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Abstract. This paper studies birth and death processes in interactive random environ-
ments where the birth and death rates and the dynamics of the state of the environment
are dependent on each other. Two models of a random environment are considered: a
continuous-time Markov chain (finite or countably infinite) and a reflected (jump) diffusion
process. The background is determined by a joint Markov process carrying a specific
interactive mechanism, with an explicit invariant measure whose structure is similar to
a product form. We discuss a number of queueing and population-growth models and
establish conditions under which the above-mentioned invariant measure can be derived.

Next, an analysis of the rate of convergence to stationarity is performed for the models
under consideration. We consider two settings leading to either an exponential or a
polynomial convergence rate. In both cases we assume that the underlying environmental
Markov process has an exponential rate of convergence, but the convergence rate of the
joint Markov process is determined by certain conditions on the birth and death rates. To
prove these results a coupling method turns out to be useful.
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1. Introduction

Birth-death processes are fundamental stochastic models in applied probability, particularly
in queueing. Birth-death processes in random environments have been extensively studied
[42, 43, 5, 6] and used in various applications (e.g., in queueing [18, 19, 12], inventory [30],
population dynamics [1] and epidemiology [32]). Most of the studies have been focused on
models where the transitions of birth and death processes are affected by the environment
but not vice versa (see, e.g., [42, 43, 5]).

However, in applications, the influence of the birth-death processes and the environment
can be in both directions. For example, service systems can be often modeled as multi-server
queues where customer arrivals may depend on performance rating. The joint (queue,
rating) dynamics may be modeled as a Markov process where ratings depend on the service
quality indicated by congestion (i.e., the size of the queue). The population growth can
also be modeled as a birth-death process in a random environment where the environmental
changes are influenced by the population size (say, in the case of an overpopulation). In
epidemiology, the infection rate may depend on a moving environment, while the dynamics
of the environmental state is determined by the number of infected individuals (say, via a
specific vaccination or lockdown intervention policy).

Key words and phrases. birth-death processes, interactive random environment, Markov jump process,
(jump) diffusion process, invariant measures, product-form formula, exponential/polynomial convergence rate
to stationarity.
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In this paper, we study birth–death processes in an interactive random environment
evolving in such a way that the joint Markov process has a product-form type invariant
measure. Consider a birth-death process N = {N(t), t ≥ 0} on N = {0, 1, 2, . . .} with
birth rates λn(z) (for the jump n → n + 1, n ≥ 0) and death rates µn(z) (for the jump
n→ n− 1, n ≥ 1) depending on an environment variable z taking values in an environment
space Z. The environmental variable, in turn, evolves as a continuous-time Markov process
Z = {Z(t), t ≥ 0}, with transition functions depending on the current state N(t) of the
birth-death process. 1 A combined Markov process (N,Z) = {(N(t), Z(t)), t ≥ 0}, with
states (n, z), is called a birth-death process in an interactive random environment.

The generator L of the combined process (N,Z) is given by

Lf(n, z) =Mzf(n, z) + rn(z)−1Anf(n, z). (1.1)

Here Mz is the generator of the birth-death process with a fixed environment variable z
and An is the generator of the environment process for a fixed birth-death value n. The
parameter rn(z) is the cumulative (product) birth-death rate ratio given in (2.2). See further
discussions on the joint generator in Remark 3.1.

For the process Z, we consider two models:

(i) The environment space Z is at most countable, and the environment process is a
continuous-time Markov chain with a generating matrix An depending on n, the
state of process N(t); we call this model a jump environment.

(ii) The environment space Z is a domain in Rd, and the environment process is a
reflected jump diffusion in this domain, with variable drift vector bn(z), diffusion
matrix σn(z) and jump measures $n(z, ) dependent on the state n of process N(t);
this is called a diffusive environment.2

In this article, we study the long-time behavior of these models:

(a) existence and uniqueness of a stationary distribution, that is, a probability distri-
bution π on the product space X = N × Z such that if (N(0), Z(0)) ∼ π, then
(N(t), Z(t)) ∼ π for all t ≥ 0, and an explicit form of π;

(b) convergence (N(t), Z(t))→ π as t→∞ in the total variation distance, and the rate
of this convergence (exponential or polynomial).

We adapt and generalize the methods of our previous article [31] devoted to M/M/1
queues in an interactive random environment. We identify conditions on the birth and death
rates and the underlying Markov process under which the rate of convergence can be either
exponential or polynomial (Theorems 4.1, 4.2 and 5.1).

We discuss a few examples that are of interest on their own. For example, we have
studied infinite-server queues with the arrival and/or service rates being an RBM or reflected
Ornstein–Ulenbeck diffusion (Examples 3.1–3.6). We have also discussed the finite-server
queues (infinite-waiting space, blocking/loss model or with abandonment) where the arrival,
service and/or abandonment rates are an RBM or reflected diffusion in Examples 3.8 and
3.9. Another example is the population growth model in biology with the growth and death
rates dependent on the environment (see Example 2.6 in a jump environment and Example
3.10 with the rates being a three-dimensional RBM in an orthant). We have also briefly

1Formally speaking, we deal with a family of birth-death processes depending on the parameter z ∈ Z
and a family of environmental processes depending on the parameter n ∈ N.

2The domain and the reflection type may also depend on n; a general type of dependence is encrypted in
the symbol An for the generator of the environmental diffusion.
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discussed how the population growth model can be extended to study growth stocks in
finance in Examples 2.7 and 3.10. In all these models, we discuss how the conditions for the
existence of stationary distributions are verified and provide the explicit expressions for the
invariant measures.

1.1. Literature review. Birth-death processes in random environments have been widely
studied, see, e.g., [42, 43, 5]. In these models, the birth and death rates are affected
by the environments. Economou [10] studied continuous-time Markov chains (CTMC)
in random environments where not only the the transitions rates of the CTMC depend
on the environment, but also a change in the environment can trigger an immediate
transition of the CTMC. He identified conditions under which a (generalized) product form
stationary distribution may exist. In [4], more general Markov chains in random environments
are studied, where the transition probabilities of the Markov chains are affected by the
environments. Bacaër and Ed-Darraz [1] studied a linear birth-death process in a finite-state
random environment with biology applications, and derived the probability of extinction. In
all these studies, the interaction with the environment is one-sided, that is, the dynamics of
the environment is not influenced by the state of the Markov chains.

Cornez [6] first studied birth-death processes in random environment with feedback (that is,
feedback to the environment process from the state of the birth-death process) and provided
sufficient conditions under which the birth-death process component goes extinct or not. In
that model, the environment process takes values in a general measurable space, and no
explicit stationary distribution is derived. In [18], loss queues with interactive (Markov jump)
random environments are considered, and a product-form steady state distribution of the
joint queueing-environment process is derived which results in a strong insensitivity property.
In [19], the authors consider Jackson networks with interactive (Markov jump) random
environments, where customers departing from the network may enforce the environment
to jump immediately. In [30], single server queues with state dependent arrival and service
rates which are also interactively affected by a Markov jump environment are studied,
and both cases of an explicit product-form (separable) steady state distribution and of
a non-separable steady-state distribution are considered. In [7], another construction is
provided for Markov processes in interactive random environments (pure Markov jump
process) that allows simultaneous transitions for the Markov chain and environment states,
for which a product form invariant measure is derived and applications to queueing and
neural avalanches are discussed. We note the main differences in the construction of the
joint Markov process in [18, 19, 30] from our paper: they allow simultaneous changes in
the queueing and environment states, while our construction does not. Moreover, the
environments in those papers are only a Markov jump process.

We also refer to [12], where a random walk interacting with a random environment of a
Jackson/Gordon-Newell network is considered, and an explicit stationary distribution of a
product-form type is derived. In [32], an epidemic SIS model in an interactive switching
environment is studied, where the infection and recovery rates depend on a finite-state
Markov jump process whose transitions also depend on the number of infectives. Large
population scaling limits and the associated long-time behaviors are studied.

Our work generalizes the previous work in [31], where an M/M/1 queue in an interactive
random environment is studied, with both jump and diffusive environments. The models
considered in this paper are more general, and a few new stochastic models are introduced as
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discussed above. In addition to exponential rate of convergence, we also establish polynomial
rate of convergence to stationarity.

This paper also contributes to the understanding of rate of convergence of birth-death
processes. Lindvall [21] developed the coupling approach to estimate the exponential
rate of convergence for birth-death processes, which we follow and further develop for
our model. Van Doorn [44] identified conditions on the birth and death rates under
which the chain is exponentially ergodic by investigating the spectral representation of
the transition probabilities, and bounds on the decay parameter were also established.
Zeifman [50] used methods of differential equations to derive explicit estimates for the rate
of convergence for birth-death processes; this was subsequently applied to some queueing
examples, including the M/M/K and M/M/K/0 models. In [51], this approach has been
extended to nonhomogeneous birth-death processes for which upper and lower bounds on
the rate of convergence were derived; consequently, a number of queueing examples have
been studied, including Mt/Mt/K and Mt/Mt/K/0. Van Doorn and Zeifman [46] study
the rate of convergence of the Erlang loss system. We also refer to [47, 45, 52] for further
studies on the related topics and queueing models.

1.2. Organization of the article. In Section 2, we state the model and results for the
jump environment. In Section 3, we do the same for the diffusive environment. A few
examples are provided in both sections. In Section 4, we state and prove the results on
the exponential rates of convergence to stationarity. In Section 5, we do the same for
polynomial convergence. Appendix A contains proofs of results from Sections 2 and 3.
Appendix B provides a technical comparison lemma from [31].

1.3. Notation. We let N = {0, 1, 2, . . .} and R+ := [0,∞) be the sets of all nonnegative
integer and real numbers, respectively. Let Rd be the space of d-dimensional real numbers.
The total variation distance between two probability measures P and Q on the same space
E is defined as

‖P −Q‖TV = sup
A⊆E
|P (A)−Q(A)| . (1.2)

The space of twice continuously differentiable functions on the space E is denoted by C2(E).
The space of bounded twice continuously differentiable functions with bounded first and
second derivatives on the space E is denoted by C2

b (E).

2. Jump Environment

2.1. Model construction. Consider a birth-death process in an interactive jump environ-
ment described as follows. Let Z be a finite or countable state space for the environment.
We define a two-component Markov process (N,Z) taking values in the countable state
space N×Z, with the following generator matrix R =

(
R[(n, z), (n′, z′)]

)
:

R[(n, z), (n+ 1, z)] = λn(z), R[(n, z), (n− 1, z)] = µn(z),

R[(n, z), (n, z′)] = rn(z)−1τn(z, z′)

R[(n, z), (n′, z′)] = 0, n 6= n′, z 6= z′,

(2.1)

where for each z ∈ Z,

rn(z) =
n∏
k=1

λk−1(z)

µk(z)
for n ≥ 1, and r0(z) ≡ 1, (2.2)
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and Tn = (τn(z, z′))z,z′∈Z is the generator for an irreducible continuous-time Markov chain
on Z (see e.g., [27]). Here N = {N(t) : t ≥ 0} represents the dynamics of the birth-death
process, taking values in N, and Z = {Z(t) : t ≥ 0} indicates the evolution of the environment.
It can be easily checked that for each z ∈ Z, we have the detailed balance equations for the
birth-death process N(t):

κn(z)
(
λn(z) + µn(z)

)
= κn−1(z)λn−1(z) + κn+1(z)µn+1(z), n ≥ 1, (2.3)

κ0(z)λ0(z) = κ1(z)µ1(z), (2.4)

where

κn(z) = κ0(z)

n∏
k=1

λk−1(z)

µk(z)
, n ≥ 1 ,

κ0(z) =

1 +
∞∑
j=1

j∏
k=1

λk−1(z)

µk(z)

−1 . (2.5)

For the quantity κ0(z) to be well defined, we make the following assumption.

