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We consider large contact centers that handle two types of jobs – inbound and outbound – simultaneously, a

process commonly referred to as call blending. Inbound work arrives to the system according to an exogenous

arrival process, whereas outbound work is generated by the contact center. We assume that there is an

infinite supply of outbound work to process, and that inbound calls are prioritized over the outbound

calls. We propose a logarithmic safety staffing rule, combined with a threshold control policy, ensuring that

agents’ utilization is very close to one at all times, but that there are practically always idle agents present.

Specifically, we prove that it is possible to have almost all inbound calls answered immediately upon their

arrival, in addition to satisfying a target long-run throughput rate of outbound calls, with at most a negligible

proportion of those calls dropped. Simulation experiments demonstrate the effectiveness and accuracy of our

analysis.
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1. Introduction

As the number, types and complexity of the services that are offered over the phone and online

keep increasing, so does the significance of contact centers, namely, call centers that handle more

than one type of jobs, such as inbound and outbound calls or telephony and online chatting. In

particular, most businesses place outbound calls in addition to their inbound-calls services; see

Ben-Chanoch (2004) and Reynolds (2010).

In this paper we consider contact centers in which a large pool of agents handles inbound and

outbound calls simultaneously, a process commonly referred to as call blending. We show that,

due to the relatively low variability associated with outbound calls, blending makes it possible to

provide pre-specified levels of service quality to inbound calls and throughput rate of outbound

calls, while keeping the service utilization close to 1 at all times. Specifically, our main results

demonstrate the operational advantages of blended systems over split systems where, in a split
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system, inbound and outbound calls are handled by dedicated service pools, with each pool serving

only one type of calls.

Overview of the Problem and Results. When inbound calls are prioritized over outbound calls in

a blended system, it is possible to ensure that waiting times of inbound calls are relatively short,

even if all the agents are working all the time, provided that the total number of agents in the

service pool is sufficiently large relative to the arrival rate of inbound work. However, if all agents

are constantly working, most inbound customers will be delayed in queue before entering service,

and some will abandon. This can be avoided if one can ensure that there is idleness in the system

at almost all times.

Having constant idleness is often needed from the outbound-calls perspective, so as to minimize

the probability of calls from being dropped due to unavailability of agents. Specifically, many

modern outbound contact centers, automatic dialers initiate outbound calls even when all agents

are busy, using predictive dialing software, with the purpose of minimizing agents’ idling times. In

such cases, if a customer replies to an outbound call and there is no available agent to take care

of this customer, the call is dropped immediately. Those dropped calls are costly to the contact

center and cause nuisance to “abandoned” customers. Moreover, government regulations limit the

allowed percentage of such calls; see Samuelson (1999). The risk for dropped outbound calls clearly

increases in blended pools since, even if an outbound call is initiated when agents are available,

by the time the called party replies, there may no longer remain available agents. To minimize

the number of dropped calls in this automated environment, one has to guarantee that there is

sufficient idleness in the system. We elaborate further in §2.2 below.

In summary, there are clear benefits for having idleness in the system at almost all times. On the

other hand, as staffing constitutes the bulk operating costs of contact centers (Aksin et al. (2007),

Gans et al. (2003)), management has clear incentives to operate with the minimal possible number

of agents. Our main managerial insight is that the safety staffing needed in a blended system is

order of magnitudes smaller than the safety staffing needed in a split system, for given operational

and quality-of-service (QoS) requirements. Specifically, when the goals are to (i) satisfy certain

QoS constraints for the inbound calls; (ii) maintain a pre-specified throughput rate of outbound

calls; and (iii) ensure that at most a negligible proportion of outbound calls are dropped; blending

can achieve these goals with a substantially smaller number of agents than the number needed for

the split system.

Employing a simple threshold policy, in the spirit of Bhulai and Koole (2003) and Gans and Zhou

(2003), combined with a logarithmic safety-staffing rule (see §2 below), we show that, possibly after

a short initial time, the number-of-busy-agents process experiences stochastic fluctuations that are

proportional to log(n), when there are n agents in the system, giving rise to our staffing suggestion.
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Our analysis builds on simple many-server heavy-traffic arguments, and simulation experiments

demonstrate the effectiveness and accuracy of the asymptotic analysis.

In ending we remark that we study the operational aspects of blending, without addressing

human-related issues. It is significant that blending may require longer agent training, as well as

create a more stressful working environment for the staff, since agents need to continuously switch

between the two types of calls. Management should therefore weigh human factors against the

operational advantages that blending offers when considering whether to employ blending or not.

1.1. Literature Review

There is a vast literature that is dedicated to staffing and control of inbound call centers. For a

thorough study and literature review we refer to Gans et al. (2003) and Aksin et al. (2007), which

also review more general contact centers. In contrast, the literature on the staffing and control of

outbound contact centers in general, and call blending in particular, is much smaller. We review

the most relevant work to ours.

Outbound Contact Centers and Blending. In Reynolds (2010), the basics of staffing and

forecasting for outbound call centers and contact centers with call blending are discussed. Samuel-

son (1999) considers the problem of dropped outbound calls in outbound call centers (with no

blending). In practice, automatic dialers are sometimes programmed to initiate calls even when all

agents are busy. If a customer replies sooner than anticipated, or a call lasts for a longer time than

predicated, then there may be no available agent to take care of that customer, in which case his

call is dropped (“abandoned” by the system). Government regulations require that the number of

dropped outbound calls be small (3% or less of the number of calling attempts), and often man-

agement wants that no outbound calls will be dropped at all. On the other hand, predictive dialing

can decrease agents’ idling time, if it is done correctly. To deal with these conflicting requirements,

an algorithm is developed in Samuelson (1999), utilizing queueing theory and simulation, aimed

at maximizing the number of calling attempts per representative, subject to an upper bound on

the proportion of calls abandoned due to unavailability of agents. This algorithm is the basis for

“predictive dialing” software packages, which are commonly used in modern outbound contact

centers.

Bhulai and Koole (2003), Gans and Zhou (2003) and Deslauriers et al. (2007) deal with call

blending directly. The first two references provide an optimal control, which is of threshold type,

when the service rates of the two types of jobs are equal. Gans and Zhou (2003) go beyond this

setting, and show that a threshold policy is optimal among all policies that give priority to inbound

calls. Unfortunately, the computational effort required to calculate the optimal parameters is large.

Our control is inspired by the first two references. We refer to §5 of Gans and Zhou (2003) for
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a discussion on why asymptotic analysis is useful, even for the exact same model as theirs, but

emphasize that both our model and our objectives are different than theirs. Specifically, we consider

the combined problem of staffing and control, incorporating inbound-customer abandonment and

dropped outbound calls, and describe the transient (time-dependent) behavior of the system, in

addition to the stationary analysis.

In Deslauriers et al. (2007), five Markovian models with inbound and outbound calls are studied

in contact centers having two types of agents – inbound only and blend. As in our model, customer

abandonment is assumed. In their models, a dialer automatically determines when to make out-

bound calls and how many as a function of the system’s state, using a threshold policy, motivated

by Bhulai and Koole (2003). The approach taken in Deslauriers et al. (2007) is that of describing

each model as a CTMC on a finite state space (there is a finite buffer for waiting inbound calls).

The M5 model in §2.5 in Deslauriers et al. (2007) is related to our model, but ours assumes an

infinite state space. As the authors explain in §3, even if the state space is not very large, it is

computationally costly to compute performance measures when the service rates for the two types

of calls are different.

Blending has also been considered by the industry, and a number of related patents exist. In

Dumas et al. (1996), unlike in our model, inbound customers may choose to be called back (and

become “outbound customers”) and outbound customers have the option to wait in queue (although

their waiting times tend to be shorter than those of inbound customers), i.e., they are not dropped.

Based on extensive simulation experiments, it is shown that blending inbound and outbound calls

and employing a threshold policy, ensure that the outbound throughput rate is met while waiting

times of customers are very short. It is also shown that blending the two types of calls in one pool

requires significantly less agents than employing two distinct pools. The examples in that patent

demonstrate that blending can reduce the number of agents by 10% to 17% in contact centers with

a number of agents in the order of 10’s.

Other Types of Outbound Calls. The assumption of infinite supply of outbound work that

we and the papers cited above take, is not valid for all outbound contact centers. For example,

Armony and Maglaras (2004a) considers a single-pool contact center offering a call-back option,

which is a type of outbound work. In this model, the outbound calls are performed from a list

of waiting customers that are a subset of the customers who previously called the call center. In

particular, the contact center is modeled as a two-class single-pool queueing system with customer

balking. It is assumed that service times of the two classes are equal, and the systems are analyzed

in the Halfin-Whitt (QED) many-server heavy-traffic limiting regime. It is shown that a threshold

policy that gives priority to the inbound calls, as long as the queue of call-back customers is below

a certain threshold, is asymptotically optimal in these settings, and that the guaranteed waiting
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times of those customers who chose the call-back option are satisfied. A similar system is considered

in Armony and Maglaras (2004b), but customers are informed about their waiting time in queue as

well as the time until they will be called back, if they choose this option. We also mention Armony

and Gurvich (2010) and Gurvich et al (2009), which study call centers that exercise cross-selling.

The cross-selling phase is initiated by the agent at the end of the requested service, and can thus

be considered to be a type of outbound work.

Immediate Response to Inbound Calls. In our main results we will prove that we can

have practically all inbound calls admitted to service immediately upon their arrival. Inbound call

centers that provide such service levels are said to operate in the quality driven (QD) regime.

The classical reference for a single many-server pool Markovian model with many extra agents is

Iglehart (1965), which proves the asymptotic equivalence of this model to the infinite-server queue.

In Whitt (1999), dynamic staffing in a call center is considered, with the objective of immediately

answering all calls when the arrival rate is time-dependent and even stochastic. The author suggests

to have a large number of extra agents working on other types of jobs (not answering inbound

calls), that will be available to help with the inbound calls on a short notice. In essence, there

are two pools of agents: one pool of dedicated agents, and a second pool to which outbound calls

can be routed when this is needed. The total number of agents needed for each future time t is

computed using an infinite-server approximation, by estimating the mean and variance of the calls

that will still be in progress at that time, and the number of future arrivals; see (4.1) and (4.2) in

that reference.

Safety Staffing. There is a vast literature on safety staffing of many server systems in heavy

traffic, emanating from the seminal paper by Halfin and Whitt (1981). Halfin and Whitt studied

the GI/M/N model, having a renewal arrival process and N exponential servers, as the number

of servers and the arrival rate λ grow to infinity together, such that N = λ/µ+O(
√
λ)1, where µ

denotes the service rate of an individual server, and is kept fixed as λ→∞. Intuitively, λ/µ is the

minimal number of servers needed to ensure that the processing rate of jobs can match the arrival

rate, and the additional O(
√
λ) number of servers - the so-called “square-root safety staffing” - is

needed to take care of the stochastic variability in the system, ensuring that the probability that

an arrival is delayed in queue is strictly between 0 and 1 as λ→∞. The need for a square-root

safety staffing was first observed in Erlang (1917).

