
Chapter 7
Network Models
7.1 Introduction
Extensive synaptic connectivity is a hallmark of neural circuitry. For ex-ample, neurons in the mammalian neocortex each receive thousands ofsynaptic inputs. Network models allow us to explore the computationalpotential of such connectivity, using both analysis and simulations. Asillustrations, we study in this chapter how networks can perform the fol-lowing tasks: coordinate transformations needed in visually guided reach-ing, selective amplification leading to models of simple and complex cellsin primary visual cortex, integration as a model of short-term memory,noise reduction, input selection, gain modulation, and associative mem-ory. Networks that undergo oscillations are also analyzed, with applica-tion to the olfactory bulb. Finally, we discuss network models based onstochastic rather than deterministic dynamics, using the Boltzmann ma-chine as an example.
Neocortical circuits are a major focus of our discussion. In the neocor-tex, which forms the convoluted outer surface of the (for example) humanbrain, neurons lie in six vertical layers highly coupled within cylindricalcolumns. Such columns have been suggested as basic functional units, and cortical columnsstereotypical patterns of connections both within a column and betweencolumns are repeated across cortex. There are three main classes of inter-connections within cortex, and in other areas of the brain as well. Feed-forward connections bring input to a given region from another region lo- feedforward,recurrent, andtop-downconnections
cated at an earlier stage along a particular processing pathway. Recurrentsynapses interconnect neurons within a particular region that are consid-ered to be at the same stage along the processing pathway. These may in-clude connections within a cortical column as well as connections betweenboth nearby and distant cortical columns within a region. Top-down con-nections carry signals back from areas located at later stages. These defini-tions depend on the how the region being studied is specified and on the
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2 Network Models
hierarchical assignment of regions along a pathway. In general, neuronswithin a given region send top-down projections back to the areas fromwhich they receive feedforward input, and receive top-down input fromthe areas to which they project feedforward output. The numbers, thoughnot necessarily the strengths, of feedforward and top-down fibers betweenconnected regions are typically comparable, and recurrent synapses typi-cally outnumber feedforward or top-down inputs. We begin this chapterby studying networks with purely feedforward input and then study theeffects of recurrent connections. The analysis of top-down connections, forwhich it is more difficult to establish clear computational roles, is left untilchapter 10.
The most direct way to simulate neural networks is to use the methods dis-cussed in chapters 5 and 6 to synaptically connect model spiking neurons.This is a worthwhile and instructive enterprise, but it presents significantcomputational, calculational, and interpretational challenges. In this chap-ter, we follow a simpler approach and construct networks of neuron-likeunits with outputs consisting of firing rates rather than action potentials.Spiking models involve dynamics over time scales ranging from channelopenings that can take less than a millisecond, to collective network pro-cesses that may be several orders of magnitude slower. Firing-rate modelsavoid the short time scale dynamics required to simulate action potentialsand thus are much easier to simulate on computers. Firing-rate modelsalso allow us to present analytic calculations of some aspects of networkdynamics that could not be treated in the case of spiking neurons. Finally,spiking models tend to have more free parameters than firing-rate models,and setting these appropriately can be difficult.
There are two additional arguments in favor of firing-rate models. Thefirst concerns the apparent stochasticity of spiking. The models discussedin chapters 5 and 6 produce spike sequences deterministically in responseto injected current or synaptic input. Deterministic models can only pre-dict spike sequences accurately if all their inputs are known. This is un-likely to be the case for the neurons in a complex network, and networkmodels typically include only a subset of the many different inputs to indi-vidual neurons. Therefore, the greater apparent precision of spiking mod-els may not actually be realized in practice. If necessary, firing-rate modelscan be used to generate stochastic spike sequences from a deterministicallycomputed rate, using the methods discussed in chapters 1 and 2.
The second argument comes involves a complication with spiking modelsthat arises when they are used to construct simplified networks. Althoughcortical neurons receive many inputs, the probability of finding a synapticconnection between a randomly chosen pair of neurons is actually quitelow. Capturing this feature, while retaining a high degree of connectiv-ity through polysynaptic pathways, requires including a large number ofneurons in a network model. A standard way of dealing with this problemis to use a single model unit to represent the average response of severalneurons that have similar selectivities. These ‘averaging’ units can then
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7.2 Firing-Rate Models 3
be interconnected more densely than the individual neurons of the actualnetwork, and so fewer of them are needed to build the model. If neuralresponses are characterized by firing rates, the output of the model unit issimply the average of the firing rates of the neurons it represents collec-tively. However, if the response is a spike, it is not clear how the spikesof the represented neurons can be averaged. The way spiking models aretypically constructed, an action potential fired by the model unit dupli-cates the effect of all the neurons it represents firing synchronously. Notsurprisingly, such models tend to exhibit large-scale synchronization un-like anything seen in a healthy brain.
Firing-rate models also have their limitations. Most importantly, they can-not account for aspects of spike timing and spike correlations that may beimportant for understanding nervous system function. Firing-rate modelsare restricted to cases where the firing of neurons in a network is uncor-related, with little synchronous firing, and where precise patterns spiketiming are unimportant. In such cases, comparisons of spiking networkmodels with models that use firing-rate descriptions have shown that theyproduce similar results. Nevertheless, the exploration of neural networksundoubtedly requires the use of both firing-rate and spiking models.