Assumption 2.1. For each z ∈ Z, λn(z) and µn(z) are positive such that

∞∑
j=1

rj(z) =

∞∑
j=1

j∏
k=1

λk−1(z)

µk(z)
<∞.

Observe that the detailed balance equations in (2.3) and (2.4) also hold by replacing κn(z)
with rn(z). This is not surprising: κn are a normalized rn with

∑∞
n=0 κn = 1. When the

environment is in state z, the birth rate of N(t) in the state n is λn(z) while the death rate
is µn(z). When the birth-death process is in state n, the transition of the environment from
state z to z′ occurs at the rate τn(z, z′)/rn(z). Note that the last equation in (2.1) forbids
simultaneous jumps for N and Z. The pair (N,Z) yields a Markov process in the state
space N×Z with the generator R. We denote its transition kernel by P t((n, z), ·).

2.2. Main results on the stationary distribution. We make the following assumption
on the matrix Tn.

Assumption 2.2. There exists a function v : Z → R+ satisfying

v(z)
∑
z′∈Z

τn(z, z′) =
∑
z′∈Z

v(z′)τn(z′, z) , for all n ∈ N, z ∈ Z; (2.6)

and

Ξ :=
∑
(n,z)

rn(z)v(z) =
∑
(n,z)

n∏
k=1

λk−1(z)

µk(z)
v(z) <∞. (2.7)

Theorem 2.1. Under Assumptions 2.1 and 2.2, the Markov process (N,Z) N × Z is
irreducible, aperiodic, and positive recurrent. It has a unique invariant probability measure

π(n, z) := η(n, z)/Ξ, ∀(n, z) ∈ N×Z, (2.8)

with
η(n, z) := rn(z)v(z), ∀(n, z) ∈ N×Z, (2.9)

The transition kernel converges to this invariant measure in the total variation distance:

‖P t((n, z), ·)− π(·)‖TV → 0 as t→∞, for all (n, z) ∈ N×Z. (2.10)
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Remark 2.1. Observe that the function v in (2.6) is independent of n, which is crucial to
the product-form of the invariant measure π. The condition in (2.6) will hold if τn(z, z′)
takes the form τn(z, z′) = βnτ(z, z′) for some constant βn > 0. However, one can construct
examples of τn(z, z′) of more complicated forms that still guarantee the existence of a
function v satisfying (2.6) (see, e.g., Examples 2.1 and 2.2 in [31]). We also refer to Section
3.5 for discussions on the diffusive setting. (Constructions similar to those from Section 3.5
can be done in the discrete setting too.) 2

2.3. Examples. We start with classic queues: M/M/1, M/M/∞, M/M/K, M/M/K/0. In
Examples 2.1-2.5, the parameter λ(z) takes nonnegative values while µ(z) and γ(z) are
strictly positive: 0 ≤ λ(z) < ∞ and 0 < µ(z), γ(z) < ∞. In all examples in this section,
as long as condition (2.7) is fulfilled, there exists a finite invariant measure η for process
(N,Z) on N×Z. The unique invatriant probability distribution π(n, z) is then obtained by
normalization.

Example 2.1. The M/M/1 queue was already studied in [31]: here λn(z) = λ(z) and
µn(z) = µ(z) for n ≥ 0 and z ∈ Z. Hence, rn(z) = ρ(z)n where ρ(z) := λ(z)/µ(z) is the
traffic intensity satisfying ρ(z) ∈ (0, 1) for all z ∈ Z. Also, κ0(z) = 1− ρ(z), and

κn(z) = κ0(z)ρ(z)n = (1− ρ(z))ρ(z)n, n ≥ 1, z ∈ Z.

Condition (2.7) means that, as in [31, Assumption 2.2],

Ξ =
∑
(n,z)

ρ(z)nv(z) =
∑
z

v(z)

1− ρ(z)
<∞.

Then η(n, z) = ρ(z)nv(z) yields a finite invariant measure for process (N,Z).

Example 2.2. For an M/M/∞ queue, λn(z) = λ(z) and µn(z) = nµ(z) for all n and z ∈ Z.
Hence,

rn(z) =
ρ(z)n

n!
, where ρ(z) :=

λ(z)

µ(z)
∈ (0,∞)

is the offered load. The sum of all these rn(z) is
∑∞

n=0 rn(z) = eρ(z). Thus, after normalizing,
we get

κ0(z) = e−ρ(z), , and κn(z) = e−ρ(z)
ρ(z)n

n!
, n ≥ 1, z ∈ Z.

Condition (2.7) takes the following form

Ξ =
∑
(n,z)

ρ(z)n

n!
v(z) =

∑
z

eρ(z)v(z) <∞.

Consequently, η(n, z) = ρ(z)nv(z)/n! yields a finite invariant measure for (N,Z), and
π(n, z) = η(n, z)/Ξ is a unique invariant probability distribution.

Example 2.3. Let us fix an integer K ≥ 1. For an M/M/K queue, λn(z) = λ(z) and
µn(z) = µ(z)(n ∧K) for all n ≥ 0 and z ∈ Z. Hence,

rn(z) =

{
ρ(z)n

n! , for n < K,
ρ(z)n

K!Kn−K , for n ≥ K,
(2.11)
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where ρ(z) = λ(z)/µ(z) is the offered load, and %(z) = ρ(z)/K is the traffic intensity. Also,

κ0(z) =

(
K−1∑
n=0

ρ(z)n

n!
+
ρ(z)K

K!

1

1− ρ(z)

)−1
;

κn(z) =

{
κ0(z)

(ρ(z))n

n! , n < K;

κ0(z)
(ρ(z))n

K!Kn−K , n ≥ K.

We assume that the traffic intensity %(z) = ρ(z)/K < 1 for all z. Condition (2.7) now means
that

Ξ =
∑
(n,z)

rn(z)v(z) =
∑
z

(
K−1∑
n=0

ρ(z)n

n!
+
∞∑
n=K

ρ(z)n

K!Kn−K

)
v(z) <∞.

Then the formula

η(n, z) =

{
ρ(z)n

n! v(z) , for n < K,
ρ(z)n

K!Kn−K v(z) , for n ≥ K.
gives a finite invariant measure for (N,Z).

It is clear that the M/M/1 model in [31] is a special case of this model.

Example 2.4. For an M/M/K/0 queue, λn(z) = λ(z)1(0 ≤ n < K), and µn(z) = nµ(z) for
0 ≤ n ≤ K and z ∈ Z. (The form of rates µn(z) for > K is chosen for convenience.) Hence,
rn(z) = ρ(z)n/n! where ρ(z) = λ(z)/µ(z), n = 0, . . . ,K, z ∈ Z. Next,

κ0(z) =

(
K∑
n=0

ρ(z)n

n!

)−1
, and κn(z) = κ0(z)

(ρ(z))n

n!
, n = 1, . . . ,K.

Condition (2.7) is written as

Ξ =
∑
z

(
K∑
n=0

ρ(z)n

n!

)
v(z) <∞.

A finite invariant measure for (N,Z) is given by η(n, z) = ρ(z)nv(z)1(0 ≤ n ≤ K)/n!.
A similar construction works for an M/M/K/l model, where λn(z) = λ(z)1(0 ≤ n ≤ K+`)

and µn(z) = (n ∧K)µ(z).

Example 2.5. For an M/M/K+M queue, λn(z) = λ(z), µn(z) = µ(z)(n∧K)+γ(z)(n−K)+

for n ≥ 0 and z ∈ Z. Here, the rates λ(z), µ(z) and γ(z) represent the arrival, service and
abandonment rates, respectively. Hence,

rn(z) =

{
ρ(z)n

n! , for n < K,
ρ(z)Kβ(z)n−K

K!(n−K)! , for n ≥ K,
(2.12)

where ρ(z) = λ(z)/µ(z) is the offered load, %(z) = ρ(z)/K is the traffic intensity, and
β(z) = λ(z)/γ(z). For this model, the traffic intensity %(z) is allowed to take any positive
value, less than 1 (underloaded), equal to 1 (critically loaded) or larger than 1 (overloaded).
In this model we have

κ0(z) =

(
K−1∑
n=0

ρ(z)n

n!
+
ρ(z)K

K!
eβ(z)

)−1
;
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κn(z) =

{
κ0(z)

(ρ(z))n

n! , n < K;

κ0(z)
ρ(z)Kβ(z)n−K

K!(n−K)! , n ≥ K.

Condition (2.7) reads

Ξ =
∑
(n,z)

rn(z)v(z) =
∑
z

(
K−1∑
n=0

ρ(z)n

n!
+
ρ(z)K

K!
eβ(z)

)
v(z) <∞.

A finite invariant measure has the form

η(n, z) =

{
ρ(z)n

n! v(z), for n < K,
ρ(z)Kβ(z)n−K

K!(n−K)! v(z), for n ≥ K.

Example 2.6 below emerges in biological reproduction and population growth.

Example 2.6. Here we consider a linear growth model with immigration ([33, Example
6.4]): for each z ∈ Z, λn(z) = nλ(z) + θ(z) for n ≥ 0 and µn(z) = nµ(z) for n ≥ 1. In
this model each individual in the population gives birth at a rate λ(z) > 0; in addition,
there is an exponential rate of growth of the population θ(z) > 0 due to an external source
(immigration). The death rate is given by nµ(z). Hence,

rn(z) =

∏n
k=1((k − 1)λ(z) + θ(z))

n!µ(z)n
=
ρ(z)n

n!

n∏
k=1

[
k − 1 +

θ(z)

λ(z)

]
for n ≥ 0, z ∈ Z,

(2.13)

where ρ(z) = λ(z)/µ(z) ∈ (0,∞). We also have

κ0(z) =

1 +

∞∑
j=1

ρ(z)j

j!

j∏
k=1

((k − 1) + θ(z)/λ(z))

−1 ,
κn(z) = κ0(z)

ρ(z)n

n!

n∏
k=1

((k − 1) + θ(z)/λ(z)), n ≥ 1.

Condition (2.7) in this case is

Ξ =
∑
(n,z)

rn(z)v(z) =
∑
(n,z)

ρ(z)n

n!

n∏
k=1

(k − 1 + θ(z)/λ(z))v(z) <∞.

A finite invariant measure on N×Z has the form

η(n, z) = rn(z)v(z) =
ρ(z)n

n!

n∏
k=1

((k − 1) + θ(z)/λ(z))v(z), for n ≥ 0, z ∈ Z.