The square-root safety staffing rule has been generalized to many-server systems with abandon-

ment, see Garnett et al. (2002) and Mandelbaum and Zeltyn (2009), and, e.g., Gurvich and Whitt

(2009) and references therein for multiclass models with SBR. See also Bassamboo et al. (2010) for

1 For a real function f(·), O(f(x)) is a quantity that grows proportionally to f(x): limsup
x→∞

O(f(x))/f(x) <∞.
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a proposed capacity-prescription safety-staffing rule, derived via a suitable newsvendor problem

for the M/M/n+M model with a random arrival rate.

Resource Flexibility. Finally, our analysis adds to the literature on the benefits of flexibility in

resource allocation; see, e.g., Bassamboo et al. (2009) and Tsitsiklis and Xu (2012) and references

therein. In our setting, the flexibility attributed to outbound calls, when blending is employed,

allows the system to achieve high service level targets for both inbound and outbound calls with a

minimal number of “safety staffing”, giving rise to the logarithmic safety staffing rule.

2. The Model

We consider a system with a single pool of homogeneous agents and two types of calls – inbound

and outbound. We will sometimes refer to inbound calls as class-1 customers, and to outbound

calls as class 2 (numbered in the order of their priority: class-1 customers have priority over class-2

customers). Class 1 customers arrive to the system according to a Poisson process. If a class-1

customer is not routed to service immediately upon arrival, then he waits in queue for his turn

to be served, with customers being served in the order of arrival. However, a waiting inbound

customer has a finite patience, and will abandon if his waiting time in queue exceeds a random

time that is exponentially distributed with mean 1/θ1. Unlike class 1, we assume that there is an

infinite supply of class-2 customers, so that an available agent can always serve such a customer,

if that is desired. The service times of all class-i customers are assumed to be exponential random

variables with mean 1/µi, i= 1,2. Finally, service times, time to abandon, and class-1 arrivals are

all mutually independent.

Since we consider a system having a large pool of agents, a large volume of incoming calls

and a large throughput of outbound calls, it is appropriate to employ many-server heavy-traffic

approximations. To that end, we consider a sequence of systems, indexed by superscript n. For

each n≥ 1 we let Nn denote the number of agents in the pool, λn1 denote the class-1 arrival rate,

and ηn2 be the target throughput rate of outbound calls. It is significant that these three parameters

are asymptotically proportional to one another, so that neither one is negligible in the limit. More

formally,

Assumption 1. (heavy-traffic scaling) For strictly positive real numbers N , λ1 and η2 it holds

that

Nn/n→N, λn1/n→ λ1 and ηn2 /n→ η2 as n→∞.

In contrast to the parameters in Assumption 1, the service and abandonment rates are fixed along

the sequence, i.e., are independent of n. This is consistent with the fact that the service needs of

customers and their (im)patience is independent of the size of the system.
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For n≥ 1, let Qn
1 (t) denote the number of class-1 customers waiting in queue to be served, and

Zni (t) be the number of class-i customers in service at time t, i= 1,2. Let {In(t) : t≥ 0} denote the

idleness process, i.e., In(t) :=Nn− (Zn1 (t) +Zn2 (t)) is the number of idle agents at time t. (We use

:= to denote equality by definition.)

If agents are assigned to outbound calls whenever such a call is initiated (we elaborate on this

issue in §2.2 below), then given a state-dependent routing policy, the process {Xn
3 (t) : t≥ 0} defined

by

Xn
3 (t) := (Qn

1 (t),Zn1 (t),Zn2 (t)), t≥ 0, (1)

is a three-dimensional continuous time Markov chain (CTMC). Moreover, it is easily seen that

Xn
3 possesses a stationary distribution, regardless of the values of Nn and λn1 , due to customer

abandonment. (For notational convenience, we will often remove the time argument t when the

whole process is considered, e.g., Xn
3 := {Xn

3 (t) : t≥ 0}.)

Whereas ηn2 is the target throughput rate of outbound calls, which management wants to achieve,

there is also an actual throughput rate, which depends on system’s performance. With the notation

above, we define the actual instantaneous throughput rate of outbound calls at time t to be rn2 (t) :=

µ2Z
n
2 (t). In an infinite-horizon case, the actual throughput rate in system n≥ 1 is defined as the

almost-sure limit

rn2 := lim
t→∞

1

t

∫ t

0

µ2Z
n
2 (s) ds= µ2E[Zn2 (∞)], (2)

where Zn2 (∞) denotes a random variable that has the stationary distribution of the process Zn2 .

The second equality in (2) is due to the well-known ergodic theorem for CTMC’s. Of course, one

goal is to have the actual throughput rate rn2 be equal to the target ηn2 .

We next make an assumption about the initial condition.

Assumption 2. (initial condition) There exists a> 0 such that P (Q̄n
1 (0)>a)→ 0 as n→∞. 2

It is important to allow for a general initial condition that does not converge to a specific value,

as in Assumption 2, because the arrival rates of inbound calls change throughout the day, and can

be assumed fixed for only certain time periods. In applications, one has to ensure that the time

interval under consideration (having fixed rates) is long enough so that the actual throughput rate

of outbound calls, rn2 in (2), is sufficiently close to the desired throughput rate ηn2 . Theorem 4 below

provides a simple method to guarantee that.

2 Note that only the first component of X̄n
3 , namely the class-1 queue, is considered in Assumption 2, since the other

two components, Z̄n1 and Z̄n2 , are both bounded w.p.1 by Nn/n which converges to a finite number N by Assumption
1. We remark that our results below hold if we replace Assumption 2 with a strictly weaker condition; see Remark
3 below. We chose to make Assumption 2 in its current form for simplicity of exposition, and since it should clearly
hold in practice.
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2.1. Advantages of Blending: The Logarithmic Safety Staffing Rule

Staffing of outbound pools depends on whether agents manually dial customers, or an automatic

dialer is used. In the example in Reynolds (2010, page 3), 40% of agents’ time is involved in

look-up and dialing, leading to the conclusion that “. . . the inefficiencies of a manual dialing pro-

cess. . . make the return on investment of an automated dialer significant”. Whether automatic

dialers are employed or not, the average time until an outbound customer replies needs to be con-

sidered for staffing purposes. To compute the workload on the pool for a given desired output, this

mean response time is added to the expected actual service time; we again refer to Reynolds (2010).

For example, if the actual mean service time is 5 minutes and the expected time until a customer

replies is 1/M = 9 seconds (0.15 minutes), then the workload is computed assuming an average

service time of 1/µ2 = 5.15 minutes.

Note that this implies that agents spend some of their time waiting for customers to reply to a

call. Those waiting agents are not considered idle, and are referred to as waiting agents. Clearly,

the number of waiting agents in an outbound pool is proportional n/M , when there are n agents in

the pool. Hence, to achieve the desired throughput rate of calls, at least ηn2 /µ2 agents are required

for the outbound pool in a split system, where 1/µ2 is computed as described above.

As was reviewed in §1.1, the dedicated pool for inbound calls must have λn1/µ1 +O(n) agents to

ensure that practically all inbound calls are answered immediately. That is, in a split system having

two dedicated service pools, the total number of agents needed to achieve our service requirements

for both types of calls is ηn2 /µ2 +λn1/µ1 +O(n). As we will show below, the same service goals, for

both types of calls, can be achieved with an additional O(logn) agents when blending is employed

instead of splitting. In particular, with blending it is sufficient to have the number of agents be

Nn = λn1/µ1 + ηn2 /µ2 +O(logn).

We remark that less ambitious service levels are often desired for inbound calls, e.g., inbound

call centers that offer good service levels often operate in the QED regime, and not in the QD

regime. Our analysis will make it clear that any other service level for inbound calls, in term of

waiting times in queue and abandonment, can be achieved when blending is employed, with a total

number of agents that is substantially smaller than the number needed in the split setting; see §4

below.

2.2. More on Dropped Outbound Calls

As was reviewed above, automatic dialers are often employed in order to speed up the calling

process and increase the outbound throughput. Nevertheless, automated dialing may lead to a

nonnegligible number of dropped outbound calls, because the number of inbound arrivals during

any time interval may be larger than the number of departures over that interval. In a large system
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having a large volume of calls, the difference between the numbers of arrivals and departures may

be substantial even over short time intervals.

Specifically, if one employs a threshold policy as in Bhulai and Koole (2003) and Gans and Zhou

(2003) with a fixed threshold Kn =K that does not increase with n, then it can be shown that the

idleness process fluctuates between 0 and K infinitely often on every interval, no matter how small,

as n increases indefinitely. Furthermore, there will be no idleness in the system for a non-negligible

proportion of time. Therefore, even if the time until outbound customers reply is short relative to

their service time, it may still be long relative to the fluctuations of the idleness process.

This suggests that the relevant time scale regarding dropped calls is associated with the behavior

of the idleness process In, which turns out to operate in a fast time scale (in o(1) scale3) that grows

faster as n increases; see §3.2 and the proofs of Theorem 1 and Lemma 5 below. To ensure idleness

throughout, the threshold Kn should therefore increase with n. Our analysis identifies the minimal

order of size that is needed for Kn as being O(log(n)).

Our Modeling Approach. To explicitly incorporate dropped calls in the model would require

tracking the process of outbound calls that are yet to be replied. This added dimension presents

complicated modeling and analytical issues, because the corresponding stochastic process is small

relative to the processes comprising Xn
3 in (1); we elaborate in Appendix B. We therefore start by

considering the model described in §2, in which an outbound customer replies to a call immediately

upon its initiation. In Appendix B we show that a logarithmic safety staffing is sufficient to prevent

dropped calls in a more involved model which explicitly takes into account the random positive

time it takes an outbound customer to reply to a call. In this case, waiting agents may start helping

inbound arrivals before their assigned outbound customers reply, so that dropped calls can occur

if staffing levels are not adequate.

A Simulation Example. To see the significance of the two time scales in a practical setting, we

conducted a simulation for a system with the following parameters:

Nn = 500, λn1 = 350, µ1 = 1, µ2 = 0.5, θ1 = 0.5.

These parameters imply that the target throughput rate is ηn2 = 0.5 · 150 = 75 per unit time. Here,

time is directly measured in class-1 service-time units (since µ1 = 1).

We initialize the simulation with Zn1 (0) = 350 and Zn2 (0) = 150 and with no class-1 customers in

queue. In the simulation, an outbound call is initiated at time t if and only if In(t)> 5, i.e., we

are using a simple threshold policy on the idleness process with a threshold Kn = 5: If, when an

3 o(f(n)) denotes a quantity that grows slower than f(n): lim
n→∞

o(f(n))/n = 0. In particular, lim
n→∞

o(1) = 0.
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agent becomes available, there are exactly 5 additional idle agent, then one of the idle agents is

immediately assigned to an outbound call. (In particular, there are never more than 5 idle agents.)