7.2 Firing-Rate Models
As discussed in chapter 1, the sequence of spikes generated by a neuronis completely characterized by the neural response function ρ(t), whichconsists of δ function spikes located at times when the neuron fired actionpotentials. In firing-rate models, the exact description of a spike sequenceprovided by the neural response function ρ(t) is replaced by the approxi-mate description provided by the firing rate r(t). Recall from chapter 1 that
r(t) is defined as the probability density of firing and is obtained from ρ(t)by averaging over trials. The validity of a firing-rate model depends onhow well the trial-averaged firing rate of network units approximates theeffect of actual spike sequences on the dynamic behavior of the network.
The replacement of the neural response function by the corresponding fir-ing rate is typically justified by the fact that each network neuron has alarge number of inputs. Replacing ρ(t), which describes an actual spiketrain, by the trial-averaged firing rate r(t) is justified if the quantities ofrelevance for network dynamics are relatively insensitive to the trial-to-trial fluctuations in the spike sequences represented by ρ(t). In a networkmodel, the relevant quantities that must be modeled accurately are thetotal inputs to all the neurons in the network. For any single synaptic in-put, the trial-to-trial variability is likely to be large. However, if we sumthe input over many synapses activated by uncorrelated presynaptic spiketrains, the mean of the total input typically grows linearly with the numberof synapses, while its standard deviation grows only as the square root ofthe number of synapses. Thus, for uncorrelated presynaptic spike trains,
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4 Network Models
using presynaptic firing rates in place of the actual presynaptic spike trainsmay not significantly modify the dynamics of the network. Conversely, afiring-rate model will fail to describe a network adequately if the presy-naptic inputs to a substantial fraction of its neurons are correlated. Thiscan occur, for example, if the presynaptic neurons fire synchronously.
The synaptic input arising from a presynaptic spike train is effectively fil-tered by the dynamics of the conductance changes that each presynapticaction potential evokes in the postsynaptic neuron (see chapter 5), and thedynamics of propagation of the current from the synapse to the soma. Thetemporal averaging provided by slow synaptic or membrane dynamicscan reduce the effects of spike train variability and help justify the approx-imation of using firing rates instead of presynaptic spike trains. Firing-ratemodels are more accurate if the network being modeled has a significantamount of synaptic transmission that is slow relative to typical presynap-tic interspike intervals.
The construction of a firing-rate model proceeds in two steps. First, wedetermine how the total synaptic input to a neuron depends on the fir-ing rates of its presynaptic afferents. This is where we use firing rates toapproximate neural response functions. Second, we model how the firingrate of the postsynaptic neuron depends on its total synaptic input. Firing-rate response curves are typically measured by injecting current into thesoma of a neuron. We therefore find it most convenient to define the totalsynaptic input as the total current delivered to the soma as a result of allthe synaptic conductance changes resulting from presynaptic action po-tentials. We denote this total synaptic current by Is. We then determinesynaptic current Is the postsynaptic firing rate from Is. In general, Is depends on the spa-tially inhomogeneous membrane potential of the neuron, but we assumethat, other than during action potentials or transient hyperpolarizations,the membrane potential remains close to, but slightly below, the thresh-old for action potential generation. An example of this type of behavioris seen in the upper panels of figure 7.2. Is is then approximately equal tothe synaptic current that would be measured from the soma in a voltage-clamp experiment, except for a reversal of sign. In the next section, wemodel how Is depends on presynaptic firing rates.
In the network models we consider, both the output from, and input to, aneuron are characterized by firing rates. To avoid a proliferation of sub-and superscripts on the quantity r(t), we use the letter u to denote a presy-naptic firing rate, and v to denote a postsynaptic rate. Note that v is usedinput rate uoutput rate v here to denote a firing rate, not a membrane potential. In addition, we usethese two letters to distinguish input and output firing rates in networkmodels, a convention we retain through the remaining chapters. Whenwe consider multiple input or output neurons, we use vectors u and v toinput rate vector uoutput rate vector v represent their firing rates collectively, with the components of these vec-tors representing the firing rates of the individual input and output units.
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7.2 Firing-Rate Models 5
The Total Synaptic Current
Consider a neuron receiving Nu synaptic inputs labeled by b = 1,2, . . . , Nu(figure 7.1). The firing rate of input b is denoted by ub, and the input ratesare represented collectively by the Nu-component vector u. We model howthe synaptic current Is depends on presynaptic firing rates by first consid-ering how it depends on presynaptic spikes. If an action potential arrivesat input b at time zero, we write the synaptic current generated in the somaof the postsynaptic neuron at time t as wbKs(t) where wb is the synapticweight and Ks(t) is called the synaptic kernel. Collectively, the synap-tic weights are represented by a synaptic weight vector w, which has Nu synaptic weights wcomponents wb. The amplitude and sign of the synaptic current generatedby input b are determined by wb. For excitatory synapses, wb > 0, and forinhibitory synapses, wb < 0. In this formulation of the effect of presynapticspikes, the probability of transmitter release from a presynaptic terminal isabsorbed into the synaptic weight factor wb, and we do not include short-term plasticity in the model (although this can be done by making wb adynamic variable).
The synaptic kernel, Ks(t) ≥ 0, describes the time course of the synaptic synaptic kernelKs(t)current in response to a presynaptic spike arriving at time t=0. This timecourse depends on the dynamics of the synaptic conductance activated bythe presynaptic spike and also on both the passive and active propertiesof the dendritic cables that carry the synaptic current to the soma. Forexample, long passive cables broaden the synaptic kernel and slow its risefrom zero. Cable calculations or multicompartment simulations, such asthose discussed in chapter 6, can be used to compute Ks(t) for a specificdendritic structure. To avoid ambiguity, we normalize Ks(t) by requiringits integral over all positive times to be one. At this point, for simplicity,we use the same function Ks(t) to describe all synapses.è é ê ë é ê vì í ë é ê u
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Figure 7.1: Feedforward inputs to a single neuron. Input rates u drive a neuronat an output rate v through synaptic weights given by the vector w.
Assuming that the spikes at a single synapse act independently, the totalsynaptic current at time t arising from a sequence of presynaptic spikesoccurring at input b at times ti is given by the sum

wb
∑

ti<t
Ks(t − ti) = wb

∫ t
−∞

dτ Ks(t − τ)ρb(τ) . (7.1)
In the second expression, we have used the neural response function,
ρb(τ) =

∑i δ(τ − ti), to describe the sequence of spikes fired by presy-
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6 Network Models
naptic neuron b. The equality follows from integrating over the sum of δfunctions in the definition of ρb(τ). If there is no nonlinear interaction be-tween different synaptic currents, the total synaptic current coming fromall presynaptic inputs is obtained simply by summing,

Is =
Nu
∑

b=1
wb
∫ t

−∞
dτ Ks(t − τ)ρb(τ) . (7.2)

As discussed previously, the critical step in the construction of a firing-ratemodel is the replacement of the neural response function ρb(τ) in equation7.2 by the firing rate of neuron b, namely ub(τ), so that we write
Is =

Nu
∑

b=1
wb
∫ t

−∞
dτ Ks(t − τ)ub(τ) . (7.3)

The synaptic kernel most frequently used in firing-rate models is an expo-nential, Ks(t) = exp(−t/τr)/τr. With this kernel, we can describe Is by adifferential equation if we take the derivative of equation 7.3 with respectto t,
τs dIsdt = −Is +

Nu
∑

b=1
wbub = −Is +w · u . (7.4)

In the second equality, we have expressed the sum ∑

wbub as the dotproduct of the weight and input vectors, w · u. In this and the follow-dot product ing chapters, we primarily use the vector versions of equations such asequation 7.4, but when we first introduce an important new equation, weoften write it in its subscripted form as well.
Recall that K describes the temporal evolution of the synaptic current dueto both synaptic conductance and dendritic cable effects. For an electro-tonically compact dendritic structure, τs will be close to the time constantthat describes the decay of the synaptic conductance. For fast synapticconductances such as those due to AMPA glutamate receptors, this maybe as short as a few milliseconds. For a long, passive dendritic cable, τsmay be larger than this, but its measured value is typically quite small.
The Firing-Rate
Equation 7.4 determines the synaptic current entering the soma of a post-synaptic neuron in terms of the firing rates of the presynaptic neurons. Tofinish formulating a firing-rate model, we must determine the postsynap-tic firing rate from our knowledge of Is. For constant synaptic current, thefiring rate of the postsynaptic neuron can be expressed as v = F(Is), whereF is the steady-state firing rate as a function of somatic input current. Fis also called an activation function. F is sometimes taken to be a satu-activationfunction F(Is) rating function such as a sigmoid function. This is useful in cases where
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7.2 Firing-Rate Models 7
the derivative of F is needed in the analysis of network dynamics. It isalso bounded from above, which can be important in stabilizing a networkagainst excessively high firing rates. More often, we use a threshold linearfunction F(Is) = [Is − γ]+, where γ is the threshold and the notation [ ]+ threshold γdenotes half-wave rectification as in previous chapters. For convenience,we treat Is in this expression as if its were measured in units of a firing rate(Hz), i.e. as if Is is multiplied by a constant that converts its units from nAto Hz. This makes the synaptic weights dimensionless. The threshold γalso has units of Hz.
For time-independent inputs, the relation v = F(Is) is all we need to knowto complete the firing-rate model. The total steady-state synaptic currentpredicted by equation 7.4 for time-independent u is Is = w ·u. This gener-ates a steady-state output firing rate v = v∞ given by