Example 2.7. The model from Example 2.6 can be modified to model growth stocks
such as Internet or biotech as proposed in [17]. In that setting, the parameters λ(z) and
µ(z) represent the instantaneous appreciation and depreciation of the stock price due to
market fluctuations, and the parameter θ(z) ≥ 0 represents the rate of increase in the stock
price due to non-market factors such as the effect of additional shares via public offering.
One can also include in the death rate an additional external effect parameter, that is,
µn(z) = nµ(z) + ϑ(z), where ϑ(z) ≥ 0 captures the rate of decrease in the stock price due to
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non-market factors such as dividend payments (for most growth stocks, dividends are zero).
In this case, we have

rn(z) =
n∏
k=1

(k − 1)λ(z) + θ(z)

kµ(z) + ϑ(z)
;

the rest of the construction is carried as in Example 2.6. The invariant measure η can be
used to study the size distribution of growth stocks. Such a model captures seasonal and
environmental/external effects that may impact the growth of stock values.

3. Diffusive environment

In this section, we consider birth-death processes with diffusive rates, where the envi-
ronment process can be a general reflected jump diffusion process. We include the case of
oblique reflection, and consider piecewise smooth domains. There is a well-developed theory
of such processes [40, 41]; see also an extensive bibliography in [36].

3.1. Reflected jump diffusion process. Let us introduce a setting for models with a

diffusive environment. We consider a jump diffusion process Z̃n(t) moving in a piecewise
smooth domain D ⊂ Rd with smooth drift function z ∈ D 7→ bn(z) and non-degenerate
diffusion matrix function z ∈ D 7→ σn(z), depending on n ∈ N, and with jumps and
reflections described below. 3

A domain in Rd is the closure of an open connected subset. A domain is called smooth if
its boundary is a (d− 1)-dimensional C2 manifold. Consider an intersection of m smooth
domains D1, . . . , Dm: D = ∩mi=1Di, and assume that it has a boundary ∂D with m (d− 1)-
dimensional faces: Fi := ∂D ∩ ∂Di. Then D is called a piecewise smooth domain in Rd.
Denote by ni(z) the inward unit normal vector to ∂Di at z ∈ Fi. An example is a convex
polyhedron with Di being half-spaces.

Define a continuous function γi : Fi → Rd satisfying γi(z) · ni(z) > 0. Let `i = {`i(t) : t ≥
0} be continuous nondecreasing processes such that `i can only grow on Fi, for i = 1, . . . ,m.
Given n ∈ N and z ∈ D, let $n(z, ·) be a finite measure on D such that $n(z, ·)⇒ $(z0, ·)
as z → z0 in D (weak continuity). Let Jn(t) be a process that is right continuous piecewise

constant, with jump measure $( · , · ) (in the course of process Z̃n it will be $n(Z̃n(t−), ·)).
The process Z̃n(t) is defined as the solution to the stochastic differential equation

dZ̃n(t) = bn(Z̃n(t))dt+ σn(Z̃n(t))dW (t) + dJn(t) +

m∑
i=1

γi(Z̃n(t))d`i(t), (3.1)

where W (t) is a standard d-dimensional Wiener process adapted to the natural filtration.

The generator An of Z̃n takes the form

Ang(z) = bn(z) · ∇g(z) +
1

2
tr(σn(z)Tσn(z)∇2g(z)) +

∫
D

(g(z′)− g(z))$n(z, dz′), (3.2)

and acts on a function g ∈ Dz where

Dz := {g ∈ C2
b (D) : γi(z̃) · ∇g(z̃) = 0, z̃ ∈ Fi, i = 1, . . . ,m}.

In models where the environment process is a jump diffusion in domain D, we set Z = D.

3We do not discuss at this point the exact conditions guaranteeing the existence and uniqueness of process

Z̃n(t) in a general setting. In the considered examples, the existence and uniqueness will be directly verified.
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3.2. Joint generator. The joint Markov process (N,Z) on N×Z has the following generator:

Lf(n, z) =Mzf(n, z) + βnrn(z)−1Anf(n, z), (3.3)

for any function f in the domain of L:

D = {f : N×Z → R |f(n, ·) ∈ Dz ∀n ∈ N}.

Here, βn is the variability coefficient for the diffusive environment depending on the state n,
while rn(z) is the impact factor from the birth-death process as defined in (2.2). Also,

Mzg(n) = λn(z)(g(n+ 1)− g(n)) + 1n6=0µn(z)(g(n− 1)− g(n)), (3.4)

for any function g in the domain of Mz for each given z ∈ Z. Denote by P t((n, z), ·) the
transition kernel of (N,Z) for (n, z) ∈ N×Z. The joint Markov Process (N,Z) evolves as
follows:

• If N(t) = n ∈ N, then the component Z(t) evolves as a reflected jump diffusion in
Z with generator βn(rn(z))−1An.
• If Z(t) = z ∈ Z, then the component N(t) jumps from n to n+1 with rate λn(z) and

to n− 1 with rate µn(z) (when n 6= 0). That is, N(t) evolves as a continuous-time
Markov chain with the generator Mz in (3.4).

Remark 3.1. Under Assumption 2.1, we have rn(z) → 0 as n → ∞ for each z, so that
rn(z)−1 → ∞ as n → ∞. It may appear that in the joint generator in (3.3), the second
component gets large when n is large, i.e., the environment changes the states faster for
larger values of n. However, βn can be relatively small so that βnrn(z)−1 is not large when
n is large. In general, the generator An also depends on n, as will be discussed in Section
3.5 (see equation (3.18)).

For example, consider a Markovian queueing system in a random environment where
the service speed is increasing with the congestion level, while servers tend to break more
frequently when the service speed is high. The repairing rate may be also larger in that
setting, so that the environment dynamics tends to evolve faster. However, external factors
may prevent this from happening, for instance, the high cost of increasing service and/or
repair speed. Our formulation can be used to cover all these settings. 2

3.3. Main results on the stationary distribution. For simplicity, we will suppose in
this section that the generator An does not depend on n: An = A. Consequently, the
subscript n is omitted from the related notation. Next, we make the following assumption.

Assumption 3.1. The reflected jump diffusion with generator A is positive recurrent, and
has a unique invariant measure ν, together with boundary measures νFi , i = 1, . . . ,m. That

is, there exists a stationary version of the process Z̃∗ = {Z̃∗(t) : t ≥ 0} such that for all

t ≥ 0 Z̃∗(t) ∼ ν and for each i = 1, . . . ,m and bounded function f : Fi → R,

E
∫ t

0
f(Z̃∗(s))d`i(s) = t

∫
Fi

f(z)νFi(dz) .

Moreover, the measure ν satisfies

Ξ :=
∞∑
n=0

∫
Z
rn(z)ν(dz) <∞ . (3.5)
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Theorem 3.1. Under Assumptions 2.1 and 3.1, the process (N,Z) has a finite invariant
measure η on N×Z:

η({n}, dz) = rn(z)ν(dz). (3.6)

The corresponding probability measure is

π({n}, dz) = Ξ−1rn(z)ν(dz). (3.7)

The boundary measures πi for Fi are given by

πi({n}, dz) = Ξ−1rn(z)νFi(dz). (3.8)

The process (N,Z) is ergodic: for each (n, z) ∈ N×Z,

‖P t((n, z), ·)− π(·)‖TV → 0 as t→∞. (3.9)

Remark 3.2. Note that the coefficient βn does not appear in the invariant measure η({n}, dz)
in (3.6). In the jump environment with the joint generator (2.1), we had

R[(n, z), (n, z′)] = rn(z)−1τn(z, z′)

where τn(z, z′) depends on n. In that setting, the measure ν in Assumption 2.2 is also
independent on n. In the construction of the joint generator L in (3.3), the second component
βnrn(z)−1Af(n, z) is purposely made in the multiplicative form βnAf(n, z) such that the
dependence on n is through the constant βn. However, this multiplicative construction does
not entail any effect of βn upon the invariant measure. In Section 3.5, we discuss a more
general construction where the generator An of the reflected (jump) diffusion process depends
on the state of the birth-death process through the reflection domains. It is interesting to
study further more general constructions of An with dependence on n. 2

3.4. Examples. An M/M/1 queue with diffusive rates was already considered in [31, Section
3] and can be regarded as a special case of the M/M/K queue below, so it is omitted for
brevity. We start with some cases of M/M/∞ queues with diffusive rates in Examples 3.1
–3.6. For simplicity, in these examples the drift and the diffusion coefficients are taken to be
constant, although an extension of the argument to the case where these coefficients varying
with n and z is straightforward. Also the jump process J(t) is disregarded, as well as the

reflection processes `i(t). We also repeatedly use the notation Z̃(t) as an alternative to Z(t),
to describe an environmental process per se, for a fixed value n ∈ N.

Our goal is to construct a finite invariant η for the joint Markov process (N,Z). The
invariant probability distribution π will be obtained after the normalization.

Example 3.1. In this example, the arrival rate λ(·) is a reflected Brownian motion (RBM)
in the positive half-line R+ (i.e., Z = D = (0,∞)), with a negative drift −c and diffusion

coefficient σ: λ(·) = Z̃ where Z̃(t) = −ct + σW (t) + `(t) with c, σ > 0 and `(t) is the
regulating process (continuous and nondecreasing, `(0) = 0 and `(t) only increases at times

when Z̃(t) = 0). Also, let the service rate µ(t) ≡ µ be a constant. The process Z̃ has the
exponential stationary distribution

ν(dz) =
2c

σ2
exp

(
− 2c

σ2
z
)
dz, z > 0. (3.10)

We also have rn(z) = (z/µ)n/n! where n ∈ N. Condition (3.5) means that

Ξ =
∞∑
n=0

∫ ∞
0

rn(z)ν(dz) =

∫ ∞
0

( ∞∑
n=0

(z/µ)n

n!

) 2c

σ2
exp

(
− 2c

σ2
z
)
dz
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=

∫ ∞
0

ez/µ
2c

σ2
exp

(
− 2c

σ2
z
)
dz =

2c

σ2

∫ ∞
0

e−
(

2c
σ2
−1/µ

)
zdz

=
2c

σ2

( 2c

σ2
− 1/µ

)−1
<∞,

which is the case when
2c

σ2
− 1

µ
> 0. (3.11)

Under condition (3.11), a finite invariant measure of the joint process (N,Z) on N× R+ is
given by:

η({n}, dz) = rn(z)ν(dz) =
(z/µ)n

n!

2c

σ2
exp

(
− 2c

σ2
z
)
dz .

Example 3.2. Let λ(·) ≡ λ be a constant and µ(t) be an RBM with a negative drift in
(µ0,∞) with µ0 > 0. We have the same invariant measure ν(dz) from (3.10), shifted by µ0,
with the density

ν(dz) =
2c

σ2
exp

(
− 2c

σ2
(z − µ0)

)
dz, z > µ0. (3.12)

Next, rn(z) = (λ/z)n/n!. The condition (3.5) is satisfied:

Ξ =
∞∑
n=0

∫ ∞
µ0

rn(z)ν(dz) =

∫ ∞
µ0

( ∞∑
n=0

(λ/z)n

n!

) 2c

σ2
exp

(
− 2c

σ2
(z − µ0)

)
dz

=

∫ ∞
µ0

eλ/z
2c

σ2
exp

(
− 2c

σ2
(z − µ0)

)
dz <∞.

