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Abstract. We study the ergodic control problem for a class of jump diffusions in Rd, which are
controlled through the drift with bounded controls. The Lévy measure is finite, but has no particular
structure—it can be anisotropic and singular. Moreover, there is no blanket ergodicity assumption
for the controlled process. Unstable behavior is ‘discouraged’ by the running cost which satisfies a
mild coercive hypothesis, often referred in the literature as a near-monotone condition. We first study
the problem in its weak formulation as an optimization problem on the space of infinitesimal ergodic
occupation measures, and derive the Hamilton–Jacobi–Bellman equation under minimal assumptions
on the parameters, including verification of optimality results, using only analytical arguments. We
also examine the regularity of invariant measures. Then, we address the jump diffusion model, and
obtain a complete characterization of optimality.
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1. Introduction. Optimal control of jump diffusions has recently attracted
much attention from the control community, primarily due to its applicability to
queueing networks, mathematical finance [1], image processing [2], etc. Many results
for the discounted problem are available in [3], including the game theoretic setting,
and different applications are discussed. However, studies of the ergodic control prob-
lem are rather scarce. Ergodic control of reflected jump diffusions over a bounded
domain can be found in [4]. The ergodic control problem in Rd is studied in [5], albeit
under very strong blanket stability assumptions. We should also mention here the
treatment of the impulse control problem in [6, 7, 8].

Our work in this paper is motivated from ergodic control problems for multiclass
stochastic networks in the Halfin–Whitt regime, under service interruptions. For this
model, the pure jump process driving the limiting queueing process is compound Pois-
son (see Theorem 3.2 in [9]), with a Lévy measure that is anisotropic, and in general,
singular with respect to the Lebesgue measure. In fact, the jumps are biased towards a
given direction, and thus the Lévy measure has no symmetry whatsoever. We assume
that the running cost is coercive, also known as near-monotone (see (2.3)), and do not
impose any blanket stability hypotheses on the controlled jump diffusion. We treat a
general class of jump diffusions which is abstracted from diffusion approximations of
stochastic networks, and whose controlled infinitesimal generator has the form

Au(x, z) :=
∑
i,j

aij(x)
∂2u

∂xi∂xj
(x) +

∑
i

bi(x, z)
∂u

∂xi
(x)(1.1)

+

∫
Rd

(
u(x+ y)− u(x)− 1{|y|≤1}〈y,∇u(x)〉

)
ν(x, dy) .
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Here, z is a control parameter that lives in a compact metric space Z, and ν(x, dy)
is a nonnegative finite Borel measure on Rd for each x, while x 7→ ν(x,A) is a
Borel measurable function for each Borel set A. We let K ± x denote the Minkowski
summation/subtraction for K ⊂ Rd and x ∈ Rd. Throughout the paper, we assume
that d ≥ 2. The coefficients of A are assumed to satisfy the following.

(A1) (a) The matrix a = [aij ] is symmetric, positive definite, and locally Lips-
chitz continuous. The drift b : Rd ×Z → Rd is continuous.

(b) The map

x 7→
∫
Rd

(
f(x+ y)− f(x)− 1{|y|≤1}〈y,∇f(x)〉

)
ν(x,dy)

is continuous and bounded for all f ∈ C2
c (Rd), the space of functions having

compact support and continuous second order partial derivatives.
(b) The map x 7→ ν̄(x) := ν(x,Rd) is locally bounded.
(c) the map x 7→ ν(x,K − x) is bounded on Rd for any fixed compact set K ⊂ Rd.

We compare (A1) to the following weaker hypothesis.

(A1′) Assume part (a) of (A1), but part (b) is replaced by:
(i) The map x 7→ ν̄(x) := ν(x,Rd) is locally bounded.
(ii) the map x 7→ ν(x,K − x) is bounded on Rd for any fixed compact set K ⊂ Rd.

The structural assumption on the coefficients in (A1) is in effect by default
throughout the paper. However, Assuming (A1′) only, we establish existence and
uniqueness of solutions to the ergodic HJB equation in Theorem 3.3. Note that under
(A1′), the operator A in (1.1) maps C2

c (Rd) to bounded Borel measurable functions
in Rd × Z, while under (A1) it maps the same space to continuous and bounded
functions. Continuity is essential for the standard convex analytic argument which
shows the existence of an optimal stationary Markov control, and this is the only
place where the stronger hypothesis (A1) need be used (see Theorem 2.3).

On the other hand, concerning solutions to the martingale problem associated
with A, fairly general results can be found in [10]. It can be seen from these results
that the kernel ν may be rough enough so as not to satisfy (A1), yet the martingale
problem has a solution. If this is the case, then even though we cannot follow the
convex analytic argument [11], the existence of an optimal stationary Markov control
could be asserted from the HJB equation. If, for example, the solution of the HJB
is inf-compact, or if the drift b has at most linear growth, then a control which is a
measurable selector from the minimizer renders the process ergodic, and it is standard
to show that it is optimal. Therefore, we mention at various places how the weaker
hypotheses of (A1′) can be used to establish the results.

The generator A in (1.1) covers a variety of models of jump diffusions which
appear in the literature [12, 13, 14, 15, 16]. Note also that the ‘jump rate’ ν̄(x) :=
ν(x,Rd) is allowed to be state dependent as in [17]. The hypotheses in (A1) are quite
general, and do not imply the existence of a controlled process with generator A.
Our main goal in this paper is to establish general results for ergodic control of jump
diffusions governed for this class of operators. To accomplish this, we first state the
ergodic control problem for the operator A as a convex optimization problem over
the set of infinitesimal ergodic occupation measures. We then proceed to study the
ergodic Hamilton–Jacobi–Bellman (HJB) equation via analytical methods, without
assuming that the martingale problem for A is well posed. This of course precludes
arguments that utilize stochastic representations of solutions of elliptic equations.
Later, in section 4, we specialize these results to a fairly general model of controlled



ERGODIC CONTROL OF A CLASS OF JUMP DIFFUSIONS 3

jump diffusions with finite Lévy measure.
It is well known that the standard method of deriving the ergodic HJB on Rd is

based on the vanishing discount approach, and relies crucially on structural properties
that permit uniform estimates for the gradient (e.g., viscous equations in Rd), or the
Harnack property. Recent work on nonlocal equations has resulted in important
regularity results [18, 19, 20, 21] that should prove very valuable in studying control
problems. However, most of this work concerns Lévy jump processes whose kernel
has a ‘nice’ density resembling that of a fractional Laplacian. For the problem at
hand, even though the Lévy measure ν(x, · ) is finite, and there is a nondegenerate
Wiener process component, the Lévy measure is anisotropic, and could be singular
[9, Section 3.2]. As a result, there is no hope for the Harnack property for positive
solutions to hold as the following example shows.

Example 1.1. Consider an operatorA inR2, with a the identity matrix, b = (3, 0),
and ν(x, · ) a Dirac mass at x̃ = (3, 0). Let fε ∈ C2(R2), with ε ∈ (0, 1), be defined in
polar coordinates by

fε(r, θ) := − log(r)1{r≥ε} +
(

3
4 −

r2

ε2 + r4

4ε4 − log(ε)
)
1{r<ε} .

This function is used in [22, p. 111] to exhibit a family of positive superharmonic
functions for the Laplacian that violates the Harnack property. Let uε be a function
which agrees with fε on the unit ball B1 centered at 0, and takes the values uε(r̃, θ̃) =(

4
ε2 −

4r̃2

ε4 + fε(r̃, θ̃)
)
1{r̃<ε} on the unit ball B1(x̃) centered at x̃, when expressed in

polar coordinates (r̃, θ̃) which are centered at x̃. Let uε take any nonnegative value
elsewhere in R2. Then uε is nonnegative on R2 and satisfies Auε = 0 in B. However,
uε(0,θ)
uε(e−1,θ) = − log(ε), and thus the family violates the Harnack property for A.

Under the general hypotheses of (A1), even if the operator A is the generator of a
Markov process, the process might not be regular, or, in case it is positive recurrent,
the mean hitting times to an open ball might not be locally bounded. In the latter
case, it is futile to search for solutions to the ergodic HJB equation, even in a viscosity
sense. In section 3, we add two hypotheses to address these pathologies. The first
(see (H1)), is the Feller–Has′minskĭı criterion for a diffusion process with generator
A to be regular (or conservative, or non-explosive), which requires that the equation
Au− u = 0 has no bounded positive solutions on Rd. This property is equivalent to
regularity, and it is clear from the proof of this equivalence in [23, Theorem 4.1] that
the equation can be replaced by Au−αu = 0 for α > 0. The second hypothesis, (H2),
states that under some stationary Markov control there exists a nonnegative solution
V to the Lyapunov equation AV ≤ C1B−R, where R is the running cost, B is a ball,
and C is a constant. We relax (H2), after imposing additional assumptions on ν, and
establish solutions of the Poisson equation and the HJB (see Theorems 3.6 and 3.8).

The paper is organized as follows. In subsection 1.1 we summarize the notation
we use. Section 2 states the ergodic control problem, in a weak sense, as a convex
optimization problem over the set of infinitesimal ergodic occupation measures for the
operator A, and shows that optimality is attained. Regularity properties of infinites-
imal invariant measures are in subsection 2.3. Section 3 is devoted to the study of
the HJB equation under (H1)–(H2) mentioned above. In Section 4 we study a class
of jump diffusions, which is abstracted from the limiting diffusions encountered in
stochastic networks under service interruptions.
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1.1. Notation. The standard Euclidean norm in Rd is denoted by | · |, and 〈 · , · 〉
denotes the inner product. Given two real numbers a and b, the minimum (maximum)
is denoted by a∧ b (a∨ b), respectively. The closure, boundary, complement, and the
indicator function of a set A ⊂ Rd are denoted by Ā, ∂A, Ac, and 1A, respectively.
We denote by τ(A) the first exit time of the process X from a set A ⊂ Rd, defined by
τ(A) := inf {t > 0 : Xt 6∈ A}. The open ball of radius R in Rd, centered at the origin,
is denoted by BR, and we let τR := τ(BR), and τ̆R := τ(BcR). The Borel σ-field of
a topological space E is denoted by B(E), and P(E) denotes the set of probability
measures on B(E).

