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We study a dynamic scheduling problem for a multi-class queue-
ing network with a large pool of statistically identical servers. The
arrival processes are Poisson, and service times and patience times
are assumed to be exponentially distributed and class dependent.
The optimization criterion is the expected long time average (er-
godic) of a general (non-linear) running cost function of the queue
lengths. We consider this control problem in the Halfin-Whitt (QED)
regime, i.e., the number of servers n and the total offered load r scale
like n ≈ r + ρ̂

√
r for some constant ρ̂. This problem was proposed

in [7, Section 5.2].
The optimal solution of this control problem can be approximated

by that of the corresponding ergodic diffusion control problem in the
limit. We introduce a broad class of ergodic control problems for con-
trolled diffusions, which includes a large class of queueing models in
the diffusion approximation, and establish a complete characteriza-
tion of optimality via the study of the associated HJB equation. We
also prove the asymptotic convergence of the values for the multi-class
queueing control problem to the value of the associated ergodic diffu-
sion control problem. The proof relies on an approximation method
by spatial truncation for the ergodic control of diffusion processes,
where the Markov policies follow a fixed priority policy outside a
fixed compact set.
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1. Introduction. One of the classical problems in queueing theory is
to schedule the customers/jobs in a network in an optimal way. These prob-
lems are known as the scheduling problems which arise in a wide variety
of applications, in particular, whenever there are different customer classes
present in the network and competing for the same resources. The optimal
scheduling problem has a long history in the literature. One of the appealing
scheduling rules is the well known cµ rule. This is a static priority policy
in which it is assumed that each class-i customer has a marginal delay cost
ci and an average service time 1/µi, and the classes are prioritized in the
decreasing order of ciµi. This static priority rule has proven asymptotically
optimal in many settings [4,28,32]. In [12] a single-server Markov modulated
queueing network is considered and an averaged cµ-rule is shown asymptot-
ically optimal for the discounted control problem.

An important aspect of queueing networks is abandonment/reneging, that
is, customers/jobs may choose to leave the system while being in the queue
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before their service. Therefore it is important to include customer aban-
donment in modeling queueing systems. In [5, 6], Atar et al. considered a
multi-class M/M/N+M queueing network with customer abandonment and
proved that a modified priority policy, referred to as cµ/θ rule, is asymp-
totically optimal for the long run average cost in the fluid scale. Tezcan and
Dai [13] showed the asymptotic optimality of a static priority policy on a
finite time interval for a parallel server model under the assumed conditions
on the ordering of the abandonment rates and running costs. Although static
priority policies are easy to implement, it may not be optimal for control
problems of many multi-server queueing systems. For the same multi-class
M/M/N +M queueing network, discounted cost control problems are stud-
ied in [3, 7, 22], and asymptotically optimal controls for these problems are
constructed from the minimizer of a Hamilton-Jacobi-Bellman (HJB) equa-
tion associated with the controlled diffusions in the Halfin-Whitt regime.

In this article we are interested in an ergodic control problem for a multi-
class M/M/N +M queueing network in the Halfin-Whitt regime. The net-
work consists of a single pool of n statistically identical servers and a buffer of
infinite capacity. There are d customer classes and arrivals of jobs/customers
are d independent Poisson processes with parameters λni , i = 1, . . . , d. The
service rate for class-i customers is µni , i = 1, . . . , d. Customers may re-
nege from the queue if they have not started to receive service before their
patience times. Class-i customers renege from the queue at rates γni > 0,
i = 1, . . . , d. The scheduling policies are work-conserving, that is, no server
stays idle if any of the queues is non-empty. We assume the system oper-
ates in the Halfin-Whitt regime, where the arrival rates and the number of
servers are scaled appropriately in a manner that the traffic intensity of the
system satisfies

√
n

(
1−

d∑
i=1

λni
nµni

)
−−−→
n→∞

ρ̂ ∈ R .

In this regime, the system operations achieve both high quality (high server
levels) and high efficiency (high servers’ utilization), and hence it is also
referred to as the Quality-and-Efficiency-Driven (QED) regime; see, e.g.,
[7, 16, 17, 19, 21] on the many-server regimes. We consider an ergodic cost
function given by

lim sup
T→∞

1

T
E
[∫ T

0
r(Q̂n(s)) ds

]
,

where the running cost r is a nonnegative, convex function with polynomial
growth and Q̂n = (Q̂n1 , . . . , Q̂

n
d )T is the diffusion-scaled queue length process.
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It is worth mentioning that in addition to the running cost above which is
based on the queue-length, we can add an idle-server cost provided that it
has at most polynomial growth. For such a running cost structure the same
analysis goes through. The control is the allocation of servers to different
classes of customers at the service completion times. The value function is
defined to be the infimum of the above cost over all admissible controls
(among all work-conserving scheduling policies). In this article we are in-
terested in the existence and uniqueness of asymptotically optimal stable
stationary Markov controls for the ergodic control problem, and the asymp-
totic behavior of the value functions as n tends to infinity. In [7, Section 5.2]
it is stated that analysis of this type of problems is important for modeling
call centers.

1.1. Contributions and comparisons. The usual methodology for study-
ing these problems is to consider the associated continuum model, which is
the controlled diffusion limit in a heavy-traffic regime, and to study the er-
godic control problem for the controlled diffusion. Ergodic control problems
governed by controlled diffusions have been well studied in literature [1, 9]
for models that fall in these two categories: (a) the running cost is near-
monotone, which is defined by the requirement that its value outside a com-
pact set exceeds the optimal average cost, thus penalizing unstable behavior
(see Assumption 3.4.2 in [1] for details), or (b) the controlled diffusion is
uniformly stable, i.e., every stationary Markov control is stable and the
collection of invariant probability measures corresponding to the stationary
Markov controls is tight. However, the ergodic control problem at hand does
not fall under any of these frameworks. First, the running cost we consider
here is not near-monotone because the total queue length can be 0 when
the total number of customers in the system are O(n). On the other hand,
it is not at all clear that the controlled diffusion is uniformly stable (unless
one imposes non-trivial hypotheses on the parameters), and this remains an
open problem. One of our main contributions in this article is that we solve
the ergodic control problem for a broad class of non-degenerate controlled
diffusions, that in a certain way can be viewed as a mixture of the two cat-
egories mentioned above. As we show in Section 3, stability of the diffusion
under any optimal stationary Markov control occurs due to certain interplay
between the drift and the running cost. The model studied in Section 3 is
far more general than the queueing problem described and thus it is of sep-
arate interest for ergodic control. We present a comprehensive study of this
broad class of ergodic control problems that includes existence of a solution
to the ergodic HJB equation, its stochastic representation and verification
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of optimality (Theorem 3.4), uniqueness of the solution in a certain class
(Theorem 3.5), and convergence of the vanishing discount method (Theo-
rem 3.6). These results extend the well known results for near-monotone
running costs. The assumptions in these theorems are verified for the multi-
class queueing model and the corresponding characterization of optimality
is obtained (Corollary 3.1), which includes growth estimates for the solution
of the HJB.

We also introduce a new approximation technique, spatial truncation, for
the controlled diffusion processes; see Section 4. It is shown that if we freeze
the Markov controls to a fixed stable Markov control outside a compact
set, then we can still obtain nearly optimal controls in this class of Markov
controls for large compact sets. We should keep in mind that this property is
not true in general. This method can also be thought of as an approximation
by a class of controlled diffusions that are uniformly stable.

We remark that for a fixed control, the controlled diffusions for the queue-
ing model can be regarded as a special case of the piecewise linear diffusions
considered in [14]. It is shown in [14] that these diffusions are stable under
constant Markov controls. The proof is via a suitable Lyapunov function.
We conjecture that uniform stability holds for the controlled diffusions asso-
ciated with the queueing model. For the same multi-class Markovian model,
Gamarnik and Stolyar show that the stationary distributions of the queue
lengths are tight under any work-conserving policy [15, Theorem 2]. We also
wish to remark here that we allow ρ̂ to be negative, assuming abandonment
rates are strictly positive, while in [15], ρ̂ > 0 and abandonment rates can
be zero.

Another important contribution of this work is the convergence of the
value functions associated with the sequence of multi-class queueing mod-
els to the value of the ergodic control problem, say %∗, corresponding to the
controlled diffusion model. It is not obvious that one can have asymptotic op-
timality from the existence of optimal stable controls for the HJB equations
of controlled diffusions. This fact is relatively straightforward when the cost
under consideration is discounted. In that situation the tightness of paths
on a finite time horizon is sufficient to prove asymptotic optimality [7]. But
we are in a situation where any finite time behavior of the stochastic process
plays no role in the cost. In particular, we need to establish the convergence
of the controlled steady states. Although uniform stability of stationary dis-
tributions for this multi-class queueing model in the case where ρ̂ > 0 and
abandonment rates can be zero is established in [15], it is not obvious that
the stochastic model considered here has the property of uniform stability.
Therefore we use a different method to establish the asymptotic optimality.
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First we show that the value functions are asymptotically bounded below by
%∗. To study the upper bound we construct a sequence of Markov schedul-
ing policies that are uniformly stable (see Lemma 5.1). The key idea used
in establishing such stability results is a spatial truncation technique, un-
der which the Markov policies follow a fixed priority policy outside a given
compact set. We believe these techniques can also be used to study ergodic
control problems for other many-server queueing models.

The scheduling policies we consider in this paper allow preemption, that
is, a customer in service can be interrupted for the server to serve a customer
of a different class and her service will be resumed later. In fact, the asymp-
totic optimality is shown within the class of the work-conserving preemptive
policies. In [7], both preemptive and non-preemptive policies are studied,
where a nonpreemptive scheduling control policy is constructed from the
HJB equation associated with preemptive policies and thus is shown to be
asymptotically optimal. However, as far as we know, the optimal nonpre-
emptive scheduling problem under the ergodic cost remains open.

For a similar line of work in uncontrolled settings we refer the reader to [16,
19]. Admission control of the single class M/M/N+M model with an ergodic
cost criterion in the Halfin-Whitt regime is studied in [26]. For controlled
problems and for finite server models, asymptotic optimality is obtained
in [11] in the conventional heavy-traffic regime. The main advantage in [11]
is the uniform exponential stability of the stochastic processes, which is
obtained by using properties of the Skorohod reflection map. A recent work
studying ergodic control of a multi-class single-server queueing network is
[25].

To summarize our main contributions in this paper:

– We introduce a new class of ergodic control problems and a framework
to solve them;

– we establish an approximation technique by spatial truncation;
– we provide, to the best of our knowledge, the first treatment of ergodic

control problems at the diffusion scale for many server models;
– we establish asymptotic optimality results.

1.2. Organization. In Section 1.3 we summarize the notation used in the
paper. In Section 2 we introduce the multi-class many server queueing model
and describe the Halfin-Whitt regime. The ergodic control problem under
the heavy-traffic setting is introduced in Section 2.2, and the main results
on asymptotic convergence are stated as Theorems 2.1 and 2.2. Section 3
introduces a class of controlled diffusions and associated ergodic control
problems, which contains the queueing models in the diffusion scale. The
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key structural assumptions are in Section 3.2 and these are verified for a
generic class of queueing models in Section 3.3, which are characterized by
piecewise linear controlled diffusions. Section 3.4 concerns the existence of
optimal controls under the general hypotheses, while Section 3.5 contains
a comprehensive study of the HJB equation. Section 3.6 is devoted to the
proofs of the results in Section 3.5. The spatial truncation technique is in-
troduced and studied in Section 4. Finally, in Section 5 we prove the results
of asymptotic optimality.

1.3. Notation. The standard Euclidean norm in Rd is denoted by | · |.
The set of nonnegative real numbers is denoted by R+, N stands for the set
of natural numbers, and I denotes the indicator function. By Zd+ we denote
the set of d-vectors of nonnegative integers. The closure, the boundary and
the complement of a set A ⊂ Rd are denoted by A, ∂A and Ac, respectively.
The open ball of radiusR around 0 is denoted byBR. Given two real numbers
a and b, the minimum (maximum) is denoted by a ∧ b (a ∨ b), respectively.
Define a+ := a ∨ 0 and a− := −(a ∧ 0). The integer part of a real number
a is denoted by bac. We use the notation ei, i = 1, . . . , d, to denote the
vector with i-th entry equal to 1 and all other entries equal to 0. We also
let e := (1, . . . , 1)T. Given any two vectors x, y ∈ Rd the inner product is
denoted by x · y. By δx we denote the Dirac mass at x. For any function
f : Rd → R and domain D ⊂ R we define the oscillation of f on D as follows:

osc
D

(f) := sup
{
f(x)− f(y) : x, y ∈ D

}
.

For a nonnegative function g ∈ C(Rd) we let O(g) denote the space of

functions f ∈ C(Rd) satisfying supx∈Rd
|f(x)|

1+g(x) <∞. This is a Banach space
under the norm

‖f‖g := sup
x∈Rd

|f(x)|
1 + g(x)

.

We also let o(g) denote the subspace of O(g) consisting of those functions f
satisfying

lim sup
|x|→∞

|f(x)|
1 + g(x)

= 0 .

By a slight abuse of notation we also denote by O(g) and o(g) a generic
member of these spaces. For two nonnegative functions f and g, we use the
notation f ∼ g to indicate that f ∈ O(g) and g ∈ O(f).

We denote by Lploc(R
d), p ≥ 1, the set of real-valued functions that are lo-

cally p-integrable and by W
k,p
loc(Rd) the set of functions in Lploc(R

d) whose i-th
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weak derivatives, i = 1, . . . , k, are in Lploc(R
d). The set of all bounded contin-

uous functions is denoted by Cb(Rd). By Ck,αloc (Rd) we denote the set of func-
tions that are k-times continuously differentiable and whose k-th derivatives
are locally Hölder continuous with exponent α. We define Ckb (Rd), k ≥ 0,
as the set of functions whose i-th derivatives, i = 1, . . . , k, are continuous
and bounded in Rd and denote by Ckc (Rd) the subset of Ckb (Rd) with com-
pact support. For any path X(·) we use the notation ∆X(t) to denote the
jump at time t. Given any Polish space X , we denote by P(X ) the set of
probability measures on X and we endow P(X ) with the Prokhorov metric.
For ν ∈ P(X ) and a Borel measurable map f : X → R, we often use the
abbreviated notation

ν(f) :=

∫
X
f dν .

The quadratic variation of a square integrable martingale is denoted by 〈 · , · 〉
and the optional quadratic variation by [ · , · ]. For presentation purposes
we use the time variable as the subscript for the diffusion processes. Also
κ1, κ2, . . . and C1, C2, . . . are used as generic constants whose values might
vary from place to place.

2. The Controlled System in the Halfin-Whitt Regime.

2.1. The multi-class Markovian many-server model. Let (Ω,F,P) be a
given complete probability space and all the stochastic variables introduced
below are defined on it. The expectation w.r.t. P is denoted by E. We consider
a multi-class Markovian many-server queueing system which consists of d
customer classes and n parallel servers capable of serving all customers (see
Figure 1).

Figure 1: A schematic model of the system

n

λ1 λ2 λd

μ1

μ2

μd

γ1 γ2
γd
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The system buffer is assumed to have infinite capacity. Customers of class
i ∈ {1, . . . , d} arrive according to a Poisson process with rate λni > 0. Cus-
tomers enter the queue of their respective classes upon arrival if not being
processed. Customers of each class are served in the first-come-first-serve
(FCFS) service discipline. While waiting in queue, customers can abandon
the system. The service times and patience times of customers are class-
dependent and both are assumed to be exponentially distributed, that is,
class i customers are served at rate µni and renege at rate γni . We assume
that customer arrivals, service and abandonment of all classes are mutually
independent.

The Halfin-Whitt Regime. We study this queueing model in the Halfin-
Whitt regime (or the Quality-and-Efficiency-Driven (QED) regime). Con-
sider a sequence of such systems indexed by n, in which the arrival rates λni
and the number of servers n both increase appropriately. Let rni := λni/µni
be the mean offered load of class i customers. The traffic intensity of the
nth system is given by ρn = n−1

∑d
i=1 rni . In the Halfin-Whitt regime, the

parameters are assumed to satisfy the following: as n→∞,

(2.1)

λni
n
→ λi > 0 , µni → µi > 0 , γni → γi > 0 ,

λni − nλi√
n

→ λ̂i ,
√
n (µni − µi) → µ̂i ,

rni
n
→ ρi :=

λi
µi

< 1 ,

d∑
i=1

ρi = 1 .

This implies that

√
n(1− ρn) → ρ̂ :=

d∑
i=1

ρiµ̂i − λ̂i
µi

∈ R .

The above scaling is common in multi-class multi-server models [7,22]. Note
that we do not make any assumption on the sign of ρ̂.

State Descriptors. Let Xn
i = {Xn

i (t) : t ≥ 0} be the total number of class
i customers in the system, Qni = {Qni (t) : t ≥ 0} the number of class i
customers in the queue and Zni = {Zni (t) : t ≥ 0} the number of class i cus-
tomers in service. The following basic relationships hold for these processes:
for each t ≥ 0 and i = 1, . . . , d,

Xn
i (t) = Qni (t) + Zni (t) ,

Qni (t) ≥ 0 , Zni (t) ≥ 0 , and e · Zn(t) ≤ n .
(2.2)
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We can describe these processes using a collection
{
Ani , S

n
i , R

n
i , i = 1, . . . , d

}
of independent rate-1 Poisson processes. Define

Ãni (t) := Ani (λni t) ,

S̃ni (t) := Sni

(
µni

∫ t

0
Zni (s) ds

)
,

R̃ni (t) := Rni

(
γni

∫ t

0
Qni (s) ds

)
.