(If we set µ0 = 0, then this integral would be infinite.) A finite invariant measure of the joint
process (N,Z) is

η({n}, dz) = rn(z)ν(dz) =
(λ/z)n

n!

2c

σ2
exp

(
− 2c

σ2
(z − µ0)

)
dz .

Example 3.3. Here we assume that the pair (λ, µ) forms a two-dimensional RBM in
the shifted positive quadrant R+ × (µ0,∞) (the restriction on µ0 > 0 emerges in (3.13)

below). Specifically, λ(t) = Z̃1 and µ(t) = Z̃2(t), t ≥ 0, where Z̃ = (Z̃1, Z̃2) is an RBM

in Z = R+ × (µ0,∞), given by Z̃(t) = ct + σW (t) + RY (t), where c = (c1, c2)
T ∈ R2 is a

drift vector, σ is a 2× 2 positive-definite diffusion matrix, R is a (non-singular) reflection
matrix, and Y (t) = (Y1(t), Y2(t))

T is a regulating process (continuous and nondecreasing,

with Y (0) = 0 and Yi increasing at times when Z̃i(t) = 0 for i = 1, 2). Suppose the process

Z̃ is positive recurrent, and the skew-symmetry condition is satisfied: 2Σ = RD + DRT

where Σ = σ2 and D = diag{Σii, i = 1, 2}. It is shown in [15] that the invariant measure ν

for Z̃ has an explicit product form:

ν(dz1, dz2) = α1α2e
−α1z1−α2(z2−µ0)dz1dz2, z1 > 0, z2 > µ0,

where αi = 2ciξi/Σii and ξ = R−1c. See also the survey [49]. Assume that

µ0 >
1

α1
. (3.13)

We have rn(z) = (z1/z2)
n/n!. We also obtain

Ξ =
∞∑
n=0

∫ ∞
0

∫ ∞
µ0

1

n!

(
z1
z2

)n
α1α2e

−α1z1−α2(z2−µ0)dz1dz2
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=

∫ ∞
0

∫ ∞
µ0

ez1/z2α1α2e
−α1z1−α2(z2−µ0)dz1dz2

= α1α2

∫ ∞
µ0

(∫ ∞
0

e−(α1−1/z2)z1dz1

)
e−α2(z2−µ0)dz2

= α1α2

∫ ∞
µ0

1

α1 − 1/z2
e−α2(z2−µ0)dz2

< α1α2

∫ ∞
µ0

1

α1 − 1/µ0
e−α2(z2−µ0)dz2

=
α1α2

α1 − 1/µ0
× 1

α2
=

α1

α1 − 1/µ0
<∞.

Here in the fourth and fifth lines we have used the condition (3.13). Thus, a finite invariant
measure of the joint process (N,Z) on N×Z is given by

η({n}, dz1, dz2) = rn(z)ν(dz) =
(z1/z2)

n

n!
α1α2e

−α1z1−α2(z2−µ0)dz1dz2 .

Example 3.4. Let us modify Example 3.1 to make the arrival rate a reflected Ornstein-

Uhlenbeck process: λ(t) = Z̃(t), where Z̃ solves the stochastic differential equation with
reflection on R+:

dZ̃(t) = −cZ̃(t) dt+ σdW (t) + d`(t), (3.14)

where c, σ > 0 and `(t) is the regulating process. By [48], the invariant measure for Z̃ is
one-sided Gaussian:

ν(dz) = exp

(
− 2c

σ2
z2
)
dz, z > 0. (3.15)

Similarly to Example 3.1, rn(z) = (z/µ)n/n!. Condition (3.5) is satisfied for any µ > 0 since∫ ∞
0

∞∑
n=0

rn(z)v(z) dz =

∫ ∞
0

exp

(
z

µ
− 2c

σ2
z2
)
dz

= exp
( σ2

2cµ2

)∫ ∞
0

exp

(
− 2c

σ2

(
z − σ2

4cµ

)2)
dz = σ

√
π

2c
Φ
(
− σ2

4cµ

)
<∞,

where Φ(·) is the cumulative distribution function of the standard normal distribution. Thus,
a finite invariant measure of the joint process (N,Z) is given by

η({n}, dz) = rn(z)ν(dz) =
(z/µ)n

n!
exp

(
− 2c

σ2
z2
)
dz.

Example 3.5. Next, let us modify Example 3.2 to make the service rate a reflected Ornstein-
Uhlenbeck process (3.14), but on [µ0,∞) for some µ0 > 0. Its stationary distribution has
density proportional to ν from (3.15). Here we have rn(z) = (λ/z)n/n!. So condition (3.5)
is satisfied for any λ ≥ 0 by verifying that∫ ∞

µ0

∞∑
n=0

rn(z)v(z) dz =

∫ ∞
µ0

exp

[
λ

z
− 2c

σ2
(z − µ0)2

]
dz <∞.

(The integral is finite since z > µ0 > 0.) Then the invariant measure of the joint process
(N,Z) is given accordingly.
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One could also consider the model where the arrival and service form a two-dimensional
reflected Ornstein-Uhlenbeck process in the positive orthant R+ × (µ0,∞). However, the
explicit expression for its invariant measure is not known.

Examples 3.4 and 3.5 can be extended to one-dimensional reflected diffusions with a
piecewise linear drift, which will have truncated Gaussian invariant measures, see [2].

Example 3.6. Examples 3.1–3.5 can be modified to include constrained diffusions. For

instance, one can think of an M/M/∞ queue where the diffusive pair (λ, µ) = Z̃ moves
within a compact domain D ⊂ R+ × R+ with a piecewise smooth boundary ∂D and with
the normal reflection at ∂D. For general ‘nice’ drift and diffusion coefficients, the Lebesgue

measure on D will be invariant for the process Z̃, and the above-type calculations could be
carried through, guaranteeing a finite invariant measure for the joint process (N,Z).

Example 3.7. Let us modify Example 3.1 to include Poisson jumps. Consider a jump

diffusion process Z̃ on half-line R+ with constant negative drift −c and diffusion coefficient
σ > 0, and with i.i.d. jumps with intensity κ and a distribution of jump size K(dz) (so that
κK(·) is the spectral measure), supported on R+ (so that the jumps are to the right). The

generator of Z̃ is given by

Lf(x) = −cf ′(x) +
σ2

2
f ′′(x) + κ

∫ ∞
0

[f(x+ y)− f(x)] K(dy), x > 0, (3.16)

for f : R+ → R in C2 with condition f ′(0) = 0. The combined drift in Z̃ equals −c+ κK
where K :=

∫∞
0 yK(dy). If this drift is negative (assuming c > κK), then the process

Z̃ is ergodic, see [35, Section 6]. Let ν denote the stationary distribution of Z̃. The
MGF Ψν(u) =

∫∞
0 euyν(dy) can be determined by rewriting (3.16) in terms of the Laplace

transform. Denote by ΨK the MGF of the jump measure K: ΨK(u) =
∫∞
0 euyK(dy). After

adjusting the notation of [25, Example 4.3], the MGF Ψν becomes

Ψν(u) :=
Mu

F (u)
, where F (u) := cu− 1

2
σ2u2 − κΨK(u) + κ . (3.17)

Note that F is a concave function, and it has two zeros: u = 0 and u = u0 > 0. The latter
is true since F ′(0) = c− κΨ′K(0) = c− κK > 0. Similarly to Example 3.1, the quantity Ξ
is equal to the value of the MGF of this stationary distribution: Ξ = Ψν(µ

−1). Therefore,
Ξ <∞ if µ−1 < u0. This condition is an analogue of (3.11).

Similar extensions of continuous diffusive cases to jump-diffusion cases could be done for
the previous examples.

Example 3.8. In this example, we consider M/M/K queues with the following types of
diffusive arrival and/or service rates:

(a) λ is an RBM in [0, µK] where µ = const;
(b) λ = const and µ is an RBM with a negative drift in [µ0,∞) where µ0 > λ/K;
(c) (λ, µ) is a two-dimensional RBM in a wedge {z = (z1, z2) ∈ R2

+ : z1 ≤ z2K}.
In all three cases, we have rn(z) given by (2.11) in Example 2.3. Case (a) is similar to

the one discussed in Example 3.7. In Case (b), we have an invariant measure ν(dz) given in
(3.12), so condition (3.5) requires that

Ξ =
∑
n

∫ ∞
µ0

rn(z)ν(dz)
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=

∫ ∞
µ0

(
K−1∑
n=0

(λ/z)n

n!
+
∞∑
n=K

(λ/z)n

K!Kn−K

)
2c

σ2
exp

(
− 2c

σ2
(z − µ0)

)
dz <∞.

Case (c) seems more challenging and requires a detailed analysis of the invariant measure of
two-dimensional RBMs in a wedge (see, e.g., [8]).

For an M/M/K/0 queue, there is no stability concern, and the queueing state space is
finite. Hence, the underlying diffusive environment for either arrival or service rates or both
can be any reflected jump diffusion of the above type as long as the invariant measure ν
exists. Then a finite invariant measure for (N,Z) is η({n}, dz) = rn(z)ν(dz) where rn(z) is
given in Example 2.4.

Example 3.9. For an M/M/K+M queue, as discussed in Example 2.5, the arrival, service
and abandonment rates λ, µ and γ can all depend on the environment. An interesting

case is where the triple (λ(·), µ(·), γ(·)) evolves as an RBM Z̃ = (Z̃1, Z̃2, Z̃3) in a shifted

octant R+ × (µ0,∞) × (γ0,∞) ⊂ R3
+, of the form Z̃(t) = ct + σW (t) + RY (t), similar to

Example 3.3 (but in three dimensions). As shown in [15], under the positive recurrence and

skew-symmetry conditions the process Z̃ has a product-form invariant measure

ν(dz1, dz2, dz3) = α1α2α3e
−α1z1−α2(z2−µ0)−α3(z3−γ0)dz1dz2dz3 .

Let us assume that constants µ0 > 0 and γ0 > 0 satisfy γ0 > 1/α1 where α1 = 2c1ξ1/Σ11.
Cf. Example 3.3.

We have the same formula for rn(z) as in (2.12), with ρ(z) = z1/z2 and β(z) = z1/z3.
Thus, condition (3.5) requires that

Ξ =
∑
n

∫
R+×[µ0,∞)×[γ0,∞)

rn(z)v(dz)

=

∫
R+×[µ0,∞)×[γ0,∞)

(
K−1∑
n=0

(z1/z2)
n

n!
+

(z1/z2)
K

K!
ez1/z3

)

× α1α2α3e
−α1z1−α2(z2−µ0)−α3(z3−γ0)dz1dz2dz3 <∞.

It is easy to check, similarly to Example 2.5, that the first component of the integral is
finite as z2 > µ0 > 0 while the second and third components are finite for z2 > µ0 > 0 and
z3 > γ0 > 1/α1. Thus, a finite invariant measure for (N,Z) is

η({n}, dz1, dz2, dz3) =

(
K−1∑
n=0

(z1/z2)
n

n!
+

(z1/z2)
K

K!
ez1/z3

)
× α1α2α3e

−α1z1−α2(z2−µ0)−α3(z3−γ0)dz1dz2dz3 .