For a domain Q ⊂ Rd, the space Ck(Q) (C∞(Q)), k ≥ 0, refers to the class of all
real-valued functions on Q whose partial derivatives up to order k (of any order) exist
and are continuous, while Ckc (Q) (Ckb (Q)) denote the subsets of Ck(Q), consisting of
functions that have compact support (whose partial derivatives are bounded in Q).
The space Lp(Q), p ∈ [1,∞), stands for the Banach space of (equivalence classes of)
measurable functions f satisfying

∫
Q
|f(x)|p dx <∞, and L∞(Q) is the Banach space

of functions that are essentially bounded in Q. We denote the usual norm on this
space by ‖f‖Lp(Q), p ∈ [1,∞]. The standard Sobolev space of functions on Q whose
generalized derivatives up to order k are in Lp(Q), equipped with its natural norm, is
denoted by Wk,p(Q), k ≥ 0, p ≥ 1. In general, if X is a space of real-valued functions
on Q, Xloc consists of all functions f such that fϕ ∈ X for every ϕ ∈ C∞c (Q). In this
manner we obtain, for example, the space W

2,p
loc(Q).

We adopt the notation ∂i := ∂
∂xi

and ∂ij := ∂2

∂xi∂xj
for i, j ∈ {1, . . . , d}, and we

often use the standard summation rule that repeated subscripts and superscripts are
summed from 1 through d.

2. The convex analytic formulation. Define L : C2(Rd)→ C(Rd ×Z) by

Lu(x, z) := aij(x)∂iju(x) + b̂i(x, z)∂iu(x) ,

with b̂(x, z) := b(x, z) +
∫
Rd
y 1{|y|≤1}ν(x, dy), and let

Iu(x) :=

∫
Rd

(
u(x+ y)− u(x)

)
ν(x, dy) ,

provided that the integral is finite. Thus Au(x, z) = Lu(x, z) + Iu(x). With z ∈ Z
treated as a parameter, we define Lzu(x) := Lu(x, z), and Azu(x) := Au(x, z).

Let B(Rd,Z) denote the set of Borel measurable maps v : Rd → Z. Such a map
v is called a stationary Markov control, and we use the symbol Vsm to denote this
class of controls. For v ∈ Vsm, we use the simplified notation bv(x) := b

(
x, v(x)

)
, and

define Av, Rv and %v analogously.
We augment the class Vsm by adopting the well known relaxed control framework

[24, Section 2.3]. According to this relaxation, controls take values in P(Z), the latter
denoting the set of probability measures on Z under the Prokhorov topology. Thus, a
control v ∈ Vsm may be viewed as a kernel on P(Z)×Rd, which we write as v(dz |x).
We extend the definition of b and R, without changing the notation, that is, we let
bv(x) :=

∫
Z b(x, z) v(dz |x), and analogously for Rv. We endow Vsm with the topology

that renders it a compact metric space, referred to as the topology of Markov controls
[24, Section 2.4]. A control is said to be precise if it is a measurable map from Rd to
Z, that is, if it agrees with the definition in the preceding paragraph. It is easy to see
that this relaxation preserves (A1).
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2.1. The ergodic control problem for the operator A . We fix a count-
able dense subset C of C2

0(Rd) consisting of functions with compact supports. Here,
C2

0(Rd) denotes the Banach space of functions f : Rd → R that are twice continuously
differentiable and their derivatives up to second order vanish at infinity.

Definition 2.1. A probability measure µv ∈ P(Rd), v ∈ Vsm, is called infinites-
imally invariant under Av if

(2.1)

∫
Rd
Avf(x)µv(dx) = 0 ∀ f ∈ C .

If such a µv exists, then we say that v is a stable control, and define the (infinitesi-
mal) ergodic occupation measure πv ∈ P(Rd × Z) by πv(dx, dz) := µv(dx) v(dz |x).
We denote by Vssm, M, and G, the sets of stable controls, infinitesimal invariant
probability measures, and ergodic occupation measures, respectively.

Remark 2.2. In Definition 2.1 we select C as the function space, deviating from
common practice, where this is selected as C∞0 (Rd), the space of smooth functions
vanishing at infinity. In general, there is no uniqueness of solutions to (2.1) [25].
For the relation between infinitesimally invariant measures and invariant probability
measures for diffusions we refer the reader to [26]. Note also, that as shown in [27],
in order to assert that µv is an invariant probability measure for a Markov process
with generator Av, it suffices to verify (2.1) for a dense subclass of the domain of Av
consisting of functions such that the martingale problem is well posed.

It follows from Definition 2.1 that π ∈ P(Rd×Z) is an ergodic occupation measure
if and only if

∫
Rd×Z Azf(x)π(dx, dz) = 0 for all f ∈ C. It is also easy to show that

the set of ergodic occupation measures G is a closed and convex subset of P(Rd ×Z)
(see [24, Lemma 3.2.3]).

Let R : Rd ×Z 7→ R+ be a continuous function, which we refer to as the running
cost function. The ergodic control problem for A seeks to minimize π(R) =

∫
R dπ

over π ∈ G. Thus, the optimization problem is an infinite dimensional LP. We define

(2.2) % := inf
π∈G

π(R) ,

and assume, of course, that this is finite. Also for v ∈ Vssm, we let %v := πv(R), and
we say that v is optimal if %v = %. We seek to obtain a full characterization of optimal
controls via the study of the dual problem, and this leads to the HJB equation. For
more details on this LP formulation see Section 4 in [11].

2.2. Well posedness of the control problem. We impose a structural as-
sumption on the running cost which renders the optimization problem well posed.
We say that a function h : Rd × Z → R+ is coercive relative to a constant c ∈ R, if
there exists a constant ε > 0, such that the set {x ∈ Rd : infz∈Z h(x, z) ≤ c + ε} is
bounded (or empty).

Throughout the paper, we assume that the running cost is coercive relative to %,
and we fix a ball B◦ and a constant ε◦ such that R(x, z) > %+ 2ε◦ on Bc◦. Naturally,
this property depends on %, but note that, since % < ∞, it is always satisfied if the

running cost is inf-compact on Rd ×Z. Coerciveness of R relative to % is also known
as near-monotonicity in the literature, and it is often written as

(2.3) lim inf
|y|→∞

inf
z∈Z

R(y, z) > % .
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We state the following theorem, which follows easily by mimicking the proofs of
Lemma 3.2.11 and Theorem 3.4.5 in [24], since the map (x, z) 7→ Af(x, z) is continuous
and bounded for each f ∈ C∞(Rd) by (A1).

Theorem 2.3. The map π 7→ π(R) attains its minimum in G.

2.3. Regularity properties of infinitesimal invariant measures. In this
section we establish regularity properties of the densities of infinitesimal invariant
probability measures. Recall the notation ν̄(x) = ν(x,Rd) introduced in (A1). We
say that ν is translation invariant if ν(x, · ) does not depend on x, in which case we
denote it simply as ν(dy). We need the following definition.

Definition 2.4. We decompose Az = L̃z + Ĩ, with

L̃zu(x) := Lzu(x)− ν̄(x)u(x) , and Ĩu(x) :=

∫
Rd
u(x+ y) ν(x,dy) .

Theorem 2.5. Every µ ∈ M has a density φ = φ[µ] which belongs to Lploc(R
d)

for any p ∈
[
1, d

d−2

)
, and is strictly positive. In addition, if ν is translation invariant

and has compact support, then, for any β ∈ (0, 1), there exists a constant C̄ = C̄(β,R),
such that

(2.4) |φ(x)− φ(y)| ≤ C̄ |x− y|β ∀x, y ∈ BR .

Proof. As shown in [28, Theorem 2.1], if in some domain Q ⊂ Rd, a probability
measure µ satisfies

(2.5)

∫
Q

aij∂ijf dµ ≤ C sup
Q

(
|f |+ |∇f |

)
∀f ∈ C∞c (Q)

for some constant C, then µ has a density which belongs to Lploc(Q) for every p ∈ [1, d′),
where d′ = d

d−1 . It is straightforward to verify, using only (A1′), that a bound of the
form (2.5) holds for any µ ∈M on any bounded domain Q. It follows that the density
φ of µ is in Lploc(Rd) for any p ∈ [1, d′), and that it is a generalized solution to the
equation∑

i,j

∫
Rd

(
aij(x)∂jφ(x) +

(
∂ja

ij(x)− b̂iv(x)
)
φ(x)

)
∂if(x) dx(2.6)

−
∫
Rd
ν̄(x)φ(x)f(x) dx = −

∫
Rd

∫
Rd
f(x+ y)ν(x, dy)φ(x) dx ,

for f ∈ C∞c (Rd). By (2.6), φ is a supersolution to

(2.7) L̃∗vφ(x) := ∂i
(
aij(x)∂jφ(x) +

(
∂ja

ij(x)− b̂iv(x)
)
φ(x)

)
− ν̄(x)φ(x) = 0 .

Therefore, by the estimate for supersolutions in [29, Theorem 8.18], we deduce that
φ ∈ Lploc(Rd) for any p ∈

[
1, d

d−2

)
, and that it is strictly positive. Note that this

theorem assumes that the supersolution is in W
1,2
loc(Rd), but this is unnecessary. The

theorem is valid for functions in W
1,p
loc(Rd) for any p > 1, as seen from the results in

Section 5.5 of [30], or one can use the mollifying technique in [24, Theorem 5.3.4] to
show this.