Figure 1 shows one sample path of the idleness process during 5 time units. It is clear from this

figure that In moves very fast among its states {0, . . . ,5}. That same sample path is shown in

Figure 2 over a short time interval of length 0.4 time units. Observe that around the time points

t1 = 0.7, t2 = 0.75 and t3 = 0.85 the idleness process drops very quickly from five to zero. Observe

also that the idleness process can spend a significant amount of time at state 0 (in which case a

queue forms).
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Figure 1 Fast fluctuations of idleness process.
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Figure 2 Short time interval.

3. Main Results

We consider contact centers in which high quality of service, in terms of waiting times and propor-

tion of abandonment, is desired for the inbound calls, while a specified throughput rate of outbound

calls should be maintained. Specifically, our goal is to design the system such that the number of

inbound customers who have to wait before entering service is negligible and, at the same time,

the desired throughput rate ηn2 is achieved with at most a negligible number of dropped outbound

calls. Analogously to the inbound call-center terminology (e.g., Gans et al. (2003)), we refer to this

service regime as being quality-driven (QD), because both customer types receive a high quality of

service. We discuss extensions to other service regimes in §4 below.

The next assumption determines the staffing in the system, which follows the logarithmic safety

staffing rule discussed above.

Assumption 3. (QD logarithmic-safety-staffing rule) The number of agents in system n ≥ 1

satisfies

Nn := dλn1/µ1 + ηn2 /µ2e+Kn,

where Kn is a positive integer satisfying Kn/ log(n)→K as n→∞, for some 0<K <∞.
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Observe that Assumptions 1 and 3 imply together that λ1 < µ1N , which further implies that

class-1 customers can receive excellent service, in terms of waiting times in queue, if they are given

priority over class-2 customers. The following routing policy ensures that this is indeed the case.

Definition 1 (Priority Control with Idleness Threshold). Given Kn in Assumption

3 the idleness-threshold control is as follows.

• Upon arrival of a class-1 customer, the customer will be routed to an available agent. If

no agent is available, the customer will wait in queue to be served in the order of arrival.

• Upon completion of service, the newly available agent will take a customer from the head

of the class-1 queue. If the queue is empty and there are less than Kn other idle agents, then the

newly available agent will idle and all other idling agents will remain idle. Otherwise, if there are

at least Kn additional idle agents, then a class-2 customer will start to be served by one of those

idling agents.

With the policy just described, it is clear that In(t)≤Kn for all t≥ 0, given the assumption that

an outbound call is successful immediately, because an outbound call is initiated when an agent

becomes available and there are Kn additional idle agents at that time. Therefore, the maximum

possible idleness in the system is of order log(n) by our choice ofKn in Assumption 3. We henceforth

refer to Kn as the “idleness threshold”, or simply the “threshold” when the meaning is clear.

Additional notation. To present our results we need to introduce some more notation. We use

the usual R and Rk notations to denote, respectively, the real numbers and k-dimensional vectors

with components in R, k≥ 1. We let ⇒ denote convergence in distribution of random variables, or

stochastic processes. In the latter case, the limits will always have continuous sample paths, and the

convergence holds uniformly on compact intervals in an appropriate function space (we elaborate

further in §7). Let ‖ · ‖ denote the Euclidean norm in Rk and let e be the identity function, i.e.,

e(t) := t, t ∈ I, for some interval I ⊂ [0,∞). Finally, as in Assumption 2, we use a ‘bar’ to denote

“fluid-scaled” processes: for a process Y n := {Y n(t) : t≥ 0}, Ȳ n := Y n/n.

Throughout this section, Assumptions 1, 2 and 3 are assumed to hold, and the priority control

in Definition 1 is employed.

3.1. Results for the Transient Period

We now present results for the transient period, as the system approaches its steady state. The

proofs of those results appear in §7.

The three-dimensional process Xn
3 in (1) is evidently hard to analyze, even asymptotically (see its

sample-path representation in (10) below). One way to simplify the problem is to consider a system

with equal service rates for both types of calls, i.e., with µ1 = µ2. In that case, the total output

rate due to service completions depends only on the number of agents working, and is independent
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of how many agents work with each class. This approach was often taken in the literature, as was

reviewed in §1.1. However, when µ1 6= µ2, all three components of the CTMC Xn
3 are relevant for

each n ≥ 1. A significant simplification is achieved in the heavy-traffic limits using the following

result, which states that Xn
3 is asymptotically equivalent, after possibly some finite time T , to an

essentially one-dimensional process Xn defined below. Such types of results are typically referred

to as state-space collapse (SSC) in the literature.

Let

Xn(t) := (0,Zn1 (t),Nn−Zn1 (t)), t≥ 0, (3)

and note that Xn is completely characterized by Zn1 , and is thus effectively one dimensional.

Theorem 1. (eventual SSC) There exists a time T , 0≤ T <∞, such that Q̄n
1 ⇒ 0e uniformly

over [T,∞) as n→∞. As a result, the process X̄n
3 is asymptotically equivalent to the process X̄n,

for Xn in (3), in the sense that supT≤t<u ‖X̄n
3 (t)− X̄n(t)‖⇒ 0 as n→∞, T < u<∞.

Theorem 1 implies that Q̄n
1 is null after time T , for all n large enough. The reason why this

SSC only holds after some time T is due to the possibility that the system is initially overloaded.

For example, we might have that Q̄n
1 (0)⇒ q1(0) as n→∞, for some q1(0)> 0. Even if q1(0) = 0

there is no guarantee that the conclusion in Theorem 1 holds before some time T > 0, because the

value of Zn1 (0) might be such that the system is temporarily overloaded, so that a queue builds

up; a numerical example is given in §5.2 below. In §7.4 we explain how T can be estimated. We

emphasize that T is finite and relatively short, even in extreme cases. In particular, Theorem 1

does not hold only in steady state.

The next theorem strengthens Theorem 1 significantly.

Theorem 2. Consider time T in Theorem 1. Then, for all t≥ T , P (In(t)> 0)→ 1 as n→∞.

Theorem 2 implies that P (Qn
1 (t)> 0)→ 0 as n→∞ for all t > T . That follows immediately from

the fact that the idleness process In(t) is asymptotically positive for each t≥ T , for T in Theorem

1. The significance of this result is clear: it implies that practically every class-1 customer will

enter service immediately upon arrival, and that no outbound call will be dropped due to agents’

unavailability, provided that n is large enough.

3.2. Intuition Behind the Logarithmic Safety Staffing Rule

The proofs of Theorems 1 and 2 will show that the stochastic fluctuations of the number-in-system

process Qn
1 +Zn1 +Zn2 above the idleness threshold Kn are of order log(n), and that, even though

the idleness process might reach state 0 (in which case there are no idle agents), the proportion

of time it spends in that state converges to zero as n→∞. In particular, we show that O(log(n))

is the minimal order of the idleness threshold which ensures that there is idleness for almost all
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t≥ T , asymptotically. We now provide a heuristic explanation for that result, and refer to Perry

and Whitt (2011) and Gurvich and Perry (2012) for a refined analysis of similar phenomenons.

Recall that the idleness process In operates in a faster time scale as n grows. Equivalently, the

process

Y n :=Qn
1 +Zn1 +Zn2 − (Nn−Kn),

which captures the fluctuations of the number-in-system process above the idleness threshold Kn,

becomes faster as n increases. In contrast, the process X̄n has small changes over short time

intervals because, as n grows, this process approaches a continuous limit. Specifically, for large n,

the process X̄n is almost constant over the time interval [t, t+ε) when ε is small, i.e., X̄n(s)≈ X̄n(t)

for all s∈ [t, t+ ε) and for any fixed time t≥ 0.

Consider Y n over the interval [t, t+ ε). Observe that Y n(t) increases by 1 if an inbound customer

arrives, which happens with rate λn1 , and decreases by 1 if a customer leaves the system, which

happens with rate βnt := θ1Q
n
1 (t) +µ1Z

n
1 (t) +µ2Z

n
2 (t) at time t. However, since X̄n is almost fixed

for small ε and large n, βnt is (approximately) fixed over [t, t+ ε),. Therefore, Y n is approximately

distributed as an M/M/1 queue with arrival rate λn1 and service rate βnt over that interval. Let

Qn
t := {Qn

t (u) : u≥ 0} denote the queue process of an M/M/1 system with the same arrival and

service rates. (The subscript t in βnt and Qn
t stands for the fact that the system Xn(t), via which

βnt is defined, is considered to be fixed at its value at time t.)

As we will show, there exists a time T ≥ 0 such that, for all t≥ T , it holds that λn1 <βnt with a

probability approaching 1 as n grows large. Hence, Qn
t is, for sufficiently-large n, positive recurrent.

Moreover, the process Qn
t with rates βnt and λn1 over [t, t+ ε) is equal in distribution to a “slowed”

M/M/1 with rates βnt /n and λn1/n over the time-scaled interval [t, t+nε). It is well-known that the

maximum of a positive-recurrent M/M/1 queue grows as O(logn) over intervals of length O(n)

as n→∞ (see Anderson (1970)), and that the queue process keeps returning to state 0. Since Qn
t

is a fast version of the slowed M/M/1, it follows that Qn
t , and thus {Y n(s) : t≤ s < t+ ε}, have

infinitely-many fluctuation of order log(n) as n→∞ over [t, t+ ε), no matter how small ε is. The

same holds for an ε-neighborhood of any t≥ T .

By choosing the idleness threshold to be in logarithmic scale, we can guarantee that the prob-

ability that all agents are busy converges to 0, at least after some short time T . Moreover, our

proofs will show that this holds regardless of the exact choice of the threshold; in particular, we

only require that Kn grows at least as fast as log(n).

3.3. Stationarity

Due to the complexity of the system, we cannot prove convergence of the sequence of processes X̄n
3

as n→∞. Nevertheless, we can show that the sequence of stationary distributions {X̄n
3 (∞) : n≥ 1}
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converges to a simple deterministic limit in R3, where Xn
3 (∞) denotes a random variable in R3

that has the distribution of the steady state of the process Xn
3 .

Let

x∗ := (q∗1 , z
∗
1 , z
∗
2) = (0, λ1/µ1,N −λ1/µ1) . (4)

Theorem 3. (limit of stationary distributions) X̄n
3 (∞)⇒ x∗ in R3 as n→∞.

Note that Theorem 3 together with Assumptions 1 and 3 imply that Z̄n2 (∞)⇒ η2/µ2, so that, for

large n, µ2Z
n
2 (t)≈ ηn2 , i.e., the actual instantaneous throughput rate is close to its target, provided

that t is large enough so that the system is sufficiently close to its steady state. As we already

mentioned (see the discussion below Assumption 2), the arrival rates change slowly throughout the

day and can only be assumed fixed for finite time periods. It is thus important to verify that the

system approaches its desired steady state before the arrival rates change significantly. In other

words, it is important to assess the speed at which the system approaches stationarity. The next

theorem describes the typical asymptotic behavior of the system, showing that the convergence

rate to the limiting stationary state is exponentially fast.