The cases where only one or two of the three parameters are diffusive can be considered in a
similar manner.

Example 3.10. For the linear population growth model with immigration from Example
2.6, the parameters λ, µ, θ can again be all diffusive, represented by a three-dimensional

RBM Z̃ in R+ × [µ0,∞) × R+, as was discussed in Example 3.9. The constant µ0 must

satisfy µ0 > 1/α1. The process Z̃ has a product-form invariant measure ν(dz1, dz2, dz3) =
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α1α2α3e
−α1z1−α2(z2−µ0)−α3z3dz1dz2dz3. Here we have the same formula for rn(z) as in (2.13)

with ρ(z) = z1/z2. Condition (3.5) requires now that

Ξ =

∫
R+×[µ0,∞)×R+

∑
n

(z1/z2)
n

n!

n∏
k=1

(
k − 1 +

z3
z1

)
× α1α2α3e

−α1z1−α2(z2−µ0)−α3z3dz1dz2dz3 <∞
which is finite under the condition z2 > µ0 > 1/α1, similarly to Example 3.9. Thus a finite
invariant measure of (N,Z) is

η({n}, dz1, dz2, dz3) =
(z1/z2)

n

n!

n∏
k=1

(
k − 1 +

z3
z1

)
× α1α2α3e

−α1z1−α2(z2−µ0)−α3z3dz1dz2dz3 .

The growth stock model in Example 2.7 with four parameters can also be considered
analogously, with the parameters evolving as a four-dimensional RBM in a subset of R4

+.

3.5. Reflected jump diffusion environment with a variable domain. In this section
we consider a more general setup where the domain of the (jump) diffusion varies with the
state n of the birth-death process. Such a setup was considered in Section 3.4 of [31]; here
we review the construction and provide an example.

For each n ∈ N, let Dn ⊂ Rd be a piecewise smooth domain with mn faces F
(n)
1 , . . . , F

(n)
mn

of the boundary ∂Dn and reflection vector fields f
(n)
i : F

(n)
i → Rd. Set Z = ∪n∈NDn. We

construct the joint Markov process (N,Z) on N×Z via the following generator L and its
domain D:

Lf(n, z) =Mzf(n, z) + βnrn(z)−1Anf(n, z),

D = {f : N×Z → R : f(n, ·) ∈ Dnz ∀ n ∈ N}.
(3.18)

The generator An and its domain Dnz are given by

Ang(z) = bn(z) · ∇g(z) +
1

2
tr(σn(z)Tσ(z)∇2g(z)) +

∫
Dn

(g(z′)− g(z))$n(z, dz′),

Dnz = {g ∈ C2
b (Dn) : γi(z̃) · ∇g(z̃) = 0, z̃ ∈ F (n)

i ,

(3.19)

We modify the conditions in Assumption 3.1 as follows. Here we assume that the reflected
jump diffusion with generator An is positive recurrent and has a finite invariant measure

νn, with boundary measures υ
(n)

F
(n)
i

, i = 1, . . . ,mn. Moreover, the measures νn satisfy the

property similar to (3.5)

Ξ :=

∞∑
n=0

∫
Dn

rn(z)νn(dz) <∞. (3.20)

Then, by modifying the proof of Theorem 3.1, we can show that under the above conditions,
the joint Markov process (N,Z) has a unique invariant probability distribution

π({n}, dz) = Ξ−1rn(z)νn(dz),

and the corresponding boundary measures π
(n)

F
(n)
i

on F
(n)
i (if there is a reflection) are given by

π
F

(n)
i

({n}, dz) = Ξ−1rn(z)υ
(n)

F
(n)
i

(dz), i = 1, . . . ,mn.
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Example 3.11. Recall that in Examples 3.1–3.6, we have discussed the M/M/∞ queues
with arrival and/or service rates being a reflected diffusion. However, the domain may
depend on the state of the queue. For instance, Example 3.2, one can consider the service
rate being an RBM with a negative drift in [µn,∞) where µn > 0. We then obtain an
invariant measure

νn(dz) =
2c

σ2
exp

(
− 2c

σ2
(z − µn)

)
dz , z > µn .

Condition (3.20) takes the form

Ξ =
∞∑
n=0

∫ ∞
µn

rn(z)νn(dz) =

∞∑
n=0

∫ ∞
µn

((λ/z)n

n!

) 2c

σ2
exp

(
− 2c

σ2
(z − µn)

)
dz <∞ .

A finite invariant measure for (N,Z) reads

η({n}, dz) = rn(z)νn(dz) =
(λ/z)n

n!

2c

σ2
exp

(
− 2c

σ2
(z − µn)

)
dz .

Similar extensions can be done in the other examples in Section 3.4.

4. Exponential Convergence to Stationarity

In this section we study the rate of convergence to stationarity of the joint Markov
process (N,Z) constructed in the previous two sections. We focus on the diffusive random
environment; the jump environment can be studied similarly. We consider convergence in
the total variation distance, cf. (1.2). If P t(x, ·) is the transition function of a process, and
π is its stationary distribution, we say that r(·) is the convergence rate if for all x and t > 0
we get:

‖P t(x, ·)− π(·)‖TV ≤ C(x)r(t)

for some C(x). We consider two scenarios where the convergence rate is exponential:
r(t) = e−ct with a constant c > 0. In each scenario, we assume an exponential convergence
rate for the process of random environment. Likewise, in each scenario, we impose conditions
on the birth and death rates which result in an exponential rate for the process (N,Z). In
the first scenario, the underlying birth-death process satisfies a stability condition (4.3) in
Assumption 4.1, which covers queueing models such as M/M/1 and M/M/K queues. On
the other hand, in the models like M/M/∞, M/M/K/0 and M/M/K+M, the underlying
birth-death process does not require any condition for stability. In those models only mild
assumptions upon the birth and death rates are needed, summarized in Assumption 4.4 as
we discuss in the second scenario.

Classic articles on exponential convergence for a general Markov process are [27, 28]. They
use Lyapunov functions V for which GV ≤ −kV outside a ‘small’ set in the state space of
the process. Here G is the generator of the Markov process, and k > 0 is a constant. There
exists a substantial literature on this topic.

An important property of continuous-time Markov processes on the real line R is stochastic
ordering: two copies X1 and X2 of a process starting from points x1 ≤ x2 can be coupled
so that X1(t) ≤ X2(t) for all t ≥ 0 a.s. Many common processes satisfy this property,
including birth-death processes and reflected diffusions on the half-line. The second author
of this article combined the approach from [27, 28] with stochastic ordering and a coupling
argument to estimate explicit rates of exponential convergence; cf [35].
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In this article, we use a coupling argument to establish the rates of convergence by
adapting the methods from [21] and also generalizing the approach used in [31] for M/M/1
queues in a random environment.

4.1. The first scenario. Define

qi(z) := λi(z) + µi(z) , pi(z) =
λi(z)

qi(z)
, i ∈ N, z ∈ Z. (4.1)

Assumption 4.1. The parameters pi(z) and qi(z) of the birth-death process satisfy the
following bounds:

q := inf
z∈Z

inf
i
qi(z) > 0 , (4.2)

p := sup
z∈Z

sup
i
pi(z) < 1/2 . (4.3)

Remark 4.1. Condition (4.3) in Assumption 4.1 was imposed to get an exponential rate of
convergence of a birth-death process (without environment states) in [21, Proposition 2].
For queueing examples with a finite number of servers, the second condition p < 1/2 in (4.3)
implies that the traffic intensity is less than one. In the linear population growth model in
Example 3.10, a sufficient condition for this property to hold is that λ(z) < µ(z) for each z.

In addition, condition (4.3) is used in the coupling argument where a dominating embedded
Markov chain with a parameter p is introduced. This is critical in Step 4 of the proof of
Theorem 4.1 below. See also Remark 4.2. 2

We now introduce an assumption of an exponential rate of convergence for the environ-
mental process with generator A (which is the same as [31, Assumption 4.1]). It imposes an
exponential-tail condition on the coupling time for the environmental process. Examples
of processes satisfying this assumption are also given in [31, Section 4.3.2], for instance, a
RBM on [0, a] in [16, Chapter 2, Problem 8.2].

Assumption 4.2. There exist constants α > 1 and γ > 0 such that for all z1, z2 ∈ Z the
processes Z1 and Z2 with generator A, starting from Z1(0) = z1 and Z2(0) = z2, can be
coupled in time τz1,z2 := inf{t ≥ 0 : Z1(t) = Z2(t)}, with

P(τz1,z2 ≥ t) ≤ αe−γt . (4.4)

Next, we define the following auxiliary function:

θ(α, β, γ, a) :=
β

β − a
− aγ

(β − a)(β + γ − a)
α−(β−a)/γ , (4.5)

for any α > 1, β, γ > 0 and a ≥ 0. This quantity appears to be an upper bound for the
MGF of the minimum of an exponential random variable and an independent variable with
exponential tail (see Lemma 6.1 in Appendix B and [31, Lemma 6.1]). Also, define

g(s) :=
1−
√

1− bs2
2ps

, with b := 4p(1− p),

G(u) := g

(
q

q − u

)
.

(4.6)

Remark 4.2. Following [11, Section 14.5], consider a discrete-time random walk S = (Sn)n≥0
on the set of integers Z taking steps +1 and −1 with probabilities p and 1 − p. By
Assumption 4.1, the overall direction of this random walk is downward since p < 1/2, that is,
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E[Sn − S0] < 0 as n→∞. Starting from S0 = 0, the hitting time τ := min{n > 0 : Sn = 0}
is a.s. finite, and has a probability–generating function:

E [sτ ] = g(s), 0 ≤ s ≤ b−1/2. (4.7)

Note that b < 1 since p̄ < 1/2 under Assumption 4.1. Since τ ≥ 1, the function g(s) is

increasing on [0, b−1/2]; its maximal value is achieved at s = b−1/2 and equals

g(b−1/2) =
1

2pb−1/2
=

[
1− p
p

]1/2
. (4.8)

Accordingly, the function G is defined for u ∈ [0, u∗] with u∗ < q solving the equation

q/(q − u∗) = b−1/2. This solution exists, and is unique and nonnegative. 2

Now, let us compute

G(u∗) = g(b−1/2) = (2qb−1/2)−1 =

√
p(1− p)
q

,

θ(α, q, γ, u∗) =
q

q − u∗
− u∗γ

(q − u∗)(q − u∗ + γ)
α−(q−u

∗)/γ

=
1√

4p(1− p)

(
1−

√
4p(1− p) + 1

γ−1q
√

4p(1− p) + 1
α−γ

−1q
√

4p(1−p)

)
.

Assumption 4.3. Recall that ν is the invariant measure for the process with the generator
A on the state-space Z. Assume the following integrability condition holds, upon the
measure ν and the cumulative birth-death ratio functions rn(z) (see (2.2)):

sup
u∈[0,u∗]

∞∑
n=0

Gn(u)

∫
Z
rn(z)ν(dz) <∞. (4.9)

Remark 4.3. Recall the condition (3.5), which is necessary for the existence of the invariant
measure. Condition (4.9) is required in Step 1 of the proof of Theorem 4.1 below.