Now suppose that ν is translation invariant and has compact support. Let
Îφ(x) :=

∫
Rd

φ(x − y) ν(dy). Then (2.6) takes the form L̃∗vφ(x) = −Îφ(x). The
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operator L̃∗v satisfies the hypotheses of Theorem 5.5.5′ in [30], which asserts that φ
satisfies

(2.8) ‖φ‖W1,q(BR) ≤ κ(p,R)
(
‖Îφ‖Lp(B2R) + ‖φ‖L1(B2R)

)
∀ p > 1 ,

with q = q(p) := dp
d−p , and a constant κ(p,R) that depends also on d, ν̄, and the

bounds in (A1′). Without loss of generality, suppose that ν is supported on a ball
BR◦ . By Minkowski’s integral inequality we have

(2.9) ‖Îφ‖Lp(B2R) ≤ ν̄ ‖φ‖Lp(B2R+R◦ ) .

On the other hand, by the Sobolev embedding theorem, W1,q(BR) ↪→ Lr(BR) is a
continuous embedding for q ≤ r ≤ qd

d−q and q < d, and W1,q(BR) ↪→ C0,r(BR) is

compact for r < 1 − d
q and q > d. Therefore, starting say from p = d

d−1 , we deduce

by repeated applications of (2.8)–(2.9), and Sobolev embedding, that φ ∈ W
1,q
loc(Rd)

for any q > 1, which implies (2.4).

Remark 2.6. Consider a jump diffusion with σ =
√

2, b(x) = x1B̄1
(x), and

ν(x, dy) = δ−x, where δ−x denotes the Dirac mass at −x. Then A = ∆ − 1 + δ0.
It can be easily verified that the diffusion is geometrically ergodic by employing the
Lyapunov function V(x) = |x|2. The density of the invariant measure φ satisfies∫ ∑

ij(∂iφ)(∂jf) +
∫
φf = f(0) for all f ∈ C∞c (Rd), and thus it is a solution of

−∆φ + φ = δ0 (viewed in the sense of distributions D′(Rd)). However, as shown
in [31], every positive solution φ of this equation, which vanishes at infinity, satisfies
φ(x) ∼ Γ(x) as x → 0, where Γ denotes the fundamental solution of −∆ in Rd.
Thus the density of the invariant measure in the vicinity of x = 0 is not any better
than what is claimed in the first step in the proof, which shows that it belongs to
Lploc(Rd) for p < d

d−2 . One can select the jumps to induce multiple such singularities,
and generate very pathological examples. Thus, in general, the hypothesis that ν is
translation invariant cannot be relaxed in Theorem 2.5, unless we assume that ν has
a suitable density as shown in Corollary 2.8 below.

Definition 2.7. We say that ν has locally compact support if there exists an
increasing map γ : (0,∞)→ (0,∞) such that ν(x, x+Bcγ(R)) = 0 for all x ∈ BR. Let

γ̂(R) := R + γ(R). It follows from this definition that Bγ̂(R) contains the support of
ν for all x ∈ BR.

Corollary 2.8. Assume that ν has locally compact support, and that it has a
density ψx ∈ Lp1loc(R

d) for some p1 > d
2 , satisfying the following: for some p2 ∈(

1, d
d−2

)
, it holds that∫

Bγ(R)

(∫
Bγ̂(R)

|ψx(y)|pi dy

) 1
pi−1

dx < ∞ , i = 1, 2 , ∀R > 0 .

Then (2.4) holds.

Proof. Note that∫
Rd

(∫
Rd
f(x+ y)ψx(y) dy

)
φ(x) dx =

∫
Rd
f(z)

(∫
Rd
ψz−y(y)φ(z − y) dy

)
dz

=

∫
Rd
f(z)

(∫
Rd
ψz(z − a)φ(a) da

)
dz .
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Therefore, Îφ(x) =
∫
Rd
ψa(x− a)φ(a) da. By the Minkowski integral inequality and

the Hölder inequality, we obtain

∥∥Îh(z)
∥∥
Lp(BR)

=

(∫
BR

(∫
Bγ(R)

ψa(z − a) |h(a)|da
)p

dz

)1/p

≤
∫
Bγ(R)

|h(a)|
(∫

BR

|ψa(z − a)|p dz

)1/p

da

≤ ‖h‖Lp(Bγ(R))

(∫
Bγ(R)

(∫
BR

|ψa(z − a)|p dz

)1/(p−1)

da

)(p−1)/p

≤ ‖h‖Lp(Bγ(R))

(∫
Bγ(R)

∥∥ψa∥∥p/(p−1)

Lp(Bγ̂(R))
da

)(p−1)/p

.

Therefore, the map Îh is a linear mapping from Lp1(Bγ(R)) ∪ Lp2(Bγ(R)) into
Lp1(BR) ∪ Lp2(BR) and satisfies

∣∣{x ∈ BR : |Îh(x)| > t
}∣∣ ≤ C

‖h‖Lpi (Bγ(R))

t pi

for some constant C, for all h ∈ Lpi(BR), i = 1, 2. Here, |A| denotes the Lebesgue
measure of a set A. Thus, by the Marcinkiewicz interpolation theorem, it extends to
a bounded linear map from Lp(Bγ(R)) into Lp(BR) for any p ∈ (p1, p2). The result
then follows as in the proof of Theorem 2.5.

Remark 2.9. It is evident from Corollary 2.8 that if ν has locally compact support
and a density ψx ∈ Lp(Rd) for some p > d

2 , such that x 7→ ‖ψx‖Lp(Rd) is locally
bounded, then the density of an infinitesimal invariant measure is Hölder continuous.

3. The HJB equations. We first discuss the relationship between infinitesimal
invariant probability measures and Foster–Lyapunov equations. Next, we derive the
α-discounted HJB equation, and proceed to study the ergodic HJB equation using
the vanishing discount approach. The treatment is analytical, and we refrain from
using any stochastic representations of solutions. We state hypothesis (H1) which was
discussed in section 1.

(H1) For any v ∈ Vsm, and α > 0, the equation Avu− αu = 0 has no bounded

positive solution u ∈W
2,d
loc(Rd).

3.1. On the Foster–Lyapunov equation. Consider the hypothesis:

(H2) There exist v̂ ∈ Vsm, a nonnegative V ∈ C2(Rd), and a positive constant
κ0 such that

(3.1) Av̂V(x) ≤ κ01B◦(x)− Rv̂(x) ∀x ∈ Rd ,

where without loss of generality, and in the interest of notational simplicity, we use
the same ball B◦ as the one introduced in subsection 2.2.

On the other hand, % is finite if and only if

(H3) There exist v̂ ∈ Vssm, and a probability measure µv̂ which solves (2.1), and
µv̂(Rv̂) =

∫
Rv̂ dµv̂ <∞.

For continuous diffusions, equivalence of (H2) and (H3) is a celebrated result of
Has′minskĭı [32]. It is pretty straightforward to show, using probabilistic arguments,
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that (H2)⇒ (H3), and this is in fact true for a large class of Markov processes. An
analytical argument for continuous diffusions can be found in the work of Bogachev
and Röckner [33], under the hypothesis that Rv̂ is inf-compact. The argument offered
by Has′minskĭı in the proof that (H3)⇒ (H2) relies crucially on the Harnack property,
and therefore is not applicable for the jump diffusions considered here. In the context
of general Markov processes, existence of a solution to (3.1) is related to the f -
regularity of the process. For recent work on this, see [34].

In some sense, (H2) is a very mild assumption, since in any application one
would first need to establish that % is finite, and the natural venue for this is via
the Foster–Lyapunov equation in (3.1). A typical example is when ν is translation
invariant, a has sublinear growth, and for some θ ∈ [1, 2],

∫
Rd
|y|θν(dy) < ∞, Rv̂

grows at most as |x|2(θ−1), and there exist a positive definite symmetric matrix S,
and positive constants c0 and c1 such that 〈bv̂(x), Sx〉 ≤ c0− c1|x|θ. Then (3.1) holds
with V(x) = 〈x, Sx〉θ/2. For other examples, see [9, Corollary 5.1].

Consider the class of ν that are either translation invariant and have compact
support, or satisfy the hypotheses of Corollary 2.8, and denote it by N0 for conve-
nience. For ν ∈ N0, we bridge the gap between (H2) and (H3) in Theorem 3.6 by
establishing the existence of a solution to the Poisson equation, and thus showing
that (H3)⇒ (H2), albeit for a function V ∈ W

2,p
loc(Rd). This however is enough to

relax (H2) in asserting the existence of a solution to the ergodic HJB for ν ∈ N0

(Theorem 3.8). Moreover, the proof of Theorem 3.8 contains an analytical argument
which shows that (H2)⇒ (H3), provided that ν ∈ N0, and Rv̂ is inf-compact.

We need the following simple assertion.

Lemma 3.1. Let µv be an infinitesimal invariant measure under v ∈ Vssm. Then
(2.1) holds for all ϕ ∈W

2,p
loc (Rd) ∩ Cc(Rd), p > d. In addition, if ϕ ∈ W

2,p
loc , p > d, is

inf-compact, and such that Avϕ ∈ Ldloc(Rd), and is nonpositive a.e. on the complement
of some ball B ⊂ Rd, then µv

(
|Avϕ|

)
<∞.