v∞ = F(w · u) . (7.5)
The steady-state firing rate tells us how a neuron responds to constant cur-rent, but not to a current that changes with time. To model time-dependentinputs, we need to know the firing rate in response to a time-dependentsynaptic current Is(t). The simplest assumption is that this is still givenby the activation function, so v = F(Is(t)) even when the total synapticcurrent varies with time. This leads to a firing-rate model in which all thedynamics arise exclusively from equation 7.4, firing-rate modelwith currentdynamicsτs dIsdt = −Is +w · u with v = F(Is) . (7.6)
An alternative formulation of a firing-rate model can be constructed byassuming that the firing rate does not follow changes in the total synapticcurrent instantaneously, as was assumed for the model of equation 7.6. Ac-tion potentials are generated by the synaptic current through its effect onthe membrane potential of the neuron. Due to the membrane capacitanceand resistance, the membrane potential is, roughly speaking, a low-passfiltered version of Is (see the Mathematical Appendix). For this reason, thetime-dependent firing rate is often modeled as a low-pass filtered versionof the steady-state firing rate,

τr dvdt = −v + F(Is(t)) . (7.7)
The constant τr in this equation determines how rapidly the firing rateapproaches its steady-state value for constant Is, and how closely v canfollow rapid fluctuations for a time-dependent Is(t). Equivalently, it mea-sures the time-scale over which v averages F(Is(t)). The low-pass filteringeffect of equation 7.7 is described in the Mathematical Appendix in thecontext of electrical circuit theory. The argument we have used to moti-vate equation 7.7 would suggest that τr should be approximately equal tothe membrane time constant of the neuron. However, this argument really
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8 Network Models
applies to the membrane potential not the firing rate, and the dynamics ofthe two are not the same. Most network models use a value of τr that isconsiderably less than the membrane time constant. We re-examine thisissue in the following section.
The second model that we have described involves the pair of equa-tions 7.4 and 7.7. If one of these equations relaxes to its equilibrium pointmuch more rapidly than the other, the pair can be reduced to a single equa-tion. For example, if τr ¿ τs, we can make the approximation that equation7.7 rapidly sets v = F(Is(t)), and then the second model reduces to the firstmodel that is defined by equation 7.6. If instead, τr À τs, we can make theapproximation that equation 7.4 comes to equilibrium quickly comparedto equation 7.7. Then, we can make the replacement Is = w · u in equation7.7 and writefiring-rate equation

τr dvdt = −v + F(w · u) . (7.8)
For most of this chapter, we analyze network models described by thefiring-rate dynamics of equation 7.8, although occasionally we considernetworks based on equation 7.6.
Firing-Rate Dynamics
The firing-rate models described by equations 7.6 and 7.8 differ in theirassumptions about how firing rates respond to and track changes in theinput current to a neuron. In one case (equation 7.6), it is assumed thatfiring rates follow time varying input currents instantaneously withoutattenuation or delay. In the other case (equation 7.8), the firing rate is alow-pass filtered version of the input current. To study the relationshipbetween input current and firing rate, it is useful to examine the firing rateof a spiking model neuron in response to a time-varying injected current,I(t). The model used for this purpose in figure 7.2 is an integrate-and-fireneuron receiving balanced excitatory and inhibitory synaptic input alongwith a current injected into the soma that is the sum of constant and oscil-lating components. This model was discussed in chapter 5. The balancedsynaptic input is used to represent background input not included in thecomputation of Is, and it acts as a source of noise. The noise prevents ef-fects such as locking of the spiking to the oscillations of the injected currentthat would invalidate a firing-rate description.
Figure 7.2 shows the firing rates of the model integrate-and-fire neuronin response to an input current I(t) = I0 + I1 cos(ωt). The firing rate isplotted at different times during the cycle of the input current oscillationsfor ω corresponding to frequencies of 1, 50, and 100 Hz. For the panelson the left side, the constant component of the injected current (I0) wasadjusted so the neuron never stopped firing during the cycle. In this case,the relation v(t) = F(I(t)) (solid curves) provides an accurate description
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7.2 Firing-Rate Models 9
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Figure 7.2: Firing rate of an integrate-and-fire neuron receiving balanced excita-tory and inhibitory synaptic input and an injected current consisting of a constantand a sinusoidally varying term. For the left panels, the constant component of theinjected current was adjusted so the firing never stopped during the oscillation ofthe varying part of the injected current. For the right panel, the constant compo-nent was lowered so the firing stopped during part of the cycle. The upper panelsshow two representative voltage traces of the model cell. The histograms beneaththese traces were obtained by binning spikes generated over multiple cycles. Theyshow the firing rate as a function of the time during each cycle of the injected cur-rent oscillations. The different rows show 1, 50, and 100 Hz oscillation frequenciesfor the injected current. The solid curves show the fit of a firing-rate model thatinvolves both instantaneous and low-pass filtered effects of the injected current.For the left panel, this reduces to the simple prediction v = F(I(t)). (Adapted fromChance et al., 2000.)
of the firing rate for all of the oscillation frequencies shown. As long asthe neuron keeps firing fairly rapidly, the low-pass filtering properties ofthe membrane potential are not relevant for the dynamics of the firingrate. Low-pass filtering is irrelevant in this case, because the neuron iscontinually being shuttled between the threshold and reset values, and soit never has a chance to settle exponentially anywhere near its steady-statevalue.
The right panels in figure 7.2 show that the situation is different if theinput current is below the threshold for firing through a significant partof the oscillation cycle. In this case, the firing is delayed and attenuated
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10 Network Models
at high frequencies as would be predicted by equation 7.7. In this case,the membrane potential stays below threshold for long enough periods oftime that its dynamics become relevant for the firing of the neuron.
The essential message from figure 7.2 is that neither equation 7.6 nor 7.8provides a completely accurate prediction of the dynamics of the firingrate at all frequencies and for all levels of injected current. A more com-plex model can be constructed that accurately describes the firing rate overthe entire range of input currents amplitudes and frequencies. The solidcurves in figure 7.2 were generated by a model that expresses the firingrate as a function of both F(I) and of v computed from equation 7.8 (al-though it reduces to v = F(I(t)) in the case of the left panel of figure 7.2).In other words, it is a combination of the two models discussed in theprevious section. This compound model provides quite an accurate de-scription of the firing rate of the integrate-and-fire model, but it is morecomplex than the models used in this chapter.
Feedforward and Recurrent Networks
Figure 7.3 shows examples of network models with feedforward and re-current connectivity. The feedforward network of figure 7.3A has Nv out-put units with rates va (a = 1,2, . . . , Nv), denoted collectively by the vectorv, driven by Nu input units with rates u. Equations 7.8 and 7.6 can easilybe extended to cover this case by replacing the vector of synaptic weightsw by a matrixW, with the matrix component Wab representing the strengthof the synapse from input unit b to output unit a. Using the formulation ofequation 7.8, the output firing rates are then determined byfeedforward model