Then the dynamics take the form

(2.3) Xn
i (t) = Xn

i (0) + Ãni (t)− S̃ni (t)− R̃ni (t) , t ≥ 0 , i = 1, . . . , d .

Scheduling Control. Following [7, 22] we only consider work-conserving
policies that are non-anticipative and allow preemption. When a server be-
comes free and there are no customers waiting in any queue, the server stays
idle, but if there are customers of multiple classes waiting in the queue, the
server has to make a decision on the customer class to serve. Service pre-
emption is allowed, i.e., service of a customer class can be interrupted at any
time to serve some other class of customers and the original service is re-
sumed at a later time. A scheduling control policy determines the processes
Zn, which must satisfy the constraints in (2.2) and the work-conserving
constraint, that is,

e · Zn(t) = (e ·Xn(t)) ∧ n , t ≥ 0 .

Define the action set An(x) as

An(x) :=
{
a ∈ Zd+ : a ≤ x , and e · a = (e · x) ∧ n

}
.

Thus, we can write Zn(t) ∈ An(Xn(t)) for each t ≥ 0. We also assume that
all controls are non-anticipative. Define the σ-fields

Fnt := σ
{
Xn(0), Ãni (t), S̃ni (t), R̃ni (t) : i = 1, . . . , d , 0 ≤ s ≤ t

}
∨N ,

and

Gnt := σ
{
δÃni (t, r), δS̃ni (t, r), δR̃ni (t, r) : i = 1, . . . , d , r ≥ 0

}
,
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where

δÃni (t, r) := Ãni (t+ r)− Ãni (t) ,

δS̃ni (t, r) := Sni

(
µni

∫ t

0
Zni (s) ds+ µni r

)
− S̃ni (t) ,

δR̃ni (t, r) := Rni

(
γni

∫ t

0
Qni (s) ds+ γni r

)
− R̃ni (t) ,

and N is the collection of all P-null sets. The filtration {Fnt , t ≥ 0} repre-
sents the information available up to time t while Gnt contains the informa-
tion about future increments of the processes.

We say that a working-conserving control policy is admissible if

(i) Zn(t) is adapted to Fnt ,

(ii) Fnt is independent of Gnt at each time t ≥ 0,

(iii) for each i = 1, . . . , d, and t ≥ 0, the process δS̃ni (t, · ) agrees in law
with Sni (µni · ), and the process δR̃ni (t, · ) agrees in law with Rni (γni · ).

We denote the set of all admissible control policies (Zn,Fn,Gn) by Un.

2.2. The ergodic control problem in the Halfin-Whitt regime. Define the
diffusion-scaled processes

X̂n = (X̂n
1 , . . . , X̂

n
d )T , Q̂n = (Q̂n1 , . . . , Q̂

n
d )T , and Ẑn = (Ẑn1 , . . . , Ẑ

n
d )T ,

by

X̂n
i (t) :=

1√
n

(Xn
i (t)− ρint) ,

Q̂ni (t) :=
1√
n
Qni (t) ,

Ẑni (t) :=
1√
n

(Zni (t)− ρint)

(2.4)

for t ≥ 0. By (2.3), we can express X̂n
i as

X̂n
i (t) = X̂n

i (0) + `ni t− µni
∫ t

0
Ẑni (s) ds− γni

∫ t

0
Q̂ni (s) ds(2.5)

+ M̂n
A,i(t)− M̂n

S,i(t)− M̂n
R,i(t) ,
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where `n = (`n1 , . . . , `
n
d )T is defined as

`ni :=
1√
n

(λni − µni ρin) ,

and

M̂n
A,i(t) :=

1√
n

(Ani (λni t)− λni t) ,

M̂n
S,i(t) :=

1√
n

(
Sni

(
µni

∫ t

0
Zni (s) ds

)
− µni

∫ t

0
Zni (s) ds

)
,(2.6)

M̂n
R,i(t) :=

1√
n

(
Rni

(
γni

∫ t

0
Qni (s) ds

)
− γni

∫ t

0
Qni (s) ds

)
are square integrable martingales w.r.t. the filtration {Fnt }.

Note that

`ni =
1√
n

(λni − λin)− ρi
√
n(µni − µi) −−−→n→∞

`i :=
(λ̂i − ρiµ̂i)

µi
.

Define
S :=

{
u ∈ Rd+ : e · u = 1

}
.

For Zn ∈ Un we define, for t ≥ 0 and for adapted Ûn(t) ∈ S,

Q̂n(t) :=
(
e · X̂n(t)

)+
Ûn(t) ,

Ẑn(t) := X̂n(t)−
(
e · X̂n(t)

)+
Ûn(t) .

(2.7)

If Q̂n(t) = 0, we define Ûn(t) := ed = (0, . . . , 0, 1)T. Thus, Ûni represents
the fraction of class-i customers in the queue when the total queue size is
positive. As we show later, it is convenient to view Ûn(t) as the control.
Note that the controls are non-anticipative and preemption is allowed.

2.2.1. The cost minimization problem. We next introduce the running
cost function for the control problem. Let r : Rd+ → R+ be a given function
satisfying

(2.8) c1|x|m ≤ r(x) ≤ c2(1 + |x|m) for some m ≥ 1 ,

and some positive constants ci, i = 1, 2. We also assume that r is locally Lip-
schitz. This assumption includes linear and convex running cost functions.
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For example, if we let hi be the holding cost rate for class i customers, then
some of the typical running cost functions are the following:

r(x) =

d∑
i=1

hix
m
i , m ≥ 1 .

These running cost functions evidently satisfy the condition in (2.8).
Given the initial state Xn(0) and a work-conserving scheduling policy

Zn ∈ Un, we define the diffusion-scaled cost function as

(2.9) J(X̂n(0), Ẑn) := lim sup
T→∞

1

T
E
[∫ T

0
r(Q̂n(s)) ds

]
,

where the running cost function r satisfies (2.8). Note that the running
cost is defined using the scaled version of Zn. Then, the associated cost
minimization problem becomes

(2.10) V̂ n(X̂n(0)) := inf
Zn∈Un

J(X̂n(0), Ẑn) .

We refer to V̂ n(X̂n(0)) as the diffusion-scaled value function given the
initial state X̂n(0) in the nth system.

From (2.7) it is easy to see that by redefining r as r(x, u) = r((e · x)+u)
we can rewrite the control problem as

V̂ n(X̂n(0)) = inf J̃(X̂n(0), Ûn) ,

where

(2.11) J̃(X̂n(0), Ûn) := lim sup
T→∞

1

T
E
[∫ T

0
r
(
X̂n(s), Ûn(s)

)
ds

]
,

and the infimum is taken over all admissible pairs (X̂n, Ûn) satisfying (2.7).
For simplicity we assume that the initial condition X̂n(0) is deterministic

and X̂n(0)→ x as n→∞ for some x ∈ Rd.

2.2.2. The limiting controlled diffusion process. As in [7,22], one formally
deduces that, provided X̂n(0) → x, there exists a limit X for X̂n on every
finite time interval, and the limit process X is a d-dimensional diffusion
process with independent components, that is,

(2.12) dXt = b(Xt, Ut) dt+ Σ dWt ,
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with initial condition X0 = x. In (2.12) the drift b(x, u) : Rd × S → Rd
takes the form

(2.13) b(x, u) = `−R
(
x− (e · x)+u

)
− (e · x)+Γu ,

with

` := (`1, . . . , `d)
T ,

R := diag (µ1, . . . , µd) ,

Γ := diag (γ1, . . . , γd) .

The control Ut lives in S and is non-anticipative, W (t) is a d-dimensional
standard Wiener process independent of the initial condition X0 = x, and
the covariance matrix is given by

ΣΣT = diag (2λ1, . . . , 2λd) .

A formal derivation of the drift in (2.13) can be obtained from (2.5) and
(2.7). A detailed description of equation (2.12) and related results are given
in Section 3. Let U be the set of all admissible controls for the diffusion
model (for a definition see Section 3).

2.2.3. The ergodic control problem in the diffusion scale. Define r̃ : Rd+×
Rd+ → R+ by

r̃(x, u) := r((e · x)+u) ,

where r is the same function as in (2.9). In analogy with (2.11) we define
the ergodic cost associated with the controlled diffusion process X and the
running cost function r̃(x, u) as

J(x, U) := lim sup
T→∞

1

T
EUx
[∫ T

0
r̃(Xt, Ut) dt

]
, U ∈ U .

We consider the ergodic control problem

(2.14) %∗(x) = inf
U∈U

J(x, U) .

We call %∗(x) the optimal value at the initial state x for the controlled
diffusion process X. It is shown later that %∗(x) is independent of x. A
detailed treatment and related results corresponding to the ergodic control
problem are given in Section 3.

We next state the main results of this section, the proof of which can be
found in Section 5.
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Theorem 2.1. Let X̂n(0)→ x ∈ Rd as n→∞. Also assume that (2.1)
and (2.8) hold. Then

lim inf
n→∞

V̂ n(X̂n(0)) ≥ %∗(x) ,

where %∗(x) is given by (2.14).

Theorem 2.2. Suppose the assumptions of Theorem 2.1 hold. In addi-
tion, assume that r in (2.9) is convex. Then

lim sup
n→∞

V̂ n(X̂n(0)) ≤ %∗(x) .

Thus, we conclude that for any convex running cost function r, Theo-
rems 2.1 and 2.2 establish the asymptotic convergence of the ergodic control
problem for the queueing model.

3. A Broad Class of Ergodic Control Problems for Diffusions.

3.1. The controlled diffusion model. The dynamics are modeled by a con-
trolled diffusion process X = {Xt, t ≥ 0} taking values in the d-dimensional
Euclidean space Rd, and governed by the Itô stochastic differential equation

(3.1) dXt = b(Xt, Ut) dt+ σ(Xt) dWt .

All random processes in (3.1) live in a complete probability space (Ω,F,P).
The process W is a d-dimensional standard Wiener process independent of
the initial condition X0. The control process U takes values in a compact,
metrizable set U, and Ut(ω) is jointly measurable in (t, ω) ∈ [0,∞) × Ω.
Moreover, it is non-anticipative: for s < t, Wt −Ws is independent of

Fs := the completion of σ{X0, Ur,Wr, r ≤ s} relative to (F,P) .

Such a process U is called an admissible control, and we let U denote the set
of all admissible controls.

We impose the following standard assumptions on the drift b and the
diffusion matrix σ to guarantee existence and uniqueness of solutions to
equation (3.1).

(A1) Local Lipschitz continuity: The functions

b =
[
b1, . . . , bd

]T
: Rd × U→ Rd , and σ =

[
σij
]

: Rd → Rd×d
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are locally Lipschitz in x with a Lipschitz constant CR > 0 depending
on R > 0. In other words, for all x, y ∈ BR and u ∈ U,

|b(x, u)− b(y, u)|+ ‖σ(x)− σ(y)‖ ≤ CR |x− y| .

We also assume that b is continuous in (x, u).

(A2) Affine growth condition: b and σ satisfy a global growth condition of
the form

|b(x, u)|2 + ‖σ(x)‖2 ≤ C1

(
1 + |x|2

)
∀(x, u) ∈ Rd × U ,

where ‖σ‖2 := trace
(
σσT

)
.

(A3) Local nondegeneracy: For each R > 0, it holds that

d∑
i,j=1

aij(x)ξiξj ≥ C−1
R |ξ|

2 ∀x ∈ BR ,

for all ξ = (ξ1, . . . , ξd)
T ∈ Rd, where a := σσT.

In integral form, (3.1) is written as

(3.2) Xt = X0 +

∫ t

0
b(Xs, Us) ds+

∫ t

0
σ(Xs) dWs .

The third term on the right hand side of (3.2) is an Itô stochastic integral.
We say that a process X = {Xt(ω)} is a solution of (3.1), if it is Ft-adapted,
continuous in t, defined for all ω ∈ Ω and t ∈ [0,∞), and satisfies (3.2) for
all t ∈ [0,∞) a.s. It is well known that under (A1)–(A3), for any admissible
control there exists a unique solution of (3.1) [1, Theorem 2.2.4].

We define the family of operators Lu : C2(Rd)→ C(Rd), where u ∈ U plays
the role of a parameter, by

(3.3) Luf(x) :=
1

2
aij(x) ∂ijf(x) + bi(x, u) ∂if(x) , u ∈ U .

We refer to Lu as the controlled extended generator of the diffusion. In
(3.3) and elsewhere in this paper we have adopted the notation ∂i := ∂

∂xi

and ∂ij := ∂2

∂xi∂xj
. We also use the standard summation rule that repeated

subscripts and superscripts are summed from 1 through d. In other words,
the right hand side of (3.3) stands for

1

2

d∑
i,j=1

aij(x)
∂2f

∂xi∂xj
(x) +

d∑
i=1

bi(x, u)
∂f

∂xi
(x) .



ERGODIC CONTROL IN THE HALFIN-WHITT REGIME 17

Of fundamental importance in the study of functionals of X is Itô’s for-
mula. For f ∈ C2(Rd) and with Lu as defined in (3.3), it holds that

(3.4) f(Xt) = f(X0) +

∫ t

0
LUsf(Xs) ds+Mt , a.s.,

where

Mt :=

∫ t

0

〈
∇f(Xs),σ(Xs) dWs

〉
is a local martingale. Krylov’s extension of Itô’s formula [27, p. 122] extends
(3.4) to functions f in the local Sobolev space W

2,p
loc(Rd), p ≥ d.

Recall that a control is called Markov if Ut = v(t,Xt) for a measurable
map v : R+ × Rd → U, and it is called stationary Markov if v does not
depend on t, i.e., v : Rd → U. Correspondingly (3.1) is said to have a strong
solution if given a Wiener process (Wt,Ft) on a complete probability space
(Ω,F,P), there exists a process X on (Ω,F,P), with X0 = x0 ∈ Rd, which is
continuous, Ft-adapted, and satisfies (3.2) for all t a.s. A strong solution is
called unique, if any two such solutions X and X ′ agree P-a.s., when viewed
as elements of C

(
[0,∞),Rd

)
. It is well known that under Assumptions (A1)–

(A3), for any Markov control v, (3.1) has a unique strong solution [20].
Let USM denote the set of stationary Markov controls. Under v ∈ USM,

the process X is strong Markov, and we denote its transition function by
P tv(x, · ). It also follows from the work of [8,31] that under v ∈ USM, the tran-
sition probabilities of X have densities which are locally Hölder continuous.
Thus Lv defined by

Lvf(x) :=
1

2
aij(x) ∂ijf(x) + bi

(
x, v(x)

)
∂if(x) , v ∈ USM ,

for f ∈ C2(Rd), is the generator of a strongly-continuous semigroup on
Cb(Rd), which is strong Feller. We let Pvx denote the probability measure
and Evx the expectation operator on the canonical space of the process un-
der the control v ∈ USM, conditioned on the process X starting from x ∈ Rd
at t = 0.

We need the following definition:

Definition 3.1. A function h : Rd × U → R is called inf-compact on a
set A ⊂ Rd if the set Ā ∩

{
x : minu∈U h(x, u) ≤ β

}
is compact (or empty)

in Rd for all β ∈ R. When this property holds for A ≡ Rd, then we simply
say that h is inf-compact.

Recall that control v ∈ USM is called stable if the associated diffusion
is positive recurrent. We denote the set of such controls by USSM, and let
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µv denote the unique invariant probability measure on Rd for the diffusion
under the control v ∈ USSM. We also letM := {µv : v ∈ USSM}. Recall that
v ∈ USSM if and only if there exists an inf-compact function V ∈ C2(Rd), a
bounded domain D ⊂ Rd, and a constant ε > 0 satisfying

LvV(x) ≤ −ε ∀x ∈ Dc .

We denote by τ(A) the first exit time of a process {Xt , t ∈ R+} from a set
A ⊂ Rd, defined by

τ(A) := inf {t > 0 : Xt 6∈ A} .

The open ball of radius R in Rd, centered at the origin, is denoted by BR,
and we let τR := τ(BR), and τ̆R := τ(Bc

R).
We assume that the running cost function r(x, u) is nonnegative, contin-

uous and locally Lipschitz in its first argument uniformly in u ∈ U. Without
loss of generality we let κR be a Lipschitz constant of r( · , u) over BR. In
summary, we assume that

(A4) r : Rd×U→ R+ is continuous and satisfies, for some constant CR > 0∣∣r(x, u)− r(y, u)
∣∣ ≤ CR |x− y| ∀x, y ∈ BR , ∀u ∈ U ,

and all R > 0.

In general, U may not be a convex set. It is therefore often useful to
enlarge the control set to P(U). For any v(du) ∈ P(U) we can redefine the
drift and the running cost as

(3.5) b̄(x, v) :=

∫
U
b(x, u)v(du) , and r̄(x, v) :=

∫
U
r(x, u)v(du) .