Proof. In the interest of simplicity, we drop the explicit dependence on v in the
notation. Suppose ϕ ∈W

2,p
loc(Rd) ∩ Cc(Rd), p > d. Let ρ be a symmetric nonnegative

mollifier supported on the unit ball centered at the origin, and for ε > 0, let ρε(x) :=
r−dρ(xε ), and ϕε := ρε ∗ϕ, where ‘∗’ denotes convolution. Then, µ(Aϕε) = 0 by (2.1).
Since ∂ijϕε converges to ∂ijϕ as ε↘ 0 in Lp(BR) for any p > 1 and R > 0, and since

µ has a density φ ∈ L
d
d−1

loc (Rd) by Theorem 2.5, it follows by Hölder’s inequality that∫
Rd
|aij ||∂ijϕ−∂ijϕε|dµ→ 0 as ε↘ 0. Also, since ∂iϕ−∂iϕε converges uniformly to 0,

and in view of (A1′) (b) and (c), we obtain µ(b̂i∂iϕε)→ µ(b̂i∂iϕ), and µ(Iϕε)→ µ(Iϕ)
as ε↘ 0. This shows that µ(Aϕ) = 0.

We now turn to the second statement of the lemma. Let χ be a concave C2(Rd)
function such that χ(x) = x for x ≤ 0, and χ(x) = 1 for x ≥ 2. Then χ′ and −χ′′
are nonnegative on (0, 1). Define χR(x) := R+ χ(x−R) for R > 0, and observe that
χR(ϕ)−R− 1 is compactly supported by construction. We have

(3.2) AχR(ϕ) = χ′R(ϕ)Aϕ+ χ′′R(ϕ) 〈∇ϕ, a∇ϕ〉 −
(
χ′R(ϕ)Iϕ− IχR(ϕ)

)
.

Note that the second and third terms on the right-hand side of (3.2) are nonpositive.
Also, since ϕ ∈W

2,p
loc(Rd) and Avϕ ∈ Ldloc(Rd), then Lϕ and Iϕ are both in Ldloc(Rd),

and hence are locally integrable with respect to µ. Let B be the ball with the stated
property and select any R such that BR ⊃ B. Therefore, integrating (3.2) with respect
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to µ and applying (2.1), and using also the nonpositivity of Aϕ on Bc, we obtain∫
B

Aϕdµ−
∫
Rd\B

χ′R(ϕ) |Aϕ|dµ ≥ 0 .

Hence, letting R→∞, we obtain∫
Rd\B

|Aϕ|dµ ≤
∫
B

Aϕdµ < ∞

by monotone convergence, from which the result follows.

3.2. The α-discounted HJB equation. We have the following theorem.

Theorem 3.2. Assume (H1)–(H2). For any α ∈ (0, 1), there exists a minimal
nonnegative solution Vα ∈W

2,p
loc (Rd), for any p > 1, to the HJB equation

(3.3) min
z∈Z

[
Az Vα(x) + R(x, z)

]
= αVα(x) .

Moreover, infRd αVα ≤ %, and this infimum is attained in the set

Γ◦ :=
{
x ∈ Rd : sup

z∈Z
R(x, z) ≤ %

}
.

Proof. Establishing the existence of a solution is quite standard. One starts by
exhibiting a solution ψα,R ∈W2,p(BR) ∩ C(Rd) to the Dirichlet problem

(3.4)

{
minz∈Z

[
Azψα,R(x) + R(x, z)

]
= αψα,R(x) x ∈ BR ,

ψα,R(x) = 0 x ∈ BcR ,

for any α ∈ (0, 1) and R > 0.

We use Definition 2.4 to write A = L̃ + Ĩ. Applying the well known interior
estimate in [29, Theorem 9.11], for any fixed r > 0, we obtain∥∥ψα,R∥∥W2,p(Br)

≤ C
(∥∥ψα,R∥∥Lp(B2r)

+
∥∥Rvα + Ĩ ψα,R

∥∥
Lp(B2r)

)
for some constant C = C(r, p). Here, vα is a measurable selector from the minimizer
of the α-discounted HJB in (3.3). Let Ṽ := κ0

α + V − ψα,R. By (3.1) and (3.4), the

function Ṽ satisfies Av̂Ṽ−αṼ ≤ 0 on BR, and is positive on BcR. Thus it is nonnegative
on BR by the strong maximum principle. This of course implies that ψα,R ≤ κ0

α + V

on Rd. Thus {ψα,R} is bounded in W2,p(Br), uniformly in R. We then take limits as

R→∞ to obtain a function Vα ∈W
2,p
loc(Rd) which solves (3.3).

Let mα := infRd Vα. We claim that αmα ≤ %. Suppose on the contrary that
αmα > %. Let v ∈ Vssm. Recall the function χ in the proof of Lemma 3.1, and let

χ̃(x) := −χ(
%

2 + 2−x). Note that χ̃′′ ≥ 0, and χ̃′(ψα,R)Iψα,R−Iχ̃(ψα,R) ≤ 0. Thus,
using (3.4) and repeating the calculation in (3.2) we obtain

(3.5) Avχ̃(ψα,R) ≥ χ̃′(ψα,R)Avψα,R ≥ χ̃′(ψα,R)
(
αψα,R − Rv

)
.

It is clear that χ̃(ψα,R) ∈W
2,p
loc(Rd) ∩ Cc(Rd), for any p > 1. Hence, integrating (3.5)

with respect to µv, applying Lemma 3.1, and taking limits as R→∞, using monotone
convergence, we obtain αmα ≤ µv(αVα) ≤ µv(Rv). Taking the infimum over v ∈ Vssm

contradicts the hypothesis that αmα > %, and thus proves the claim.
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Recall the definition ε◦ in subsection 2.2. Let ṽ ∈ Vsm be a measurable selector
from the minimizer of (3.4) and consider the Dirichlet problem

(3.6)

{
Aṽψ̃α,R(x) + Rṽ(x) = αψ̃α,R(x) x ∈ BR ,
ψ̃α,R(x) = α−1(%+ ε◦) x ∈ BcR ,

for α ∈ (0, 1) and R > 0. Arguing as in the derivation of (3.4), it follows that ψ̃α,R
converges, as R → ∞, to some Ṽα ∈ W

2,p
loc(Rd) which solves AṽṼα + Rṽ(x) = αṼα

on Rd. It is straightforward to show that u = Ṽα − Vα is nonnegative and bounded.
Indeed, since uR := ψ̃α,R−ψα,R satisfies AṽuR−αuR = 0 on BR and uR = α−1(%+ε◦)
on BcR, an application of the strong maximum principle shows that uR is nonnegative
and bounded above by α−1(% + ε◦) on BR. Continuing, since Aṽu − αu = 0 on

Rd, it follows by (H1) that u cannot be strictly positive, and, in turn, by the strong
maximum principle it has to be identically zero. Thus, given ε < ε◦ there exists Rε
such that minBR αψ̃α,R < %+ε for all R > Rε. It follows by (3.6) that ψ̃α,R attains its

minimum in the set Γε := {x ∈ Rd : Rṽ(x) ≤ %+ ε} for all R > Rε, and therefore, the

same applies to Ṽα. Since ε > 0 is arbitrary, we conclude that Ṽα attains its infimum
in the set {x ∈ Rd : Rṽ(x) ≤ %} ⊂ Γ◦, and this completes the proof.

3.3. The ergodic HJB equation. We start with the main convergence result of
the paper which establishes solutions to the ergodic HJB via the vanishing discount
method. To guide the reader, the technique of the proof consists of writing the
operator in the form L̃ + Ĩ, and obtaining estimates for supersolutions of the local
operator L̃ using the results in [35, Corollary 2.2]. Recall the definition of the ball B◦
in subsection 2.2.

Theorem 3.3. Grant the hypotheses of Theorem 3.2, and let Vα, α ∈ (0, 1), be
the family of solutions in that theorem. Then, as α ↘ 0, Vα − Vα(0) converges in
C1,r(BR) for any r ∈ (0, 1) and R > 0, to a function V ∈ W

2,p
loc (Rd) for any p > 1,

which is bounded from below in Rd and solves

(3.7) min
z∈Z

[
Az V (x) + R(x, z)

]
= % ,

with % = %. Also αVα(x) → % uniformly on compact sets, and V − supB◦
V ≤ V on

Rd. In addition, the solution of (3.7) with % = % is unique in the class of functions

V ∈W
2,d
loc (Rd), satisfying V (0) = 0, which are bounded from below in Rd. For % < %,

there is no such solution.

Proof. Recall the definitions of B◦ and ε◦ in subsection 2.2, and recall that B◦ is
also the ball used in (H2). Fix an arbitrary ball B ⊂ Rd such that B◦ ⊂ B. Since
V and Vα are a supersolution and subsolution of Av̂u − αu = −Rv̂ on Bc by (3.1),
respectively, it is straightforward to establish using the comparison principle that the
solution Vα of (3.3) satisfies

(3.8) Vα(x) ≤ sup
B

Vα + V(x) ∀x ∈ Rd .

Indeed, choose any R such that B ⊂ BR, and with ψα,R denoting the solution of

(3.4), define ψ̂α,R(x) := supB ψα,R+V(x)−ψα,R(x). Then ψ̂α,R satisfies Av̂ψ̂α,R ≤ 0

on BR \ B̄, and ψ̂α,R ≥ 0 on BcR ∪ B̄. By the strong maximum principle, we obtain
ψα,R(x) ≤ supB ψα,R + V(x) for x ∈ BR. Since this inequality holds for all such
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R > 0, and ψα,R converges to Vα as R→∞, uniformly on compacta, as shown in the
proof of Theorem 3.2, the inequality in (3.8) follows.