Theorem 4. There exists C > 0 such that, for every deterministic element xC := (0, zC1 ,N−zC1 )

of R3 satisfying ‖xC −x∗‖<C, if X̄n
3 (0)⇒ xC in R3, then X̄n

3 ⇒ x := {x(t) : t≥ 0} uniformly over

[δ,u] as n→∞, for any 0< δ < u<∞, where x(t) := (0, z1(t),N − z1(t)) and

z1(t) = λ1/µ1 +
(
zC1 −λ1/µ1

)
e−µ1t. (5)

In particular, x(t)→ x∗ as t→∞.

By Theorems 3 and 4 the point x∗ in (4) serves as a good approximation for X̄n
3 (t) for large

n and t when the fluid-scaled system is considered. However, once the system stabilizes at the

neighborhood of x∗, it becomes valuable to capture stochastic fluctuations that are of smaller order

than O(n) to approximate the variability of the system.

Let X̂n
3 denote the diffusion-scaled processes of Xn

3 :

X̂n
3 := (Q̂n

1 , Ẑ
n
1 , Ẑ

n
2 ), (6)

where Q̂n
1 :=

Qn
1√
n
, Ẑn1 :=

Zn1 −nz∗1√
n

, Ẑn2 :=
Zn2 −nz∗2√

n
=−Ẑn1 .

Let

X̂ := (0e, Ẑ1,−Ẑ1), where Ẑ1(t) = Ẑ1(0) +
√

2µ1B(t)−µ1

∫ t

0

Ẑ1(s)ds, t≥ 0, (7)

with {B(t) : t≥ 0} denoting is a standard Brownian motion.
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Observe that Ẑ1 is an Ornstein-Uhlenbeck (OU) process with (state-dependent) drift m(x) =

−µ1x and infinitesimal (state-independent) variance σ2(x) = 2µ1 for all x∈R. It is well-known that

the steady state distribution of this OU process is a standard normal, i.e., it is normally distributed

with mean 0 and variance 1.

Theorem 5. (diffusion limit) If X̂n
3 (0)⇒ X̂(0) in R3 as n→∞ for some random variable X̂(0)

of the form X̂(0) = (0, Ẑ1(0),−Ẑ1(0)), then X̂n
3 ⇒ X̂ uniformly over compacts as n→∞, for X̂ in

(7).

Remark 1. The assumption X̂n
3 (0)⇒ X̂(0) as n→∞ in the statement of Theorem 5 implies

that the initial conditions of the fluid-scaled processes X̄n
3 converge to the stationary state x∗, and

thus, we have P (In(t)> 0)→ 1 as n→∞ for all t > 0, and not only after some time T which may

be greater than 0, as in Theorem 2.

3.4. Implications of the Results

It follows from basic CTMC theory that X̄n
3 (t)⇒ X̄n(∞) as t→∞ for each n≥ 1. Theorem 3 shows

that the stationary stochastic system is well approximated by x∗ in (4), and Theorem 4 shows that

convergence to stationarity is exponentially fast. Once X̄n
3 is close to x∗, the throughput rate of

outbound calls is within o(n) of the desired rate. To see this, observe that for Nn in Assumption

3 and x∗ in (4),

N = lim
n→∞

Nn/n= λ1/µ1 + η2/µ2 = z∗1 + z∗2 . (8)

Now, since z1(t) converges exponentially fast to z∗1 = λ1/µ1 as t→∞ by Theorem 4, it follows from

(8) and Theorem 1 that µ2z2(t) converges exponentially fast to η2. Moreover, for rn in (2), we have

the following immediate corollary to Theorem 3.

Corollary 1 The sequence {rn2 /n : n≥ 1} converges to η2 w.p.1.

Proof. We have that

rn2
n

= lim
t→∞

1

t

∫ t

0

µ2Z̄
n
2 (s)ds= µ2E[Z̄n2 (∞)]→ µ2z

∗
2 in R as n→∞,

with the first limit holding w.p.1, for each n≥ 1 due to the ergodicity of Zn2 , and the second limit

holding due to Theorem 3 together with the bounded convergence theorem. The statement follows

from the fact that z∗2 =N − z∗1 =N −λ1/µ1 = η2/µ2, where the last equality follows from (8). �

Recalling that the fixed arrival rates and staffing hold over finite time intervals in applications

(which are relatively long compared to the average service times), Corollary 1 allows management to

estimate whether a given time interval is sufficiently long for the required performance measures to

be achieved. Together with Theorem 4, one can then approximate
∫
I
µ2Z

n
2 (t)dt, where I is the time
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interval under consideration, and determine whether I is long enough. (If not, the staffing should

be adjusted.) In addition, Theorem 4 can be used to approximate the instantaneous throughput

rate of outbound calls µ2Z
n
2 (t), for all t ≥ T , using the expression in (5), and recalling that, by

Theorem 1, z2(t) = 1− z1(t) for all t≥ T . In any case, Theorem 2 guarantees that inbound calls

receive QD service levels, and that there are almost no dropped calls, long before the system can

be considered to be close to its steady state.

The significance of Theorem 5 is twofold. From a theoretical perspective, this theorem is a further

illustration of our argument that, asymptotically, the system operates in the QD regime from the

point of view of the inbound calls. This is because the diffusion limit (0e, Ẑ1) of (Q̂n
1 , Ẑ

n
1 ) is similar

to the limit in Iglehart (1965) for a sequence of M/M/Nn queues with many extra agents, i.e.,

when µ1N
n = λn1 +O(n). That is true despite the fact that, in our case, almost all agents are busy

all the time. From the practical perspective, Theorem 5 is a stochastic refinement to the output

process of outbound calls rn2 (t) := µ2Z
n
2 (t), t≥ 0, and can be used to approximate the variability

in the system when it is approximately stationary.

4. Extensions

As we mentioned in §2.1, inbound call centers typically consider the QED regime as providing

sufficiently-good service levels. In that case, the number of agents in a dedicated pool to inbound

calls is λn1/µ1 + β
√
λn1 , where β a real-valued constant. Other inbound call centers may even

desire to save substantially on staffing by letting practically all arrivals be delayed in queue, and a

proportion of those arrivals abandon. Such call centers are said to operate in the efficiency-driven

(ED) regime. We refer again to Gans et al. (2003) Aksin et al. (2007), and Mandelbaum an Zeltyn

(2009).

We now consider a modification of the staffing and control policy discussed in §2 with the aim

of achieving a different service level for inbound customers. For concreteness, we consider the ED

regime for inbound calls, in which a given proportion γ, 0 < γ < 1, of the inbound calls is to

abandon. As in the first case, the desired throughput rate of outbound calls and the arrival rate of

inbound calls are assumed to satisfy Assumption 1, and it is still required that almost no outbound

calls be dropped. Since, as before, we seek a simple and automatic control, we want to have some

idleness almost all the time.

The staffing of the system in this case is as follows.

Assumption 4. (ED logarithmic safety-staffing rule) The number of agents Nn in system n≥ 1

satisfies Nn = dλn1 (1−γ)/µ1 +ηn2 /µ2e+Kn where Kn is a positive integer satisfying Kn/ log(n)→

K, for some 0<K <∞.
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The aim of our second policy is to ensure that a proportion γ of arrivals abandons. This is

achieved by forcing all arrivals to wait in queue before entering service.

Definition 2 (Priority Control with Queue and Idleness Thresholds). Given posi-

tive integers Kn and Ln, the queue-and-idleness-threshold control is as follows.

• Upon arrival of a class-1 customer that finds Ln customers waiting in queue, the customer

that has been waiting the longest will enter service, if an agent is available. If there are less than

Ln customers in queue, then no class-1 customer enters service (even if there are idle agents).

• Upon completion of service, the newly available agent will take the class-1 customer

that has been waiting the longest if there are at least Ln customers waiting in the class-1 queue.

Otherwise, if there are at least Kn additional idling agents, then one of those idle agents will start

serving a class-2 customer. If together with the newly available agent the total number of idle

agents is less than Kn (and Qn(t)<Ln), then no new customer, from either type, will enter service.

Note that this second policy is not non-idling with respect to the inbound work. In particular,

there are time instances in which some agents idle even though customers are waiting in the queue

of inbound calls. Note also that this control no longer gives strict priority to inbound calls over the

outbound calls.

To completely define our second control policy, we need to specify the queue threshold Ln.

Assumption 5. The sequence of thresholds {Ln : n≥ 1} satisfies

Ln/qn1 → 1 as n→∞, where qn1 := λn1γ/θ1. (9)

We remark that for the Markovian Erlang A system having n agents and operating in the ED

limiting regime (i.e., n is large and the traffic intensity is strictly larger than 1), the steady-state

queue length Qn
1 (∞) and abandonment probability P n(AB) satisfy λn1P

n(AB)≈ θ1E[Qn
1 (∞)], with

the approximation becoming exact in the limit as n→∞; see Equation (2.23) in Theorem 2.3 in

Whitt (2004). Specifying a desired steady-state abandonment probability P n(AB) = γ, we obtain

the quantity qn1 in (9).

The control in Definition 2 is a generalization of the first priority control in Definition 1, since

in the first control we take Ln = 0 for all n≥ 1. As in the first case, at most Kn =O(log(n)) agents

can be idle so that Zn2 completely determines Zn1 , and vice versa.

Let

x̃ := (q̃1, z̃1, z̃2) = (λ1γ/θ1, λ1(1− γ)/µ1,N −λ1(1− γ)/µ1) .

Analogous results to those in §3 hold in the current case. In particular, it can be shown that there

exists a T > 0 such that Qn
1 has fluctuation of order O(log(n)) about the threshold Ln and that
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the idleness process is positive for almost all t≥ T . The counterparts of Theorem 3 and Corollary

1 can be shown to hold. Finally, a similar result to that in Theorem 4 can be proved with the limit

z1(t) = λ1(1− γ)/µ1 + (z1(0)−λ1(1− γ)/µ1)e
−µ1t.

However, a diffusion limit for the second policy is much harder to derive than the limit in

Theorem 5 because the fast fluctuations of the queue process about its threshold contribute to the

variability of the limit. See Perry and Whitt (2014) and Theorem 4.1 in Gurvich and Perry (2012).

5. Simulation Experiments

In this section, we conduct simulation experiments to show the effectiveness and accuracy of our

approximations when applied to stochastic systems.

The idleness and queue processes. The consequences of the theorems in §3 are illustrated in

Figures 3-6 below. We conducted two simulation experiments which can be viewed as two elements

in a sequence of queueing systems. In particular, we take two cases, the first with n = 200 and

the second with n= 500 agents, to show how the scaling affects the behavior of the systems. The

parameters of the two cases are as follows:

Case 1: n= 200; Kn = 13≈ 2.5 log(n); λ1 = 0.7n= 140; µ1 = 1; µ2 = 0.5; θ= 0.5.

Case 2: n= 500; Kn = 16≈ 2.5 log(n); λ1 = 0.7n= 350; µ1 = 1; µ2 = 0.5; θ= 0.5.