For a single-server queue with the arrival and service rates represented by z = (z1, z2) ∈ Z,
where Z = {(z1, z2) ∈ R2

+ : z1 < z2}, and rn(z) = ρ(z)−n where ρ(z) = z1/z2, condition
(4.9) requires that

∞∑
n=0

G(u)n
∫
Z
ρ(z)−nν(dz) =

∫
Z

(
1− G(u)

z2/z1

)−1
ν(dz) <∞,

provided that u ∈ [0, u∗] is such that G(u) < z2/z1 for z = (z1, z2) ∈ Z.
For an infinite-server queue in Example 3.1, condition (4.9) can be written as

∞∑
n=0

∫ ∞
0

(G(u)z/µ)n

n!

2c

σ2
exp

(
− 2c

σ2
z
)
dz =

2c

σ2

( 2c

σ2
−G(u)/µ

)−1
<∞.

This holds for all u ∈ [0, u∗] such that

2c

σ2
− G(u)

µ
> 0.

In Example 3.2, condition (4.9) is equivalent to
∞∑
n=0

∫ ∞
µ0

(λG(u)/z)n

n!

2c

σ2
e−2c(z−µ0)/σ

2
dz =

2c

σ2

∫ ∞
µ0

eλG(u)/z−2c(z−µ0)/σ2
dz <∞.
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In this model, λ is any positive constant, so this also holds for any u ∈ [0, u∗] since
supu∈[0,u∗] λG(u) <∞.

In Example 3.3, condition (4.9) is guaranteed when
∞∑
n=0

G(u)n
∫ ∞
0

∫ ∞
µ0

1

n!

(
z1
z2

)n
α1α2e

−α1z1−α2(z2−µ0)dz1dz2

=

∫ ∞
0

∫ ∞
µ0

eG(u)z1/z2α1α2e
−α1z1−α2(z2−µ0)dz1dz2

= α1α2

∫ ∞
µ0

(∫ ∞
0

e−(α1−G(u)/z2)z1dz1

)
e−α2(z2−µ0)dz2

= α1α2

∫ ∞
µ0

1

α1 −G(u)/z2
e−α2(z2−µ0)dz2

< α1α2

∫ ∞
µ0

1

α1 −G(u)/µ0
e−α2(z2−µ0)dz2

=
α1α2

α1 −G(u)/µ0
× 1

α2
=

α1

α1 −G(u)/µ0
<∞.

This will require that µ0 > supu∈[0,u∗]G(u)/α1. Other models can be treated similarly. 2

Remark 4.4. Inequality (4.9) can be deduced from the following sufficient condition:

sup
z∈Z

sup
i

λi−1(z)

µi(z)
≤ p

1− p
. (4.10)

For example, for a single-server queue, the condition in (4.10) is equivalent to

sup
z
µ−1(z)

(
λ(z)− µ(z)

p

1− p

)
≤ 0.

It indicates that, in addition to the stability condition λ(z) < µ(z), we require that
λ(z) ≤ pµ(z)/(1− p) for all z ∈ Z. For a K-server queue in Example 3.8, condition (4.10)
is equivalent to

sup
z

sup
i

λ(z)− µ(z)(i ∧K)p/(1− p)
µ(z)(i ∧K)

≤ 0.

It indicates that, in addition to the stability condition λ(z) < µ(z)K, we require that
λ(z) ≤ pµ(z)K/(1− p) for all z ∈ Z.

To check that condition (4.10) implies (4.9), we will show the following claim: There
exists a constant c ∈ (0, 1) such that for all z ∈ Z and u ∈ (0, u∗],

lim
n→∞

Gn(u) · rn(z)

Gn−1(u) · rn−1(z)
≤ c . (4.11)

Then, combining (4.11) with the observation that the term corresponding to n = 0 is
G(u)0r0(z) = 1, we get that the series inside the integral in (4.9) is estimated from above by
1 + c+ c2 + . . . = 1/(1− c). Integrating this with respect to the probability measure ν, we
complete the derivation of (4.9).

Let us now verify the claim in (4.11). We can replace G(u) = g(s) for s = q/(q − u).
Using (2.2), we can replace

rn(z)

rn−1(z)
=
λn−1(z)

µn(z)
. (4.12)
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Combining (4.12) with (4.10) and (4.8) in Remark 4.2, we get that the left-hand side of (4.11)

is bounded by c = [p/(1− p)]3/2. 2

Here is the result on exponential convergence in the first scenario, extending [31, Theorem
4.1].

Theorem 4.1. Suppose that Assumptions 3.1, 4.1, 4.2, and 4.3 hold true. Then there exists
a constant C > 0 such that for all n ∈ N and z ∈ Z, the transition probabilities for the
Markov process (N,Z) satisfy

‖P t((n, z), ·)− π(·)‖TV ≤ C(1 +G(u)n)e−κt . (4.13)

Here π(·) is given in (3.7) and κ = (1− ε)u, where ε ∈ (0, 1), and u ∈ (0, u∗] satisfy

G(u)θ(α, q, γ, u) <

(
1− α−q/γ γ

q + γ

)−ε/(1−ε)
. (4.14)

Remark 4.5. The bound (4.14) holds for some u in a right neighborhood of zero. Indeed,
its left-hand side is continuous in u, and its right-hand side is independent of u. Next, the
left-hand side value at u = 0 is equal to 1 (since G(1) = g(0) = 1, and θ(α, q, γ, 0) = 1). The
right-hand side is greater than 1 (since −ε/(1− ε) < 0). 2

Proof. We modify the proof of [31, Theorem 4.1] and rectify the coupling argument for the
joint Markov process (N,Z). The general idea of coupling is to take two copies (N1, Z1) and
(N2, Z2) of the process (N,Z) starting from initial states (n1, z1) and (n2, z2) and run them
jointly, achieving the coupling time τ = τ (n1,z1),(n2,z2) with E[eκτ ] <∞ for some constant
κ > 0. Here and below,

τ := inf{t ≥ 0 : N1(t) = N2(t), Z1(t) = Z2(t)}. (4.15)

Then Lindvall’s inequality [21] can be applied to obtain the bound

‖P t((n1, z1), ·)− P t((n2, z2), ·)‖TV ≤ E
[
eκτ

]
e−κt.

To produce the coupling, we need to first wait for the birth-death components N1, N2 being
coupled at state n = 0 and then wait until either the environment processes are coupled
or the birth-death processes have a birth in which case the coupling process restarts anew.
The main task is to estimate the expected value E[eκτ ] for the coupling time τ and identify
the exponent κ. The proof is divided into seven steps, similarly to [31, Theorem 4.1], but
some steps require substantial changes as highlighted below.

Step 1. Observe that to prove (4.13), it suffices to show

‖P t((n1, z1), ·)− P t((n2, z2), ·)‖TV ≤ (G(u)n1 +G(u)n2)e−κt.

This is because we can obtain (4.13) from the above by using the definition of the total
variation distance, and integrating with respect to (n2, z2) ∼ π; integrability is guaranteed
under Assumption 4.3. In turn, it suffices to show that

‖P t((n1, z1), ·)− P t((n2, z2), ·)‖TV ≤ G(u)n1∨n2e−κt.

Step 2. In view of Lindvall’s inequality [21], we need to prove that for the coupling time
τ , we have E

[
eκτ

]
<∞, so that

‖P t((n1, z1), ·)− P t((n2, z2), ·)‖TV ≤ 2P(τ > t) ≤ 2E
[
eκτ

]
e−κt. (4.16)
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Step 3. The coupling time τ can be written in terms of auxiliary random variables τj , ηj ,
ζj and a stopping time J . Formally:

τ =
J∑
j=0

τj + ζJ . (4.17)

Here the initial random times are defined as

τ0 := inf{t ≥ 0 | N1(t) = N2(t) = 0},
η0 := inf{t ≥ 0 : N1(τ0 + t) ∨N2(τ0 + t) = 1},
ζ0 := inf{t ≥ 0 : Z1(τ0 + t) = Z2(τ0 + t)},

where λ = supz supi λi(z). The subsequent random times are defined iteratively: for j ≥ 1,

τj := inf

t ≥ ηj−1 : N1

 ∑
0≤l≤j−1

τl + t

 = N1

 ∑
0≤l≤j−1

τl + t

 = 0

 ,

ηj := inf

t ≥ 0 : N1

 ∑
0≤l≤j

τl + t

 ∨N2

 ∑
0≤l≤j

τl + t

 = 1

 ,

ζj := inf

t ≥ 0 : Z1

 ∑
0≤l≤j

τl + t

 = Z2

 ∑
0≤l≤j

τl + t

 .

Finally, the stopping time J is defined by

J = min{j ≥ 0 : ζj < ηj}. (4.18)

Observe that if ζ0 < η0, then τ0 + ζ0 gives the coupling time τ for (N1, Z1) and (N2, Z2).
Otherwise, if ζ0 > η0 and ζ1 < η1, then τ0 + τ1 + ζ1 gives the coupling time, and so on. The
procedure continues until the coupling time τ from (4.17).

Step 4. Here we show that for processes (N1, Z1) and (N2, Z2),

E[euτk ] ≤ G(u)n1∨n2 , k = 0, 1, . . . (4.19)

First, let us study the case of τ0. Consider an embedded discrete-time Markov chain
{N∗z (l), l ≥ 0} on the state-space N with the transition probability from i to i+ 1 given by
pi(z) and that from i to i− 1 given by 1− pi(z). Cf. (4.1). Such a chain is dominated by
the Markov chain

{
N∗(l), l ≥ 0

}
on N with the transition probabilities of jumps up and

down p and 1− p. (From the left-most state n = 0 both chains jump up with probability 1.)
More precisely, let V := min{l ≥ 0 | N∗(l) = 0}. Assumption 4.1 implies the following

stochastic domination:

τ0 � U1 + . . .+ UV
where Ui ∼ Exp(q) are i.i.d. random variables independent of V .

(4.20)

Indeed, the waiting times for jumps in the processes N1 and N2 have intensity at least q,
and in both processes, the embedded chain {N∗z (l), l ≥ 0} has a stronger drift towards the
state n = 0 than the chain

{
N∗(l), l ≥ 0

}
. For Ui, the MGF is E[euUi ] = q/(q − u). Also,

E
[
eu(U1+...+UV )

]
= E

[
(E[euU1 ])V

]
= E

[(
q

q − u

)V ]
.
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Combining this with (4.7), we get the estimate (4.19) for τ0. For τi with i ≥ 1 we apply a
similar argument and get inequality (4.19) with n1 ∨ n2 replaced by 1.

Step 5. Use the same argument as in Step 5 of the proof of [31, Theorem 4.1]. Apply
Assumption 4.2 and Lemma 6.1 from Appendix B. As a result, the random variable J is
stochastically dominated by a geometric random variable J with parameter

ϑ =
γ

λ+ γ
α−λ/γ ,

which has the probability-generating function

E
[
sJ
]

=
ϑs

1− (1− ϑ)s
, s ∈ [0, 1/(1− ϑ)).

Recall, γ > 0 is the value introduced in (4.4).

Step 6. Consequently, under Assumption 4.2, by Lemma 6.1 we obtain

E
[
eu(ζk∧ηk)

]
≤ θ(α, q̄, γ, u), k = 0, 1, . . .

