t ≥ 0
}
.

Thus, by Theorem A.1 in [1], from this observation and the bound in (4.18), we complete
the proof of the lemma. �

Lemma 4.4. Under Assumptions 3(b) and 4(b), there exists a standard Wiener process
W ′Q = {W ′Q(t) : t ≥ 0} such that

P

(
sup

0≤t≤T

∣∣R(X(t))− rγut− θW ′Q(t)
∣∣ > x

)
≤ D′7(T )(Tx−%∧1 + 1) (4.20)

for all D′8T
1/(β∧%) +σ−1

u m
3/2
u ≤ x ≤ D′9(T log T )1/2 +σ−1

u m
3/2
u , where D′7(T )→ 0 as T →∞

and D′8, D
′
9 are positive constants.

Proof. By applying Lemma 4.3, there exists a standard Wiener process W ′Q such that (4.15)

holds. Thus, similar to (4.11), we obtain

R(X(t))−rγut−θW ′Q(t) =

3∑
i=1

X ′i(t)+
(
rσXW (t)+σRWR(γut+σXW (t))−θW ′Q(t)

)
, (4.21)
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where X ′i, i = 1, 2, 3, are as defined in (4.11) (the primes are used to avoid confusion).
For X ′1(t), by Assumption 4 (b), we have

P

(
sup

0≤t≤T

∣∣X ′1(t)
∣∣ > x

)
≤ D′1(T )Tx−%, (4.22)

for all D′2T
1/% ≤ x ≤ D′3(T log T )1/2, where D′1(T )→ 0 as T →∞, and D′2, D′3 are positive

constants.
By Theorem 3.1 (ii), we obtain that for every κ > 0,

P

(
sup

0≤t≤T

∣∣X ′2(t)
∣∣ > x

)
≤ D1(T )(Tx−β + T−κ), (4.23)

for all D2T
1/β + σ−1

u m
3/2
u ≤ x ≤ D3(T log T )1/2 + σ−1

u m
3/2
u where D1(T ) → 0 as T → ∞,

and D2, D3 are positive constants.
Note that there exists a positive constant K̂1 such that K̂1 log T ≤ D2T

1/β . Thus, by (4.23)

and Lemma 1.2.1 in [7], we obtain that for all D2T
1/β + σ−1

u m
3/2
u ≤ x ≤ D3(T log T )1/2 +

σ−1
u m

3/2
u ,

P

(
sup

0≤t≤T

∣∣X ′3(t)
∣∣ > x

)
≤ P

(
sup

0≤t≤T
sup

0≤s≤x
|WR(t+ s)−WR(t)| > x

)
+D1(Tx−β + T−κ)

≤ P

(
sup

0≤t≤T
sup

0≤s≤x
|WR(t+ s)−WR(t)| > (xK̂1 log T )1/2

)
+D1(T )(Tx−β + T−κ)

≤
(
K̂2T

−K̂1/3
)
Tx−1 +D1(T )

(
Tx−β + T−κ

)
, (4.24)

where K̂2 > 0 is a constant. Therefore, (4.20) follows from Lemma 4.3 and (4.22)–(4.24). �

Proof of Theorem 3.2. We first prove case (i). Recall the strong approximations of X in
Theorem 3.1 and R in Assumption 4, and the associated Brownian motions W and WR.
Note that W and WR are independent by assumption. Also recall Lemma 4.2, the existence
of the Brownian motion WQ satisfying (4.10).

By the complementarity condition under the work-conserving service policy, we can
represent the process Q in (3.12) as (see, e.g., Section 9.2 in [21])

Q(t) = φ(Q̆)(t), t ≥ 0, (4.25)

where the process Q̆ := {Q̆(t) : t ≥ 0} is defined by

Q̆(t) := Q(0) +R(X(t))− µt
=

(
R(X(t))− rγut− θWQ(t)

)
+ (rγu − µ)t+ W̃ (t), t ≥ 0, (4.26)

with W̃ (t) defined in (3.19).
Let L be the Lipschitz constant of the Skorohod mapping φ. We first consider the case

rγu = µ. By (3.18) and (4.25)–(4.26), we obtain

P

(
sup

0≤t≤T

∣∣Q(t)− Q̃(t)
∣∣ > A′2 log T + x

)
≤ P

(
sup

0≤t≤T
|R(X(t))− rγut− θWQ(t)| > 1

L
A′2 log T +

1

L
x

)
. (4.27)
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Now, the inequality above with Lemma 4.2 implies (3.14). (3.15) is immediate from (3.14).
We next consider the case rγu > µ. By (4.25) and (4.26), we obtain

|Q(t)− (rγu − µ)t− W̃ (t)|
=

∣∣(R(X(t))− rγut− θWQ(t)
)
− inf

0≤s≤t
{(Q(0) +R(X(s))− µs) ∧ 0}

∣∣
≤ |R(X(t))− rγut− θWQ(t)|

+ sup
0≤s≤t

[(
Q(0) +R(X(s)− rγus− θWQ(s)

)
+
(
θWQ(s) + (rγu − µ)s

)]−
≤ |R(X(t))− rγut− θWQ(t)|

+ sup
0≤s≤t

|Q(0) +R(X(s)− rγus− θWQ(s)|+ sup
0≤s≤t

[θWQ(s) + (rγu − µ)s]− .

Thus, by Lemma 4.2, (3.16) follows from

P

(
sup

0≤t≤T
[θWQ(t) + (rγu − µ)t]− ≥ θA′′2 log T + x

)
≤ B′′2,1e

−C′′2,1x. (4.28)

for some positive constants B′′2,1 and C ′′2,1. Observe that

sup
0≤t≤T

[θWQ(t) + (rγu − µ)t]− = 0 ∨ sup
0≤t≤T

[−θWQ(t)− (rγu − µ)t] .

Thus, by the symmetry property of Brownian motions, to prove (4.28), it suffices to prove

P

(
sup

0≤t≤T
[θWQ(t)− (rγu − µ)t] ≥ θA′′2 log T + x

)
≤ B′′2,1e

−C′′2,1x.

By the Darling and Siegert formula for the distribution of the supremum of drifted Brownian
motion (see, e.g., Theorem 2 in [2]), we obtain that

P

(
sup

0≤t≤T
[WQ(t)− (rγu − µ)t/θ] ≥ A′′2 log T + x/θ

)
= 1− Φ

(
T−1/2(A′′2 log T + x/θ) + (rγu − µ)T 1/2/θ

)
+e2(rγu−µ)θ−1(A′′2 log T+x/θ)

(
1− Φ

(
T−1/2(A′′2 log T + x/θ)− (rγu − µ)T 1/2/θ

))
≤ B′′2e

−C′′2 x,

where Φ is the c.d.f of standard normal, and the inequality follows from applying 1−Φ(x) ≤
e−x

2
/(x
√

2π) for x > 0 and some simple algebra. This completes the proof of (3.16) and
also (3.17).

The proof for case (ii) follows from the similar arguments as in case (i), by Lemmas
4.3–4.4. This completes the proof of the theorem. �
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