τr dvdt = −v+ F(W · u) or τr dvadt = −v+ F
( Nu
∑

b=1
Wabub

)

. (7.9)
We use the notation W ·u to denote the vector with components∑b Wabub.The use of the dot to represent a sum of a product of two quantities overa shared index is borrowed from the notation for the dot product of twovectors. The expression F(W · u) represents the vector with componentsF(
∑Wabub) for a = 1,2, . . . , Nv.

The recurrent network of figure 7.3B also has two layers of neurons withrates u and v, but in this case the neurons of the output layer are intercon-nected with synaptic weights described by a matrix M. Matrix elementMaa′ describes the strength of the synapse from output unit a′ to outputunit a. The output rates in this case are determined byrecurrent model
τr dvdt = −v+ F(W · u+M · v) . (7.10)

It is often convenient to define the total feedforward input to each neuronin the network of figure 7.3B as h = W · u. Then, the output rates are
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Figure 7.3: Feedforward and recurrent networks. A) A feedforward network withinput rates u, output rates v, and a feedforward synaptic weight matrix W. B)A recurrent network with input rates u, output rates v, a feedforward synapticweight matrix W, and a recurrent synaptic weight matrix M. Although we havedrawn the connections between the output neurons as bidirectional, this does notnecessarily imply connections of equal strength in both directions.
determined by the equation

τr dvdt = −v+ F(h+M · v) . (7.11)
Neurons are typically classified as either excitatory or inhibitory, meaningthat they have either excitatory or inhibitory effects on all of their postsy-naptic targets. This property is formalized in Dale’s law, which states that Dale’s lawa neuron cannot excite some of its postsynaptic targets and inhibit others.In terms of the elements of M, this means that for each presynaptic neurona′, Maa′ must have the same sign for all postsynaptic neurons a. To im-pose this restriction, it is convenient to describe excitatory and inhibitoryneurons separately. The firing-rate vectors vE and vI for the excitatory andinhibitory neurons are then described by a coupled set of equations iden-tical in form to equation 7.11, excitatory-inhibitorynetworkτE dvEdt = −vE + FE (hE +MEE · vE +MEI · vI) (7.12)
and

τI dvIdt = −vI + FI (hI +MIE · vE +MII · vI) . (7.13)
There are now four synaptic weight matrices describing the four possibletypes of neuronal interactions. The elements of MEE and MIE are greaterthan or equal to zero, and those of MEI and MII are less than or equal tozero. These equations allow the excitatory and inhibitory neurons to havedifferent time constants, activation functions, and feedforward inputs.
In this chapter, we consider several recurrent network models describedby equation 7.11 with a symmetric weight matrix, Maa′ = Ma′a for all a anda′. Requiring M to be symmetric simplifies the mathematical analysis, but symmetric couplingit violates Dale’s law. Suppose, for example, that neuron a, which is exci-tatory, and neuron a′, which is inhibitory, are mutually connected. Then,
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12 Network Models
Maa′ should be negative and Ma′a positive, so they cannot be equal. Equa-tion 7.11 with symmetric M can be interpreted as a special case of equa-tions 7.12 and 7.13 in which the inhibitory dynamics are instantaneous(τI → 0) and the inhibitory rates are given by vI = MIEvE. This producesan effective recurrent weight matrix M = MEE +MEI ·MIE, which can bemade symmetric by the appropriate choice of the dimension and form ofthe matrices MEI and MIE. The dynamic behavior of equation 7.11 is re-stricted by requiring the matrix M to be symmetric. For example symmet-ric coupling typically does not allow for network oscillations. In the latterpart of this chapter, we consider the richer dynamics of models describedby equations 7.12 and 7.13.
Continuously Labeled Networks
It is often convenient to identify each neuron in a network using a pa-rameter that describes some aspect of its selectivity rather than the integerlabel a or b. For example, neurons in primary visual cortex can be charac-terized by their preferred orientation angles, preferred spatial phases andfrequencies, or other stimulus-related parameters (see chapter 2). In manyof the examples in this chapter, we consider stimuli characterized by asingle angle 2, which represents, for example, the orientation of a visualstimulus. Individual neurons are identified by their preferred stimulusangles, which are typically the values of 2 for which they fire at maxi-mum rates. Thus, neuron a is identified by an angle θa. The weight ofthe synapse from neuron b or neuron a′ to neuron a is then expressed as afunction of the preferred stimulus angles θb, θa′ and θa of the pre- and post-synaptic neurons, Wab = W(θa, θb) or Maa′ = M(θa, θa′ ). We often considercases in which these synaptic weight functions depend only on the differ-ence between the pre- and postsynaptic angles, so that Wab = W(θa − θb)or Maa′ = M(θa − θa′ ).
In large networks, the preferred stimulus parameters for different neuronswill typically take a wide range of values. In the models we consider,the number of neurons is large and the angles θa, for different values of acover the range from 0 to 2π densely. For simplicity, we assume that thiscoverage is uniform so that the density of coverage, the number of neuronswith preferred angles falling within a unit range, which we denote by ρθ,ρθ density ofcoverage is constant. For mathematical convenience in these cases, we allow thepreferred angles to take continuous values rather than restricting them tothe actual discrete values θa for a = 1,2, . . . , N. Thus, we label the neuronsby a continuous angle θ and express the firing rate as a function of θ, so thatu(θ) and v(θ) describe the firing rates of neurons with preferred angles θ.Similarly, the synaptic weight matrices W and M are replaced by functionsW(θ, θ′) and M(θ, θ′) that characterizes the strength of synapses from apresynaptic neuron with preferred angle θ′ to a postsynaptic neuron withpreferred angle θ in the feedforward and recurrent case, respectively.
If the number of neurons in a network is large and the density of cover-
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7.3 Feedforward Networks 13
age of preferred stimulus values is high, we can approximate the sums inequation 7.10 by integrals over θ′. The number of postsynaptic neuronswith preferred angles within a range 1θ′ is ρθ1θ′, so, when we take thelimit 1θ′ → 0, the integral over θ′ appears multiplied by the density fac-tor ρθ. Thus, in the case of continuous labeling of neurons, equation 7.10becomes (for constant ρθ) continuous model

τr dv(θ)dt = −v(θ) + F(ρθ

∫ π

−π

dθ′ W(θ, θ′)u(θ′) + M(θ, θ′)v(θ′)

)

. (7.14)
As we did previously in equation 7.11, we can write the first term insidethe integral of this expression as an input function h(θ). We make frequentuse of continuous labeling for network models, and we often approximatesums over neurons by integrals over their preferred stimulus parameters.