It is easy to see that the drift and running cost defined in (3.5) satisfy all
the aforementioned conditions (A1)–(A4). In what follows we assume that
all the controls take values in P(U). These controls are generally referred to
as relaxed controls. We endow the set of relaxed stationary Markov controls
with the following topology: vn → v in USM if and only if∫

Rd
f(x)

∫
U
g(x, u)vn(du | x) dx −−−→

n→∞

∫
Rd
f(x)

∫
U
g(x, u)v(du | x) dx

for all f ∈ L1(Rd) ∩ L2(Rd) and g ∈ Cb(Rd × U). Then USM is a compact
metric space under this topology [1, Section 2.4]. We refer to this topology
as the topology of Markov controls. A control is said to be precise if it takes
value in U. It is easy to see that any precise control Ut can also be understood
as a relaxed control by Ut(du) = δUt . Abusing the notation we denote the
drift and running cost by b and r, respectively, and the action of a relaxed
control on them is understood as in (3.5).
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3.2. Structural assumptions. Assumptions 3.1 and 3.2, described below,
are in effect throughout the analysis, unless otherwise stated.

Assumption 3.1. For some open set K ⊂ Rd, the following hold:

(i) The running cost r is inf-compact on K.

(ii) There exist inf-compact functions V ∈ C2(Rd) and h ∈ C(Rd×U), such
that

LuV(x) ≤ 1− h(x, u) ∀ (x, u) ∈ Kc × U ,

LuV(x) ≤ 1 + r(x, u) ∀ (x, u) ∈ K × U .
(3.6)

Without loss of generality, we assume that V and h are nonnegative.

Remark 3.1. In the statement of Assumption 3.1, we refrain from using
any constants in the interest of notational economy. There is no loss of
generality in doing so, since the functions V and h can always be scaled to
eliminate unnecessary constants.

The next assumption is not a structural one, but rather the necessary re-
quirement that the value of the ergodic control problem is finite. Otherwise,
the problem is vacuous. For U ∈ U define

(3.7) %U (x) := lim sup
T→∞

1

T
EUx
[∫ T

0
r(Xs, Us) ds

]
.

Assumption 3.2. There exists U ∈ U such that %U (x) < ∞ for some
x ∈ Rd.

Assumption 3.2 alone does not imply that %v < ∞ for some v ∈ USSM.
However, when combined with Assumption 3.1, this is the case as the fol-
lowing lemma asserts.

Lemma 3.1. Let Assumptions 3.1 and 3.2 hold. Then there exists u0 ∈
USSM such that %u0 < ∞. Moreover, there exists a nonnegative inf-compact
function V0 ∈ C2(Rd), and a positive constant η such that

(3.8) Lu0V0(x) ≤ η − r(x, u0(x)) ∀x ∈ Rd .

Conversely, if (3.8) holds, then Assumption 3.2 holds.

Proof. The first part of the result follows from Theorem 3.1 (e) and
(3.23) whereas the converse part follows from Lemma 3.2. These proofs are
stated later in the paper.
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Remark 3.2. There is no loss of generality in using only the constant η
in Assumption 3.2, since V0 can always be scaled to achieve this.

We also observe that for K = Rd the problem reduces to an ergodic
control problem with near-monotone cost, and for K = ∅ we obtain an
ergodic control problem under a uniformly stable controlled diffusion.

3.3. Piecewise linear controlled diffusions. The controlled diffusion pro-
cess in (2.12) belongs to a large class of controlled diffusion processes, called
piecewise linear controlled diffusions [14]. We describe this class of controlled
diffusions and show that it satisfies the assumptions in Section 3.2.

Definition 3.2. A square matrix R is said to be an M -matrix if it can
be written as R = sI − N for some s > 0 and nonnegative matrix N with
property that ρ(N) ≤ s, where ρ(N) denotes the spectral radius of N .

Let Γ = [γij ] be a given matrix whose diagonal elements are positive,
γid = 0 for i = 1, . . . , d−1, and the remaining elements are in R. (Note that
for the queueing model, Γ is a positive diagonal matrix. Our results below
hold for the more general Γ .) Let ` ∈ Rd and R be a non-singular M -matrix.
Define

(3.9) b(x, u) := `−R(x− (e · x)+u)− (e · x)+Γu ,

with u ∈ S :=
{
u ∈ Rd+ : e · u = 1

}
. Assume that

eTR ≥ 0T .

We consider the following controlled diffusion in Rd:

(3.10) dXt = b(Xt, Ut) dt+ Σ dWt ,

where Σ is a constant matrix such that ΣΣT is invertible. It is easy to see
that (3.10) satisfies conditions (A1)–(A3).

Analysis of these types of diffusion approximations is an established tradi-
tion in queueing systems. It is often easy to deal with the limiting object and
it also helps to obtain information on the behavior of the actual queueing
model.

We next introduce the running cost function. Let r : Rd × S → [0,∞) be
locally Lipschitz with polynomial growth and

(3.11) c1[(e · x)+]m ≤ r(x, u) ≤ c2

(
1 + [(e · x)+]m

)
,
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for some m ≥ 1 and positive constants c1 and c2 that do not depend on u.
Some typical examples of such running costs are

r(x, u) = [(e · x)+]m
d∑
i=1

hiu
m
i , with m ≥ 1 ,

for some positive vector (h1, . . . , hd)
T.

Remark 3.3. The controlled dynamics in (3.9) and running cost in
(3.11) are clearly more general than the model described in Section 2.2.
In (3.10), X denotes the diffusion approximation for the number customers
in the system in the Halfin-Whitt regime and its ith component Xi denotes
the diffusion approximation of the number of class i customers. Therefore,
(e ·X)+ denotes the total number of customers in the queue. For R and Γ
diagonal as in (2.13), the diagonal entries of R and Γ denote the service
and abandonment rates, respectively, of the customer classes. The i-th co-
ordinate of U denotes the fraction of class-i customers waiting in the queue.
Therefore, the vector-valued process Xt−(e·Xt)

+Ut denotes the diffusion ap-
proximation of the numbers of customers in service from different customer
classes.

Proposition 3.1. Let b and r be given by (3.9) and (3.11), respectively.
Then (3.10) satisfies Assumptions 3.1 and 3.2, with h(x) = c0|x|m and

(3.12) K :=
{
x : δ|x| < (e · x)+

}
for appropriate positive constants c0 and δ.

Proof. We recall that if R is a non-singular M -matrix, then there exists
a positive definite matrix Q such that QR+RTQ is strictly positive definite
[14]. Therefore for some positive constant κ0 it holds that

κ0|y|2 ≤ yT[QR+RTQ]y ≤ κ−1
0 |y|

2 ∀y ∈ Rd .

The set K in (3.12), where δ > 0 is chosen later, is an open convex cone, and
the running cost function r is inf-compact on K. Let V be a nonnegative

function in C2(Rd) such that V(x) =
[
xTQx

]m/2
for |x| ≥ 1, where the

constant m is as in (3.11).
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Let |x| ≥ 1 and u ∈ S. Then

∇V(x) · b(x, u) = ` · ∇V(x)−
m
[
xTQx

]m/2−1

2
xT[QR+RTQ]x

+m
[
xTQx

]m/2−1
Qx · (R− Γ )(e · x)+u

≤ ` · ∇V(x)−m
[
xTQx

]m/2−1
(κ0

2
|x|2 − C|x|(e · x)+

)
for some positive constant C. If we choose δ = κ0

4C , then on Kc ∩ {|x| ≥ 1}
we have the estimate

(3.13) ∇V(x) · b(x, u) ≤ ` · ∇V(x)− mκ0

4

[
xTQx

]m/2−1|x|2.

Note that ` · V is globally bounded for m = 1. For any m ∈ (1,∞), it follows
by (3.13) that

∇V(x) · b(x, u) ≤ m(`TQx)
[
xTQx

]m/2−1 − mκ0

4

[
xTQx

]m/2−1|x|2(3.14)

≤
m |`TQ|

(
λ(Q)

)m/2
λ(Q)

|x|m−1 −
mκ0

(
λ(Q)

)m/2
4λ(Q)

|x|m

for x ∈ Kc ∩ {|x| ≥ 1}, where λ(Q) and λ(Q) are the smallest and largest
eigenvalues of Q respectively. We use Young’s inequality

|ab| ≤ |a|
m

m
+
m− 1

m
|b|m/m−1, a, b ≥ 0 ,

in (3.14) to obtain the bound

∇V(x) · b(x, u) ≤ κ1 −
mκ0

8λ(Q)

(
λ(Q)

)m/2|x|m(3.15)

for some constant κ1 > 0. A similar calculation shows for some constant
κ2 > 0 it holds that

(3.16) ∇V(x) · b(x, u) ≤ κ2

(
1 + [(e · x)+]m

)
∀x ∈ K ∩ {|x| ≥ 1} .

Also note that we can select κ3 > 0 large enough such that

(3.17)
1

2

∣∣trace
(
ΣΣT∇2V(x)

)∣∣ ≤ κ3 +
mκ0

16λ(Q)

(
λ(Q)

)m/2|x|m .
Hence by (3.13)–(3.17) there exists κ4 > 0 such that

(3.18) LuV(x) ≤ κ4 −
mκ0

16λ(Q)

(
λ(Q)

)m/2|x|m IKc(x) + κ2[(e · x)+]m IK(x)
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for all x ∈ Rd. It is evident that we can scale V, by multiplying it with a
constant, so that (3.18) takes the form

(3.19) LuV(x) ≤ 1− c0|x|m IKc(x) + c1[(e · x)+]m IK(x) ∀x ∈ Rd .

By (3.11) the running cost r is inf-compact on K. It then follows from (3.11)
and (3.19) that (3.6) is satisfied with h(x) := c0|x|m.

We next show that (3.10) satisfies Assumption 3.2. Let

u0(·) ≡ ed = (0, . . . , 0, 1)T .

Then we can write (3.10) as

(3.20) dXt =
(
`−R(Xt − (e ·Xt)

+u0)− (e · x)+Γu0

)
dt+ Σ dWt .

It is shown in [14] that the solution Xt in (3.20) is positive recurrent and
therefore u0 is a stable Markov control. This is done by finding a suitable
Lyapunov function. In particular, in [14, Theorem 3] it is shown that there
exists a positive definite matrix Q̃ such that if we define

(3.21) ψ(x) := (e · x)2 + κ̃ [x− edφ(e · x)]TQ̃[x− edφ(e · x)] ,

for some suitably chosen constant κ̃ and a function φ ∈ C2(R), given by

φ(y) =


y if y ≥ 0 ,

−1
2 δ̃ if y ≤ −δ̃ ,

smooth if − δ̃ < y < 0 ,

where δ̃ > 0 is a suitable constant and 0 ≤ φ′(y) ≤ 1, then it holds that

(3.22) Lu0ψ(x) ≤ −κ̃1|x|2,

for |x| large enough and positive constant κ̃1. We define V0 := eaψ where a
is to be determined later. Note that |∇ψ(x)| ≤ κ̃2(1+ |x|) for some constant
κ̃2 > 0. Hence a straightforward calculation shows that if we choose a small
enough, then for some some constant κ̃3 > 0 it holds that

Lu0V0(x) ≤
(
−κ̃1a|x|2 + a2‖Σ‖2κ̃2(1 + |x|)2

)
V0(x)

≤ −κ̃3|x|2V0(x)

for all |x| large enough. Since V0(x) > [(e ·x)+]m, m ≥ 1, for all large enough
|x| we see that V0 satisfies (3.8) with control u0. Hence Assumption 3.2 holds
by Lemma 3.1.
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3.4. Existence of optimal controls.

Definition 3.3. Recall the definition of %U in (3.7). For β > 0 we define

Uβ :=
{
U ∈ U : %U (x) ≤ β for somex ∈ Rd

}
.

We also let UβSM := Uβ ∩ USM, and

%̂∗ := inf {β > 0 : Uβ 6= ∅} ,

%∗ := inf {β > 0 : UβSM 6= ∅} ,

%̃∗ := inf {π(r) : π ∈ G} ,

where

G :=
{
π ∈ P(Rd × U) :

∫
Rd×U

Luf(x)π(dx,du) = 0 ∀ f ∈ C∞c (Rd)
}
,

and Luf(x) is given by (3.3). It is well known that G is the set of ergodic
occupation measures of the controlled process in (3.1), and that G is a closed
and convex subset of P(Rd × U) [1, Lemmas 3.2.2 and 3.2.3]. We use the
notation πv when we want to indicate the ergodic occupation measure asso-
ciated with the control v ∈ USSM. In other words,

πv(dx,du) := µv(dx)v(du | x) .

Lemma 3.2. If (3.8) holds for some V0 and u0, then we have πu0(r) ≤ η.
Therefore, %̂∗ <∞.

Proof. Let (Xt, u0(Xt)) be the solution of (3.1). Recall that τR is the
first exit time from BR for R > 0. Then by Itô’s formula

Eu0x [V0(XT∧τR)]− V0(x) ≤ ηT − Eu0x
[∫ T∧τR

0
r
(
Xs, u0(Xs)

)
ds

]
.

Therefore letting R→∞ and using Fatou’s lemma we obtain the bound

Eu0x
[∫ T

0
r
(
Xs, u0(Xs)

)
ds

]
≤ ηT + V0(x)−min

Rd
V0 ,

and thus

lim sup
T→∞

1

T
Eu0x
[∫ T

0
r
(
Xs, u0(Xs)

)
ds

]
≤ η .
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In the analysis we use a function h̃ ∈ C(Rd×U) which, roughly speaking,
is of the same order as r in K×U and lies between r and a multiple of r+h
on Kc × U, with K as in Assumption 3.1. The existence of such a function
is guaranteed by Assumption 3.1 as the following lemma shows.

Lemma 3.3. Define

H := (K × U)
⋃ {

(x, u) ∈ Rd × U : r(x, u) > h(x, u)
}
,

where K is the open set in Assumption 3.1. Then there exists an inf-compact
function h̃ ∈ C(Rd × U) which is locally Lipschitz in its first argument uni-
formly w.r.t. its second argument, and satisfies

(3.23) r(x, u) ≤ h̃(x, u) ≤ k0

2

(
1 + h(x, u) IHc(x, u) + r(x, u) IH(x, u)

)
for all (x, u) ∈ Rd × U, and for some positive constant k0 ≥ 2. Moreover,

(3.24) LuV(x) ≤ 1− h(x, u) IHc(x, u) + r(x, u) IH(x, u)

for all (x, u) ∈ Rd × U, where V is the function in Assumption 3.1.

Proof. If f(x, u) denotes the right hand side of (3.23), with k0 = 4, then

f(x, u)− r(x, u) > h(x, u) IHc(x, u) + r(x, u) IH(x, u)

≥ h(x, u) IKc(x) + r(x, u) IK(x) ,

since r(x, u) > h(x, u) on H \ (K × U). Therefore, by Assumption 3.1, the
set {(x, u) : f(x, u) − r(x, u) ≤ n} is bounded in Rd × U for every n ∈ N.
Hence there exists an increasing sequence of open balls Dn, n = 1, 2, . . . ,
centered at 0 in Rd such that f(x, u)−r(x, u) ≥ n for all (x, u) ∈ Dc

n×U. Let
g : Rd → R be any nonnegative smooth function such that n− 1 ≤ g(x) ≤ n
for x ∈ Dn+1 \Dn, n = 1, 2, . . . , and g(x) = 0 on D1. Clearly, h̃ := r + g is
continuous, inf-compact, locally Lipschitz in its first argument, and satisfies
(3.23). That (3.24) holds is clear from (3.6) and the fact that H ⊇ K×U.

Remark 3.4. It is clear from the proof of Lemma 3.3 that we could fix
the value of the constant k0 in (3.23), say k0 = 4. However, we keep the
variable k0 because this provides some flexibility in the choice of h̃, and also
in order to be able to trace it along the different calculations.
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Remark 3.5. Note that if h ≥ r and r is inf-compact, then H = K×U
and h̃ := r satisfies (3.23). Note also, that in view of (3.11) and Proposi-
tion 3.1, for the multi-class queueing model we have

r(x, u) ≤ c2

(
1 + [(e · x)+]m

)
≤ c2d

m−1

1 ∧ c0

(
1 + (1 ∧ c0)|x|m

)
≤ c2d

m−1

1 ∧ c0

(
1 + c0|x|m IKc(x) +

1

δm
[(e · x)+]m IK(x)

)
≤ c2d

m−1

1 ∧ c0

(
1 + h(x) IKc(x) +

1

c1δm
r(x, u) IK(x)

)
≤ c2d

m−1

1 ∧ c0 ∧ c1δm
(
1 + h(x) IKc(x) + r(x, u) IK(x)

)
≤ c2d

m−1

1 ∧ c0 ∧ c1δm
(
1 + h(x) IHc(x, u) + r(x, u) IH(x, u)

)
.

Therefore h̃(x, u) := c2 + c2d
m−1|x|m satisfies (3.23).

Remark 3.6. We often use the fact that if g ∈ C(Rd × U) is bounded
below, then the map P(Rd × U) 3 ν 7→ ν(g) is lower semicontinuous. This
easily follows from two facts: (a) g can be expressed as an increasing limit
of bounded continuous functions, and (b) if g is bounded and continuous,
then π 7→ π(g) is continuous.

Theorem 3.1. Let β ∈ (%̂∗,∞). Then

(a) For all U ∈ Uβ and x ∈ Rd such that %U (x) ≤ β, then

(3.25) lim sup
t→∞

1

T
EUx
[∫ T

0
h̃(Xs, Us) ds

]
≤ k0(1 + β) .

(b) %̂∗ = %∗ = %̃∗.

(c) For any β ∈ (%∗,∞), we have UβSM ⊂ USSM.

(d) The set of invariant probability measuresMβ corresponding to controls

in UβSM satisfies∫
Rd
h̃
(
x, v(x)

)
µv(dx) ≤ k0(1 + β) ∀µv ∈Mβ .