Step 7. Finally we derive the upper bound for the MGF of the coupling time τ . We have
from Steps 4 and 6 that

ψ(u) := E
[
eu(τk+ζk∧ηk)

]
≤ G(u)n1∨n2θ(α, q̄, γ, u).

By applying the optimal stopping theorem to the martingale

M` = exp

(
u
∑̀
k=0

(τk + ζk ∧ ηk)− ` lnψ(u)

)
, ` = 0, 1, . . . ,

and the stopping time J , we obtain that

E[MJ ] = E[M0] = E[eu(τ0+ζ0∧η0)] ≤ G(u)θ(α, q̄, γ, u).

Now, we have E[MJ ] = E
[

exp
(
u(τ − J lnψ(u))

)]
. Using Hölder’s inequality, we get

E
[

exp
(
(1− ε)uτ

)]
≤ (E[MJ ])1−ε ·

(
E[ψ(u)(1−ε)J /ε]

)ε
.

Here ε ∈ (0, 1) is the value from (4.14). Using the result in Step 5 with s = ψ(u)(1−ε)/ε, we
obtain inequality (4.13). �

4.2. The second scenario. We next consider the second scenario, starting with the
following assumption.

Assumption 4.4. In addition to (4.2), assume that there exist constants λ̄ > 0 and µ̄ > 0
such that λn(z) ≤ λ̄ and µn(z) ≥ nµ̄ for all z and n.

Remark 4.6. Assumption 4.4 applies to the models M/M/∞, M/M/K/0 and M/M/K+M
(cf. Examples 2.5 and 3.9) which do not require a stability condition like (4.3). The idea is
to use an infinite-server queue to dominate the process N in these models. For example, in
Example 3.9, one can assume that there exist constants λ̄ and µ̄ such that for all n,

sup
z
λn(z) ≤ λ̄, inf µn(z) ≥ µn.
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(Note that infz
{
µ(z)(n∧K) + (n−K)+γ(z)

}
≥ infz

{
µ(z)∧ γ(z)

}[
(n∧K) + (n−K)+

]
=

infz
{
µ(z)∧γ(z)

}
n.) Then the M/M/K+M queueing process is dominated by the birth-death

process with birth and death rates λ̄ and µ̄n, respectively. 2

We will expand on the last remark and refer to the birth-death process with rates λ and
nµ as N = (N(t), t ≥ 0), assuming that N(0) = 1. In other words, N is a M/M/∞ queueing
process; it will be used for the purpose of stochastic domination in the proof of Theorem 4.2
below. More precisely, consider the busy period

τ := inf{t > 0 : N(t) = 0}. (4.21)

The MGF G(u) = E[euτ ] is finite for all u > 0 and can be expressed by using Kummer’s
function [14, Proposition 4.1] (see also [39, Theorem 1]). The explicit expression for G(u) is
not essential for our results and omitted for brevity.

Theorem 4.2. Under Assumptions 3.1, 4.2, 4.3 and 4.4, the results in Theorem 4.1 hold
with G(u) = E[euτ ]. This includes (4.14) with ε ∈ (0, 1), u > 0, and G in place of G.

Proof. We follow the same steps as in the proof of Theorem 4.1. The arguments in Steps
1–3 and 5–7 remain valid without changes. In Step 4, we consider the MGF G(u): it is
instrumental as the above process N can be used to dominate components N1 and N2 in
the processes (N1, Z1) and (N2, Z2) with initial states (n1, z1) and (n2, z2) (cf. (4.15)). As
before, let τ = τ (n1,z1),(n2,z2) denote the coupling time for processes (N1, Z1) and (N2, Z2).
Suppose that τ satisfies

E[euτ ] ≤ G(u)n0 , where n0 = n1 ∨ n2. (4.22)

Then the rest of the argument is completed as in Theorem 4.1. Hence, we focus on the proof
of (4.22). To this end, given n, we set

τ0 = inf{t ≥ 0 | N(t) = n};

τk = inf{t ≥ τk−1 | Ñ(t+ τk−1) = n− k} for k = 1, . . . , n.

Then τn ≡ τ . Let us show that for all k = 1, . . . , n,

E[euτk ] ≤ G(u)k. (4.23)

Use induction by k. For k = 0, the bound holds trivially. For the induction step: given
k ≥ 1,

E[euτk ] = E[E[euτk | τk−1]] = E[euτk−1E[eu(τk−τk−1) | τk−1]]. (4.24)

Consider the process Ñ = {Ñ(t), t ≥ 0} where Ñ(t) = N(t+ τk−1)− (n− k). If we let it
run only until the time t = τk − τk−1, this behaves as a birth-death process with birth rate

λ and death rate µ(n− k+m) at state m, starting from Ñ(0) = 1. The hitting time of 0 by

the process Ñ (that is, the busy time) is τk − τk−1. Next, the birth rates of this new process

Ñ coincide with the birth rates of N whereas the death rates of Ñ are at least as large as in
N . Thus, τk − τk−1 is stochastically dominated by τ , the busy period in N whose MGF is
G(u), that is, τk − τk−1 � τ . Therefore, for u > 0,

E[eu(τk−τk−1) | τk−1] ≤ G(u). (4.25)

Suppose that (4.23) is true for k − 1 instead of k. Combining this assumption with (4.24)
and (4.25), we get (4.23) for k. This completes the proof of (4.23) and with it the proof
of (4.22). �
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5. Polynomial Convergence to Stationarity

In this section, instead of the conditions on the birth and death rates in Assumptions
4.1 and 4.4, we make the following Assumption 5.1 such that the joint Markov process
(N,Z) has a polynomial rate of convergence, while the generator of environment A satisfies
Assumption 4.2 with an exponential rate of convergence.

Subexponential/subgeometric convergence has been studied less than geometric. Never-
theless, over the last few decades it has amassed a substantial literature. In [13, 9] it was
studied for general continuous time Markov processes, using a modified Lyapunov condition:
LV ≤ −ϕ(V ) for a sublinear function ϕ (here L is the generator of this Markov process).
Continuous-time Markov chains on the state space N with subgeometric convergence were
studied in [23], including applications to birth-death process. Another related article is
[24], giving estimates for hitting time moments. A slightly different approach was taken in
[3]. Combining the approach from [13, 9] with stochastic ordering property, subgeometric
convergence results are also recently developed in [37]. See also the subexponential upper
and lower bounds in Wasserstein distance for general Markov processes in [34].

Assumption 5.1. There exist constants λ̄n and µ̄n such that λn(z) ≤ λ̄n and µn(z) ≥ µ̄n
for each (n, z) ∈ N × Z. Moreover, there exist a nondecreasing function V : N → [0,∞)
with V (0) = 0 and a constant CV > 0 such that the generator L of the birth-death process
N = {N(t), t ≥ 0} with rates λn and µn satisfies

LV (n) := λn(V (n+ 1)− V (n)) + µn(V (n− 1)− V (n)) ≤ −CV , n ≥ 1. (5.1)

Remark 5.1. It is clear that if λn(z) ≤ λ̄n and µn(z) ≥ µ̄n for each z and n, then the
process N can be dominated by N described above. Taking V (n) = n+ 1, the condition
in (5.1) becomes λn − µn ≤ −CV . We can rewrite it as inf

n≥1
(µn − λn) > 0. For example,

consider λn(z) = λ(z) and µn(z) = µ(z) + n1/2 with λ(z) ≡ µ(z) for all z. (This can be
regarded as a single-server queue with state-dependent service rates.) 2

In the following lemma, we drive a bound for the expected hitting time for the dominating
process under the conditions in Assumption 5.1. The proof of the lemma is postponed until
the end of this section.

Lemma 5.1. Let P
t
(n, ·) denote the transition function of the dominating process N in

Assumption 5.1. The hitting time τ0 := inf{t ≥ 0 |N(t) = 0} of 0 satisfies

En[τ0 | N(0) = n] ≤ V (n)

CV
.

The process N has a unique stationary distribution π. Furthermore, Eπ[V ] <∞, and

‖P t(n, ·)− κ(·)‖TV ≤
2(Eπ[V ] + V (n))

CV
× 1

t
, t > 0, n ∈ N. (5.2)

Now we state the main result on polynomial convergence.

Theorem 5.1. Under Assumptions 3.1, 4.2 and 5.1, there exists a constant C such that for
joint process (N,Z), we have

‖P t((n, z), ·)− π(·)‖TV ≤
C(1 + V (n))

t
, t > 0, (n, z) ∈ N×Z. (5.3)
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Proof. We again follow the approach from [31] with a seven-step proof, as in Theorems 4.1
and 4.2. Here we estimate the expectation of the coupling time directly. Under Assump-
tion 5.1, the component N in (N,Z) is dominated by N . We modify Steps 1–7 from the
proof of Theorem 4.1 as follows.

Step 1: Here we show that the stationary distribution π for the process (N,Z) satisfies
Eπ[V ] <∞. Indeed, by Assumption 5.1, this stationary distribution π for the component N
is stochastically dominated by π, the stationary distribution of the process N . Consequently,
Eπ[V ] ≤ Eπ[V ] and Eπ[V ] < ∞ by Lemma 5.1. Next, we must prove the version of (5.3)
with two starting points:

‖P t((n1, z1), ·)− P t((n2, z2), ·)‖TV ≤
C(V (n1) + V (n2))

t
. (5.4)

Similarly to Step 1 in the proof of Theorem 4.1, the bound Eπ[V ] <∞, together with (5.4),
gives us the required result (5.3).

The next six steps are devoted to the proof of (5.4). For brevity, in each step we only
highlight the changes compared to the same step in the proof of Theorem 4.1.

Step 2: Instead of (4.16), we use the Markov inequality for the coupling time τ =
τ (n−1,z1),(n2,z2):

‖P t((n1, z1), ·)− P t((n2, z2), ·)‖TV ≤ 2P(τ > t) ≤ 2E[τ ]

t
, t > 0. (5.5)

Step 3: Here we obtain the same expression for the coupling time τ as in (4.17).
Step 4: We use random variables τj , ζj , ηj as defined earlier. Instead of estimating the

MGF, we get estimates for the mean of the stopping time, and this serves as the backbone of
our proof. The required property is already established in Lemma 5.1: E[τ0] ≤ V (n1∨n2)/CV
for j = 0, and similarly with n1 ∨ n2 replaced by 1 for j ≥ 1: E[τj ] ≤ V (1)/CV . Combining
these estimates, we get:

E[τj ] ≤
V (n1 ∨ n2 ∨ 1)

CV
. (5.6)

Step 5: Recall the stopping time J in (4.18). Note that it is stochastically dominated by
a geometric random variable J with parameter ϑ = P(ζk < ηk). By Lemma 6.1, we get

ϑ =
γ

λ+ γ
α−λ/γ . (5.7)

Thus, the expectation of J is given by

E[J ] = (1− ϑ)ϑ
−1 ≤ ϑ−1 =

λ+ γ

γ
αλ/γ . (5.8)

Step 6: Continuing Step 4, we get estimates for the mean:

E [ζj ∧ ηj ] ≤ E[ηj ] ≤ λ
−1
. (5.9)

Let ξj = τj + ζj ∧ ηj . By Assumption 5.1 and (5.9), combined with (5.6), we have

E[ξk] = E [τk + ζk ∧ ηk] ≤ E[τj ] + λ
−1 ≤ Cξ :=

V (n1 ∨ n2 ∨ 1)

CV
+ λ
−1

<∞, k ≥ 1. (5.10)

Step 7: We have the following estimates of the expectation of the coupling time. Define
the random walk Sk := ξ0 + ξ1 + . . .+ ξk, k ≥ 0. Then its centered version Mk = Sk −E[Sk],
k ≥ 0, is a martingale. From the estimate (5.10), we get that the process {Sk−kCξ : k ≥ 0},
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is a supermartingale. Applying the optional stopping theorem with the stopping time J , we
get

E[SJ ] ≤ E[J ] · Cξ + E[S0].