By Theorem 3.2 we have infRd Vα = minB◦ Vα for all α ∈ (0, 1). For each
α ∈ (0, 1), we fix some point x̂α ∈ Arg minVα ⊂ B◦. Consider the function ϕα :=
Vα − Vα(x̂α). Then (3.8) implies that

(3.9) ϕα(x) ≤ ‖ϕα‖L∞(B) + V(x) ∀x ∈ Rd .

We have

min
z∈Z

[
Azϕα(x)− αϕα(x) + R(x, z)

]
= αVα(x̂α) ≤ % ,

where the last inequality follows by Theorem 3.2. We claim that for each R > 0 there
exists a constant κR such that

(3.10) ‖ϕα‖L∞(BR) ≤ κR ∀α ∈ (0, 1) .

To prove the claim, let B ≡ BR, and D1, D2 be balls satisfying B b D1 b D2. Recall

Definition 2.4. For p > 0, let ‖u‖p;Q :=
(∫
Q
|u(x)|dx

)1/p
. Of course, this is not a norm

unless p ≥ 1, so there is a slight abuse of notation involved in this definition. Since
V ∈ C2(Rd), hypothesis (H2) implies that ĨV ∈ L∞loc(Rd), and the same of course

holds for Ĩϕα by (3.9). By the local maximum principle [29, Theorem 9.20], for any
p > 0, there exists a constant C̃1(p) > 0 such that

‖ϕα‖L∞(B) ≤ C̃1(p)
(
‖ϕα‖p;D1

+ ‖Ĩ ϕα‖Ld(D1) + ‖Rvα‖Ld(D1)

)
,

and by the supersolution estimate [29, Theorem 9.22], and since ϕα is nonnegative,
there exist some p > 0 and C̃2 > 0 such that ‖ϕα‖p;D1

≤ C̃2 % |D2|1/d. Combining
these inequalities, we obtain

(3.11) ‖ϕα‖L∞(B) ≤ C̃1(p)
(
C̃2 % |D2|

1/d + ‖Rvα‖Ld(D1)

)
+ C̃1(p)‖Ĩ ϕα‖Ld(D1) .

Denote the first term on the right-hand side of (3.11) by κ1. By (3.9) and (3.11) we
have

‖ϕα‖L∞(D2) ≤ ‖V‖L∞(D2) + ‖ϕα‖L∞(B)

≤ κ1 + ‖V‖L∞(D2) + C̃1(p) ‖Ĩ ϕα‖Ld(D1) .

This implies that, either ‖ϕα‖L∞(D2) ≤ 2
(
κ1 +‖V‖L∞(D2)

)
, in which case (3.10) holds

with this bound, or

(3.12) ‖ϕα‖L∞(D2) ≤ 2C̃1(p) ‖Ĩ ϕα‖Ld(D1) .

If (3.12) holds, then we write Ĩ ϕα = Ĩ(1D2
ϕα) + Ĩ(1Dc2ϕα), and use the estimate

Ĩ(1Dc2ϕα)(x) ≤ ‖ϕα‖L∞(B)

(
sup
x∈D1

ν(x,Dc
2 − x)

)
+ Ĩ(1Dc2V)(x) ∀x ∈ D1 ,

which holds by (3.9), together with (3.11) and (3.12), to obtain

‖Ĩ ϕα‖L∞(D1) ≤ 2C̃1(p) ‖ν̄‖L∞(D1) ‖Ĩ ϕα‖Ld(D1)(3.13)
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+ κ1‖ν̄‖L∞(D1) + ‖Ĩ(1Dc2V)‖L∞(D1) .

We distinguish two cases from (3.13):
Case 1. Suppose that

(3.14) ‖Ĩ ϕα‖L∞(D1) ≤ 4C̃1(p) ‖ν̄‖L∞(D1) ‖Ĩ ϕα‖Ld(D1) .

Let ψα be the solution of the Dirichlet problem

L̃vαψα − αψα = −Ĩ ϕα in D1 , and ψα = ϕα on ∂D1 ,

with vα a measurable selector from the minimizer in (3.3). Then ψα is nonnegative in
D1 by the strong maximum principle, and thus (3.14) together with [35, Corollary 2.2],
implies that for some constant CH we have

(3.15) ψα(x) ≤ CH ψα(x̂α) ∀x ∈ B , ∀α ∈ (0, 1) .

On the other hand, ϕα − ψα satisfies

(3.16) L̃vα(ϕα − ψα)− α(ϕα − ψα) = αVα(x̂α)− Rvα in D1 ,

and ϕα − ψα = 0 on ∂D1. Thus, by the ABP weak maximum principle [29, Theo-
rem 9.1], and since αVα(x̂α) ≤ %, we obtain from (3.16) that

(3.17) ‖ϕα − ψα‖L∞(D1) ≤ C◦ ∀α ∈ (0, 1) ,

for some constant C◦. Equation (3.17) implies that ψα(x̂α) ≤ C◦. Combining (3.15)
and (3.17) in the standard manner, we obtain

ϕα(x) ≤ ‖ϕα − ψα‖L∞(D1) + ψα(x)(3.18)

≤ C◦ + CH ψα(x̂α) ≤ C◦(1 + CH) ∀x ∈ B , ∀α ∈ (0, 1) .

Case 2. Suppose that

‖Ĩ ϕα‖L∞(D1) ≤ 2κ1‖ν̄‖L∞(D1) + 2 ‖Ĩ(1Dc2V)‖L∞(D1) .

In this case, we consider the solution ψ̃α of the Dirichlet problem

L̃vα ψ̃α − αψ̃α = 0 in D1 , and ψ̃α = ϕα on ∂D1 .

We have ψ̃α(x) ≤ C̃H ψ̃α(x̂α) for all x ∈ B and α ∈ (0, 1), for some constant C̃H. Also,

(3.19) L̃vα(ϕα − ψ̃α)− α(ϕα − ψα) = −Ĩ ϕα + αVα(x̂α)− Rvα in D1 ,

and ϕα − ψ̃α = 0 on ∂D1. By the ABP weak maximum principle, we obtain from
(3.19) that ‖ϕα − ψ̃α‖L∞(D1) ≤ C̃◦ for all α ∈ (0, 1) and for some constant C̃◦. Thus

again we obtain (3.18) with constants C̃◦ and C̃H. This establishes (3.10).
It follows by (3.10) that V α := Vα − Vα(0) = ϕα(x) − ϕα(0) is locally bounded,

uniformly in α ∈ (0, 1). The same applies to Ĩ V α by (3.9) and (H2). Note that

L̃vαV α − αV α = αVα(0)− Rvα − Ĩ V α on Rd .
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Thus, by the interior estimate in [29, Theorem 9.11], there exists a constant C =
C(R, p) such that∥∥V α∥∥W2,p(BR)

≤ C
(∥∥V α∥∥Lp(B2R)

+
∥∥αVα(0)− Rvα − Ĩ V α

∥∥
Lp(B2R)

)
.

Hence {V α} is bounded in W2,p(BR) for any R > 0. A standard argument then shows
that given any sequence αn ↘ 0, {V αn} contains a subsequence which converges in
C1,r(BR) for any r < 1− d

p (see, for example, Lemma 3.5.4 in [24]). Taking limits in

(3.20) min
z∈Z

[
AzV α(x)− αV α(x) + R(x, z)

]
= αVα(0)

along this subsequence we obtain (3.7), as claimed in the statement of the theorem,
for some % ∈ R. Since lim supα↘0 αVα(x̂α) ≤ %, we have % ≤ %. On the other hand,
from the theory of infinite dimensional LP [36] it is well known that the value of the
dual problem cannot be smaller than the value of the primal, hence % ≥ %, and we

have equality (see also Section 4 in [11]). That V − supB◦
V ≤ V on Rd follows by

(3.9) with B = B◦.

Suppose now that Ṽ ∈W
2,d
loc(Rd) is bounded from below in Rd, and satisfies

(3.21) min
z∈Z

[
Az Ṽ (x) + R(x, z)

]
= %̃

with %̃ ≤ %. Let ṽ ∈ Vsm be an a.e. measurable selector from the minimizer of (3.21).

Using the equation AṽṼ = %̃− Rṽ, in lieu of (3.1) in (H2), then, as we have already
shown, the solution V derived as the limit of Vα− Vα(0) satisfies V − supB V ≤ Ṽ on

Rd for some ball B. It is then clear that if we translate Ṽ by an additive constant
until it first touches V at some point from above, it has to touch it at some point
in B. Thus the function φ := Ṽ − V − infB (Ṽ − V ) is nonnegative on Rd, satisfies
Aṽφ ≤ %̃ − %, and φ(x̃) = 0 for some x̃ ∈ B. By the strong maximum principle we

must have %̃ = % and φ ≡ 0 on Rd. It is evident from the uniqueness of the solution,
that the limit of (3.20) is independent of the subsequence αn ↘ 0 chosen. It is also
clear that αVα(x) → % as α ↘ 0, uniformly on compact sets. This completes the
proof.

Remark 3.4. If ν is translation invariant and has compact support, and R and b
are locally Hölder continuous in x, then ĨV is locally Hölder continuous, and thus the
solution V in Theorem 3.3 is in C2,r(Rd) for some r ∈ (0, 1) by elliptic regularity [29,
Theorem 9.19].

3.3.1. Verification of optimality. We start with the necessity part.

Theorem 3.5. Assume the hypotheses of Theorem 3.3. If v ∈ Vssm is optimal,
then it satisfies

(3.22) biv(x) ∂iV (x) + Rv(x) = inf
z∈Z

[
bi(x, z)∂iV (x) + R(x, z)

]
a.e. x ∈ Rd .