In particular, UβSM is tight in P(Rd).
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(e) There exists (Ṽ , %̃) ∈ C2(Rd)× R+, with Ṽ inf-compact, such that

(3.26) min
u∈U

[
LuṼ (x) + h̃(x, u)

]
= %̃ .

Proof. Using Itô’s formula, it follows by (3.24) that

(3.27)
1

T

(
EUx
[
V(XT∧τR)

]
− V(x)

)
≤ 1− 1

T
EUx
[∫ T∧τR

0
h(Xs, Us) IHc(Xs, Us) ds

]
+

1

T
EUx
[∫ T∧τR

0
r(Xs, Us) IH(Xs, Us) ds

]
.

Since V is inf-compact, (3.27) together with (3.23) implies that

(3.28)
2

k0
lim sup
T→∞

1

T
EUx
[∫ T

0
h̃(Xs, Us) ds

]
≤ 2

+ 2 lim sup
T→∞

1

T
EUx
[∫ T

0
r(Xs, Us) ds

]
.

Part (a) then follows from (3.28).
Now fix U ∈ Uβ and x ∈ Rd such that %U (x) ≤ β. The inequality in (3.25)

implies that the set of mean empirical measures {ζUx,t : t ≥ 1}, defined by

ζUx,t(A×B) :=
1

t
EUx
[∫ t

0
IA×B(Xs, Us) ds

]
for any Borel sets A ⊂ Rd and B ⊂ U, is tight. It is the case that any
limit point of the mean empirical measures in P(Rd × U) is is an ergodic
occupation measure [1, Lemma 3.4.6]. Then in view of Remark 3.6 we obtain

(3.29) π(r) ≤ lim sup
t→∞

ζUx,t(r) ≤ β

for some ergodic occupation measure π. Therefore %̃∗ ≤ %̂∗. Disintegrating
the measure π as π(dx, du) = v(du | x)µv(dx) we obtain the associated
control v ∈ USSM. From ergodic theory [33], we also know that

lim sup
T→∞

1

T
Evx
[∫ T

0
r
(
Xs, v(Xs)

)
ds

]
= πv(r) for almost every x .

It follows that %∗ ≤ %̃∗, and since it is clear that %̂∗ ≤ %∗, equality must hold
among the three quantities.
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If v ∈ UβSM then (3.28) implies that (3.29) holds with U ≡ v and π ≡ πv.
Therefore parts (c) and (d) follow.

Existence of (Ṽ , %̃), satisfying (3.26), follows from Assumption 3.2 and
[1, Theorem 3.6.6]. The inf-compactness of Ṽ follows from the stochastic
representation of Ṽ in [1, Lemma 3.6.9]. This proves (e).

Existence of a stationary Markov control that is optimal is asserted by
the following theorem.

Theorem 3.2. Let G denote the set of ergodic occupation measures cor-
responding to controls in USSM, and Gβ those corresponding to controls in
UβSM, for β > %∗. Then

(a) The set Gβ is compact in P(Rd) for any β > %∗.

(b) There exists v ∈ USM such that %v = %∗.

Proof. By Theorem 3.1 (d), the set Gβ is tight for any β > %∗. Let
{πn} ⊂ Gβ, for some β > %∗, be any convergent sequence in P(Rd) such
that πn(r) → %∗ as n → ∞ and denote its limit by π∗. Since G is closed,
π∗ ∈ G, and since the map π→ π(r) is lower semicontinuous, it follows that
π∗(r) ≤ %∗. Therefore Gβ is closed and hence compact. Since π(r) ≥ %∗ for all
π ∈ G, the equality π∗(r) = %∗ follows. Also v is obtained by disintegrating
π∗.

Remark 3.7. The reader might have noticed at this point, that As-
sumption 3.1 may be weakened significantly. What is really required is the
existence of an open set Ĥ ⊂ Rd ×U and inf-compact functions V ∈ C2(Rd)
and h ∈ C(Rd × U), satisfying

(H1) inf{u : (x,u)∈Ĥ} r(x, u) −−−−→
|x|→∞

∞ .

(H2) LuV(x) ≤ 1−h(x, u) IĤc(x, u)+r(x, u) IĤ(x, u) ∀(x, u) ∈ Rd×U .

In (H1) we use the convention that the ‘inf’ of the empty set is +∞. Also
note that (H1) is equivalent to the statement that {(x, u) : r(x, u) ≤ c} ∩ Ĥ
is bounded in Rd × U for all c ∈ R+. If (H1)–(H2) are met, we define
H := Ĥ ∪

{
(x, u) ∈ Rd × U : r(x, u) > h(x, u)

}
, and, following the proof

of Lemma 3.3, we assert the existence of an inf-compact h̃ ∈ C(Rd × U)
satisfying (3.23). In fact, throughout the rest of the paper, Assumption 3.1 is
not really invoked. We only use (3.24), the inf-compact function h̃ satisfying
(3.23), and, naturally, Assumption 3.2.



ERGODIC CONTROL IN THE HALFIN-WHITT REGIME 29

3.5. The HJB equation. For ε > 0 let

rε(x, u) := r(x, u) + εh̃(x, u) .

By Theorem 3.1 (d), for any π ∈ Gβ, β > %∗, we have the bound

(3.30) π(rε) ≤ β + εk0(1 + β) .

Therefore, since rε is near-monotone, that is,

lim inf
|x|→∞

min
u∈U

rε(x, u) > inf
π∈G

π(rε) ,

there exists πε ∈ Arg minπ∈G π(rε) . Let π∗ ∈ G be as in the proof of
Theorem 3.2. The suboptimality of π∗ relative to the running cost rε and
(3.30) imply that

πε(r) ≤ πε(rε)(3.31)

≤ π∗(rε)

≤ %∗ + εk0(1 + %∗) ∀ ε > 0 .

It follows from (3.31) and Theorem 3.1 (d) that
{
πε : ε ∈ (0, 1)

}
is tight.

Since πε 7→ πε(r) is lower semicontinuous, if π̄ is any limit point of πε as
ε↘ 0, then taking limits in (3.31), we obtain

(3.32) π̄(r) ≤ lim sup
ε↘0

πε(r) ≤ %∗ .

Since G is closed, π̄ ∈ G, which implies that π̄(r) ≥ %∗. Therefore equality
must hold in (3.32), or in other words, π̄ is an optimal ergodic occupation
measure.

Theorem 3.3. There exists a unique function V ε ∈ C2(Rd) with V ε(0) =
0, which is bounded below in Rd, and solves the HJB

(3.33) min
u∈U

[
LuV ε(x) + rε(x, u)

]
= %ε ,

where %ε := infπ∈G π(rε), or in other words, %ε is the optimal value of
the ergodic control problem with running cost rε. Also a stationary Markov
control vε is optimal for the ergodic control problem relative to rε if and only
if it satisfies

(3.34) Hε

(
x,∇V ε(x)

)
= b

(
x, vε(x)

)
· ∇V ε(x) + rε

(
x, vε(x)

)
a.e. in Rd ,
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where

(3.35) Hε(x, p) := min
u∈U

[
b(x, u) · p+ rε(x, u)

]
.

Moreover,

(a) for every R > 0, there exists kR such that

(3.36) osc
BR

V ε ≤ kR ;

(b) if vε is a measurable a.e. selector from the minimizer of the Hamilto-
nian in (3.35), i.e., if it satisfies (3.33), then for any δ > 0,

V ε(x) ≥ Evεx
[∫ τ̆δ

0

(
rε(Xs, vε(Xs))− %ε

)
ds

]
+ inf

Bδ
V ε ;

(c) for any stationary control v ∈ USSM and for any δ > 0,

V ε(x) ≤ Evx
[∫ τ̆δ

0

(
rε
(
Xs, v(Xs)

)
− %ε

)
ds+ V ε(Xτ̆δ)

]
,

where τ̆δ is hitting time to the ball Bδ.

Theorem 3.4. Let V ε, %ε, and vε, for ε > 0, be as in Theorem 3.3. The
following hold:

(a) The function V ε converges to some V∗ ∈ C2(Rd), uniformly on compact
sets, and %ε → %∗, as ε↘ 0, and V∗ satisfies

(3.37) min
u∈U

[
LuV∗(x) + r(x, u)

]
= %∗ .

Also, any limit point v∗ (in the topology of Markov controls) as ε↘ 0
of the set {vε} satisfies

Lv∗V∗(x) + r(x, v∗(x)) = %∗ a.e. in Rd .

(b) A stationary Markov control v is optimal for the ergodic control prob-
lem relative to r if and only if it satisfies

(3.38) H
(
x,∇V∗(x)

)
= b

(
x, v(x)

)
·∇V∗(x)+r

(
x, v(x)

)
a.e. in Rd ,

where
H(x, p) := min

u∈U

[
b(x, u) · p+ r(x, u)

]
.

Moreover, for an optimal v ∈ USM, we have

lim
T→∞

1

T
Evx
[∫ T

0
r
(
Xs, v(Xs)

)
ds

]
= %∗ ∀x ∈ Rd .
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(c) The function V∗ has the stochastic representation

V∗(x) = lim
δ↘0

inf
v ∈

⋃
β>0 UβSM

Evx
[∫ τ̆δ

0

(
r
(
Xs, v(Xs)

)
− %∗

)
ds

]
(3.39)

= lim
δ↘0

Ev̄x
[∫ τ̆δ

0

(
r
(
Xs, v∗(Xs)

)
− %∗

)
ds

]
for any v̄ ∈ USM that satisfies (3.38).

(d) If U is a convex set, u 7→ {b(x, u) · p + r(x, u)} is strictly convex
whenever it is not constant, and u 7→ h̃(x, u) is strictly convex for all
x, then any measurable minimizer of (3.33) converges pointwise, and
thus in USM, to the minimizer of (3.37).

Theorem 3.4 guarantees the existence of an optimal stable control, which
is made precise by (3.38), for the ergodic diffusion control problem with the
running cost function r. Moreover, under the convexity property in part (d),
the optimal stable control can be obtained as a pointwise limit from the
minimizing selector of (3.33). For instance, if we let

r(x, u) = (e · x)+
d∑
i=1

hiu
m
i , m > 1 ,

then by choosing h and h̃ + |u|2 as in Proposition 3.1, we see that the
approximate value function V ε and approximate control vε converge to the
desired optimal value function V∗ and optimal control v∗, respectively.

Concerning the uniqueness of the solution to the HJB equation in (3.37),
recall that in the near-monotone case the existing uniqueness results are as
follows: there exists a unique solution pair (V, %) of (3.37) with V in the class
of functions C2(Rd) which are bounded below in Rd. Moreover, it satisfies
V (0) = 0 and % ≤ %∗. If the restriction % ≤ %∗ is removed, then, in general,
there are multiple solutions. Since in our model r is not near-monotone in
Rd, the function V∗ is not, in general, bounded below. However, as we show
later in Lemma 3.10 the negative part of V∗ grows slower than V, i.e., it holds
that V −∗ ∈ o(V), with o(·) as defined in Section 1.3. Therefore, the second
part of the theorem that follows, may be viewed as an extension of the
well-known uniqueness results that apply to ergodic control problems with
near-monotone running cost. The third part of the theorem resembles the
hypotheses of uniqueness that apply to problems under a blanket stability
hypothesis.
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Theorem 3.5. Let (V̂ , %̂) be a solution of

(3.40) min
u∈U

[
LuV̂ (x) + r(x, u)

]
= %̂ ,

such that V̂ − ∈ o(V) and V̂ (0) = 0. Then the following hold:

(a) Any measurable selector v̂ from the minimizer of the associated Hamil-
tonian in (3.38) is in USSM and %v̂ <∞.

(b) If %̂ ≤ %∗ then necessarily %̂ = %∗ and V̂ = V∗.

(c) If V̂ ∈ O
(
minu∈U h̃(· , u)

)
, then %̂ = %∗ and V̂ = V∗.

Applying these results to the multi-class queueing diffusion model we have
the following corollary.

Corollary 3.1. For the queueing diffusion model with controlled dy-
namics given by (3.10), drift given by (3.9), and running cost as in (3.11),
there exists a unique solution V , satisfying V (0) = 0, to the associated HJB
in the class of functions C2(Rd)∩O

(
|x|m

)
, whose negative part is in o

(
|x|m

)
.

This solution agrees with V∗ in Theorem 3.4.

Proof. Existence of a solution V follows by Theorem 3.4. Select V ∼
|x|m as in the proof of Proposition 3.1. That the solution V is in the stated
class then follows by Lemma 3.10 and Corollary 4.1 that appear later in
Sections 3.6 and 4, respectively. With h ∼ |x|m as in the proof of Propo-
sition 3.1, it follows that minu∈U h̃(x, u) ∈ O

(
|x|m

)
. Therefore uniqueness

follows by Theorem 3.5.

We can also obtain the HJB equation in (3.37) via the traditional van-
ishing discount approach as the following theorem asserts. Similar results
are shown for a one-dimensional degenerate ergodic diffusion control prob-
lem in [29] and certain multi-dimensional ergodic diffusion control problems
(allowing degeneracy and spatial periodicity) in [2].

Theorem 3.6. Let V∗ and %∗ be as in Theorem 3.4. For α > 0 we define

Vα(x) := inf
U∈U

EUx
[∫ ∞

0
e−αtr(Xt, Ut) dt

]
.

The function Vα − Vα(0) converges, as α↘ 0, to V∗, uniformly on compact
subsets of Rd. Moreover, αVα(0)→ %∗, as α↘ 0.
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The proofs of the Theorems 3.3–3.6 are given in Section 3.6. The following
result, which follows directly from (3.31), provides a way to find ε-optimal
controls.

Proposition 3.2. Let {vε} be the minimizing selector from Theorem 3.3
and {µvε} be the corresponding invariant probability measures. Then almost
surely for all x ∈ Rd,

lim
T→∞

1

T
Evεx
[∫ T

0
r
(
Xs, vε(Xs)

)
ds

]
=

∫
Rd
r(x, vε(x))µvε(dx)

≤ %∗ + εk0(1 + %∗) .

3.6. Technical proofs. Recall that rε(x, u) = r(x, u) + εh̃(x, u), with h̃ as
in Lemma 3.3. We need the following lemma.

For α > 0 and ε ≥ 0, we define

(3.41) V ε
α (x) := inf

U∈U
EUx
[∫ ∞

0
e−αtrε(Xt, Ut) dt

]
,

where we set r0 ≡ r. Clearly, when ε = 0, we have V 0
α ≡ Vα .

We quote the following result from [1, Theorem 3.5.6, Remark 3.5.8].

Lemma 3.4. Provided ε > 0, then V ε
α defined above is in C2(Rd) and is

the minimal nonnegative solution of

min
u∈U

[
LuV ε

α (x) + rε(x, u)
]

= αV ε
α (x) .

The HJB in Lemma 3.4 is similar to the equation in [7, Theorem 3] which
concerns the characterization of the discounted control problem.

Lemma 3.5. Let u be any precise Markov control and Lu be the corre-
sponding generator. Let ϕ ∈ C2(Rd) be a nonnegative solution of

Luϕ− αϕ = g ,

where g ∈ L∞loc(Rd). Let κ : R+ → R+ be any nondecreasing function such
that ‖g‖L∞(BR) ≤ κ(R) for all R > 0. Then for any R > 0 there exists a
constant D(R) which depends on κ(4R), but not on u, or ϕ, such that

osc
BR

ϕ ≤ D(R)
(

1 + α inf
B4R

ϕ
)
.
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Proof. Define g̃ := α(g − 2κ(4R)) and ϕ̃ := 2κ(4R) + αϕ. Then g̃ ≤ 0
in B4R and ϕ̃ solves

Luϕ̃− αϕ̃ = g̃ in B4R .

Also

‖g̃‖L∞(B4R) ≤ α
(
2κ(4R) + ‖g‖L∞(B4R)

)
≤ 3α

(
2κ(4R)− ‖g‖L∞(B4R)

)
= 3 inf

B4R

|g̃|

≤ 3|B4R|−1‖g̃‖L1(B4R) .

Hence by [1, Theorem A.2.13] there exists a positive constant C̃H such that

sup
x∈B3R

ϕ̃(x) ≤ C̃H inf
x∈B3R

ϕ̃(x) ,

implying that

(3.42) α sup
x∈B3R

ϕ(x) ≤ C̃H

(
2κ(4R) + inf

x∈B3R

αϕ(x)
)
.

We next consider the solution of

Luψ = 0 in B3R , ψ = ϕ on ∂B3R .

Then
Lu(ϕ− ψ) = αϕ+ g in B3R .

If ϕ(x̂) = infx∈B3R
ϕ(x), then applying the maximum principle ( [1, Theo-

rem A.2.1], [18]) it follows from (3.42) that

(3.43) sup
x∈B3R

|ϕ− ψ| ≤ Ĉ
(
1 + αϕ(x̂)

)
.

Again ψ attains its minimum at the boundary ( [1, Theorem A.2.3], [18]).
Therefore ψ − ϕ(x̂) is a nonnegative function and hence by the Harnack
inequality, there exists a constant CH > 0 such that

ψ(x)− ϕ(x̂) ≤ CH
(
ψ(x̂)− ϕ(x̂)

)
≤ CHĈ

(
1 + αϕ(x̂)

)
∀x ∈ B2R .

Thus combining the above display with (3.43) we obtain

osc
B2R

ϕ ≤ sup
B2R

(ϕ− ψ) + sup
B2R

ψ − ϕ(x̂) ≤ Ĉ(1 + CH)
(
1 + αϕ(x̂)

)
.