Combining this estimate with (5.8) and (5.10), we get

E[SJ ] ≤ Cξ ·
(

1 +
λ+ γ

γ
αλ/γ

)
.

Applying Lindvall’s inequality from [22, Chapter 1] we complete the proof of (5.4), and with
it the proof of the main result (5.3). �

Proof of Lemma 5.1. We adapt the proof of [37, Theorem 1]. Assume that N(0) = n.
From the condition (5.1), we get that the process Y (t) = CV (t ∧ τ0) + V (N(t ∧ τ0)) is
a nonnegative local supermartingale. By Fatou’s lemma, it is a true supermartingale.
Then by the optional stopping theorem: E[Y (τ0)] ≤ E[Y (0)] = V (N(0)) = V (n). Next,
Y (τ0) = CV τ0 + V (N(τ0)) = CV τ0. Combining these observations, we complete the proof
that

E[τ0] ≤
V (n)

CV
. (5.11)

Next, P
t
(x, y) > 0 for all x, y ∈ N and t > 0. Apply the classification adopted in [27] on

transient, null recurrent, and positive recurrent processes with counting reference measure.
The singleton {0} has a positive reference measure. Therefore, the process N is positive
recurrent. Consequently, N has a unique stationary distribution π, and we have convergence

‖P t(n, ·)− π(·)‖TV → 0 for any initial state n. Recall the condition LV ≤ −CV . It holds
for all n ∈ N, except n = 0. Using the terminology of [27], the singleton {0} is a small set.
Thus, Eπ[V ] <∞.

Consider now two versions N1 and N0 of the process N , one starting from the state n, and
the other from the stationary distribution π (the stationary version). Both are dominated
by the version N∗ starting from n ∨ n∗ where n∗ ∼ π:

N0(t) ≤ N∗(t) and N1(t) ≤ N∗(t) for all t ≥ 0.

Hence, for the hitting time τ∗ := inf{t ≥ 0 | N∗(t) = 0} we also have N0(τ∗) = N1(τ∗) = 0.
Couple the processes N0 and N1 so that N0(t) = N1(t) = 0 for t > τ∗. By a standard
coupling argument,

‖P t(n, ·)− π(·)‖TV = sup
{∣∣P(N0(t) ∈ A

)
− P

(
N1(t) ∈ A

)∣∣ : A ⊆ N
}

≤ 2P(τ∗ > t) ≤ 2E[τ∗]

t
.

(5.12)

Here we used stationarity of the process N1: for every t ≥ 0, N1(t) ∼ π. Combining (5.12)
with (5.11) yields

‖P t(n, ·)− π(·)‖TV ≤
2E[V (n ∨ n∗)]

CV t
, n∗ ∼ π. (5.13)

Finally, let us estimate E[V (n ∨ n∗)]. Since V is nondecreasing,

V (max(n,N)) = max(V (n), V (N)) ≤ V (n) + V (N).

Taking expectation, we get

E[V (n ∨ n∗)] ≤ V (n) + E[V (n∗)] = V (n) + Eπ[V ]. (5.14)
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Combining (5.13) with (5.14), we get the estimate in the statement of Lemma 5.1. �

Remark 5.2. It is reasonable to expect that convergence of the joint process (N,Z) will
be at the slower of the two rates: the one of the birth-death process in itself and the one
of the environment process. As we have shown in Theorem 5.1, the convergence rate for
X = (N,Z) is 1/t, which is the slower of the rates for the two components. It would be
interesting to consider more general subexponential convergence rates ψ(t), such as t−α

or exp
[
−c(ln t)1−ε

]
for α, ε > 0. For example, the birth-death process with arrival rates 1

(independent of the position) and service rates a
√
n−
√
n−1 for a constant a > 1 has polynomial

rate of convergence t−c for any c > 0 (see [24, Example 1.9]). Such results would require
proving that E[ψ(SJ )] <∞, which can be harder than proving that SJ has finite mean or
finite exponential moments. It would be interesting to further investigate the polynomial
rate of convergence for such models in future work. 2

6. Appendix

6.1. Appendix A: Proofs of Theorems 2.1 and 3.1.

Proof of Theorem 2.1. The irreducibility and aperiodicity properties are straightforward.
For the measure η(n, z) in (2.9) to be finite, by Assumption 2.2,∑

(n,z)

η(n, z) =
∑
(n,z)

rn(z)v(z) = Ξ <∞.

To verify that η(n, z) in (2.9) is an invariant measure, we prove that η′R = 0:

−η(n, z)R[(n, z), (n, z)]

= η(n− 1, z)R[(n− 1, z), (n, z)] + η(n+ 1, z)R[(n+ 1, z), (n, z)]

+
∑
z′ 6=z

η(n, z′)R[(n, z′), (n, z)], n = 1, 2, . . . , z ∈ Z;

−η(0, z)R[(0, z), (0, z)]

= η(1, z)R[(1, z), (0, z)] +
∑
z′ 6=z

η(0, z′)R[(0, z′), (0, z) , n = 0 , z ∈ Z.

(6.1)

For (6.1) with n ≥ 1, the left-hand side is

η(n, z)
∑

(n′,z′)6=(n,z)

R[(n, z), (n′, z′)]

= η(n, z)
(
R[(n, z), (n+ 1, z)] +R[(n, z), (n− 1, z)] +

∑
z′ 6=z

R[(n, z), (n, z′)]
)

= rn(z)v(z)
(
λn(z) + µn(z) +

∑
z′ 6=z

rn(z)−1τn(z, z′)
)

= rn(z)v(z)
(
λn(z) + µn(z)

)
+ v(z)

∑
z′ 6=z

τn(z, z′),

and the right-hand side is equal to

rn−1(z)v(z)λn−1(z) + rn+1v(z)µn+1(z) +
∑
z′ 6=z

rn(z′)v(z′)rn(z′)−1τn(z′, z)
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= v(z)
(
rn−1(z)λn−1(z) + rn+1µn+1(z)

)
+
∑
z′ 6=z

v(z′)τn(z′, z).

We get equality thanks to the assumption in (2.6) and the detailed balance equation in (2.3).
For (6.1) with n = 0, the left-hand side is

η(0, z)
∑
z′ 6=z

R[(0, z), (0, z′)] = r0(z)v(z)
(
R[(0, z), (1, z)] +

∑
z′ 6=z

R[(0, z), (0, z′)]
)

= r0(z)v(z)
(
λ0(z) +

∑
z′ 6=z

r0(z)
−1τ0(z, z

′)
)

= r0(z)v(z)λ0(z) + v(z)
∑
z′ 6=z

τ0(z, z
′)
)
,

and the right-hand side is

r1(z)v(z)µ1(z) +
∑
z′ 6=z

r0(z
′)v(z′)r0(z

′)−1τ0(z
′, z) = r1(z)v(z)µ1(z) +

∑
z′ 6=z

v(z′)τ0(z
′, z).

This again leads to the equality thanks to (2.6) and (2.4) for n = 0. Thus we have shown
that π(n, z) in (2.8) is an invariant probability measure. The positive recurrence property
follows from [29, Theorem 3.5.3] (see also [38, Theorem 2.7.18]). The ergodicity property of
convergence in total variation follows from [26]. �

Proof of Theorem 3.1. The proof follows from an analogous argument as that of Theorem
3.1 in [31], so we only highlight the differences. We apply [20], and use their notation as
follows: let E = N×Z and U = {0, 1, . . . ,m}, where “0” indicates Z and i = 1, . . . ,m for
the faces F1, . . . , Fm of the boundary, and for n ∈ N, z ∈ Z and u ∈ U ,

µ0({u} × {n} × dz) = 1u=0rn(z)ν(dz), µ1({u} × {n} × dz) = 1u6=0rn(z)νi(dz),

µE0 ({n} × dz) = rn(z)ν(dz), νE1 ({n} × dz) = rn(z)
(
νF1(dz) + · · ·+ νFm(dz)

)
,

η0((n, z), {u}) = 1u=0, η1((n, z), {u}) = 1u6=0,

Af((n, z), u) := β−1n rn(z)Lf(n, z),

Bf((n, z), u) := 1u6=0,z∈∂Di,i=1,...,mγu(z) · ∇f(z).

To check [20, Condition 1.2] on the absolutely continuous generator A and the singular
generator B, we can verify the conditions (i)-(v) in the same way as in the proof of [31,
Theorem 3.1]. For the main condition in [20, Theorem 1.7, (1.17)], we need to show that the
generators A and B satisfy∫

E×U
Af(x, u)µ0(dx× du) +

∫
E×U

Bf(x, u)µ1(dx× du) = 0. (6.2)

By the definitions of A and B, we can write the left hand side as
∞∑
n=0

∫
Z
β−1n rn(z)Mzf(n, z)ν(dz)

+
∞∑
n=0

(∫
Z
Af(n, z)ν(dz) +

m∑
i=1

∫
Fi

γi(z) · ∇f(z)νFi(dz)

)
.

The sum of the last two terms is equal to zero, because the basic adjoint relationship holds

for the reflected jump diffusion process Z̃ (see, e.g., [49]), that is, for f ∈ C2
b (Z),∫

Z
Af(n, z)ν(dz) +

m∑
i=1

∫
Fi

γi(z) · ∇f(z)νFi(dz) = 0.
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For each z ∈ Z, the birth-death process N(t) has the stationary distribution given in (2.2)
and (2.5), which satisfy rn(z)Mzf(n, ·) = 0 for each z ∈ Z and n ∈ Z. Multiplying this by
β−1n and integrating over z ∈ Z, we get:

∞∑
n=0

∫
Z
β−1n rn(z)Mzf(n, z)ν(dz) = 0.

Thus we have verified that (6.2) holds. The rest of the proof follows the same argument as
the proof of [31, Theorem 3.1]. �

6.2. Appendix B: A Comparison Lemma.

Lemma 6.1 (Lemma 5.1 in [31]). Fix constants α > 1, β, γ > 0. Take two independent
random variables ξ ∼ Exp(β) and η > 0 with P(η > u) ≤ αe−γu for u ≥ 0. Then

P(η < ξ) ≥ α−β/γ γ

β + γ
. (6.3)

For a ∈ [0, β + γ), the moment-generating function for ξ ∧ η satisfies

E
[
ea(ξ∧η)

]
≤ θ(α, β, γ, a), (6.4)

where the function θ is defined in (4.5).
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