Figures 3 and 4 present a short time window of the queue and idleness processes in Case 1, while

Figures 5 and 6 show the same processes in Case 2. As can be seen from Figures 4 and 6, the

idleness process rarely hits zero, which implies that most of the time there is at least one available

agent present. Overall, the proportion of time that all agents were busy was 0.057 for n= 200 and

0.047 for n = 500, over 100 units of time. As a result, the queue is mostly nonpositive. When a

queue does build up, it is relatively small and goes very quickly back to zero. This can be seen

in Figures 3 and 5. It is instructive to observe how small the numbers on the vertical axes of the

queue figures are relative to the size of the system.

Figure 3 Number in queue, n = 200. Figure 4 Number of idle agents, n = 200.
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Figure 5 Number in queue, n = 500. Figure 6 Number of idle agents, n = 500.

5.1. Simulations of the Routing Policy in §4

We now present simulation experiments that demonstrate the effectiveness of our approximations

for the second control policy. We only simulated the case for n= 200, since the point on the effect

of scaling was already made above. In particular, we simulated the system with 200 agents having

the same arrival, service and abandonment rates as in Case 1 above. In addition, we take Kn = 13

as above, γ = 0.1 and r= 0.37, so that the threshold on the queue is Ln = 28.

Figures 7 and 8 show the fluctuations of the idleness process and of the queue process about

their thresholds over a short time period. As can be seen, at almost all times there is at least one

idle agent (overall, the proportion of time that all agents were busy was 0.065), and the queue does

not deviate much from the threshold Ln.

Figure 7 Number of Idle Agents. Figure 8 Fluctuations about Ln

5.2. The problem with the initial condition.

Recall that, due to the generality of the initial condition, it may take some time before the queue

stabilizes near its target level. In particular, the SSC in Theorem 1 holds after a time T which

may be strictly positive. To illustrate this point, we simulated the two systems in Cases 1 and 2

above with initial conditions that make each system overloaded initially. For Case 1 (n= 200), we

initialized the system with Zn1 (0) = 50 and Zn2 (0) = 150. For Case 2 (n= 500), we initialized the

system with Zn1 (0) = 125 and Zn2 (0) = 375. In both cases, the initial queue is zero: Qn
1 (0) = 0. We



Author: Logarithmic Safety Staffing Rule
20 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

conducted 50 independent simulation runs with the above initial conditions for each of the two

cases. The results are shown in Figures 9 and 10.

Note that, for each individual sample path, the queue can become positive after time T , as in

Figures 3 and 5. The average of the simulation runs, shown in Figures 9 and 10, is a strong-law

type result, as are the fluid approximations, which our proofs build upon. In particular, the average

behavior of the queues, as depicted in Figures 9 and 10, is an evidence to the value of the fluid

approximation for the queue in Theorem 1, whereas Figures 3-6 represent the more refined analysis

that is carried out in Theorem 2 and its proof.

Figure 9 Initial behavior, n = 200. Figure 10 Initial behavior, n = 500.

6. Concluding Remarks

In this paper we demonstrated the operational advantages of call blending in contact centers that

serve both inbound and outbound calls. In this setting, outbound calls are well modeled as an

infinite supply of work that can be executed when management finds it convenient. The flexibility

in the scheduling of outbound jobs reduces the variability in the system, which in turn decreases

the number of agents that are needed to maintain desired service levels when compared to the

splitting setting. In particular, we have shown that, in large systems, a logarithmic-safety-staffing

rule is sufficient in order for the system to have idle agents at almost all times, while providing the

desired service-levels for inbound calls and maintaining fixed throughput rate of outbound calls.

For both control policies, in §§3 and 4, we have studied the transient behavior of the system as it

approaches steady state. The unique steady state of a large system was shown to be well modeled

by a simple fixed point, and the limiting approximations were shown to approach that stationary

point exponentially fast.

Future Research. An immediate insight is that large blended service pools can respond quickly to

bursts in the arrival process by automatically, and almost instantaneously, allocating more agents

to inbound calls when this is needed. This suggests that call blending can be useful in nonstationary

settings in which the arrival process of inbound work is time dependent, or even stochastic. In
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these more complex environments, the relatively low variability associated with outbound work

can help “smooth” the increased variability associated with the inbound work. It remains to study

those more challenging settings, demonstrate the robustness of blending against nonstationarity,

and find the appropriate order of safety staffing that is required.

Moreover, the reduction in staffing needs in a blended pool is due to the smaller number of

agents that need to process inbound work relative to a split system. It stands to reason that some

further reduction in staffing needs can be attributed to outbound calls as well. Of course, any

further decrease in staffing must be small (if not negligible), but this point is yet to be studied.

See also §B.1.

Finally, since empirical work suggests that service and patience times are often non-exponential,

it will be useful to analyze corresponding non-Markovian models as well. Assuming Non-exponential

service times is required if one wants to incorporate predictive dialing into the model, since the

lack of memory of the exponential distribution implies that the age of an ongoing call (namely, the

time that has passed since an ongoing service began) has no implications on the remaining service

time of that call.

7. Proofs for the Results in §3
The proofs of the theorems employ supporting lemmas which are proved in §A. Recall that Assump-

tions 1, 2 and 3 hold, and that the first priority control is employed.

Additional Notation. let Dk(I)≡ D(I,Rk) be the space of all right-continuous Rk-valued func-

tions on I with limits from the left everywhere, endowed with the familiar Skorohod J1 topology,

and let Ck(I) be the subset of continuous functions in Dk(I). If I is an arbitrary compact interval,

we simply write Dk instead of Dk(I), and similarly for Ck(I). We let dJ1 denote the J1 metric on

Dk(I). Since all our limit processes are continuous, convergence in the J1 topology is equivalent to

uniform convergence on compact intervals.

For two vectors x, y ∈Rd, d≥ 1, we write x≤ y if the inequality holds componentwise. For two

stochastic processes X and Y in Dd we write X ≤st Y if X is stochastically smaller than Y in

sample-path stochastic order, i.e., if it is possible to construct two processes X̃ and Ỹ , such that

X̃
d
=X and Ỹ

d
= Y , and P (X̃ ≤ Ỹ ) = 1, where the inequality holds componentwise for all t≥ 0.

For a stochastic process Y in D and a deterministic sequence {an : n≥ 1} of real numbers we say

that Y is OP (an), and write Y =OP (an), if ‖Y ‖ant/an is stochastically bounded, i.e., if

lim
c→∞

limsup
n→∞

P (‖Y ‖ant/an > c) = 0.

We say that Y is oP (an) if ‖Y ‖ant/an converges in probability (and thus in distribution) to 0, i.e.,

if ‖Y ‖ant/an⇒ 0 as n→∞. If an = 1 for all n ≥ 1, then for a sequence of stochastic processes

{Y n : n≥ 1}, Y n =OP (1) if Y n is stochastically bounded, and Y n = oP (1) if ‖Y n‖t⇒ 0 as n→∞.
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To simplify notation, we assume, without loss of generality, that Nn = n. (We can normalize the

parameters in Assumption 1 by dividing by N .)

7.1. Preliminary Results

Our results build on the following representation of the process Xn
3 in (1), using independent unit-

rate Poisson processes. The proof of the following lemma is identical to that of Lemma 2.1 in Pang

et al. (2007) and is omitted.

Lemma 1. For each n≥ 1, with the priority control policy of idleness threshold, the stochastic

process Xn
3 is a well-defined random element of D3, and can be represented via

Qn
1 (t) = Qn

1 (0) +Na
1

(
λn1

∫ t

0

1{In(s)=0}ds

)
−N r

1

(
θ1

∫ t

0

Qn
1 (s)ds

)
−N s

1

(
µ1

∫ t

0

1{Qn1 (s)>0}Z
n
1 (s)ds

)
−N s

2

(
µ2

∫ t

0

1{Qn1 (s)>0}Z
n
2 (s)ds

)
Zn1 (t) = Zn1 (0) +Na

2

(
λn1

∫ t

0

1{In(s)>0}ds

)
+N s

2

(
µ2

∫ t

0

1{Qn1 (s)>0}Z
n
2 (s)ds

)
(10)

−N s
3

(
µ1

∫ t

0

1{Qn1 (s)=0}Z
n
1 (s)ds

)
Zn2 (t) = Zn2 (0) +N s

3

(
µ1

∫ t

0

1{In(s−)=Kn}Z
n
1 (s)ds

)
−N s

2

(
µ2

∫ t

0

1{In(s−)<Kn}Z
n
2 (s)ds

)
,

where In(t) =Nn −Zn1 (t)−Zn2 (t), t≥ 0, and Na
1 , Na

2 , N r
1 and N s

j , j = 1,2,3, are mutually inde-

pendent unit-rate Poisson processes.

The main difficulty in analyzing (10) is due to the indicator functions appearing in the integrants

of the time-changed Poisson processes, e.g., 1(Qn
1 (s)> 0) and 1(In(s) = 0). No limit theorems can

be proved directly, even if the initial condition in Assumption 2 is strengthened and is assumed to

converge.

Recall that, according to the routing policy, In ≤Kn = O(logn) so that, Īn := In/n⇒ 0e and

În := In/
√
n⇒ 0e as n→∞. Nevertheless, this does not imply that

∫ t
0

1(In(s) = 0)ds⇒ 0e as

n→∞. (In fact, highly-utilized queueing systems with a relatively small idleness tend to have long

time periods in which all agents are busy.)

To study the system represented by the equations in (10), we will analyze the fluctuations of

the number-in-system process about the threshold. Let Dn := {Dn(t) : t≥ 0} denote the difference

between the number of customers in the system and the threshold Kn, i.e.,

Dn(t) =Qn
1 (t) +Kn− In(t), t≥ 0. (11)

We refer to the process Dn as the “difference process”.
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Note that, since Qn
1 (t) · In(t) = 0 under the routing policy, there are two options: If Qn

1 (t)> 0,

then In(t) = 0 and Dn(t) is equal to the number of customers above the threshold. If Qn
1 (t) = 0,

then In(t)≥ 0 but, since In(t)≤Kn for all t > 0 due to our routing policy, Dn(t) again measures

the extra number of customers above the threshold.

The control ensures that the difference process is nonnegative and can thus be rephrased in

terms of the difference process:

Alternative description of the control: If Dn(t)> 0, then a newly available agent at time t takes

his next customer from the class-1 queue if there is a customer waiting, or else becomes idle. If at

time t an agent finishes service and Dn(t) = 0, then one of the idle agents begins serving a class-2

customer.

Let

Xn
2 := (Qn

1 ,Z
n
1 ,N

n−Zn1 ). (12)

Note that Xn
2 is an essentially two-dimensional process, since the third component of Xn

2 , namely

Zn2 :=Nn−Zn1 , is completely determined by Zn1 . The next proposition is a simple SSC statement

implying that, for large n, Xn
3 is approximately equivalent to Xn

2 . In particular, (Qn
1 ,Z

n
1 ) carries

sufficient information (asymptotically) to characterize the process Xn
3 under appropriate scalings.

Proposition 1 dJ1(Xn
3 ,X

n
2 )/cn⇒ 0 in D3([δ,∞)) as n→∞ for any δ > 0 and any sequence {cn :

n≥ 1} of positive real numbers satisfying cn/ logn→∞ as n→∞.