This completes the proof.
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Lemma 3.6. Let V ε
α be as in Lemma 3.4. Then for any R > 0, there

exists a constant kR > 0 such that

osc
BR

V ε
α ≤ kR for all α ∈ (0, 1] , and ε ∈ [0, 1] .

Proof. Recall that µu0 is the stationary probability distribution for the
process under the control u0 ∈ USSM in Lemma 3.1. Since u0 is suboptimal
for the α-discounted criterion in (3.41), and V ε

α is nonnegative, then for any
ball BR, using Fubini’s theorem, we obtain

µu0(BR) inf
BR

V ε
α ≤

∫
Rd
V ε
α (x)µu0(dx)

≤
∫
Rd

Eu0x
[∫ ∞

0
e−αtrε

(
Xt, u0(Xt)

)
dt

]
µu0(dx)

=
1

α
µu0(rε)

≤ 1

α

(
η + εk0(1 + η)

)
,

where for the last inequality we used Lemma 3.2 and Theorem 3.1 (a).
Therefore we have the estimate

α inf
BR

V ε
α ≤

η + εk0(1 + η)

µu0(BR)
.

The result then follows by Lemma 3.5.

We continue with the proof of Theorem 3.3.

Proof of Theorem 3.3. Consider the function V̄ ε
α := V ε

α − V ε
α (0). In

view of Lemma 3.5 and Lemma 3.6 we see that V̄ ε
α is locally bounded uni-

formly in α ∈ (0, 1] and ε ∈ (0, 1]. Therefore, by standard elliptic theory, V̄ ε
α

and its first and second order partial derivatives are uniformly bounded in
Lp(B), for any p > 1, in any bounded ball B ⊂ Rd, i.e., for some constant
CB depending on B and p,

∥∥V̄ ε
α

∥∥
W2,p(B)

≤ CB [18, Theorem 9.11, p. 117].

Therefore we can extract a subsequence along which V̄ ε
α converges. Then the

result follows from Theorems 3.6.6, Lemma 3.6.9 and Theorem 3.6.10 in [1].
The proof of (3.36) follows from Lemma 3.5 and Lemma 3.6.

Remark 3.8. In the proof of the following lemma, and elsewhere in the
paper, we use the fact that if U ⊂ USSM is a any set of controls such that the
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corresponding set {µv : v ∈ U} ⊂ M of invariant probability measures is
tight then the map v 7→ πv from the closure of U to P(Rd×U) is continuous,
and so is the map v 7→ µv. In fact the latter is continuous under the total
variation norm topology [1, Lemma 3.2.6]. We also recall that G andM are
closed and convex subsets of P(Rd×U) and P(Rd). Therefore {πv : v ∈ Ū} is
compact in G. Note also that since U is compact, tightness of a set of invariant
probability measures is equivalent to tightness of the corresponding set of
ergodic occupation measures.

Lemma 3.7. If {vε : ε ∈ (0, 1]} is a collection of measurable selectors
from the minimizer of (3.33), then the corresponding invariant probability
measures {µε : ε ∈ (0, 1]} are tight. Moreover, if vεn → v∗ along some
subsequence εn ↘ 0, then the following hold:

(a) µεn → µv∗ as εn ↘ 0,

(b) v∗ is a stable Markov control,

(c)
∫
Rd r(x, v∗(x))µv∗(dx) = limε↘0 %ε = %∗.

Proof. By (3.25) and (3.31) the set of ergodic occupation measures cor-
responding to {vε : ε ∈ (0, 1]} is tight. By Remark 3.8 the same applies
to the set {µε : ε ∈ (0, 1]}, and also part (a) holds. Part (b) follows from
the equivalence of the existence of an invariant probability measure for a
controlled diffusion and the stability of the associated stationary Markov
control (see [1, Theorem 2.6.10]. Part (c) then follows since equality holds
in (3.32).

We continue with the following lemma that asserts the continuity of the
mean hitting time of a ball with respect to the stable Markov controls.

Lemma 3.8. Let {vn : n ∈ N} ⊂ UβSM, for some β > 0, be a collection
of Markov controls such that vn → v̂ in the topology of Markov controls as
n→∞. Let µn, µ̂ be the invariant probability measures corresponding to the
controls vn, v̂, respectively. Then for any δ > 0, it holds that

Evnx [τ̆δ] −−−→
n→∞

Ev̂x[τ̆δ] ∀x ∈ Bc
δ .

Proof. Define H(x) := minu∈U h̃(x, u). It is easy to see that H is inf-
compact and locally Lipschitz. Therefore by Theorem 3.1 (d) we have

sup
n∈N

µn(H) ≤ k0(1 + β) ,
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and since µn → µ̂, we also have µ̂(H) ≤ k0(1+β). Then by [1, Lemma 3.3.4]
we obtain

(3.44) sup
n∈N

Evnx
[∫ τ̆δ

0
H(Xs) ds

]
+ Ev̂x

[∫ τ̆δ

0
H(Xs) ds

]
< ∞ .

Let R be a positive number greater than |x|. Then by (3.44) there exists a
positive k such that

Evx
[∫ τ̆δ

0
I{H>R}(Xs) ds

]
≤ 1

R
Evx
[∫ τ̆δ

0
H(Xs) I{H>R}(Xs) ds

]
≤ k

R

for v ∈ {{vn}, v̂}. From this assertion and (3.44) we see that

sup
v∈{{vn}, v̂}

Evx
[∫ τ̆δ

0
I{H>R}(Xs) ds

]
−−−−→
R→∞

0 .

Therefore in order to prove the lemma it is enough to show that, for any
R > 0, we have

Evnx
[∫ τ̆δ

0
I{H≤R}(Xs) ds

]
−−−→
n→∞

Ev̂x
[∫ τ̆δ

0
I{H≤R}(Xs) ds

]
.

But this follows from [1, Lemma 2.6.13 (iii)].

Lemma 3.9. Let (V ε, %ε) be as in Theorem 3.3, and vε satisfy (3.35).
There exists a subsequence εn ↘ 0, such that V εn converges to some V∗ ∈
C2(Rd), uniformly on compact sets, and V∗ satisfies

(3.45) min
u∈U

[
LuV∗(x) + r(x, u)

]
= %∗ .

Also, any limit point v∗ (in the topology of Markov controls) of the set {vε},
as ε↘ 0, satisfies

(3.46) Lv∗V∗(x) + r(x, v∗(x)) = %∗ a.e. in Rd .

Moreover, V∗ admits the stochastic representation

V∗(x) = inf
v ∈

⋃
β>0 UβSM

Evx
[∫ τ̆δ

0

(
r
(
Xs, v(Xs)

)
− %∗

)
ds+ V∗(Xτ̆δ)

]
(3.47)

= Ev∗x
[∫ τ̆δ

0

(
r
(
Xs, v∗(Xs)

)
− %∗

)
ds+ V∗(Xτ̆δ)

]
.

It follows that V∗ is the unique limit point of V ε as ε↘ 0.
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Proof. From (3.36) we see that the family {V ε : ε ∈ (0, 1]} is uniformly
locally bounded. Hence applying the theory of elliptic PDE, it follows that
{V ε : ε ∈ (0, 1]} is uniformly bounded in W

2,p
loc(Rd) for p > d. Consequently,

{V ε : ε ∈ (0, 1]} is uniformly bounded in C1,γ
loc for some γ > 0. Therefore,

along some subsequence εn ↘ 0, V εn → V∗ ∈ W2,p ∩ C1,γ , as n → ∞, uni-
formly on compact sets. Also, limε↘0 %ε = %∗ by Lemma 3.6 (c). Therefore,
passing to the limit we obtain the HJB equation in (3.45). It is straightfor-
ward to verify that (3.46) holds [1, Lemma 2.4.3].

By Theorem 3.3 (c), taking limits as ε↘ 0, we obtain

V∗(x) ≤ inf
v ∈

⋃
β>0 UβSM

Evx
[∫ τ̆δ

0

(
r
(
Xs, v(Xs)

)
− %∗

)
ds+ V∗(Xτ̆δ)

]
.(3.48)

Also by Theorem 3.3 (b) we have the bound

V ε(x) ≥ −%ε Evεx [τ̆δ] + inf
Bδ

V ε .

Using Lemma 3.8 and taking limits as εn ↘ 0, we obtain the lower bound

(3.49) V∗(x) ≥ −%∗ Ev∗x [τ̆δ] + inf
Bδ

V∗ .

By Lemma 3.7 (c) and Theorem 3.1 (d), v∗ ∈ USSM, and πv∗(h̃) ≤ k0(1+%∗).
Define

(3.50) ϕ(x) := Ev∗x
[∫ τ̆δ

0
h̃
(
Xs, v∗(Xs)

)
ds

]
.

For |x| > δ we have

Ev∗x
[
I{τR<τ̆δ}ϕ(XτR)

]
= Ev∗x

[
I{τR<τ̆δ}

∫ τ̆δ

τR∧τ̆δ
h̃
(
Xs, v∗(Xs)

)
ds

]
.

Therefore by the dominated convergence theorem and the fact that ϕ(x) <
∞ we obtain

Ev∗x
[
ϕ(XτR) I{τR<τ̆δ}

]
−−−−→
R↗∞

0 .

By (3.48) and (3.49) we have |V∗| ∈ O(ϕ). Thus (3.49) and (3.50) imply that

lim inf
R↗∞

Ev∗x
[
V∗(XτR) I{τR<τ̆δ}

]
= 0 ,

and thus

(3.51) lim inf
R↗∞

Ev∗x
[
V∗(XτR∧τ̆δ)

]
= Ev∗x

[
V∗(Xτ̆δ)

]
.
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Applying Itô’s formula to (3.46) we obtain

(3.52) V∗(x) = Ev∗x
[∫ τ̆δ∧τR

0

(
r
(
Xs, v∗(Xs)

)
− %∗

)
ds+ V∗(Xτ̆δ∧τR)

]
.

Taking limits as R→∞, and using the dominated convergence theorem, we
obtain (3.47) from (3.48).

Recall the definition of o(·) from Section 1.3. We need the following
lemma.

Lemma 3.10. Let V∗ be as in Lemma 3.9. It holds that V −∗ ∈ o(V).

Proof. Let v∗ be as in Lemma 3.9. Applying Itô’s formula to (3.24) with
u ≡ v∗ we obtain

(3.53) Ev∗x
[∫ τ̆δ

0
h
(
Xs, v∗(Xs)

)
IHc(Xs, v∗(Xs)) ds

]

≤ Ev∗x
[∫ τ̆δ

0
r
(
Xs, v∗(Xs)

)
IH(Xs, v∗(Xs)) ds

]
+ Ev∗x [τ̆δ] + V(x) .

Therefore, adding the term

Ev∗x
[∫ τ̆δ

0
r
(
Xs, v∗(Xs)

)
IH(Xs, v∗(Xs)) ds

]
− (1 + 2%∗)Ev∗x [τ̆δ]

to both sides of (3.53) and using the stochastic representation of V∗ we
obtain

F (x) := 2k−1
0 Ev∗x

[∫ τ̆δ

0
h̃
(
Xs, v∗(Xs)

)
ds

]
− 2(1 + %∗)Ev∗x [τ̆δ](3.54)

≤ 2V∗(x) + V(x)− 2 inf
Bδ

V∗ .

From the stochastic representation of V∗ we have V −∗ (x) ≤ %∗ Ev∗x [τ̆δ] −
infBδ V∗. For any R > δ we have

(3.55) Ev∗x
[∫ τ̆δ

0
h̃
(
Xs, v∗(Xs)

)
ds

]
≥
(

inf
BcR×U

h̃
)

Ex[τ̆R] ∀x ∈ Bc
R .

It is also straightforward to show that lim|x|→∞
Ex[τ̆R]
Ex[τ̆δ]

= 1. Therefore, since

h̃ is inf-compact, it follows by (3.54)–(3.55) that the map x 7→ Ev∗x [τ̆δ] is in
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o(F ), which implies that V −∗ ∈ o(F ). On the other hand by (3.54) we obtain
F (x) ≤ V(x) − 2 supBδ V∗ for all x such that V∗(x) ≤ 0, which implies
that the restriction of F to the support of V −∗ is in O(V). It follows that
V −∗ ∈ o(V).

We next prove Theorem 3.4.

Proof of Theorem 3.4. Part (a) is contained in Lemma 3.9.
To prove part (b), let v̄ be any control satisfying (3.38). By Lemma 3.10

the map V + 2V∗ is inf-compact and by Theorem 3.4 and (3.24) it satisfies

Lv̄(V + 2V∗)(x) ≤ 1 + 2%∗ − r(x, v̄(x))− h(x, v̄(x)) IHc(x, v̄(x))

≤ 2 + 2%∗ − 2k−1
0 h̃(x, v̄(x)) ∀x ∈ Rd .

This implies that v̄ ∈ USSM. Applying Itô’s formula we obtain

(3.56) lim sup
T→∞

1

T
Ev̄x
[∫ T

0
h̃
(
Xs, v̄(Xs)

)
ds

]
≤ k0(1 + %∗) .

Therefore πv̄
(
h̃) <∞. By (3.24) we have

Ev̄x
[
V(Xt)

]
≤ V(x) + t+ Ev̄x

[∫ t

0
r
(
Xs, v̄(Xs)

)
ds

]
,

and since r ≤ h̃, this implies by (3.56) that

(3.57) lim sup
T→∞

1

T
Ev̄x
[
V(XT )

]
≤ 1 + k0(1 + %∗) .

Since V −∗ ∈ o(V), it follows by (3.57) that

lim sup
T→∞

1

T
Ev̄x
[
V −∗ (XT )

]
= 0 .

Therefore, by Itô’s formula, we deduce from (3.37) that

(3.58) lim sup
T→∞

1

T
Ev̄x
[∫ T

0
r
(
Xs, v̄(Xs)

)
ds

]
≤ %∗ .

On the other hand, since the only limit point of the mean empirical measures
ζ v̄x,t, as t→∞, is πv̄, and πv̄(r) = %∗, then, in view of Remark 3.6, we obtain
lim inft→∞ ζ v̄x,t(r) ≥ %∗. This proves that equality holds in (3.58) and that
the ‘lim sup’ may be replaced with ‘lim’.
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Conversely, suppose v ∈ USM is optimal but does not satisfy (3.38). Then
there exists R > 0 and a nontrivial nonnegative f ∈ L∞(BR) such that

fε(x) := IBR(x)
(
LvV ε(x) + rε(x, v(x))− %ε

)
converges to f , weakly in L1(BR), along some subsequence ε ↘ 0. By ap-
plying Itô’s formula to (3.33) we obtain

(3.59)
1

T

(
Evx
[
V ε(XT∧τR)

]
− V ε(x)

)
+

1

T
Evx
[∫ T∧τR

0
rε
(
Xs, v(Xs)

)
ds

]
≥ %ε +

1

T
Evx
[∫ T∧τR

0
fε
(
Xs, v(Xs)

)
ds

]
.

Define, for some δ > 0,

G(x) := Evx
[∫ τ̆δ

0
rε
(
Xs, v(Xs)

)
ds

]
.

Since V ε is bounded from below, by Theorem 3.3 (c) we have V ε ∈ O(G).
Invoking [1, Corollary 3.7.3], we obtain

lim
T→∞

1

T
Evx
[
V ε(XT )

]
= 0 ,

and

lim
R→∞

Evx
[
V ε(XT∧τR)

]
= Evx

[
V ε(XT )

]
.

Therefore, taking limits in (3.59), first as R↗∞, and then as T →∞, we
obtain

(3.60) πv(rε) ≥ %ε + πv(fε) .

Taking limits as ε ↘ 0 in (3.60), since µv has a strictly positive density in
BR, we obtain

πv(r) ≥ %∗ + πv(f) > %∗ ,

which is a contradiction. This completes the proof of part (b).
The first equality (3.39) follows by Lemma 3.9, taking limits as δ ↘ 0.

To show that the second equality holds for any optimal control, suppose v̄
satisfies (3.38). By (3.24) we have, for δ > 0 and |x| > δ,

Ev̄x
[
V(XτR) I{τR<τ̆δ}

]
≤ V(x)+sup

Bδ

V−+Ev̄x
[∫ τR∧τ̆δ

0

(
1+r(Xs, v̄(Xs))

)
ds

]
.
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It follows that (see [1, Lemma 3.3.4])

lim sup
R→∞

Ev̄x
[
V(XτR) I{τR<τ̆δ}

]
< ∞ ,

and since V −∗ ∈ o(V) we must have

lim sup
R→∞

Ev̄x
[
V −∗ (XτR) I{τR<τ̆δ}

]
= 0 .

By the first equality in (3.47) we obtain V +
∗ ∈ O(ϕ), with ϕ as defined in

(3.50) with v∗ replaced by v̄. Thus, in analogy to (3.51), we obtain

lim inf
R↗∞

Ev̄x
[
V∗(XτR∧τ̆δ)

]
= Ev̄x

[
V∗(Xτ̆δ)

]
.

The rest follows as in the proof of Lemma 3.9 via (3.52).
We next prove part (d). We assume that U is a convex set and that

c(x, u, p) := {b(x, u) · p+ r(x, u)}

is strictly convex in u if it is not identically a constant for fixed x and p. We
fix some point ū ∈ U. Define

B :=
{
x ∈ Rd : c(x, · , p) = c(x, ū, p) for all p

}
.