Proof. Suppose not. Then there exists some ball B such that

(3.23) h(x) :=
(
biv(x) ∂iV (x) + Rv(x)− inf

z∈Z

[
bi(x, z)∂iV (x) + R(x, z)

])
1B(x)

is a nontrivial nonnegative function. Since ∂iVα converges uniformly to ∂iV as α↘ 0
on compact sets by Theorem 3.3, it follows that if we define hα as the right-hand
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side of (3.23), but with V replaced by Vα, then h− hα converges to 0 a.e. in B, and
also µv(|h − hα|) → 0 as α ↘ 0, since µv has a density in Lploc(Rd) for some p > 1.
We have AvVα ≥ αVα + hα − Rv a.e. on Rd by the definition of hα. Repeating the
same argument using the solution in (3.4) ψα,R instead of V in (3.23), we deduce that
there exists hα,R supported on B such that µv(|hα,R − hα|) → 0 as R → ∞, and
Avψα,R ≥ ψα,R + hα,R − Rv. Thus, as in the derivation of (3.5) using the function

χ̆(x) := −χ(
%

2 + 2− x), with χ as defined in the proof of Lemma 3.1, we obtain

(3.24) Avχ̃(ψα,R) ≥ χ̃′(ψα,R)Avψα,R ≥ χ̃′(ψα,R)
(
αψα,R + hα,R − Rv

)
.

Hence, integrating (3.24) with respect to µv, applying Lemma 3.1, and taking limits
as R → ∞, using the property that that µv(|hα,R − hα|) → 0 as R → ∞, we obtain
µv(Rv) ≥ µv(αVα) + µv(hα). By the proof of Theorem 3.3 infRd αVα → % as α↘ 0.
Thus, taking limits as α ↘ 0, we obtain µv(h) ≤ 0, and since µv has everywhere
positive density, this implies h = 0 a.e.

Concerning the sufficiency part of the verification of optimality, or in other words,
that any v ∈ Vsm which satisfies (3.22) is necessarily optimal, the probabilistic
argument has a clear advantage here. With v∗ an a.e. measurable selector from
the minimizer of (3.22), the HJB takes the form of the Foster–Lyapunov equation
Av∗V = % − Rv∗ , which shows that the controlled process is ergodic (provided that
the martingale problem has a solution under v∗). It then follows by a straightforward
application of Itô’s formula and Birkhoff’s ergodic theorem that v∗ is optimal.

3.4. On waiving hypothesis (H2). In this section we do not assume (H2).
Recall Definition 2.7. We impose additional assumptions on ν to establish existence
of solutions to the Poisson equation.

Theorem 3.6. We assume (H1) and one of the following:
(a) ν = ν is translation invariant and has compact support.
(b) ν has locally compact support and satisfies the hypotheses of Corollary 2.8.

Let v̂ ∈ Vssm be such that Rv̂ is coercive relative to %v̂. Then, up to an additive
constant, there exists a unique V̂ ∈W

2,d
loc (Rd) which is bounded from below in Rd, and

satisfies

(3.25) Av̂ V̂ (x) + Rv̂(x) = β ∀x ∈ Rd ,

for some β = %v̂. For β < %v̂, there is no such solution.

Proof. For n ∈ N, let Rn = n∧R denote the n-truncation of the running cost. It is
clear that Rn is coercive relative to %v̂ for all n > %v̂. Let ψ̂nα,R ∈W2,p(BR)∩W1,p

0 (BR)
be the unique solution of the Dirichlet problem{

Av̂ψ̂nα,R(x) + Rnv̂ (x) = αψ̂nα,R(x) x ∈ BR ,
ψ̂nα,R(x) = 0 x ∈ BcR .

It is clear that ‖ψ̂nα,R‖L∞(Rd) ≤ n
α , and this is inherited by the function V̂ nα at the limit

R → ∞. Thus, by the proof of Theorem 3.2, V̂ nα is in W
2,p
loc(Rd) for any p ≥ 1, and

satisfies Av̂ V̂ nα + Rnv̂ = αV̂ nα . Repeating the argument in the proof of Theorem 3.3,

the infimum of V̂ nα over Rd is attained in a ball B◦ as defined in subsection 2.2
(relative to %v̂), and if x̂nα ∈ B◦ denotes a point where the infimum is attained, then

αV̂ nα (x̂nα) ≤ %v̂. With ϕnα := V̂ nα − V̂ nα (x̂nα), we write the equation as

L̃v̂ϕnα(x)− αϕnα(x) = αV̂ nα (x̂nα)− Rnv̂ (x)− Ĩϕnα(x)(3.26)
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≤ %v̂ − Rn(x)− Ĩϕnα(x) a.e. x ∈ Rd .

We express (3.26) in divergence form as

∂j
(
aij∂iϕ

n
α

)
+
(
b̂i − ∂iaij

)
∂iϕ

n
α − ν̄ϕnα ≤ %v̂ − Rv̂ − Ĩϕnα ,

and apply [29, Theorem 8.18] to obtain
∥∥ϕnα∥∥Lp(B2R(x0))

≤ %v̂ κp,R for some constant

κp,R, for any p ∈
(
1, d

d−2

)
. Therefore, infB2R(x0)\BR(x0) ϕ

n
α is bounded over α ∈ (0, 1)

and n ≥ %v̂. Thus, we can select some x′0 ∈ B2R(x0)\BR(x0) satisfying supn ϕ
n
α(x′0) <

∞, and repeat the procedure to show by induction that ϕnα is locally bounded in Lp

for any p ∈
(
1, d

d−2

)
, uniformly over α ∈ (0, 1) and n ≥ %v̂.

Next, we apply successively the Calderón–Zygmund estimate [29, Theorem 9.11]
to the non-divergence form of the equation in (3.26) which states that∥∥ϕnα∥∥W2,p(BR)

≤ C
(∥∥ϕnα∥∥Lp(B2R)

+
∥∥αVα(x̂nα)− Rnv̂ − Ĩ ϕnα

∥∥
Lp(B2R)

)
.

We start with the Lp estimate, say with p = d
d−r for r ∈ (1, 2). If (a) holds, then

‖Ĩϕnα‖Lp(BR(x)) ≤ ν̄ ‖ϕnα‖Lp(BR+R◦ (x)) by the Minkowski integral inequality, where
R◦ is such that the support of ν is contained in BR◦ , while in case (b) we use the
technique in the proof of Corollary 2.8. Using the compactness of the embedding
W2,p(BR) ↪→ Lq(BR) for p ≤ q < pd

d−2p , we choose q = pd
d−rp to improve the estimate

to a new p = d
d−2r . Continuing in this manner, in at most d− 1 steps we obtain

sup
n≥%v̂

sup
α∈(0,1)

‖ϕnα‖W2,p(BR) < ∞

for any p > d and R > 0. Letting first n→∞, and then α↘ 0, along an appropriate
subsequence, we obtain a solution to (3.25) as claimed. The rest follow as in the proof
of Theorem 3.3.

Corollary 3.7. Grant the hypotheses of Theorem 3.6. Then the conclusions of
Theorems 3.3 and 3.5 hold.

Proof. Note that the only place we use the assumption V ∈ C2(Rd) in the proof of

Theorem 3.3 is to assert that ĨV ∈ L∞loc(Rd). Thus, under (a), or (b) of Theorem 3.6,
if we select v̂ ∈ Vssm such that %v̂ ≤ % + ε◦, then the Poisson equation in (3.25) can
be used in lieu (H2), and the conclusions of Theorems 3.3 and 3.5 follow.

In the next theorem, under the hypothesis that V is inf-compact, we show that
any v ∈ Vsm satisfying (3.22) is stable by constructing a density for the associated
infinitesimal invariant measure.

Theorem 3.8. Grant the hypotheses of Theorem 3.6, and suppose that V is inf-
compact. Then any v ∈ Vsm satisfying (3.22) is stable and optimal.

Proof. We adapt the technique which is used in [33, Theorem 1.2] for a local

operator, to construct an infinitesimal invariant measure µv. Let L̃∗v be the operator

in (2.7), and set Îu(x) :=
∫
Rd
u(x − y)ν(dy) if ν is translation invariant; otherwise,

under hypothesis (b) of Theorem 3.6, we define Îu(x) :=
∫
Rd
ψx−y(y)u(x − y) dy.

Consider the solution φk of the Dirichlet problem L̃∗vφk + Îφk = 0 on Bk, with φk
equal to a positive constant ck on Bck.

Concerning the solvability of the Dirichlet problem, note that for f ∈ L2(Bk), the

problem L̃∗vu = −Îf on Bk, with u = ck on Bck, has a unique solution u ∈W2,2(Bk),
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which obeys the estimate ‖u‖W2,2(Bk) ≤ κ(1 + ‖u‖L2(Bk) + ‖Îf‖L2(Bk)) for some
constant κ. Thus we can combine Corollary 2.8, the compactness of the embedding
W2,2(BR) ↪→ Lq(BR) for q = 2d

d−1 , and the Leray–Schauder fixed point theorem

to assert the existence of a solution φk ∈ W2,2(Bk) as claimed in the preceding
paragraph. The solutions φk are nonnegative by the weak maximum principle [29,
Theorem 8.1]. We choose the constant ck so that

∫
Bk

φk(x) dx = 1.
We improve the regularity of φk by following the proofs of Theorem 2.5 and Corol-

lary 2.8, and show that for any n > 0, there exists N(n) ∈ N such that the sequence
{φk : k > N(n)} is Hölder equicontinuous on the ball Bn. Since

∫
Bk

φk(x) dx = 1, it

follows that the sequence is bounded on each ball Bn uniformly over k > N(n), and
thus by the Arzelà–Ascoli theorem combined with Fatou’s lemma, converges along a
subsequence to some nonnegative, locally Hölder continuous φ ∈ L1(Rd) uniformly on
compact sets. It is clear that φ is a generalized solution of (2.6). Let R = R(n) > 0
be such that V (x) > R + 1 on Bcn. It is always possible to select such R(n) in a
manner that R(n) → ∞ as n → ∞ by the assumption that V is inf-compact. Em-
ploying the function χR(V ) as in the proof of Lemma 3.1 and using (3.7), it follows
that

∫
BR(n)

Rv(x)φk(x) dx ≤ % for all k > N(n) and n ∈ N. This implies that∫
B◦

φk(x) dx ≥ 2ε◦
%+2ε◦

for all large enough k, and the same must hold for the limit

φ by uniform convergence. This implies that φ is a nontrivial nonnegative func-
tion, and being a generalized solution of (2.6), it satisfies

∫
Rd
Avf(x)φ(x) dx = 0 for

all f ∈ C. Thus, after normalization, φ is the density of an infinitesimal invariant
measure. Therefore, v ∈ Vssm.