Proof. The proof is a simple consequence of the fact that there is an infinite supply of class-2 jobs,

so that every available server can be assigned to a job at any time t. In general, the convergence

might not hold at time 0 because the idleness may initially be of order larger than O(cn), i.e., it

may hold that In(0)/cn→∞ if the sequence {cn : n ≥ 1} in the statement satisfies cn = o(n) as

n→∞. However, due to the infinite supply of class-2 jobs and the assumption that an outbound

call is successful immediately, we have that In(t)/cn⇒ 0 for any t > 0, because there can be at most

Kn =O(logn) idle agents according to the routing policy. In particular, In/cn⇒ 0e or, equivalently,

Z̄n1 + Z̄n2 ⇒Ne in D([δ,∞)) as n→∞, for any δ > 0. Hence, the result follows. �

The analysis hinges on the following tightness of X̄n
3 .

Lemma 2. (tightness) The sequence {X̄n
3 : n≥ 1} is C-tight in D3 with each limit being Lipschitz

continuous and hence differentiable almost everywhere. As a consequence, Ȳ n := {Q̄n
1 + Z̄n1 : n≥ 1}

is also C-tight in D, with Lipschitz-continuous limits.

The proof of Lemma 2 is similar to the proofs of Theorem 5.2 and Corollary 5.1 in Perry and

Whitt (2013), and is omitted. We remark that Theorem 5.2 and Corollary 5.1 in Perry and Whitt

(2013) assume that the sequence of fluid-scaled processes in the initial condition converge to a
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proper random variable, however, in order to show the sequence of fluid-scaled processes X̄n
3 is

tight, the tightness requirement for the initial condition is sufficient.

C-Tightness of stochastic processes implies stochastic boundedness of these processes. We next

identify an explicit stochastic bound for X̄n
3 which will be needed in the proof of Theorem 1.

To construct stochastic-order bounds for all n≥ 1, let

Xn
bd(t) := (Qn

bd(t),N
n,Nn), t≥ 0, (13)

where Qn
bd denotes the number-in-system process in an M/M/∞ queue having arrival rate λ1,

service rate θ1 and the initial condition Qn
bd(0) = max{na,Qn

1 (0)}, for a in Assumption 2. Note

that for all n>No, for some No large enough, Q̄n
bd(0) = a by Assumption 2 (where No is random).

Hence, without loss of generality, we assume that Q̄n
bd(0) = a. We can represent Qn

bd as

Qn
bd(t) = na+Na

1 (λ1t)−N r
1

(
θ1

∫ t

0

Qn
bd(s)ds

)
, t≥ 0, (14)

where Na
1 and N r

1 are the Poisson processes from the representation of Qn
1 in (10).

The proofs of Lemmas 3 and 4 appear in §A.

Lemma 3. (boundedness) For each n≥ 1, X̄n
3 ≤ X̄n

bd in D3 w.p.1 and in particular,

Qn
1 (t)≤Qn

bd(t), w.p.1, for all t≥ 0. (15)

As a result, P (X̄n
3 (t)≤ xbd(t), t≥ 0)→ 1 as n→∞, where xbd := (qbd,1,1) and, for a in Assump-

tion 2,

qbd(t) = λ1/θ1 + (a−λ1/θ1)e
−θ1t. (16)

Let x1,2(0) and x∗1,2 denote the restrictions of x(0) and x∗ to the state space of S1,2 := [0,∞)×
[0,1], respectively, corresponding to the first two components of x(0) and x∗:

x1,2(0) := (q1(0), z1(0)) and x∗1,2 := (0, λ1/µ1). (17)

Define Xn
1,2 := (Qn

1 ,Z
n
1 ), the first two components of Xn

2 in (12), and X̄n
1,2 :=Xn

1,2/n.

Lemma 4. For any ε > 0, there exists Tε, 0<Tε <∞, such that ‖X̄1,2(t)−x∗1,2‖< ε w.p.1 for all

t > Tε, for any limit process X̄1,2 of X̄n
1,2.

Note that the time Tε in Lemma 4 is uniform across all the limits of X̄n
2 . We obtain the following

corollary for the three-dimensional processes X̄n
2 in (12).

Corollary 2 For any ε > 0 there exists Tε, 0< Tε <∞, such that ‖X̄2(t)− x∗‖< ε w.p.1, for all

t > Tε, for any limit process X̄2 of X̄n
2 and for x∗ in (4).

Corollary 2 implies that ‖Q̄n
1‖< ε in D([Tε,∞)) as n→∞, but the queue might still be strictly

positive asymptotically under other other scalings. Hence, we cannot yet conclude that In is asymp-

totically positive with probability converging to 1 as in Theorem 2.
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7.2. Proofs of Theorems 1 and 2

Proof of Theorem 1 For Dn in (11), let T nK := inf{t≥ Tε :Dn(t) = 0}. Observe that T nK is the

first time after Tε, at which the threshold Kn is hit.

We start by showing that there exists T <∞ such that

lim
n→∞

P (T nK ≤ T ) = 1. (18)

For t≥ 0 and Xn
3 = (Qn

1 ,Z
n
1 ,Z

n
2 ), let

βn(Xn
3 ) = µ1Z

n
1 +µ2Z

n
2 + θ1Q

n
1 . (19)

Similarly, for t≥ 0 and γ := (q1, z1, z2), let β(γ) = µ1z1 +µ2z2 + θ1q1.

Note that

βn(Xn
3 )/n⇒ β(X̄3) in D as n→∞, (20)

where the second limit in (20) holds for the converging subsequence X̄n
3 to X̄3 in D3 and from the

continuous mapping theorem (in particular, the continuity of linear functions at continuous limits).

In addition, by Corollary 2 and the continuity of X̄3 and the function β, for any ε > 0 we can find

Tε ∈ [0,∞), for which

λ1 <β(X̄3(t)), t≥ Tε w.p.1,

so that supt≥Tε β(X̄3(t))≥ λ1. Moreover

‖X̄3(t)−x∗‖ ≤ ε for all t≥ Tε. (21)

Since β(x∗) > λ1, by choosing ε < β(x∗) − λ1 sufficiently small, we can guarantee that

supt≥Tε β(X̄3(t)) > λ1. For later purposes, we will need to consider perturbation of these rates.

Specifically, we take ξ > 0 small enough, such that

α+ := λ1 + ξ, β+ := sup
t≥Tε

β(X̄3(t))− ξ and α+ <β+ w.p.1. (22)

Consider an M/M/1 queue with arrival rate α+ and service rate β+ as in (22), and let Q+ denote

the queue-length process. By (22), Q+ is an ergodic birth-death (BD) process.

Consider the process Qn
+ := {Qn

+(Xn
3 , t) : t≥ 0} on {0,1,2,3, . . .} which, from any state i≥ 0, can

jump one state up with rate αn+, and, from any state i≥ 1, can jump one state down with rate βn+,

where

αn+ := λn1 and βn+ := sup
t≥Tε

βn(Xn
3 (t)) (23)

for βn(Xn
3 (t)) given in (19). Then, conditional on Xn

3 , the process Qn
+ is an M/M/1 queue process

with the specified rates for each n≥ 1.

We need the following result, whose proof appears in §A.
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Lemma 5. If Dn(Tε) =Qn
+(X̄n

3 , Tε), then Dn ≤st Qn
+ in D([Tε,∞)), for Tε in (22).

Now observe that

{Qn
+(Xn

3 , t) : t≥ 0} d
= {Qn

+(X̄n
3 , nt) : t≥ 0}, (24)

where Qn
+(X̄n

3 , ·) is, conditional on X̄n
3 , an M/M/1 queue with rates αn+(Xn

3 )/n and βn+(Xn
3 )/n, for

αn+ and βn+ in (23).

It follows from the limits in (20) and our choice of the rates of Q+ in (22), that

P (αn+/n < α+ and βn+/n > β+)→ 1 as n→∞, so that, if Qn
+(X̄n

3 ,0) = Q+(0), then for any a,

0<a< 1, we can find Na, such that for all n>Na,

P (Qn
+(X̄n

3 , nt)≤Q+(t), t≥ 0)> 1− a. (25)

Next, employing Lemma 3 and (15), we have that

Dn(Tε)≤st Qn
bd(Tε) and Q̄n

bd(Tε)⇒ qbd(Tε) in R as n→∞, (26)

where qbd is the process in (16).

Let Q+(0) =Dn(Tε) and define T n+ := inf{t≥ Tε :Q+(t) = 0}. It follows from Proposition 5.5, pp.

111 in Robert (2003) and from (26), that

lim
n→∞

P

(
T n+
n
≤ T

)
= 1,

where T := qbd(Tε)/(β+ − λ1). The latter limit implies that Q+(nt) hits 0 in OP (1) time, and

specifically, if T n := inf{t≥ 0 :Q+(nt) = 0} with Q+(0) =Dn(Tε), then

lim
n→∞

P (T n ≤ T ) = 1. (27)

Thus, for a in (25),

P (T nK ≤ T )≥ P (T n ≤ T )− a→ 1− a as n→∞, (28)

where the first inequality follows from Lemma 5 together with (24), (25) and (27). Taking a→ 0

gives (18).

Finally, by Proposition 5.11 in Robert (2003), the time for an ergodic M/M/1 queue starting

near the origin to reach level n grows exponentially with n. In particular, the time it takes Q+

to reach level n, given that Q+(0) = OP (1), is of the order (β+/α+)n. Hence, the fluctuations of

{Q+(nt) : t ∈ I}, where I ⊂ [T,∞) is a compact interval, are of order oP (n). (For a more careful

treatment, see the proof of Theorem 2 below.) We thus have that Q̄n
1 ⇒ 0 in D([T,∞)) as n→∞

which, together with Proposition 1, concludes the proof. �
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Proof of Theorem 2 The result follows from the bounding arguments leading to the proof of

(28). It is sufficient to show that the fluctuations of {Q+(nt) : t≥ 0} cannot be larger asymptotically

than OP (logn). Let M+(t) := sup0≤u≤tQ+(u). Now, Q+ is an ergodic M/M/1 queue, so that, by

Theorem 6 in Anderson (1970) and the Example on pp. 112 in that reference, M+(nt) =OP (logn).

Hence, the fluctuations of Dn above the threshold Kn are also OP (logn). Note that having the

threshold be O(logn) means that we can potentially have infinitely-many time points for which

Dn(t)≥Kn, unless we choose K large enough. We next show that for any choice of K, the statement

in the theorem holds true.

Consider an interval [t1, t2], with T ≤ t1 < t2 <∞ for T in the statement of the theorem, and let

An := {t∈ [t1, t2] : In(t) = 0}= {t∈ [t1, t2] :Dn(t) =Kn}.

We claim that, sinceDn is stochastically dominated by the ergodic time-acceleratedM/M/1 process

Q+(nt), P (An)→ 0 as n→∞. To see this, let M be a positive constant, and let, Q+(0) =Dn(t1).