It is easy to see that on B both b and r do not depend on u. It is also easy
to check that B is a closed set. Let (V∗, v∗) be the limit of (V ε, vε), where
V∗ is the solution to (3.37) and v∗ is the corresponding limit of vε. We have
already shown that v∗ is a stable Markov control. We next show that it
is, in fact, a precise Markov control. By our assumption, vε is the unique
minimizing selector in (3.34) and moreover, vε is continuous in x. By the
definition of rε it is clear that the restriction of vε to B does not depend on
ε. Let vε(x) = v′(x) on B. Using the strict convexity property of c(x, · ,∇V∗)
it is easy to verify that vε converges to the unique minimizer of (3.37) on Bc.
In fact, since Bc is open, then for any sequence xε → x ∈ Bc it holds that
vε(x

ε) → v∗(x). This follows from the definition of the minimizer and the
uniform convergence of ∇V ε to ∇V∗. Therefore we see that v∗ is a precise
Markov control, v∗ = v′ on B, and vε → v∗ pointwise as ε→ 0. It is also easy
to check that pointwise convergence implies convergence in the topology of
Markov controls.

We now embark on the proof of Theorem 3.5.
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Proof of Theorem 3.5. The hypothesis that V̂ − ∈ o(V) implies that
the map V + 2V̂ is inf-compact. Also by (3.24) and (3.40) it satisfies

Lv̂(V + 2V̂ )(x) ≤ 1 + 2%̂− r(x, v̂(x))− h(x, v̂(x)) IHc(x, v̂(x))

≤ 2 + 2%̂− 2k−1
0 h̃(x, v̂(x)) ∀x ∈ Rd .

Therefore
∫
h̃(x, v̂(x)) dπv̂ < ∞ from which it follows that %v̂ < ∞. This

proves part (a).
By (3.24) we have

Ev̂x
[
V(Xt)

]
≤ V(x) + t+ Ev̂x

[∫ t

0
r
(
Xs, v̂(Xs)

)
ds

]
,

and since %v̂ <∞, this implies that

(3.61) lim sup
T→∞

1

T
Ev̂x
[
V(XT )

]
≤ 1 + %v̂ .

Since V̂ − ∈ o(V), it follows by (3.61) that

lim sup
T→∞

1

T
Ev̂x
[
V̂ −(XT )

]
= 0 .

Therefore, by Itô’s formula, we deduce from (3.40) that

lim sup
T→∞

(
1

T
Ev̂x
[
V̂ +(XT )

]
+

1

T
Ev̂x
[∫ T

0
r
(
Xs, v̂(Xs)

)
ds

])
= %̂ .

This implies that %v̂ ≤ %̂ and since by hypothesis %̂ ≤ %∗ we must have
%̂ = %∗.

Again by (3.24) we have

Ev̂x
[
V(XτR) I{τR<τ̆δ}

]
≤ V(x)+sup

Bδ

V−+Ev̂x
[∫ τR∧τ̆δ

0

(
1+r(Xs, v̂(Xs))

)
ds

]
.

It follows by [1, Lemma 3.3.4] that

lim sup
R→∞

Ev̂x
[
V(XτR) I{τR<τ̆δ}

]
< ∞ ,

and since V̂ − ∈ o(V) we must have

(3.62) lim sup
R→∞

Ev̂x
[
V̂ −(XτR) I{τR<τ̆δ}

]
= 0 .
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Using (3.62) and following the steps in the proof of the second equality in
(3.47) we obtain

V̂ (x) ≥ Ev̂x
[∫ τ̆δ

0

(
r
(
Xs, v̂(Xs)

)
− %∗

)
ds

]
+ inf

Bδ
V̂

≥ V∗(x)− sup
Bδ

V∗ + inf
Bδ

V̂ .

Taking limits as δ ↘ 0 we have V∗ ≤ V̂ . Since Lv̂
(
V∗ − V̂ ) ≥ 0 and V∗(0) =

V̂ (0), we must have V̂ = V∗ on Rd, and the proof of part (b) is complete.
To prove part (c) note that by part (a) we have %v̂ < ∞. Therefore∫
h̃dπv̂ ≤ ∞ by Theorem 3.1 (a), which implies that

∫
|V̂ | dµv̂ ≤ ∞ by the

hypothesis. Therefore Ev̂x(|V̂ (Xt)|) converges as t → ∞ by [23, Proposition
2.6], which of course implies that 1

t Ev̂x(|V̂ (Xt)|) tends to 0 as t→∞. Sim-

ilarly, we deduce that 1
t Ev∗x (|V̂ (Xt)|) as t → ∞. Applying Itô’s formula to

(3.40), with u ≡ v∗, we obtain %̂ ≤ %∗. Another application with u ≡ v̂
results in %̂ = %v̂. Therefore %̂ = %∗. The result then follows by part (b).

We finish this section with the proof of Theorem 3.6.

Proof of Theorem 3.6. We first show that limα↘0 αVα(0) = %∗. Let
Ṽ(t, x) := e−αtV(x), and τn(t) := τn∧ t. Applying Itô’s formula to (3.24) we
obtain

EUx
[
Ṽ
(
τn(t), Xτn(t)

)]
≤ V(x)− EUx

[∫ τn(t)

0
αṼ(s,Xs) ds

]

+ EUx
[∫ τn(t)

0
e−αs

(
1− h(Xs, Us)

)
IHc(Xs, Us) ds

]

+ EUx
[∫ τn(t)

0
e−αs

(
1 + r(Xs, Us)

)
IH(Xs, Us) ds

]
.

It follows that

(3.63) EUx
[∫ τn(t)

0
e−αs h(Xs, Us) IHc(Xs, Us) ds

]
≤ 1

α
+ V(x)

+ EUx
[∫ τn(t)

0
e−αs r(Xs, Us) IH(Xs, Us) ds

]
.

Taking limits first as n↗∞ and then as t↗∞ in (3.63), and evaluating U
at an optimal α-discounted control v∗α, relative to r we obtain the estimate,
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using also (3.23),

(3.64) 2k−1
0 Ev

∗
α
x

[∫ ∞
0

e−αs h̃
(
Xs, v

∗
α(Xs)

)
ds

]
≤ 2

α
+ V(x) + 2Vα(x) .

By (3.23) and (3.64) it follows that

Vα(x) ≤ V ε
α (x) ≤ Ev

∗
α
x

[∫ ∞
0

e−αs rε
(
Xs, v

∗
α(Xs)

)
ds

]
≤ Vα(x) + εk0

(
α−1 + V(x) + Vα(x)

)
.

Multiplying by α and taking limits as α↘ 0 we obtain

lim sup
α↘0

αVα(0) ≤ %ε ≤ (1 + εk0) lim sup
α↘0

αVα(0) + εk0 .

The same inequalities hold for the ‘lim inf’. Therefore, limα↘0 αVα(0) = %∗.
Let

Ṽ := lim
α↘0

(
Vα − Vα(0)

)
.

(Note that a similar result as Lemma 3.5 holds.) Then Ṽ satisfies

Ṽ (x) ≤ lim
δ↘0

Evx
[∫ τ̆δ

0

(
r
(
Xs, v(Xs)

)
− %∗

)
ds

]
∀ v ∈

⋃
β>0

UβSM .

This can be obtained without the near-monotone assumption on the running
cost, see for example [1, Lemma 3.6.9 or Lemma 3.7.8]. It follows from (3.39)
that Ṽ ≤ V∗. On the other hand since Lv∗(Ṽ − V∗) ≥ 0, and Ṽ (0) = V∗(0),
we must have Ṽ = V∗ by the strong maximum principle.

4. Approximation via Spatial Truncations. We introduce an ap-
proximation technique which is in turn used to prove the asymptotic con-
vergence results in Section 5.

Let v0 ∈ USSM be any control such that πv0(r) < ∞. We fix the control
v0 on the complement of the ball B̄l and leave the parameter u free inside.
In other words for each l ∈ N we define

bl(x, u) :=

{
b(x, u) if (x, u) ∈ B̄l × U ,
b(x, v0(x)) otherwise,

rl(x, u) :=

{
r(x, u) if (x, u) ∈ B̄l × U ,
r(x, v0(x)) otherwise.
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We consider the family of controlled diffusions, parameterized by l ∈ N,
given by

(4.1) dXt = bl(Xt, Ut) dt+ σ(Xt) dWt ,

with associated running costs rl(x, u). We denote by USM(l, v0) the sub-
set of USM consisting of those controls v which agree with v0 on B̄c

l . Let
η0 := πv0(r). It is well known that there exists a nonnegative solution ϕ0 ∈
W

2,p
loc(Rd), for any p > d, to the Poisson equation (see [1, Lemma 3.7.8 (ii)])

Lv0ϕ0(x) = η0 − h̃(x, v0(x)) x ∈ Rd ,

which is inf-compact, and satisfies, for all δ > 0,

ϕ0(x) = Ev0x
[∫ τ̆δ

0

(
h̃(Xs, v0

(
Xs

)
− η0

)
ds+ ϕ0(Xτ̆δ)

]
∀x ∈ Rd .

We recall the Lyapunov function V from Assumption 3.1. We have the
following theorem.

Theorem 4.1. Let Assumptions 3.1 and 3.2 hold. Then for each l ∈ N
there exists a solution V l in W

2,p
loc(Rd), for any p > d, with V l(0) = 0, of the

HJB equation

(4.2) min
u∈U

[
Lul V

l(x) + rl(x, u)
]

= %l ,

where Lul is the elliptic differential operator corresponding to the diffusion
in (4.1). Moreover, the following hold:

(i) %l is non-increasing in l;

(ii) there exists a constant C0, independent of l, such that V l(x) ≤ C0 +
2ϕ0(x) for all l ∈ N;

(iii) (V l)− ∈ o(V + ϕ0) uniformly over l ∈ N;

(iv) the restriction of V l on Bl is in C2.

Proof. As earlier we can show that

V l
α(x) := inf

U∈U
EUx
[∫ ∞

0
e−αsrl(Xs, Us) ds

]
is the minimal nonnegative solution to

(4.3) min
u∈U

[
Lul V

l
α(x) + rl(x, u)

]
= αV l

α(x) ,
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and V l
α ∈ W

2,p
loc(Rd), p > d. Moreover, any measurable selector from the

minimizer in (4.3) is an optimal control. A similar estimate as in Lemma 3.5
holds and therefore there exists a subsequence {αn}, along which V l

αn(x)−
V l
αn(0) converges to V l in W

2,p
loc(Rd), p > d, and αnV

l
αn(0) → %l as αn ↘ 0,

and (V l, %l) satisfies (4.2) (see also [1, Lemma 3.7.8]).
To show that πvl(r) = %l, v

l is a minimizing selector in (4.2), we use
the following argument. Since πv0(r) < ∞ we claim that there exists a
nonnegative, inf-compact function g ∈ C(Rd) such that πv0

(
g · (1 + r)

)
<

∞. Indeed, this is true since integrability and uniform integrability of a
function under any given measure are equivalent (see also the proof of [1,
Lemma 3.7.2]). Since every control in USM(l, v0) agrees with v0 on Bc

l , then
for any x0 ∈ B̄c

l the map

v 7→ Evx0

[∫ τ̆l

0
g(Xs)

(
1 + r(Xs, v(Xs)

)
ds

]
is constant on USM(l, v0). By the equivalence of (i) and (iii) in Lemma 3.3.4
of [1] this implies that

sup
v∈USM(l,v0)

πv
(
g · (1 + r)

)
< ∞ ∀ l ∈ N ,

and thus r is uniformly integrable with respect to the family {πv : v ∈
USM(l, v0)} for any l ∈ N. It then follows by [1, Theorem 3.7.11] that

(4.4) %l = inf
v∈USM(l,v0)

πv(r) , l ∈ N .

This yields part (i). Moreover, in view of Lemmas 3.5 and 3.6, we deduce
that for any δ > 0 it holds that supBδ |V

l| ≤ κδ, where κδ is a constant
independent of l ∈ N. It is also evident by (4.4) that %l is decreasing in l
and %l ≤ η0 for all l ∈ N. Fix δ such that minu∈U h̃(x, u) ≥ 2η0 on Bc

δ . Since
ϕ0 is nonnegative, we obtain

(4.5) Ev0x
[∫ τ̆δ

0

(
h̃
(
Xs, v0(Xs)

)
− η0

)
ds

]
≤ ϕ0(x) ∀x ∈ Rd .

Using an analogous argument as the one used in the proof of [1, Lemma 3.7.8]
we have

(4.6) V l(x) ≤ Evx
[∫ τ̆δ

0

(
rl
(
Xs, v(Xs)

)
− %l

)
ds

]
+ κδ ∀v ∈ USM(l, v0) .
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Thus by (4.5)–(4.6), and since by the choice of δ > 0, it holds that r ≤ h̃ ≤
2(h̃− η0) on Bc

δ , we obtain

V l(x) ≤ Ev0x
[∫ τ̆δ

0
2
(
h̃
(
Xs, v0(Xs)

)
− η0

)
ds

]
+ κδ(4.7)

≤ κδ + 2ϕ0(x) ∀x ∈ Rd .

This proves part (ii).
Now fix l ∈ N. Let vlα be a minimizing selector of (4.3). Note then that

vlα ∈ USM(l, v0). Therefore vlα is a stable Markov control. Let vlαn → vl in
the topology of Markov controls along the same subsequence as above. Then
it is evident that vl ∈ USM(l, v0). Also from Lemma 3.8 we have

Ev
l
αn
x [τ̆δ] −−−−→

αn↘0
Ev

l

x [τ̆δ] ∀x ∈ Bc
δ , ∀δ > 0 .

Using [1, Lemma 3.7.8] we obtain the lower bound

(4.8) V l(x) ≥ −%l Ev
l

x [τ̆δ]− κδ .

By [1, Theorem 3.7.12 (i)] (see also (3.7.50) in [1]) it holds that

V l(x) = Ev
l

x

[∫ τ̆δ

0

(
rl
(
Xs, v

l(Xs)
)
− %l

)
ds+ V l(Xτ̆δ)

]
(4.9)

≥ Ev
l

x

[∫ τ̆δ

0
rl
(
Xs, v

l(Xs)
)

ds

]
− %l Ev

l

x [τ̆δ]− κδ ∀x ∈ Bc
l .

By (3.23) we have

2k−1
0 h̃(x, u) IH(x, u) ≤ 1 + r(x, u) IH(x, u) .

Therefore using the preceding inequality and (4.9) we obtain

(4.10) V l(x) + (1 + %l)Ev
l

x [τ̆δ] + κδ

≥ 2

k0
Ev

l

x

[∫ τ̆δ

0
h̃
(
Xs, v

l(Xs)
)
IH(Xs, v

l(Xs)) ds

]
.

By (3.24), (4.9) and the fact that V is nonnegative, we have

2

k0
Ev

l

x

[∫ τ̆δ

0
h̃
(
Xs,v

l(Xs)
)
IHc(Xs, v

l(Xs)) ds

]
− V(x)− Ev

l

x [τ̆δ](4.11)

≤ Ev
l

x

[∫ τ̆δ

0
r
(
Xs, v

l(Xs)
)
IH(Xs, v

l(Xs)) ds

]
≤ V l(x) + %l Ev

l

x [τ̆δ] + κδ .
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Combining (4.7) and (4.10)–(4.11), we obtain,

Ev
l

x

[∫ τ̆δ

0
h̃
(
Xs, v

l(Xs)
)

ds

]
≤ k0

(
1 + %l

)
Ev

l

x [τ̆δ]

+ k0
2 V(x) + 2k0(ϕ0(x) + κδ)

for all l ∈ N. As earlier, using the inf-compact property of h̃ and the fact
that %l ≤ η0 is bounded, we can choose δ large enough such that

(4.12) η0 Ev
l

x [τ̆δ] ≤ Ev
l

x

[∫ τ̆δ

0
h̃
(
Xs, v

l(Xs)
)

ds

]
≤ k0V(x)

+ 4k0(ϕ0(x) + κδ)

for all l ∈ N. Since h̃ is inf-compact, part (iii) follows by (4.8) and (4.12).
Part (iv) is clear from regularity theory of elliptic PDE [18, Theorem 9.19,

p. 243].

Similar to Theorem 3.3 we can show that oscillations of {V l} are uniformly
bounded on compacts. Therefore if we let l→∞ we obtain a HJB equation

(4.13) min
u∈U

[
LuV̂ (x) + r(x, u)

]
= %̂ ,

with V̂ ∈ C2(Rd) and liml→∞ %l = %̂. By Theorem 4.1 we have the bound

(4.14) V̂ (x) ≤ C0 + 2ϕ0(x) ,

for some positive constant C0. This of course, implies that V̂ +(x) ≤ C0 +
2ϕ0(x). Moreover, it is straightforward to show that for any v ∈ USSM with
%v <∞, we have

lim sup
t→∞

1

t
Evx
[
V(Xt)

]
< ∞ .

Therefore, if in addition, we have

lim sup
t→∞

1

t
Evx
[
ϕ0(Xt)

]
< ∞ ,

then it follows by Theorem 4.1(iii) that

(4.15) lim sup
t→∞

1

t
V̂ −(Xt) −−−→

t→∞
0 .
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Theorem 4.2. Suppose that ϕ0 ∈ O
(
minu∈U h̃(· , u)

)
. Then, under the

assumptions of Theorem 4.1, we have liml→∞ %l = %̂ = %∗, and V̂ = V∗.
Moreover, V∗ ∈ O(ϕ0).