7.3 Feedforward Networks
Substantial computations can be performed by feedforward networks inthe absence of recurrent connections. Much of the work done on feed-forward networks centers on plasticity and learning, as discussed in thefollowing chapters. Here, we present an example of the computationalpower of feedforward circuits, the calculation of the coordinate transfor-mations needed in visually guided reaching tasks.
Neural Coordinate Transformations
Reaching for a viewed object requires a number of coordinate transforma-tions that turn information about where the image of the object falls onthe retina into movement commands in shoulder-, arm-, or hand-basedcoordinates. To perform a transformation from retinal to body-based co-ordinates, information about the retinal location of an image and aboutthe direction of gaze relative to the body must be combined. Figure 7.4Aand B illustrate, in a one-dimensional example, how a rotation of the eyesaffects the relationship between gaze direction, retinal location, and loca-tion relative to the body. Figure 7.4C introduces the notation we use. Theangle g describes the orientation of a line extending from the head to thepoint of visual fixation. The visual stimulus in retinal coordinates is givenby the angle s between this line and a line extending out to the target. Theangle describing the reach direction, the direction to the target relative tothe body, is the sum s + g.
Visual neurons have receptive fields fixed to specific locations on theretina. Neurons in motor areas can display visually evoked responses thatare not tied to specific retinal locations, but rather depend on the relation-ship of a visual image to various parts of the body. Figures 7.5A and Bshow tuning curves of a neuron in the premotor cortex of a monkey that
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Figure 7.4: Coordinate transformations during a reaching task. A, B) The locationof the target (the grey square) relative to the body is the same in A and B, andthus the movements required to reach toward it are identical. However, the imageof the object falls on different parts of the retina in A and B due to a shift in thegaze direction produced by an eye rotation that shifts the fixation point F. C) Theangles used in the analysis: s is the angle describing the location of the stimulus(the target) in retinal coordinates, that is, relative to a line directed to the fixationpoint; g is the gaze angle, indicating the direction of gaze relative to an axis straightout from the body. The direction of the target relative to the body-based axis iss + g.
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Figure 7.5: Tuning curves of a visually responsive neuron in the premotor cortexof a monkey. Incoming objects approaching at various angles provided the visualstimulation. A) When the monkey fixated on the three points denoted by the crosssymbols, the response tuning curve did not shift with the eyes. In this panel, unlikeB and C, the horizontal axis refers to the stimulus location in head-based, not reti-nal, coordinates (s + g, not s). B) Turning the monkey’s head by 15◦ produced a 15◦

shift in the response tuning curve as a function of retinal location, indicating thatthis neuron encoded the stimulus direction in head-based coordinates. C) Modeltuning curves based on equation 7.15 shift their retinal tuning to remain constantin body-based coordinates. The solid, heavy dashed, and light dashed curves referto g = 0◦, 10◦, and −20◦ respectively. The small changes in amplitude arise fromthe limited range of preferred retinal location and gaze angles in the model. (A,Badapted from Graziano et al., 1997; C adapted from Salinas and Abbott, 1995.)
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Figure 7.6: Gaze-dependent gain modulation of visual responses of neurons inposterior parietal cortex. A) Average firing-rate tuning curves of an area 7a neuronas a function of the location of the spot of light used to evoke the response. Stim-ulus location is measure as an angle around a circle of possible locations on thescreen and is related to, but not equal to, our stimulus variable s. The two curvescorrespond to the same visual image but with two different gaze directions. B)A three-dimensional plot of the activity of a model neuron as a function of bothretinal position and gaze direction. The striped bands correspond to tuning curveswith different gains similar to those shown in A. (A adapted from Brotchie et al.,1995; B adapted from Pouget and Sejnowski, 1995.)
responded to visual images of approaching objects. Surprisingly, when thehead of the monkey was held stationary during fixation on three differenttargets, the tuning curves did not shift as the eyes rotated (figure 7.5A).Although the recorded neurons respond to visual stimuli, the responsesdo not depend directly on the location of the image on the retina. Whenthe head of the monkey is rotated but the fixation point remains the same,the tuning curves shift by precisely the amount of the head rotation (fig-ure 7.5B). Thus, these neurons encode the location of the image in head- orbody-based, not retinal, coordinates.
To account for these data, we need to construct a model neuron that isdriven by visual input, but that nonetheless has a tuning curve for imagelocation that is not a function of s, the retinal location of the image, butof s + g, the location of the object in body-based coordinates. A possiblebasis for this construction is provided by a combined representation of sand g by neurons in area 7a in the posterior parietal cortex of the monkey.Recordings made in area 7a reveal neurons that fire at rates that depend onboth the location of the stimulating image on the retina and on the direc-tion of gaze (figure 7.6A). The response tuning curves, expressed as func-tions of the retinal location of the stimulus, do not shift when the directionof gaze is varied. However, shifts of gaze direction affect the magnitudeof the visual response. Thus, responses in area 7a exhibit gaze-dependentgain modulation of a retinotopic visual receptive field. gain modulation
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16 Network Models
Figure 7.6B shows a mathematical description of a gain-modulated tuningcurve. The response tuning curve is expressed as a product of a Gaussianfunction of s−ξ, where ξ is the preferred retinal location (ξ=−20◦ in fig-ure 7.6B), and a sigmoid function of g − γ, where γ is the gaze directionproducing half of the maximum gain (γ =20◦ in figure 7.6B). Although itdoes not correspond to the maximum neural response, we refer to γ as the‘preferred’ gaze direction.
To model a neuron with a body-centered response tuning curve, we con-struct a feedforward network with a single output unit representing, forexample, the premotor neuron shown in figure 7.5. The input layer of thenetwork consists of a population of area 7a neurons with gain-modulatedresponses similar to those shown in figure 7.6B. Neurons with gains thatboth increase and decrease as a function of g are included in the model.The average firing rates of the input layer neurons are described by tuningcurves u = fu(s−ξ, g−γ) with the different neurons taking a range of ξand γ values.
We use continuous labeling of neurons, and replace the sum over presy-naptic neurons by an integral over their ξ and γ values, inserting the ap-propriate density factors ρξ and ργ , which we assume are constant. Thesteady-state response of the single output neuron is determined by thecontinuous analog of equation 7.5. The synaptic weight from a presynap-tic neuron with preferred stimulus location ξ and preferred gaze direction
γ is denoted by w(ξ, γ), so the steady-state response of the output neuronsis given by

v∞ = F(ρξργ

∫ dξdγ w(ξ, γ) fu(s − ξ, g − γ)