Optimality of v is easily established by the argument in the proof of Lemma 3.1,
using the function χR.

4. A jump diffusion model. In this section, we consider a jump diffusion
process X = {Xt : t ≥ 0} in Rd, d ≥ 2, defined by the Itô equation

(4.1) dXt = b(Xt, Zt) dt+ σ(Xt) dWt + dLt , X0 = x ∈ Rd .

Here, W = {Wt, t ≥ 0} is a d-dimensional standard Wiener process, and L = {Lt, t ≥
0} is a Lévy process such that dLt =

∫
Rm∗

g(Xt−, ξ) Ñ (dt, dξ), where Ñ is a martingale

measure in Rm∗ = Rm \ {0}, m ≥ 1, corresponding to a standard Poisson random

measure N . In other words, Ñ (t, A) = N (t, A)− tΠ(A) with E[N (t, A)] = tΠ(A) for
any A ∈ B(Rm), with Π a σ-finite measure on Rm∗ , and g a measurable function.

The processes W and N are defined on a complete probability space (Ω,F,P).
Assume that the initial condition X0, W0, and N (0, ·) are mutually independent. The
control process Z = {Zt, t ≥ 0} takes values in a compact, metrizable space Z, is Ft-
adapted, and non-anticipative: for s < t,

(
Wt −Ws, N (t, ·)−N (s, ·)

)
is independent

of

Fs := the completion of σ{X0, Zr,Wr,N (r, ·) : r ≤ s} relative to (F,P) .

Such a process Z is called an admissible control and we denote the set of admissible
controls by Z.

4.1. The ergodic control problem for the jump diffusion. Let R : Rd ×
Z 7→ R+ denote the running cost function, which is assumed to satisfy (2.3).

For an admissible control process Z ∈ Z, we consider the ergodic cost defined by

%̃Z(x) := lim sup
T→∞

1

T
EZx
[∫ T

0

R(Xt, Zt) dt

]
.
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Here EZx denotes the expectation operator corresponding to the process controlled un-
der Z, with initial condition X0 = x ∈ Rd. The ergodic control problem seeks to min-

imize the ergodic cost over all admissible controls. We define %̃(x) := infZ∈Z %̃Z(x).
As we show in Theorem 4.4, this infimum is realized with a stationary Markov control,
and %̃(x) = %, with % as defined in subsection 2.1, so it does not depend on x.

4.2. Assumptions on the parameters and the running cost. We impose
the following set of assumptions on the data which guarantee the existence of a solution
to the Itô equation (4.1) (see, for example, [24, 15]). These replace (A1), and are
assumed throughout this section by default. In these hypotheses, CR is a positive
constant, depending on R ∈ (0,∞). Also a := 1

2σσ
′, Rm∗ := Rm \ {0}, and ‖M‖ :=(

trace MM ′
)1/2

denotes the Hilbert–Schmidt norm of a d× k matrix M for d, k ∈ N.

|b(x, z)− b(y, z)|2 + ‖σ(x)− σ(y)‖2 +

∫
Rm∗

|g(x, ξ)− g(y, ξ)|2Π(dξ)

+ |R(x, z)− R(y, z)|2 ≤ CR|x− y|2 ∀x, y ∈ BR , ∀ z ∈ Z ,〈
x, b(x, z)

〉+
+ ‖σ(x)‖2 +

∫
Rm∗

|g(x, ξ)|2Π(dξ) ≤ C1(1 + |x|2) ∀ (x, z) ∈ Rd ×Z ,

∑
i,j

aij(x)ζiζj ≥ (CR)−1|ζ|2 ∀ζ ∈ Rd , ∀x ∈ BR .

The measure ν in (1.1) then takes the form ν(x,A) = Π
(
{ξ ∈ Rm∗ : g(x, ξ) ∈

A}
)
, and it clearly satisfies

∫
Rd
|y|2 ν(x,dy) < CR|x|2. Note that for this model

ν̄ = ν(x,Rd) is constant. It is evident that if g(x, ξ) does not depend on x, then ν is
translation invariant.

4.3. Existence of solutions. For any admissible control Zt, the Itô equation
in (4.1) has a unique strong solution [15], is right-continuous w.p.1, and is a strong
Feller process. On the other hand, if Zt is a Markov control, that is, if it takes the
form Zt = v(t,Xt) for some Borel measurable function v : R+ × Rd, then it follows
from the results in [37] that, under the assumptions in subsection 4.2, the diffusion

(4.2) dX̃t = b(X̃t, v(t, X̃t)) dt+ σ(X̃t) dWt , X0 = x ∈ Rd

has a unique strong solution. As shown in [16], since the the Lévy measure is finite,
the solution of (4.1) can be constructed in a piecewise fashion using the solution of
(4.2) (see also [38]). It thus follows that, under a Markov control, (4.2) has a unique
strong solution. In addition, its transition probability has positive mass.

Of fundamental importance in the study of functionals of X is Itô’s formula. For
f ∈ C2

b (Rd) and Zs an admissible control, it holds that

(4.3) f(Xt) = f(X0) +

∫ t

0

Af(Xs, Zs) ds+ Mt a.s.,

with A as in (1.1), and

Mt :=

∫ t

0

〈
∇f(Xs),σ(Xs) dWs

〉
(4.4)

+

∫ t

0

∫
Rm∗

(
f
(
Xs− + g(Xs−, ξ)

)
− f(Xs−)

)
Ñ (ds,dξ)
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is a local martingale. In the lemma which follows, we show that Krylov’s extension of
the Itô formula [39, p. 122] is valid for functions f in the local Sobolev space W

2,d
loc(Rd)

satisfying Avf ∈ Ldloc(Rd). This is stated for Markov controls v ∈ Vsm, which suits
our framework, and proved in Appendix A. However, it can be easily extended to
admissible controls with a simple variation of the proof.

Lemma 4.1. Let D be a smooth C1,1 domain, and τ(D) := inf{t > 0: Xt /∈ D}.
For any f ∈W

2,d
loc (Rd) such that Avf ∈ Ldloc(Rd), we have

Evx
[
f(Xt∧τ(D))

]
= f(x) + Evx

[∫ t∧τ(D)

0

Avf(Xs−) ds

]
(4.5)

for t ∈ [0,∞], x ∈ D and v ∈ Vsm, and the right-hand side of (4.5) is finite.

Recall that, in the context of diffusions, a control v ∈ Vsm is called stable if the
process X under v is positive Harris recurrent. This is of course equivalent to the
existence of an invariant probability measure for X, and it follows by the Theorem
in [27] that µv is an invariant probability measure for the diffusion if and only if it is
infinitesimally invariant for the operator A in the sense of (2.1). Thus the two notions
of stable controls agree.

4.4. Existence of an optimal stationary Markov control.

Definition 4.2. For Z ∈ Z and x ∈ Rd, we define the mean empirical measures
{ζ̄Zx,t : t > 0}, and (random) empirical measures {ζZx,t : t > 0}, by

(4.6) ζ̄Zx,t(f) =

∫
Rd×Z

f(x, z) ζ̄Zx,t(dx, dz) :=
1

t

∫ t

0

EZx
[∫
Z
f(Xs, z)Zs(dz)

]
ds ,

and ζZx,t as in (4.6) but without the expectation EZx , respectively, for all f ∈ Cb(Rd×Z).

We let R
d

denote the one-point compactification of Rd, and we view Rd ⊂ Rd via

the natural imbedding. As a result, P(Rd × Z) is viewed as a subset of P(R
d × Z).

Let Ḡ denote the closure of G in P(R
d ×Z).

Lemma 4.3. Almost surely, every limit ζ̂ ∈ P(R
d × Z) of ζZx,t as t → ∞ takes

the form ζ̂ = δζ ′ + (1 − δ)ζ ′′ for some δ ∈ [0, 1], with ζ ′ ∈ G and ζ ′′({∞} × Z) = 1.
The same claim holds for the mean empirical measures, without the qualifier ‘almost
surely’.

Proof. Write ζ̂ = δζ ′+ (1− δ)ζ ′′ for some ζ ′ ∈ P(Rd×Z), and ζ ′′({∞}×Z) = 1.
Recall C defined in the beginning of subsection 2.1. For f ∈ C, applying Itô’s formula,
we obtain

f(Xt)− f(X0)

t
=

1

t

∫ t

0

AZsf(Xs) ds+
1

t
Mt ,

where Mt is given in (4.4). As shown in the proof of [24, Lemma 3.4.6], we have
1
t

∫ t
0

〈
∇f(Xs),σ(Xs) dWs

〉
→ 0 a.s. as t→∞.