Proof. Let {v̂l} be any sequence of measurable selectors from the min-
imizer of (4.2) and {πl} the corresponding sequence of ergodic occupation
measures. Since by Theorem 3.1 {πl} is tight, then by Remark 3.8 if v̂ is
a limit point of a subsequence {v̂l}, which we also denote by {v̂l}, then
π̂ = πv̂ is the corresponding limit point of {πl}. Therefore by the lower
semicontinuity of π→ π(r) we have

%̂ = lim
l→∞

πl(r) ≥ π̂(r) = %v̂ .

It also holds that

(4.16) Lv̂V̂ (x) + r(x, v̂(x)) = %̂ , a.s.

By (4.15) we have

lim inf
T→∞

1

T
Ev̂x
[
V̂ (XT )

]
= 0 ,

and hence applying Itô’s rule on (4.16) we obtain %v̂ ≤ %̂. On the other
hand, if v∗ is an optimal stationary Markov control, then by the hypothesis
ϕ0 ∈ O

(
h̃
)
, the fact that πv∗

(
h̃) < ∞, (4.14), and [23, Proposition 2.6], we

deduce that Ev∗x
[
V̂ +(Xt)

]
converges as t→∞, which of course together with

(4.15) implies that 1
t Ev̂x

[
V̂ (Xt)

]
tends to 0 as t→∞. Therefore, evaluating

(4.13) at v∗ and applying Itô’s rule we obtain %v∗ ≥ %̂. Combining the two
estimates, we have %v̂ ≤ %̂ ≤ %∗, and thus equality must hold. Here we
have used the fact that there exists an optimal Markov control for r by
Theorem 3.4.

Next we use the stochastic representation in (4.9)

(4.17) V l(x) = Ev̂lx
[∫ τ̆δ

0

(
r(Xs, v̂l(Xs))− %l

)
ds+ V l(Xτ̆δ)

]
, x ∈ Bc

δ .

Fix any x ∈ Bc
δ . Since U

%v0
SM is compact, it follows that for each δ and R with

0 < δ < R, the map Fδ,R(v) : U
%v0
SM → R+ defined by

Fδ,R(v) := Evx
[∫ τ̆δ∧τR

0
r
(
Xs, v(Xs)

)
ds

]
is continuous. Therefore, the map F̄δ := limR↗∞ Fδ,R is lower semicontinu-
ous. It follows that

(4.18) Ev̂x
[∫ τ̆δ

0
r
(
Xs, v̂(Xs)

)
ds

]
≤ lim

l→∞
Ev̂lx
[∫ τ̆δ

0
r
(
Xs, v̂l(Xs)

)
ds

]
.
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On the other hand, since h̃ is inf-compact, it follows by (4.12) that τ̆δ is
uniformly integrable with respect to the measures

{
Pv̂lx
}

. Therefore, as also
shown in Lemma 3.8, we have

(4.19) lim
l→∞

Ev̂lx
[
τ̆δ
]

= Ev̂x
[
τ̆δ
]
.

Since V l → V̂ , uniformly on compact sets, and %l → %∗, as l→∞, it follows
by (4.17)–(4.19) that

V̂ (x) ≥ Ev̂x
[∫ τ̆δ

0

(
r
(
Xs, v̂(Xs)

)
− %∗

)
ds+ V̂ (Xτ̆δ)

]
, x ∈ Bc

δ .

Therefore, by Theorem 3.4 (b), for any δ > 0 and x ∈ Bc
δ we obtain

V∗(x) ≤ Ev̂x
[∫ τ̆δ

0

(
r
(
Xs, v̂(Xs)

)
− %∗

)
ds+ V∗(Xτ̆δ)

]
≤ V̂ (x) + Ev̂x

[
V ∗(Xτ̆δ)

]
− Ev̂x

[
V̂ (Xτ̆δ)

]
,

and taking limits as δ ↘ 0, using the fact that V̂ (0) = V∗(0) = 0, we
obtain V∗ ≤ V̂ on Rd. Since Lv̂(V∗ − V̂ ) ≥ 0, we must have V∗ = V̂ . By
Theorem 4.1 (ii), we have V∗ ∈ O(ϕ0).

Remark 4.1. It can be seen from the proof of Theorem 4.2 that the
assumption ϕ0 ∈ O

(
h̃
)

can be replaced by the weaker hypothesis that
1
T Ev∗x

[
ϕ0(XT )

]
→ 0 as T →∞.

Remark 4.2. It is easy to see that if one replaces rl by

rl(x, u) =

r(x, u) + 1
l f(u) , for x ∈ B̄l ,

r(x, v0(x)) + 1
l f(v0(x)) , otherwise,

for some positive valued continuous function f , the same conclusion of The-
orem 4.2 holds.

If we consider the controlled dynamics given by (3.20), with running cost
as in (3.11), then there exists a function V ∼ |x|m satisfying (3.6). This
fact is proved in Proposition 3.1. There also exists a Lyapunov function
V0 ∈ O

(
|x|m

)
, satisfying the assumption in Theorem 4.2, relative to any

control v0 with πv0
(
h̃
)
< ∞, where h̃ is selected as in Remark 3.5. Indeed,

in order to construct V0 we recall the function ψ in (3.21). Let V0 ∈ C2(Rd)
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be any function such that V0 = ψ
m
2 on the complement of the unit ball

centered at the origin. Observe that for some positive constants κ1 and κ2

it holds that
κ1|x|2 ≤ ψ(x) ≤ κ2|x|2 .

Then a straightforward calculation from (3.22) shows that (3.8) holds with
the above choice of V0. By the stochastic representation of ϕ0 it follows that
ϕ0 ∈ O(V0). We have proved the following corollary.

Corollary 4.1. For the queueing diffusion model with controlled dy-
namics given by (3.20), and running cost given by (3.11), there exists a
solution (up to an additive constant) to the associated HJB in the class of
functions in C2(Rd) whose positive part grows no faster than |x|m and whose
negative part is in o

(
|x|m

)
.

We conclude this section with the following remark.

Remark 4.3. Comparing the approximation technique introduced in
this section with that in Section 3, we see that the spatial truncation tech-
nique relies on more restrictive assumption on the Lyapunov function V0

and the running cost function (Theorem 4.2). In fact, the growth of h̃ also
restricts the growth of r by (3.23). Therefore the class of ergodic diffusion
control problems considered in this section is more restrictive. For example,
if the running cost r satisfies (3.11) and h̃ ∼ |x|m, then it is not obvious that
one can obtain a Lyapunov function V0 with growth at most of order |x|m.
For instance, if the drift has strictly sub-linear growth, then it is expected
that the Lyapunov function should have growth larger than |x|m. Therefore,
the class of problems considered in Section 3 is larger than those considered
in this section.

5. Asymptotic Convergence. In this section we prove that the value
of the ergodic control problem corresponding to the multi-class M/M/N+M
queueing network asymptotically converges to %∗, the value of the ergodic
control for the controlled diffusion.

Recall the diffusion-scaled processes X̂n, Q̂n and Ẑn defined in (2.4), and
from (2.5) and (2.6) that

(5.1) X̂n
i (t) = X̂n

i (0) + `ni t− µni
∫ t

0
Ẑni (s) ds− γni

∫ t

0
Q̂ni (s) ds

+ M̂n
A,i(t)− M̂n

S,i(t)− M̂n
R,i(t) ,
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where M̂n
A,i(t), M̂

n
S,i(t) and M̂n

R,i(t), i = 1, . . . , d, as defined in (2.6), are
square integrable martingales w.r.t. the filtration {Fnt } with quadratic vari-
ations

〈M̂n
A,i〉(t) =

λni
n
t ,

〈M̂n
S,i〉(t) =

µni
n

∫ t

0
Zni (s) ds ,

〈M̂n
R,i〉(t) =

γni
n

∫ t

0
Qni (s) ds .

5.1. The lower bound. In this section we prove Theorem 2.1.

Proof of Theorem 2.1. Recall the definition of V̂ n in (2.10), and con-
sider a sequence such that supn V̂ n(X̂n(0)) < ∞. Let ϕ ∈ C2(Rd) be any
function satisfying ϕ(x) := |x|m for |x| ≥ 1. As defined in Section 1.3, ∆X(t)
denotes the jump of the process X at time t. Applying Itô’s formula on ϕ
(see, e.g., [24, Theorem 26.7]), we obtain from (5.1) that

E
[
ϕ
(
X̂n

1 (t)
)]

= E
[
ϕ
(
X̂n

1 (0)
)]

+ E
[∫ t

0
Θn

1

(
X̂n

1 (s), Ẑn1 (s)
)
ϕ′
(
X̂n

1 (s)
)

ds

]
+ E

[∫ t

0
Θn

2

(
X̂n

1 (s), Ẑn1 (s)
)
ϕ′′
(
X̂n

1 (s)
)

ds

]
+ E

∑
s≤t

(
∆ϕ
(
X̂n

1 (s)
)
− ϕ′

(
X̂n

1 (s−)
)
·∆X̂n

1 (s)

− 1

2
ϕ′′
(
X̂n(s−)

)
∆X̂n

1 (s)∆X̂n
1 (s)

)
,

where

Θn
1 (x, z) := `n1 − µn1z − γn1 (x− z) ,

Θn
2 (x, z) :=

1

2

(
µn1ρ1 +

λn1
n

+
µn1z + γn1 (x− z)√

n

)
.

Since {`n1} is a bounded sequence, it is easy to show that for all n there exist
positive constants κi, i = 1, 2, independent of n, such that

Θn
1 (x, z)ϕ′(x) ≤ κ1

(
1 + |(e · x)+|m

)
− κ2|x|m ,

Θn
2 (x, z)ϕ′′(x) ≤ κ1

(
1 + |(e · x)+|m

)
+
κ2

4
|x|m ,
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provided that x − z ≤ (e · x)+ and z√
n
≤ 1 . We next compute the terms

corresponding to the jumps. For that, first we see that the jump size is of
order 1√

n
. We can also find a positive constant κ3 such that

sup
|y−x|≤1

∣∣ϕ′′(y)
∣∣ ≤ κ3

(
1 + |x|m−2

)
∀x ∈ Rd .

Using Taylor’s approximation we obtain the inequality

∆ϕ
(
X̂n

1 (s)
)
−ϕ′

(
X̂n

1 (s−)
)
·∆X̂n

1 (s) ≤ 1

2
sup

|y−X̂n
1 (s−)|≤1

∣∣ϕ′′(y)
∣∣ [∆(X̂n

1 (s)
)]2

.

Hence combining the above facts we obtain

E
∑
s≤t

(
∆ϕ
(
X̂n

1 (s)
)
− ϕ′

(
X̂n

1 (s−)
)
·∆X̂n

1 (s)(5.2)

− 1

2
ϕ′′
(
X̂n

1 (s−)
)
∆X̂n

1 (s)∆X̂n
1 (s)

)
≤ E

∑
s≤t

κ3

(
1 +

∣∣X̂n
1 (s−)

∣∣m−2
)(

∆
(
X̂n

1 (s)
))2

= κ3 E
[∫ t

0
(1 +

∣∣X̂n
1 (s)

∣∣m−2
)

(
λn1
n

+
µn1Z

n
1 (s)

n
+
γn1Q

n
1 (s)

n

)
ds

]

≤ E
[∫ t

0

(
κ4 +

κ2

4

∣∣X̂n
1 (s)

∣∣m + κ5

(
(e · X̂n(s))+

)m)
ds

]
,

for some suitable positive constants κ4 and κ5, independent of n, where in
the second inequality we use the fact that the optional martingale [X̂n

1 ] is
the sum of the squares of the jumps, and that [X̂n

1 ]− 〈X̂n
1 〉 is a martingale.

Therefore, for some positive constants C1 and C2 it holds that

0 ≤ E
[
ϕ
(
X̂n

1 (t)
)]

(5.3)

≤ E
[
ϕ
(
X̂n

1 (0)
)]

+ C1t−
κ2

2
E
[∫ t

0

∣∣X̂n
1 (s)

∣∣m ds

]

+ C2 E
[∫ t

0

(
(e · X̂n(s))+

)m
ds

]
.

By (2.8), we have

r(Q̂n(s)) ≥ c1

dm
(
(e · X̂n(s))+

)m
,
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which, combined with the assumption that supn V̂ n(X̂n(0)) < ∞, implies
that

sup
n

lim sup
T→∞

1

T
E
[∫ T

0

(
(e · X̂n(s))+

)m
ds

]
< ∞ .

In turn, from (5.3) we obtain

sup
n

lim sup
T→∞

1

T
E
[∫ T

0

∣∣X̂n
1 (s)

∣∣m ds

]
< ∞ .

Repeating the same argument for coordinates i = 2, . . . , d, we obtain

(5.4) sup
n

lim sup
T→∞

1

T
E
[∫ T

0

∣∣X̂n(s)
∣∣m ds

]
< ∞ .

We introduce the process

Uni (t) :=


X̂n
i (t)−Ẑni (t)

(e·X̂n(t))+
, i = 1, . . . , d , if (e · X̂n(t))+ > 0 ,

ed, otherwise.

Since Zn is work-conserving, it follows that Un takes values in S, and Uni (t)
represents the fraction of class i customers in queue. Define the mean em-
pirical measures

Φn
T (A×B) :=

1

T
E
[∫ T

0
IA×B

(
X̂n(s), Un(s)

)
ds

]
for Borel sets A ⊂ Rd and B ⊂ S.

From (5.4) we see that the family {Φn
T : T > 0, n ≥ 1} is tight. Hence

for any sequence Tk → ∞, there exists a subsequence, also denoted by Tk,
such that Φn

Tk
→ πn, as k →∞. It is evident that {πn : n ≥ 1} is tight. Let

πn → π along some subsequence, with π ∈ P(Rd × S). Therefore it is not
hard to show that

lim
n→∞

V̂ n(X̂n(0)) ≥
∫
Rd×U

r̃(x, u)π(dx, du) ,

where, as defined earlier, r̃(x, u) = r((e ·x)+u). To complete the proof of the
theorem we only need to show that π is an ergodic occupation measure for
the diffusion. For that, consider f ∈ C∞c (Rd) . Recall that [X̂n

i , X̂
n
j ] = 0 for

i 6= j [30, Lemma 9.2, Lemma 9.3]. Therefore, using Itô’s formula and the
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definition of Φn
T , we obtain

(5.5)
1

T
E
[
f
(
X̂n(T )

)]
=

1

T
E
[
f
(
X̂n(0)

)]
+

∫
Rd×U

( d∑
i=1

Ani (x, u) · fxi(x) + Bni (x, u)fxixi(x)

)
Φn
T (dx, du)

+
1

T
E
∑
s≤T

[
∆f(X̂n(s))−

d∑
i=1

fxi
(
X̂n(s−)

)
·∆X̂n

i (s)

− 1

2

d∑
i,j=1

fxixj
(
X̂n(s−)

)
∆X̂n

i (s)∆X̂n
j (s)

]
,

where

Ani (x, u) := `ni − µni
(
xi − (e · x)+ui

)
− γni (e · x)+ui ,

Bni (x, u) :=
1

2

(
µni ρi +

λni
n

+
µni xi + (γni − µni )(e · x)+ui√

n

)
.

We first bound the last term in (5.5). Using Taylor’s formula we see that

∆f
(
X̂n(s)

)
−

d∑
i=1

∇f
(
X̂n(s−)

)
·∆X̂n(s)

− 1

2

d∑
i,j=1

fxixj
(
X̂n(s−)

)
∆X̂n

i (s)∆X̂n
j (s)

=
k||f ||C3√

n

d∑
i,j=1

∣∣∆X̂n
i (s)∆X̂n

j (s)
∣∣

for some positive constant k, where we use the fact that the jump size is
1√
n

. Hence using the fact that independent Poisson processes do not have

simultaneous jumps w.p.1, using the identity Q̂ni = X̂n
i − Ẑni , we obtain

(5.6)
1

T
E
∑
s≤T

[
∆f(X̂n(s))−

d∑
i=1

∇f
(
X̂n(s−)

)
·∆X̂n(s)

− 1

2

d∑
i,j=1

fxixj
(
X̂n(s−)

)
∆X̂n

i (s)∆X̂n
j (s)

]

≤ k||f ||C3
T
√
n

E
[∫ T

0

d∑
i=1

(
λni
n

+
µni Z

n
i (s)

n
+
γni Q

n
i (s)

n

)
ds

]
.
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Therefore, first letting T → ∞ and using (5.2) and (5.4) we see that the
expectation on the right hand side of (5.6) is bounded above. Therefore, as
n → ∞, the left hand side of (5.6) tends to 0. Thus by (5.5) and the fact
that f is compactly supported, we obtain∫

Rd×U
Luf(x)π(dx, du) = 0 ,

where

Luf(x) = λi ∂iif(x) +
(
`i − µi(xi − (e · x)+ui)− γi(e · x)+ui

)
∂if(x) .

Therefore π ∈ G.

5.2. The upper bound. The proof of the upper bound in Theorem 2.2
is a little more involved than that of the lower bound. Generally it is very
helpful if one has uniform stability across n ∈ N (see, e.g., [11]). In [11]
uniform stability is obtained from the reflected dynamics with the Skorohod
mapping. However, here we establish the asymptotic upper bound by using
the technique of spatial truncation that we have introduced in Section 4.
Let vδ be any precise continuous control in USSM satisfying vδ(x) = u0 =
(0, . . . , 0, 1) for |x| > K > 1.