)

. (7.15)
For the output neuron to respond to stimulus location in body-based coor-dinates, its firing rate must be a function of s+g. To see if this is possible,we shift the integration variables in 7.15 by ξ → ξ−g and γ → γ+g. Ignor-ing effects from the end points of the integration (which is valid if s and gare not too close to these limits), we find

v∞ = F(ρξργ

∫ dξdγ w(ξ − g, γ + g) fu(s + g − ξ,−γ)

)

. (7.16)
This is a function of s+g provided that w(ξ − g, γ + g) = w(ξ, γ), whichholds if w(ξ, γ) is a function of the sum ξ + γ. Thus, the coordinate trans-formation can be accomplished if the synaptic weight from a given neurondepends only the sum of its preferred retinal and gaze angles. It has beensuggested that weights of this form can arise naturally from random handand gaze movements through correlation-based synaptic modification ofthe type discussed in chapter 8.
Figure 7.5C shows responses predicted by equation 7.15 when the synapticweights are given by a function w(ξ+ γ). The retinal location of the tuningcurve shifts as a function of gaze direction, but would remain stationary if
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7.4 Recurrent Networks 17
it were plotted instead as a function of s + g. This can be seen by notingthat the peaks of all three curves in figure 7.5C occur at s + g = 0.
Gain-modulated neurons provide a general basis for combining two dif-ferent input signals in a nonlinear way. In the network we studied, it ispossible to find appropriate synaptic weights w(ξ, γ) to construct outputneurons with a wide range of response tuning curves expressed as func-tions of s and g. The mechanism by which sensory and modulatory inputscombine in a multiplicative way in gain-modulated neurons is not known.Later in this chapter, we discuss a recurrent network model for generatinggain-modulated responses.

7.4 Recurrent Networks
Recurrent networks have richer dynamics than feedforward networks, butthey are more difficult to analyze. To get a feel for recurrent circuitry, webegin by analyzing a linear model, that is, a model for which the rela-tionship between firing rate and synaptic current is linear, F(h+M · r) =h+M · r. The linear approximation is a drastic one that allows, amongother things, the components of v to become negative, which is impossi-ble for real firing rates. Furthermore, some of the features we discuss inconnection with linear, as opposed to nonlinear, recurrent networks canalso be achieved by a feedforward architecture. Nevertheless, the linearmodel is extremely useful for exploring properties of recurrent circuits,and this approach will be used both here and in the following chapters. Inaddition, the analysis of linear networks forms the basis for studying thestability properties of nonlinear networks. We augment the discussion oflinear networks with results from simulations of nonlinear networks.
Linear Recurrent Networks
Under the linear approximation, the recurrent model of equation 7.11 takesthe form linear recurrentmodel

τr dvdt = −v+ h+M · v . (7.17)
Because the model is linear, we can solve analytically for the vector ofoutput rates v in terms of the feedforward inputs h and the initial valuesv(0). The analysis is simplest when the recurrent synaptic weight matrix issymmetric, and we assume this to be the case. Equation 7.17 can be solvedby expressing v in terms of the eigenvectors of M. The eigenvectors eµ for
µ = 1,2, . . . , Nv satisfy eigenvector e

M · eµ = λµeµ (7.18)
for some value of the constant λµ which is called the eigenvalue. For a eigenvalue λ
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18 Network Models
symmetric matrix, the eigenvectors are orthogonal, and they can be nor-malized to unit length so that eµ · eν = δµν. Such eigenvectors define anorthogonal coordinate system or basis that can be used to represent anyNv-dimensional vector. In particular, we can writeeigenvectorexpansion

v(t) =
Nv
∑

µ=1
cµ(t)eµ (7.19)

where cµ(t) for µ = 1,2, . . . , Nv are a set of time-dependent coefficientsdescribing v(t).
It is easier to solve equation 7.17 for the coefficients cµ than for v directly.Substituting the expansion 7.19 into equation 7.17 and using property 7.18,we find that

τr
Nv
∑

µ=1
dcµdt eµ = −

Nv
∑

µ=1
(1 − λµ)cµ(t)eµ + h . (7.20)

The sum over µ can be eliminated by taking the dot product of each side ofthis equation with one of the eigenvectors, eν, and using the orthogonalityproperty eµ · eν = δµν to obtain
τr dcνdt = −(1 − λν)cν(t) + eν · h . (7.21)

The critical feature of this equation is that it involves only one of the co-efficients, cν. For time-independent inputs h, the solution of equation 7.44is
cν(t) = eν · h1 − λν

(1 − exp(− t(1 − λν)

τr
))

+ cν(0)exp(− t(1 − λν)

τr
)

(7.22)
where cν(0) is the value of cν at time zero, which is given in terms of theinitial firing-rate vector v(0) by cν(0) = eν · v(0).
Equation 7.22 has several important characteristics. If λν >1, the exponen-tial functions grow without bound as time increases, reflecting a funda-mental instability of the network. If λν <1, cν approaches the steady-statevalue eν · h/(1 − λν) exponentially with time constant τr/(1 − λν). Thissteady-state value is proportional to eν · h, which is the projection of theinput vector onto the relevant eigenvector. For 0<λν <1, the steady-statevalue is amplified relative to this projection by the factor 1/(1 −λν), whichis greater than one. The approach to equilibrium is slowed relative to thebasic time constant τr by an identical factor. The steady-state value of v(t),which we call v∞, can be derived from equation 7.19 assteady state v∞

v∞ =
Nv
∑

ν=1
(eν · h)1 − λν

eν . (7.23)
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7.4 Recurrent Networks 19
This steady-state response can also arise from a purely feedforwardscheme if the feedforward weight matrix is chosen appropriately, as weinvite the reader to verify as an exercise.
We have considered amplification when 0 < λ1 < 1. The linear networkbecomes unstable if λ1 > 1. The case λν=1 is special and will be discussedin a later section.

Selective Amplification
Suppose that one of the eigenvalues of a recurrent weight matrix, denotedby λ1, is very close to one, and all the others are significantly smaller than1. In this case, the denominator of the ν=1 term on the right side of equa-tion 7.23 is near zero, and, unless e1 · h is extremely small, this single termwill dominate the sum. As a result, we can write

v∞ ≈ (e1 · h)e11 − λ1 . (7.24)
Such a network performs selective amplification. The response is domi-nated by the projection of the input vector along the axis defined by e1,and the amplitude of the response is amplified by the factor 1/(1 − λ1),which may be quite large if λ1 is near one. The steady-state response ofsuch a network, which is proportional to e1, therefore encodes an ampli-fied projection of the input vector onto e1.
Further information can be encoded if more eigenvalues are close to one.Suppose, for example, that two eigenvectors, e1 and e2 have the sameeigenvalue, λ1 =λ2, close to but less than one. Then, equation 7.24 is re-placed by

v∞ ≈ (e1 · h)e1 + (e2 · h)e21 − λ1 (7.25)
which shows that the network now amplifies and encodes the projectionof the input vector onto the plane defined by e1 and e2. In this case, the ac-tivity pattern of the network is not simply scaled when the input changes.Instead, changes in the input shift both the magnitude and pattern of net-work activity. Eigenvectors that share the same eigenvalue are termeddegenerate, and degeneracy is often the result of a symmetry. In the ex-amples considered in this chapter, degeneracy arises from invariance toshifts of the parameter θ by a constant amount. Degeneracy is not limitedto just two eigenvectors. A recurrent network with n degenerate eigenval-ues near one can amplify and encode a projection of the input vector fromthe N-dimensional space in which it is defined onto the n-dimensionalsubspace spanned by the degenerate eigenvectors.
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20 Network Models
Input Integration
If the recurrent weight matrix has an eigenvalue exactly equal to one, λ1 =1, and all the other eigenvalues satisfy λν < 1, a linear recurrent networkcan act as an integrator of its input. In this case, c1 satisfies the equation