Then∫ t2

t1

1{Dn(s)≤M} ds≥st
∫ t2−t1

0

1{Q+(ns)≤M} ds=
1

n

∫ n(t2−t1)

0

1{Q+(s)≤M} ds→ (t2− t1)P (Q+(s)≤M)

(29)

where the limit holds w.p.1 as n→∞ due to the ergodic theory of CTMC’s. We thus have

lim
M→∞

limsup
n→∞

P

(∫ t2

t1

1{Dn(s)≤M} ds≥ t2− t1
)

= 1.

On the other hand, the inequality in the other direction holds trivially w.p.1, i.e.,∫ t2

t1

1{Dn(s)≤M} ds≤ t2− t1 w.p.1 for all n≥ 1.

By taking M →∞, the above inequality, together with (29), implies the claim that P (An)→ 0 as

n→∞.

In addition, by Proposition 5.5 in Robert (2003), the time until Q+ hits level 0 after hitting any

level that is O(logn) is proportional to (logn)/n so that, after the time acceleration by n, Q+(nt)

will hit level 0 within OP ((logn)/n) time units, which implies the same for Dn. �

Remark 2. Note that the statement in Theorem 2 does not imply that the idleness process

is always positive with probability converging to 1. Specifically, the theorem does not imply that

inft∈[s,u] I
n(t)⇒ 0. As the proof of the theorem shows, we can potentially have many time points

t ≥ T , possibly infinitely many, for which there is no idleness, asymptotically. Nevertheless, the

probability measure of all those points converges to 0 as n→∞, implying the statement of the

theorem. Moreover, when a queue forms, it empties instantly as n→∞. Thus, in the limit, a queue

can be positive on a set of points with probability zero over any finite subinterval of [T,∞).
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7.3. Proofs of the Results in §3.3

The proof of Theorem 3 relies on showing that all fluid limits of the tight sequence {X̄n
3 : n≥ 1}

have a unique stationary point, and that each of these fluid limits converge to that point as t→∞.

Hence, we start by rigorously defining the stationary state.

Definition 3. (fluid stationarity) We say that the fluid limit x := {x(t) : t≥ 0} is stationary if

x(0) = x∗ implies x(t) = x∗ for all t≥ 0. If such a point x∗ exists, then it is called a stationary state

for the fluid limit.

We will show below that x∗ in (4) is the unique stationary state of all fluid limits of X̄n
3 .

The CTMC Xn
3 is clearly irreducible and positive recurrent, and thus ergodic, i.e., it possesses a

unique stationary distribution. Recall that Xn(∞) denotes a random variable having the stationary

distribution (and limiting distribution) of the process Xn
3 , for each n≥ 1.

Lemma 6. (stationary state) x∗ in (4) is the unique stationary state of any fluid limit X̄3 of a

converging subsequence X̄n′
3 . Moreover, X̄3(t)→ x∗ w.p.1 as t→∞ for any initial condition X̄3(0).

The proof of Lemma 6 appears in §A, as the proofs of the other supporting lemmas in this section.

Proof of Theorem 3 To prove that X̄n
3 (∞)⇒ x∗, note that Lemma 3 implies that {X̄n

3 (∞) :

n≥ 1} is stochastically bounded in R3. Recall that stochastic boundedness in Rd is equivalent to

tightness in Rd, d ≥ 1; see, e.g., §5.2.1 in Pang et al. (2007). Consider a sequence {X̄n
3 : n ≥ 1}

initialized with X̄n
3 (0)

d
= X̄n

3 (∞) for each n ≥ 1. With this initial condition, for every n ≥ 1, the

process X̄n
3 is strictly stationary. Moreover, {X̄n(0) : n≥ 1} is tight in R3, because it is distributed

the same as X̄n(∞) for each n≥ 1. Applying Lemma 2, we can consider a limit X̄ of a converging

subsequence of the stationary sequence {X̄n : n≥ 1} which must itself be stationary. However, by

Lemma 6, the unique stationary point is x∗, so that necessarily, X̄n(0)⇒ x∗ as n→∞, implying

the statement. �

Proof of Theorem 4 From Lemma 6 we know that x∗ is globally asymptotically stable. In par-

ticular, if we initialize close enough to x∗, so that α(xC) < β(xC) for α(·), β(·) in (20), then any

fluid limit X̄3 of X̄n
3 is ensured to remain in the ε-neighborhood of x∗. The only complication is due

to the fact that Q̄n
1 may be positive (we only required that it is oP (n)). However, the arguments

in the proof of Lemma 5 show that, if the fluid limit of X̄n
3 is in an appropriate ε-neighborhood

of x∗, then the time until Dn hits 0 is oP (1). (In the statement of the theorem we take a “C-

neighborhood” because ε has the connotation of being a small number, which is not necessarily the

case here.) Then, with T n denote the hitting time of 0 by Dn (i.e., the time at which the number

of busy agents equals Kn), for any δ > 0 we can find nδ large enough (which is random) so that for

all n > nδ, T
n < δ w.p.1. We then apply the arguments of Lemma 6 with the deterministic initial

condition xC to conclude the statement of the theorem. �
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Proof of Theorem 5 The proof is implied by the previous proofs. In particular, since X̄n(0)⇒ x∗

in R3 as n→∞, and since x∗ is the stationary state of the fluid limit in Theorem 4, we have that

X̄n
3 ⇒ x∗e in D3 as n→∞. The proof of Theorem 2 showed that, in that case, Qn

1 (t) is positive

for at most a finite number of points on any finite interval, and that at those points, its size is

OP (logn). Hence, Q̂n
1 ⇒ 0e in D as n→∞. By the fact that In(t) = 0 for at most a finite number

of points on any finite interval, the representation of Zn1 in (10) is asymptotically equivalent to

Z̃n1 (t) =Zn1 (0) +Na
2 (λn1 t)−N s

3

(
µ1

∫ t

0

Z̃n1 (s)ds

)
, t≥ 0,

which is known to converge to the stated diffusion limit, given the conditions of the theorem. See,

e.g., Theorem 1.1 and Representation (12) in Pang et al. (2007). �

7.4. Estimating time T in Theorem 1

The proof of Theorem 1, together with the result stated in Theorem 4 can be used together to

estimate time T in the following manner. For γ := (q1, z1, z2) let β(γ) := θ1q1 + µ1z1 + µ2z2, as in

the proof of Theorem 1, and denote by Qγ := {Qγ(t) : t≥ 0} the queue process of an M/M/1 with

arrival rate λ1 and service rate β(γ). Define A := {γ ∈R3 : β(γ)>λ1}. Then, if γ ∈A, Qγ is ergodic.

Next, we treat X̄n
3 as a converging sequence with a fluid limit x := (q1, z1,1− z1) for which z1

satisfies (5). Let tA := inf{t≥ 0 : X̄(t)∈A}. We use (5) to estimate the time that the fluid hits the

set A. (Note that tA = 0 is possible.) It follows from the continuity of the arrival and service rates

of Qγ as functions of γ, as well as the continuity of x, that once x hits the set A it must remain

there for some time interval. While in A, the queue process q1 drains quickly, because it has a

strong drift toward zero. Specifically, q1 satisfies the ODE

q̇1(t) = λ1−µ1z1(t)−µ2z2(t)− θ1q1(t), x(t)∈A

and it follows from the definition of A, that q̇1(t)< 0, so that q1 is decreasing.

Given (5) we can numerically solve and find the time t0 at which q1 hits zero. It then follows

from the last paragraph of the proof of Theorem 1 that, almost immediately after that hitting

time, the unscaled stochastic queue will hit zero as well (if n is large). More precisely, for any

δ > 0, P (Qn
1 (u) = 0 for some u∈ (t, t+ δ))→ 1 as n→∞. Hence, T in Theorem 1 is approximately

equal to t0 just described. Since in practice, θ1q1(t) is typically negligible relative to β̃(x(t)) :=

µ1z1(t) +µ2z2(t), it can be ignored for a (not so rough) estimate of a the hitting time of 0 t0, and

thus of T .

It is easy to compute the first time t for which β̃(x(t))≥ λ1 using (5). In the numerical example

in §5.2 this time is computed to be approximately 0.5. Our simulation experiments show that at

about this time, the queue reaches its maximum value, and starts to deplete; see Figures 9 and
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10. As we wrote above, we can use the ODE to compute numerically the time at which q1(t) hits

zero to estimate time T . However, since the increase period of q1 is so short, we can estimate that

the additional time, after t= 0.5, until the queue depletes is short as well, without any numerical

calculations. Indeed, in the two simulation examples in §5.2, T was smaller than 1.5 time units.

Appendix

A. Proofs of Supporting Lemmas

We now give the proofs of the supporting lemmas in §7.

Proof of Lemma 3 To see why (15) holds, recall the initial condition Qn
1(0)≤Qn

bd(0), and the construction

of Qn
bd, which employs the same Poisson processes as in the construction of Qn

1 , making both processes be

defined on the same probability space. Hence, we can ensure that whenever the two processes are equal, if

a departure occurs in Qn
bd, then an abandonment is generated in Qn

1 . Specifically, if Qn
1(t−) =Qn

bd(t−) at a

time t > 0 and a departure from Qn
bd occurs at time t, then we can generate an abandonment from Qn

1 at the

same time t. This implies Qn
1 ≤Qn

bd, as in (15).

It is well-known that if Q̄n
bd(0)⇒ a in R, then Q̄n

bd⇒ qbd in D as n→∞, for Qn
bd in (14) and qbd in (16);

see, e.g., Theorem 3.6 in Pang et al. (2007). Since stochastic order is maintained in the limit, it follows that

Q̄n
1(t)≤ qbd(t), for qbd in (16) for all t≥ 0 and for all n large enough. �

Proof of Lemma 4 We consider a converging subsequence X̄n′

1,2, which exists by Lemma 2: X̄n′

1,2⇒ X̄1,2 :=

(Q̄1, Z̄1) in D2 as n→∞. Recall that Ȳ n = Q̄n
1 + Z̄n1 . By the continuous mapping theorem, Ȳ n′⇒ Ȳ in D as

n→∞, where

Ȳ (t) := Ȳ (0) +λ1t−µ1

∫ t

0

Z̄1(s)ds− θ1
∫ t

0

Q̄1(s)ds, t≥ 0. (30)

Moreover, by Lemma 2, Ȳ is differentiable almost everywhere. Taking derivatives, we have

Ȳ ′(t) = λ1−µ1Z̄1(t)− θ1Q̄1(t), t≥ 0. (31)

Define the shifted process U(t) := X̄1,2(t)−x∗1,2, which is a shift (by the constant vector x∗1,2) of the process

X̄1,2. Clearly, if U(t)→ 0e, then X̄1,2(t)→ x∗1,2 as t→∞. Writing X̄ ′1,2(t) = f(X̄1,2(t)) and U ′(t) = g(U(t)),

and noting that U ′(t) = X̄ ′1,2(t), we see that

X̄ ′1,2(t) = f(X̄1,2(t)) = f(U(t) +x∗1,2) = g(U(t)) =U ′(t).