First we construct a work-conserving admissible policy for each n ∈ N
(see [7]). Define a measurable map $ : {z ∈ Rd+ : e ·z ∈ Z} → Zd+ as follows:
for z = (z1, . . . , zd) ∈ Rd, let

$(z) :=

(
bz1c, . . . , bzd−1c, bzdc+

d∑
i=1

(
zi − bzic

))
.

Note that |$(z)− z| ≤ 2d. Define

uh(x) := $
(
(e · x− n)+vδ(x̂

n)
)
, x ∈ Rd ,

x̂n :=

(
x1 − ρ1n√

n
, . . . ,

xd − ρdn√
n

)
,

An :=
{
x ∈ Rd+ : sup

i
|xi − ρin| ≤ K

√
n
}
.

We define a state-dependent, work-conserving policy as follows:

(5.7) Zni [Xn] :=

X
n
i − uh(Xn) , if Xn ∈ An ,

Xn
i ∧

(
n−

∑i−1
j=1X

n
j

)+
, otherwise.
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Therefore, whenever the state of the system is in Acn, the system works under
the fixed priority policy with the least priority given to class-d jobs. First we
show that this is a well-defined policy for all large n. It is enough to show
that Xn

i − uh(Xn) ≥ 0 for all i when Xn ∈ An. If not, then for some i,
1 ≤ i ≤ d, we must have Xn

i − uh(Xn) < 0 and so Xn
i < (e ·Xn − n)+ + d.

Since Xn ∈ An, we obtain

−K
√
n+ ρin ≤ Xn

i

< (e ·Xn − n)+ + d

=
( d∑
i=1

(Xn
i − ρin)

)+
+ d

≤ dK
√
n+ d .

But this cannot hold for large n. Hence this policy is well defined for all
large n. Under the policy defined in (5.7), Xn is a Markov process and its
generator given by

Lnf(x) =
d∑
i=1

λni
(
f(x+ ei)− f(x)

)
+

d∑
i=1

µni Z
n
i [x]

(
f(x− ei)− f(x)

)
+

d∑
i=1

γni Q
n
i [x]

(
f(x− ei)− f(x)

)
, x ∈ Zd+ ,

where Zn[x] is as above and Qn[x] := x − Zn[x]. It is easy to see that, for
x /∈ An,

Qni [x] =

[
xi −

(
n−

i−1∑
j=1

xj

)+
]+

.

Lemma 5.1. Let Xn be the Markov process corresponding to the above
control. Let q be an even positive integer. Then there exists n0 ∈ N such that

sup
n≥n0

lim sup
T→∞

1

T
E
[∫ T

0
|X̂n(s)|q ds

]
< ∞ ,

where X̂n =
(
X̂n

1 , . . . , X̂
n
d

)T
is the diffusion-scaled process corresponding to

the process Xn, as defined in (2.4).
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Proof. The proof technique is inspired by [6, Lemma 3.1]. Define

fn(x) :=
d∑
i=1

βi
(
xi − ρin

)q
,

where βi, i = 1, . . . , d, are positive constants to be determined later. We first
show that for a suitable choice of βi, i = 1, . . . , d, there exist constants Ci,
i = 1, 2, independent of n ≥ n0, such that

(5.8) Lnfn(x) ≤ C1n
q/2 − C2fn(x) , x ∈ Zd+ .

Choose n large enough so that the policy is well defined. We define Y n
i :=

xi − ρin. Note that

(a± 1)q − aq = ±qa · aq−2 + O(aq−2) , a ∈ R .

Also, µni Z
n
i [x] = µni xi − µni Qni [x]. Then

Lnfn(x) =
d∑
i=1

βiλ
n
i

[
qY n

i |Y n
i |q−2 + O

(
|Y n
i |q−2

)]
(5.9)

−
d∑
i=1

βiµ
n
i xi

[
qY n

i |Y n
i |q−2 + O

(
|Y n
i |q−2

)]
−

d∑
i=1

βi(γ
n
i − µni )Qni [x]

[
qY n

i |Y n
i |q−2 + O

(
|Y n
i |q−2

)]

≤
d∑
i=1

βi

(
λni + µni xi + |γni − µni |Qin[x]

)
O
(
|Y n
i |q−2

)
+

d∑
i=1

βiqY
n
i |Y n

i |q−2
(
λni − µni xi − (γni − µni )Qni [x]

)

≤
d∑
i=1

βi

(
λni +

(
µni + |γni − µni |

)(
Y n
i + ρin

))
O
(
|Y n
i |q−2

)
+

d∑
i=1

βiqY
n
i |Y n

i |q−2
(
λni − µni xi − (γni − µni )Qni [x]

)
,

where in the last inequality we use the fact that Qni [x] ≤ xi for x ∈ Zd+. Let

δni := λni − µni ρin = O(
√
n) .
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The last estimate is due to the assumptions in (2.1) concerning the param-
eters in the Halfin-Whitt regime. Then

(5.10)
d∑
i=1

βiqY
n
i |Y n

i |q−2
(
λni − µni xi − (γni − µni )Qni [x]

)
= − q

d∑
i=1

βiµ
n
i |Y n

i |q +

d∑
i=1

βiqY
n
i |Y n

i |q−2
(
δni − (γni − µni )Qni [x]

)
.

If x ∈ An and n is large, then

Qni [x] = uh(x) = $
(
(e · x− n)+vδ(x̂n)

)
≤ (e · x− n)+ + d ≤ 2dK

√
n .

Let x ∈ Acn. We use the fact that for any a, b ∈ R it holds that a+ − b+ =
ξ[a− b] for some ξ ∈ [0, 1]. Also[

nρi −
(
n−

i−1∑
j=1

nρj

)+
]+

= 0 , i = 1, . . . , d .

Thus we obtain maps ξ, ξ̃ : Rd → [0, 1]d such that

−Qni [x] =

[
nρi −

(
n−

i−1∑
j=1

nρj

)+
]+

−Qni [x]

= ξi(x)(nρi − xi)− ξ̃i(x)
i−1∑
j=1

(xj − nρj) , x ∈ Acn .

Hence from (5.10) we obtain

d∑
i=1

βiqY
n
i |Y n

i |q−2
(
λni −µni xi− (γni −µni )Qni [x]

)
≤ O(

√
n)q

d∑
i=1

βi|Y n
i |q−1

− q
d∑
i=1

βi
(
(1− ξi(x))µni + ξi(x)γni

)
|Y n
i |q

+ q
d∑
i=1

βiY
n
i |Y n

i |q−2

(
δni − (γni − µni ) ξ̃i(x)

i−1∑
j=1

Y n
j

)
,
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where we used the fact that on An we have[
xi −

(
n−

i−1∑
j=1

xj

)+
]+

= O(
√
n) , ∀ i .

Observe that there exists ϑ > 0, independent of n due to (2.1), such that

(1− ξi(x))µni + ξi(x)γni ≥ min(µni , γ
n
i ) ≥ ϑ

for all n ∈ N, all x ∈ Rd, and all i = 1, . . . , d. As a result we obtain

(5.11)

d∑
i=1

βiqY
n
i |Y n

i |q−2
(
λni − µni xi − (γni − µni )Qni [x]

)

≤ O(
√
n)q

d∑
i=1

βi|Y n
i |q−1 − qϑ

d∑
i=1

βi|Y n
i |q

+ q

d∑
i=1

βiY
n
i |Y n

i |q−2

(
δni − (γni − µni ) ξ̃i(x)

i−1∑
j=1

Y j
n

)
.

We next estimate the last term on the right hand side of (5.11). Let κ :=
supn,i |γni − µni |, and ε1 := ϑ

8κ . Using Young’s inequality we obtain the
estimate

|Y n
i |q−1

∣∣∣∣∣
i−1∑
j=1

Y j
n

∣∣∣∣∣ ≤ ε1|Y n
i |q +

1

εq−1
1

∣∣∣∣∣
i−1∑
j=1

Y n
j

∣∣∣∣∣
q

.

Therefore,

q
d∑
i=1

βiY
n
i |Y n

i |q−2

(
−(γni − µni ) ξ̃i(x)

i−1∑
j=1

Y n
j

)

≤ qκ

d∑
i=1

(
ε1βi|Y n

i |q +
βi

εq−1
1

∣∣∣∣∣
i−1∑
j=1

Y n
j

∣∣∣∣∣
q)

≤ qκ

d∑
i=1

(
ε1βi|Y n

i |q +
βi

εq−1
1

dq−1
i−1∑
j=1

|Y n
j |q
)

=
qϑ

8

d∑
i=1

(
βi|Y n

i |q +
βi
εq1
dq−1

i−1∑
j=1

|Y n
j |q
)
.
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We choose β1 = 1 and for i ≥ 2, we define βi by

βi :=
εq1
dq

min
j≤i−1

βj .

With this choice of βi it follows from above that

q
d∑
i=1

βiY
n
i |Y n

i |q−2

(
−(γni − µni ) ξ̃i(x)

i−1∑
j=1

Y j
n

)
≤ qϑ

4

d∑
i=1

βi|Y n
i |q.

Using the preceding inequality in (5.11), we obtain

(5.12)

d∑
i=1

βiqY
n
i |Y n

i |q−2
(
λni − µni xi − (γni − µni )Qni [x]

)
≤ O(

√
n)q

d∑
i=1

βi|Y n
i |q−1 − 3

4
qϑ

d∑
i=1

βi|Y n
i |q .

Combining (5.9) and (5.12) we obtain

(5.13) Lnfn(x) ≤
d∑
i=1

O(
√
n)O

(
|Y n
i |q−1

)
+

d∑
i=1

O(n)O
(
|Y n
i |q−2

)
− 3

4
qϑ

d∑
i=1

βi|Y n
i |q .

By Young’s inequality, for any ε > 0, we have the bounds

O(
√
n)O

(
|Y n
i |q−1

)
≤ ε

[
O
(
|Y n
i |q−1

)] q
q−1 + ε(1−q)[O(

√
n)
]q
,

O(n)O
(
|Y n
i |q−2

)
≤ ε

[
O
(
|Y n
i |q−2

)] q
q−2 + ε(1−q/2)[O(n)

] q
2 .

Thus choosing ε properly in (5.13) we obtain (5.8).
We proceed to complete the proof of the lemma by applying (5.8). First

we observe that E
[
sups∈[0,T ] |Xn(s)|p

]
is finite for any p ≥ 1 as this quantity

is dominated by the Poisson arrival process. Therefore from (5.8) we see that

E
[
fn(Xn(T ))

]
− fn(Xn(0)) = E

[∫ T

0
Lnfn(Xn(s)) ds

]

≤ C1n
q/2T − C2 E

[∫ T

0
fn(Xn(s)) ds

]
,
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which implies that

C2 E
[∫ T

0

d∑
i=1

βi
(
X̂n
i (s)

)q
ds

]
≤ C1T +

d∑
i=1

βi
(
X̂n
i (0)

)q
.

Hence the proof follows by dividing both sides by T and letting T →∞.

Proof of Theorem 2.2. Let r be the given running cost with poly-
nomial growth with exponent m in (2.8). Let q = 2(m + 1). Recall that
r̃(x, u) = r((e ·x)+u) for (x, u) ∈ Rd×S. Then r̃ is convex in u and satisfies
(3.11) with the same exponent m. For any δ > 0 we choose vδ ∈ USSM such
that vδ is a continuous precise control with invariant probability measure µδ
and ∫

Rd
r̃(x, vδ(x))µδ(dx) ≤ %∗ + δ .(5.14)

We also want the control vδ to have the property that vδ(x) = (0, . . . , 0, 1)
outside a large ball. To obtain such vδ we see that by Theorems 4.1, 4.2 and
Remark 4.2 we can find v′δ and a ball Bl for l large, such that v′δ ∈ USSM,
v′δ(x) = ed for |x| > l, v′δ is continuous in Bl, and∣∣∣∣∫

Rd
r̃(x, v′δ(x))µ′δ(dx)− %∗

∣∣∣∣ < δ

2
,

where µ′δ is the invariant probability measure corresponding to v′δ. We note
that v′δ might not be continuous on ∂Bl. Let {χn : n ∈ N} be a sequence of
cut-off functions such that χn ∈ [0, 1], it vanishes on Bc

l− 1
n

, and it takes the

value 1 on Bl− 2
n

. Define the sequence vnδ (x) := χn(x)v′δ(x) + (1− χn(x))ed.

Then vnδ → v′δ, as n → ∞, and the convergence is uniform on the comple-
ment of any neighborhood of ∂Bl. Also by Proposition 3.1 the corresponding
invariant probability measures µnδ are exponentially tight. Thus∣∣∣∣∫

Rd
r̃(x, v′δ(x))µ′δ(dx)−

∫
Rd
r̃(x, vnδ (x))µnδ (dx)

∣∣∣∣ −−−→n→∞
0 .

Combining the above two expressions, we can easily find vδ which satisfies
(5.14). We construct a scheduling policy as in Lemma 5.1. By Lemma 5.1
we see that for some constant K1 it holds that

(5.15) sup
n≥n0

lim sup
T→∞

1

T
E
[∫ T

0
|X̂n(s)|q ds

]
< K1 , q = 2(m+ 1) .
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Define

vh(x) := $
(
(e · x− n)+vδ(x̂n)

)
,

v̂h(x̂n) := $
(√
n(e · x̂n)+vδ(x̂

n)
)
.

Since vδ(x̂
n) = (0, . . . , 0, 1) when |x̂n| ≥ K, it follows that

Qn[Xn] = Xn − Zn[Xn] = vh(Xn)

for large n, provided that
∑d−1

i=1 X
n
i ≤ n. Define

Dn :=
{
x :

∑d−1
i=1 x̂

n
i > ρd

√
n
}
.

Then

r
(
Q̂n(t)

)
= r

(
1√
n
v̂h(X̂n(t))

)
+ r
(
X̂n(t)− Ẑn(t)

)
I{X̂n(t)∈Dn}

− r
( 1√

n
v̂h(X̂n(t)

)
I{X̂n(t)∈Dn} .

Define, for each n, the mean empirical measure Ψn
T by

Ψn
T (A) :=

1

T
E
[∫ T

0
IA
(
X̂n(t)

)
dt

]
.

By (5.15), the family {Ψn
T : T > 0, n ≥ 1} is tight. We next show that

(5.16) lim
n→∞

lim sup
T→∞

1

T
E
[∫ T

0
r
(
Q̂n(t)

)
dt

]
=

∫
Rd
r
(
(e·x)+vδ(x)

)
µδ(dx) .

For each n, select a sequence {Tnk : k ∈ N} along which the ‘lim sup’ in
(5.16) is attained. By tightness there exists a limit point Ψn of Ψn

Tnk
. Since

Ψn has support on a discrete lattice, we have∫
Rd
r

(
1√
n
v̂h(x)

)
Ψn
Tnk

(dx) −−−→
k→∞

∫
Rd
r

(
1√
n
v̂h(x)

)
Ψn(dx) .

Therefore,

lim sup
T→∞

1

T
E
[∫ T

0
r
(
Q̂n(t)

)
dt

]
≶
∫
Rd
r

(
1√
n
ûh(x)

)
Ψn(dx)± En ,

where
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En = lim sup
T→∞

1

T
E
[∫ T

0

(
r
(
Q̂n(t)

)
+r

(
1√
n
v̂h
(
X̂n(t)

)))
I{X̂n(t)∈Dn} dt

]
.
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By (5.15), the family {Ψn : n ≥ 1} is tight. Hence it has a limit Ψ. By
definition we have ∣∣∣∣ 1√

n
v̂h(x)− (e · x)+vδ(x)

∣∣∣∣ ≤ 2d√
n
.

Thus using the continuity property of r and (2.8) it follows that∫
Rd
r

(
1√
n
ûh(x)

)
Ψn(dx) −−−→

n→∞

∫
Rd
r
(
(e · x)+vδ(x)

)
Ψ(dx) ,

along some subsequence. Therefore, in order to complete the proof of (5.16)
we need to show that

lim sup
n→∞

En = 0 .

Since the policies are work-conserving, we observe that 0 ≤ X̂n − Ẑn ≤
(e · X̂n)+, and therefore for some positive constants κ1 and κ2, we have

r
( 1√

n
v̂h(X̂n(t)

)
∨ r
(
X̂n(t)− Ẑn(t)

)
≤ κ1 + κ2

[
(e · X̂n)+

]m
.

Given ε > 0 we can choose n1 so that for all n ≥ n1,

lim sup
T→∞

1

T
E
[∫ T

0

[
(e · X̂n(s))+

]m I{
|X̂n(s)|> ρd√

d

√
n
} ds

]
≤ ε ,

where we use (5.15). We observe that Dn ⊂
{
|x̂n| > ρd

√
d/n
}
. Thus (5.16)

holds. In order to complete the proof we only need to show that Ψ is the
invariant probability measure corresponding to vδ. This can be shown using
the convergence of generators as in the proof of Theorem 2.1.

6. Conclusion. We have answered some of the most interesting ques-
tions for the ergodic control problem of the Markovian multi-class many-
server queueing model. This current study has raised some more questions
for future research. One of the interesting questions is to consider non-
preemptive policies and try to establish asymptotic optimality in the class
of non-preemptive admissible polices [7]. It will also be interesting to study
a similar control problem when the system has multiple heterogeneous agent
pools with skill-based routing.

It has been observed that customers’ service requirements and patience
times are non-exponential [10] in some situations. It is therefore important
and interesting to address similar control problems under general assump-
tions on the service and patience time distributions.
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