τr dc1dt = e1 · h (7.26)
obtained by setting λ1 = 1 in equation 7.44. For arbitrary time-dependentinputs, the solution of this equation is

c1(t) = c1(0) + 1
τr
∫ t

0 dt′ e1 · h(t′) . (7.27)
If h(t) is constant, c1(t) grows linearly with t. This explains why equation7.24 diverges as λ1 → 1. Suppose, instead, that h(t) is nonzero for a while,and then is set to zero for an extended period of time. When h = 0, equa-tion 7.22 shows that cν → 0 for all ν 6= 1, because for these eigenvectors
λν < 1. Assuming that c1(0) = 0, this means that, after such a period, thefiring-rate vector is given, from equation 7.27 and 7.19, bynetworkintegration

v(t) ≈ e1
τr
∫ t

0 dt′ e1 · h(t′) . (7.28)
This shows that the network activity provides a measure of the runningintegral of the projection of the input vector onto e1. One consequence ofthis is that the activity of the network does not cease if h= 0, provided thatthe integral up to that point in time is nonzero. The network thus exhibitssustained activity in the absence of input, which provides a memory of theintegral of prior input.
Networks in the brain stem of vertebrates responsible for maintaining eyeposition appear to act as integrators, and networks similar to the one wehave been discussing have been suggested as models of this system. Asoutlined in figure 7.7, eye position changes in response to bursts of ac-tivity in ocular motor neurons located in the brain stem. Neurons in themedial vestibular nucleus and prepositus hypoglossi appear to integratethese motor signals to provide a persistent memory of eye position. Thesustained firing rates of these neurons are approximately proportional tothe angular orientation of the eyes in the horizontal direction, and activ-ity persists at an approximately constant rate when the eyes are held fixed(bottom trace in figure 7.7).
The ability of a linear recurrent network to integrate and display persistentactivity relies on one of the eigenvalues of the recurrent weight matrix be-ing exactly one. Any deviation from this value will cause the persistentactivity to change over time. Eye position does indeed drift, but matchingthe performance of the ocular positioning system requires fine tuning ofthe eigenvalue to a value extremely close to one. Including nonlinear in-teractions does not alleviate the need for a precisely tuned weight matrix.
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Figure 7.7: Cartoon of burst and integrator neurons involved in horizontal eye po-sitioning. The upper trace represents horizontal eye position during two saccadiceye movements. Motion of the eye is driven by burst neurons that move the eyesin opposite directions (second and third traces from top). The steady-state firingrate (labeled persistent activity) of the integrator neuron is proportional to the timeintegral of the burst rates, integrated positively for the ON-direction burst neuronand negatively for the OFF-direction burst neuron, and thus provides a memorytrace of the maintained eye position. (Adapted from Seung et al., 2000.)
Synaptic modification rules can be used to establish the necessary synapticweights, but it is not clear how such precise tuning is accomplished in thebiological system.

Continuous Linear Recurrent Networks
For a linear recurrent network with continuous labeling, the equation forthe firing rate v(θ) of a neuron with preferred stimulus angle θ is a linearversion of equation 7.14,

τr dv(θ)dt = −v(θ) + h(θ) + ρθ

∫ π

−π

dθ′ M(θ − θ′)v(θ′) (7.29)
where h(θ) is the feedforward input to a neuron with preferred stimulusangle θ, and we have assumed a constant density ρθ. Because θ is an angle,h, M, and v must all be periodic functions with period 2π. By making M afunction of θ− θ′, we are imposing a symmetry with respect to translationsor shifts of the angle variables on the network. In addition, we assumethat M is an even function, M(θ − θ′) = M(θ′ − θ). This is the analog, in acontinuously labeled model, of a symmetric synaptic weight matrix.
Equation 7.29 can be solved by methods similar to those used for discretenetworks. We introduce eigenfunctions that satisfy

ρθ

∫ π

−π

dθ′ M(θ − θ′)eµ(θ′) = λµeµ(θ) . (7.30)
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We leave it as an exercise to show that the eigenfunctions (normalizedso that ρθ times the integral from −π to π of their square is one) are1/

√2πρθ, corresponding to µ = 0, and cos(µθ)/
√

πρθ and sin(µθ)/
√

πρθfor µ = 1,2, . . . . The eigenvalues are identical for the sine and cosineeigenfunctions and are given (including the case µ = 0) by
λµ = ρθ

∫ π

−π

dθ′ M(θ′) cos(µθ′) . (7.31)
The identity of the eigenvalues for the cosine and sine eigenfunctions re-flects a degeneracy that arises from the invariance of the network to shiftsof the angle labels.
The steady-state firing rates for a constant input are given by the continu-ous analog of equation 7.23,

v∞(θ) = 11 − λ0
∫ π

−π

dθ′

2π
h(θ′)

+
∞
∑

µ=1
cos(µθ)1 − λµ

∫ π

−π

dθ′

π
h(θ′) cos(µθ′)

+
∞
∑

µ=1
sin(µθ)1 − λµ

∫ π

−π

dθ′

π
h(θ′) sin(µθ′) . (7.32)

The integrals in this expression are the coefficients in a Fourier series forFourier series the function h and are know as cosine and sine Fourier integrals (see theMathematical Appendix).
Figure 7.8 shows an example of selective amplification by a linear recur-rent network. The input to the network, shown in panel A of figure 7.8, isa cosine function that peaks at 0◦ to which random noise has been added.Figure 7.8C shows Fourier amplitudes for this input. The Fourier ampli-tude is the square root of the sum of the squares of the cosine and sineFourier integrals. No particular µ value is overwhelmingly dominant. Inthis and the following examples, the recurrent connections of the networkare given by