For y= (y1, y2)∈R2, let V (y) := y1 + y2, and note that, for V̇ (X̄1,2) :=∇V · X̄ ′1,2,

V̇ (X̄1,2) :=∇V · X̄ ′1,2 =∇V · f(X̄1,2) = Ȳ ′,

where ∇V denotes the gradient of V , and ∇V · X̄1,2 is the usual inner product of vectors in R2. It follows

that

V̇ (U(t)) :=∇V · g(U(t)) =∇V · f(X̄1,2(t) +x∗1,2) =−µ1Z̄1(t)− θ1Q̄1(t), t≥ 0, (32)
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so that V̇ (U)< 0 whenever U 6= 0e. By the Barbashin-Krasovskii theorem (see, e.g., Theorem 4.2 in Khalil

(2002)), U(t)→ 0 w.p.1 as t→∞, for any initial condition U(0), which proves that X̄1,2(t)→ x∗1,2 w.p.1 as

t→∞, regardless of the initial condition x1,2(0), for x1,2(0) in (17). In particular, for a given limit X̄1,2 of

X̄n
1,2 and for a given ε > 0, we can find T (X̄1,2, ε), such that ‖X̄1,2(t)− x∗1,2‖< ε w.p.1, for all t≥ T (X̄1,2, ε)

(where we are free to choose the norm in R2).

To finish the proof, we need to show that T (X̄1,2, ε) can be taken independently of X̄1,2. To that end, we

consider the L1 norm: For y ∈R2, ‖y‖L1
:= |y1|+ |y2|. Since the state space of X̄2 is S1,2 = [0,∞)× [0,1], it

is easy to see that

V (y) = ‖y‖L1
and V̇ (y)≤−(θ1 ∧µ1)‖y‖L1

, y ∈ S1,2,

where, for a, b ∈ R, a∧ b := min{a, b}. It then follows from Theorem 3.4 on pp. 82 of Marquez (2003), that

for every limit point X̄2, ‖X̄1,2(t)‖L1
≤ ‖X̄1,2(0)− x∗1,2‖L1

e−(θ1∧µ1)t/2. Since X̄1,2(0) = x1,2(0) for x1,2(0) in

(17), for all limits X̄1,2 by Assumption 2, the bound on the rate of convergence above is independent of the

specific limit point X̄1,2, which implies the result. �

Proof of Lemma 5 By definition, we clearly have that the rate at which Dn jumps up from any state is

the same as the rate at which Qn
+ jumps up from all states, namely λn1 . Since the rates of both processes are

determined by Xn
3 , conditional on Xn

3 , the rate at which Dn jumps down from each state is no smaller than

the constant death rate of Qn
+. The statement of the lemma then follows from the typical arguments, as in

the proof of Lemma 3. �

Proof of Lemma 6 Consider a fluid limit X̄3 of a converging subsequence X̄n′

3 . To prove that x∗ is the

unique stationary state of X̄3, we need to show that if X̄3(0) = x∗, then X̄3(t) = x∗ for all t > 0. It follows

from Theorem 1 that if there exists a stationary state for X̄3, then it must be of the form (0, z∗1,1− z∗1), so

it is sufficient to show that z1(t) = λ1/µ1 whenever z1(0) = λ1/µ1.

To that end, assume that X̄n
3 (0)⇒ (0, λ1/µ1,1 − λ1/µ1) in R3 as n→∞. Consider the process Ȳ n =

Q̄n
1 + Z̄n1 and note that, by Theorem 1, dJ1(Ȳ n, Z̄n1 )⇒ 0 in D as n→∞. The argument leading to Ȳ n⇒ Ȳ

in (30) implies that Z̄n1 ⇒ z1 in D as n→∞, where (recalling that Q̄n
1 ⇒ 0 in D as n→∞)

z1(t) = z1(0) +λ1t−µ1

∫ t

0

z1(s)ds.

Note that when z1(0) is deterministic, the integral equation above has a deterministic solution, which is

easily seen to be unique and of the form (5). Clearly, if z1(0) = λ1/µ1, then z1(t) = λ1/µ1 for all t. This proves

that x∗ is a stationary state of X̄3. Uniqueness follows from Lemma 4. In particular, if there was another

stationary state x̃∗, then X̄3(t) = x̃∗ whenever X̄3(0) = x̃∗, by definition. However, by Lemma 4, X̄3(t)→ x∗

w.p.1 for any initial condition, so that X̄3 cannot be fixed at any state other than x∗. �

Remark 3. A careful read of the proofs shows that Assumption 2 can be weakened to assuming that

Q̄n
1 , and thus X̄n

3 , is stochastically bounded in R (i.e., that it is OP (1)), at the expense of complicating the

stochastic-order bound arguments for Q̄n
1 in Lemma 3 and for X̄n

1,2 in Lemma 4.
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B. Systems with Outbound Delay Times

In this appendix we consider a model which accounts for the time it takes an outbound customer to reply.

We refer to this time as “outbound delay time”, and show that the logarithmic safety staffing ensures that

the number of dropped calls is negligible in large systems. Specifically, we assume that the outbound delay

time is exponentially distributed with mean 1/M , and that one of the waiting agents (see §2.1) will begin

helping an inbound arrival if there are no idle agents left when an inbound customer arrives. We consider

the threshold policy in Definition 1, in which an outbound call is initiated when an agent becomes idle, and

there are Kn additional idle agents. Whenever an outbound call is initiated, one of the idle agents becomes

a waiting agent, so that the idleness in the system is never larger than Kn.

Let W̃ n(t) denote the number of waiting agents at time t in system n, and let Q̃n
1 and Z̃ni , i= 1,2, denote

the processes of the number of inbound customers in queue and number of class-i customers in service,

respectively. Then

X̃n(t) = (Q̃n
1(t), Z̃n1 (t), Z̃n2 (t), W̃ n(t)), t≥ 0,

is a CTMC for each n≥ 1. We let

Ĩn(t) :=Nn− Z̃n1 (t)− Z̃n2 (t)− W̃ n(t), t≥ 0, (33)

denote the idleness process, and note that an outbound call is dropped if it is replied at a time s at when

there are no idle agents and no waiting agents, namely, if Ĩn(s) + W̃ n(s) = 0.

Let µ := max{µ1, µ2}. As was mentioned in §2.2, µ <<M because the average service time 1/µ is in the

order of minutes, whereas 1/M is in the order of seconds. In a large system, the total number of events

(arrivals, departures and abandonment) that occur during an average service time 1/µi, i = 1 or i = 2, is

substantially larger than the total number of events occurring during an average outbound delay time 1/M

For instance, if 1/µ2 = 5 minutes in the example in §5 with 200 agents (so that 1/µ1 = 2.5 minutes), then

there is an order of 350 events during any time interval of length 1/µ1, and an order of 700 events during

intervals of length 1/µ2, but an order of 20 events during time intervals of length 1/M = 9 seconds (0.15 of

a minute).

It is therefore not surprising that if we model W̃ n as being of the same order of size as the other three

component processes in X̃n, so that

P (W̃ n(t)> ξ)→ 1 as n→∞ for some ξ > 0 and for all t≥ T , (34)

(i.e., W̃ n is strictly positive in fluid scale after some finite time T ≥ 0), leads to inconsistencies when the

asymptotic results are applied to a finite stochastic system.

Before elaborating on that point, we first observe that if (34) holds, then there are asymptotically no

dropped calls after time T , because P (Z̃n1 (t) + Z̃n2 (t)<Nn)→ 1 as n→∞ for all t≥ T . On the other hand,

if W̃ n = oP (n), then we have an asymptotic SSC, namely dJ1(X̃n/n, (X̄n
3 ,0))⇒ 0 as n→∞, for Xn

3 in (1),

so that the proof of Theorem 1 (see (21)) implies that

lim
n→∞

P (‖X̃n/n− x̃∗‖ ≤ ε) = 1 for all t≥ Tε,

for any ε > 0 and for Tε in Lemma 4, where x̃∗ := (x∗,0) and x∗ is defined in (4). We can therefore apply the

arguments in the proof of Theorem 1, and the stochastic-order bound on the fluctuations of the number-in-

system process in Lemma 5, to conclude that Theorem 2 holds for X̃n as well.
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B.1. Fluid Analysis of W̃ n

As in (10), we use random time changed Poisson processes to represent X̃n. The representation of W̃ n is

then

W̃ n(t) = W̃ n(0) +Nw
1

(
µ1

∫ t

0

1{Ĩn(s−)=Kn}Z̃
n
1 (s) ds

)
+Nw

2

(
µ2

∫ t

0

1{Ĩn(s−)=Kn}Z̃
n
2 (s) ds

)
−Nw

3

(
M

∫ t

0

W̃ n(s) ds

)
−Na

1

(
λn1

∫ t

0

1{{W̃n(s−)>0}∩{Ĩn(s−)=0}} ds
)
,

where Na
1 and Nw

i , i= 1,2,3, are independent unit-rate Poisson processes. Just as in Lemma 2, X̃n/Nn can

be shown to be C-tight in D3, with each limit being differentiable almost everywhere.

Observe that, conditional on X̃n(t), the instantaneous increase rate of W̃ n(t) at time t is

µ11{Ĩn(t)=Kn}Z̃
n
1 (t) +µ21{Ĩn(t)=Kn}Z̃

n
2 (t).

In particular, the instantaneous increase rate of W̃ n(t) is strictly smaller than µNn at any time t≥ 0.

The instantaneous decrease rate of W̃ n(t) at time t is, conditional on X̃n(t),

MW̃ n(t) +λn11{{W̃n(t)>0}∩{Ĩn(t)=0}},

implying that any limit of W̃ n/Nn will be a solution to an ODE of the form

ẇ(t) = µ1π1(t)z̃1(t) +µ2π1(t)z̃2(t)−Mw(t)−λ1π2(t), t≥ 0, (35)

where πi(·) is some function satisfying 0≤ πi(t)≤ 1, for all t≥ 0, i= 1,2. (We use z̃i to denote the fluid limit

of Z̃ni /N
n, and similarly for all other processes in X̃n.) Therefore all fluid limits of W̃ n/Nn satisfy

ẇ(t)<µ−Mw(t),

where, since we scaled the prelimit sequence by Nn, the pool size in the fluid model equals 1, so that

z̃1(t) + z̃2(t)≤ 1 for all t≥ 0. It follows that any fluid limit {w(t) : t≥ 0} of W̃ n/Nn with an initial condition

w(0)∈ [0,1] is strictly bounded from above by the exponential function

y(t) = µ/M + (w(0)−µ/M)e−Mt→ µ/M as t→∞.

The convergence rate to µ/M is especially fast in this case due to M being large, regardless of the values of

the other processes in the fluid limit x̃ under consideration.

In the example considered in §2.1 with 1/µ= 5 minutes and 1/M = 9 seconds, we get w∗ < µ/M = 0.03,

where w∗ is the stationary point w(t). Since our computations employed rough upper bounds, the mean

number of waiting agents in stationarity will be strictly smaller than 3% of the total number of agents. (It

can be shown that w∗ in this example is 0.02.) In practice, w∗ will be even smaller than Kn = O(logn),

which is inconsistent with W̃ n being O(n).
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