Define

(4.7) M1,t :=

∫ t

0

∫
Rm∗

(
f
(
Xs− + g(Xs−, ξ)

)
− f(Xs−)

)
N (ds,dξ) ,
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and M2,t analogously by replacing N (ds,dξ) by Π(dξ) ds in (4.7). Note that the
second integral in (4.4), denoted as Mt, is a square integrable martingale, and takes
the form Mt = M1,t −M2,t. Since f is bounded on Rd and Π is a finite measure,
we have 〈M1〉t ≤ C1N (t,Rm∗ ), and 〈M2〉t ≤ C2t for some positive constants C1

and C2. Since 〈M〉t ≤ 〈M1〉t + 〈M2〉t, then by Proposition 7.1 in [40] we obtain

lim supt→∞
〈M〉t
t < ∞ a.s. For the discrete parameter square-integrable martingale

{Mn : n ∈ N}, it is well known that limn→∞
Mn

〈M〉n = 0 a.s. on the event {〈M〉∞ =∞}.
Thus, we obtain

(4.8) lim
n→∞

Mn

n
= 0 a.s.

on the event {〈M〉∞ = ∞}. Since f is bounded, then for some constant C > 0, we
have

(4.9) sup
t∈[n,n+1]

|Mt −Mn|
n

≤ C

n

(
N (n+ 1,Rm∗ )−N (n,Rm∗ ) + 1

)
−−−−→
n→∞

0 ,

and (4.8)–(4.9) imply that limt→∞
1
t Mt → 0 a.s. on the event {〈M〉∞ =∞}.

Next, we examine convergence on the event {〈M〉∞ <∞}. It is well known that
a square-integrable martingale {Mn : n ∈ N} with quadratic variation 〈M〉 satisfies
{〈M〉∞ <∞} ⊂ {Mn → } a.s., where we write {Mn → } for the event on which (Mn)
converges to a real-valued limit [41, Theorem 2.15]. Thus (4.8) holds on the event
{〈M〉∞ <∞}, and it then follows by (4.9) that limt→∞

1
t Mt → 0 a.s.

Thus we have shown that limt→∞
1
t Mt → 0 a.s., and the claims of the lemma

then follow as in the proof of [24, Theorem 3.4.7].

Theorem 4.4. There exists an optimal control v ∈ Vssm for the ergodic problem.
In addition, every stationary Markov optimal control v∗ is in Vssm, and is pathwise
optimal in somewhat stronger sense, that is, it satisfies

(4.10) lim inf
T→∞

1

T

[∫ T

0

R(Xt, Zt) dt

]
≥ lim sup

T→∞

1

T

[∫ T

0

R
(
Xt, v∗(Xt)

)
dt

]
= %

a.s. for any admissible control Zt.

Proof. Define % := infπ∈G π(R). Following the proof of [24, Theorem 3.4.5], we
have % = πv∗(R) for some v∗ ∈ Vssm. Also, (4.10) holds by Lemma 4.3 and the proof
in [24, Theorem 3.4.7].

4.5. The ergodic HJB equation. We summarize the results in the following
theorem.

Theorem 4.5. We assume (H2) for some v̂ ∈ Vsm. Then we have the following:
(a) There exists a unique function V ∈W

2,p
loc (Rd), p > d, with V (0) = 0, which is

bounded from below in Rd and solves minz∈Z
[
Az V (x) + R(x, z)

]
= %, with

% = %. For % < %, there is no such solution. Moreover, if ν has locally

compact support (see Definition 2.7), then V ∈ C2(Rd).
(b) A control v ∈ Vsm is optimal if and only if it satisfies

(4.11) biv(x) ∂iV (x)+Rv(x) = inf
z∈Z

[
bi(x, z)∂iV (x)+R(x, z)

]
a.e. x ∈ Rd .

(c) The solution V has the stochastic representation

V (x) = lim
r↘0

inf
v∈Vssm

Evx
[∫ τ̆r

0

(Rv(Xt)− %
)

dt

]
.
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Proof. Under the assumptions in subsection 4.2, it is straightforward to establish
Theorem 3.2. Thus, part (a) follows from Theorem 3.3 and Remark 3.4. Using the
Itô formula in Lemma 4.1, one can readily show that any v which satisfies (4.11) is
stable and optimal. The necessity part of (b) follows by Theorem 3.5. Part (c) can
be established by following the proof of Lemma 3.6.9 in [24].

5. Concluding remarks. The results in this paper extend naturally to models
under uniform stability, in which case, of course, we do not need to assume that R is
coercive. Suppose that there exist nonnegative functions Ψ ∈ C2(Rd), and h : Rd×Z,
with h ≥ 1 and locally bounded, satisfying

(5.1) AzΨ(x) ≤ κ1B(c)− h(x, z) ∀ (x, z) ∈ Rd ×Z ,

for some constant κ and a ball B ⊂ Rd. In addition, suppose that either R is bounded,
or that |R| grows slower than h. Under (5.1), the jump diffusion is positive recurrent
under any stationary Markov control, and the collection of ergodic occupation mea-
sures is tight. Using Ψ as a barrier, all the results in section 4 can be readily obtained,
and moreover, for any v ∈ Vsm, the Poisson equation AvΦ = Rv − %v has a solution
in W

2,p
loc(Rd), for any p > 1, which is unique, up to an additive constant, in the class

of functions Φ which satisfy |Φ| ≤ C(1 + hv) for some constant C.
We have not considered allowing the jumps to be control dependent, primarily

because this is not manifested in the queueing network model motivating this work,
but also because this would require us to introduce various assumptions on the reg-
ularity of the jumps and the Lévy measure (see, for example, [5]). This, however, is
an interesting problem for future work.

In conclusion, what we aimed for in this work, was to study the ergodic control
problem for jump diffusions controlled through the drift via analytical methods, and
under minimal assumptions on the (finite) Lévy measure and the parameters.
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Appendix A. Proof of Lemma 4.1.

Proof of Lemma 4.1. The hypothesis implies that Lvf and If are in Ld(Rd).
Without loss of generality we may suppose that f is nonnegative. Recall the function
χn : R → R in the proof of Lemma 3.1, which satisfies χn(x) = x for x ≤ n and
χn(x) = n+ 1 for x ≥ n+ 2. Let fn := χn ◦ f = χn(f), and recall (3.2). Then for any
n > supD f , applying the Itô–Krylov formula we have

Evx
[
fn(Xt∧τ(D))

]
= f(x) + Evx

[∫ t∧τ(D)

0

L̃vf(Xs−) ds

]
(A.1)

+ Evx
[∫ t∧τ(D)

0

∫
Rm∗

χn
(
f(Xs− + g(Xs−, ξ))

)
Π(dξ) ds

]
+ Evx

[∫ t∧τ(D)

0

〈
∇f(Xs−),σ(Xs) dWs

〉]
+ Evx

[∫ t∧τ(D)

0

∫
Rm∗

(
χn(f(Xs− + g(Xs−, ξ)))− f(Xs−)

)
Ñ (ds,dξ)

]
.
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Since {Xs : 0 ≤ s ≤ t} has countably many of jumps, it follows by using the martingale
property that the fourth term on the right-hand side of (A.1) is equal to 0 (see, for
example, [42, Lemma 7.3.2]). Also, the last term on the right-hand side of (A.1) is
equal to 0 by [43, Claim 1, page 6]. It is clear that the left side of (A.1) converges to
Evx
[
f(Xt∧τ(D))

]
as n→∞, while the third term on the right-hand side converges to

(A.2) Evx
[∫ t∧τ(D)

0

Ĩf(Xs−) ds

]
= Evx

[∫ t∧τ(D)

0

∫
Rm∗

f(Xs− + g(Xs−, ξ))Π(dξ) ds

]
by monotone convergence. To estimate the integral in (A.2), consider the solution
ϕ ∈W2,p(D) ∩W

1,p
0 (D) to the Dirichlet problem

Avϕ = −h in D , ϕ = 0 in Dc ,

and then let h = Ĩf . By [44, Theorem 3.1.22] the problem has a unique solution in
W2,d(D) for each h ∈ Ld(D), and satisfies

(A.3)
∥∥ϕ∥∥

W2,d(D)
≤ κD

∥∥h∥∥
Ld(D)

for some constant κD. Now since Π(Rm∗ ) is constant, we have

(A.4)
∥∥Ĩϕ∥∥

Ld(D)
≤ κ̃D

∥∥ϕ∥∥
Ld(D)

for some constant κ̃D. Since Av = L̃v + Ĩ, we have L̃vϕ = −h− Ĩϕ. Thus, invoking
the Alexandroff–Bakelman–Pucci weak maximum principle, together with (A.3) and
(A.4), we obtain

sup
D

∣∣ϕ∣∣ ≤ CD
∥∥Ĩϕ+ h

∥∥
Ld(D)

(A.5)

≤ CD(1 + κDκ̃D)
∥∥h∥∥

Ld(D)

for some constant CD. This shows that for each x ∈ D, the map h 7→ ϕ(x) defines a
bounded linear functional on Ld(D). By the Riesz representation theorem, we have

ϕ(x) =

∫
BD

GD(x, y)h(y) dy

for some function GD(x, · ) ∈ L
d
d−1 (D) (this is nothing else but the Green’s function).

By the Krylov–Itô formula, which can be applied since ϕ = 0 on Dc, the function
ϕ has the stochastic representation

(A.6) ϕ(x) = Evx
[∫ τ(D)

0

Ĩf(Xs−) ds

]
.

Applying this as a bound to (A.2), and using Hölder’s inequality, we obtain

Evx
[∫ t∧τ(D)

0

Ĩf(Xs−) ds

]
≤ Evx

[∫ τ(D)

0

Ĩf(Xs−) ds

]
=

∫
D

GD(x, y) Ĩf(y) dy

≤
∥∥GD(x, ·)

∥∥
L

d
d−1 (D)

∥∥Ĩf∥∥
Ld(D)

.

Thus the integral in (A.2) is finite, and this completes the proof.
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