M(θ − θ′) = λ1
πρθ

cos(θ − θ′) (7.33)
which has all eigenvalues except λ1 equal to zero. The network modelshown in figure 7.8 has λ1 = 0.9, so that 1/(1 − λ1) = 10. Input amplifi-cation can be quantified by comparing the Fourier amplitude of v∞, for agiven µ value, with the analogous amplitude for the input h. Accordingto equation 7.32, the ratio of these quantities is 1/(1 − λµ), so, in this case,the µ = 1 amplitude should be amplified by a factor of ten while all otheramplitudes are unamplified. This factor of ten amplification can be seenby comparing the µ = 1 Fourier amplitudes in figures 7.8C and D (notethe different scales for the vertical axes). All the other components are un-amplified. As a result, the output of the network is primarily in the formof a cosine function with µ = 1, as seen in figure 7.8B.
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Figure 7.8: Selective amplification in a linear network. A) The input to the neu-rons of the network as a function of their preferred stimulus angle. B) The activityof the network neurons plotted as a function of their preferred stimulus angle inresponse to the input of panel A. C) The Fourier transform amplitudes of the inputshown in panel A. D) The Fourier transform amplitudes of the output shown inpanel B. The recurrent coupling of this network model took the form of equation7.33 with λ1 = 0.9. (This figure, and figures 7.9, 7.12, 7.13, and 7.14, were generatedusing software from Carandini and Ringach, 1998.)

Nonlinear Recurrent Networks
A linear model does not provide an adequate description of the firing ratesof a biological neural network. The most significant problem is that thefiring rates in a linear network can take negative values. This problem canbe fixed by introducing rectification into equation 7.11 by choosing rectification

F(h+M · r) = [h+M · r− γγγ]+ . (7.34)
where γγγ is a vector of threshold values that we often take to be 000. In thissection, we show some examples illustrating the effect of including such arectifying nonlinearity. Some of the features of linear recurrent networksremain when rectification is included, but several new features also ap-pear.
In the examples given below, we consider a continuous model, similar tothat of equation 7.29, with recurrent couplings given by equation 7.33, but
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Figure 7.9: Selective amplification in a recurrent network with rectification. A)The input h(θ) of the network plotted as a function of preferred angle. B) Thesteady-state output v(θ) as a function of preferred angle. C) Fourier transformamplitudes of the input h(θ). D) Fourier transform amplitudes of the output v(θ).The recurrent coupling took the form 7.33 with λ1 = 1.9.
now including a rectification nonlinearity, so that

τr dv(θ)dt = −v(θ) +
[h(θ) + λ1

π

∫ π

−π

dθ′ cos(θ − θ′)v(θ′)

]

+
. (7.35)

If λ1 is not too large, this network converges to a steady state for any con-stant input (we consider conditions for steady-state convergence in a latersection), and therefore we often limit the discussion to the steady-state ac-tivity of the network.
Nonlinear Amplification
Figure 7.9 shows the nonlinear analog of the selective amplification shownfor a linear network in figure 7.8. Once again, a noisy input (figure 7.9A)generates a much smoother output response profile (figure 7.9B). The out-put response of the rectified network corresponds roughly to the positivepart of the sinusoidal response profile of the linear network (figure 7.8B).The negative output has been eliminated by the rectification. Becausefewer neurons in the network have nonzero responses than in the linearcase, the value of the parameter λ1 in equation 7.33 has been increased to
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7.4 Recurrent Networks 25
1.9. This value, being larger than one, would lead to an unstable networkin the linear case. While nonlinear networks can also be unstable, the re-striction to eigenvalues less than one is no longer the relevant condition.
In a nonlinear network, the Fourier analysis of the input and output re-sponses is no longer as informative as it is for a linear network. Due tothe rectification, the ν = 0,1, and 2 Fourier components are all amplified(figure 7.9D) compared to their input values (figure 7.9C). Nevertheless,except for rectification, the nonlinear recurrent network amplifies the in-put signal selectively in a similar manner as the linear network.
A Recurrent Model of Simple Cells in Primary Visual Cortex
In chapter 2, we discussed a feedforward model in which the elongatedreceptive fields of simple cells in primary visual cortex were formed bysumming the inputs from lateral geniculate (LGN) neurons with their re-ceptive fields arranged in alternating rows of ON and OFF cells. While thismodel quite successfully accounts for a number of features of simple cells,such as orientation tuning, it is difficult to reconcile with the anatomy andcircuitry of the cerebral cortex. By far the majority of the synapses ontoany cortical neuron arise from other cortical neurons, not from thalamicafferents. Therefore, feedforward models account for the response prop-erties of cortical neurons while ignoring the inputs that are numericallymost prominent. The large number of intracortical connections suggests,instead, that recurrent circuitry might play an important role in shapingthe responses of neurons in primary visual cortex.
Ben-Yishai, Bar-Or, and Sompolinsky (1995) developed a model at theother extreme, for which recurrent connections are the primary determin-ers of orientation tuning. The model is similar in structure to the modelof equations 7.35 and 7.33, except that it includes a global inhibitory inter-action. In addition, because orientation angles are defined over the rangefrom −π/2 to π/2, rather than over the full 2π range, the cosine functionsin the model have extra factors of 2 in them. The basic equation of themodel, as we implement it, is

τr dv(θ)dt = −v(θ) +
[

h(θ) +
∫ π/2

−π/2
dθ′

π

(

−λ0 + λ1 cos(2(θ − θ′))
)

v(θ′)

]

+(7.36)
where v(θ) is the firing rate of a neuron with preferred orientation θ.
The input to the model represents the orientation-tuned feedforward in-put arising from ON-center and OFF-center LGN cells responding to anoriented image. As a function of preferred orientation, the input for animage with orientation angle 2 = 0 is

h(θ) = Ac (1 − ε + ε cos(2θ)) (7.37)
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26 Network Models
where A sets the overall amplitude and c is equal to the image contrast.The factor ε controls how strongly the input is modulated by the orien-tation angle. For ε= 0, all neurons receive the same input, while ε= 0.5produces the maximum modulation consistent with a positive input. Westudy this model in the case when ε is small, which means that the inputis only weakly tuned for orientation and any strong orientation selectivitymust arise through recurrent interactions.

To study orientation selectivity, we want to examine the tuning curves ofindividual neurons in response to stimuli with different orientation an-gles 2. The plots of network responses that we have been using show thefiring rates v(θ) of all the neurons in the network as a function of theirpreferred stimulus angles θ when the input stimulus has a fixed value,typically 2 = 0. As a consequence of the translation invariance of the net-work model, the response for other values of 2 can be obtained simply byshifting this curve so that it plots v(θ − 2). Furthermore, except for theasymmetric effects of noise on the input, v(θ −2) is a symmetric function.These features follow from the fact that the network we are studying isinvariant with respect to translations and sign changes of the angle vari-ables that characterize the stimulus and response selectivities. An impor-tant consequence of this result is that the curve v(θ), showing the responseof the entire population, can also be interpreted as the tuning curve of asingle neuron. If the response of the population to a stimulus angle 2 is
v(θ − 2), the response of a single neuron with preferred angle θ = 0 is
v(−2) = v(2) from the symmetry of v. Because v(2) is the tuning curveof a single neuron with θ = 0 to a stimulus angle 2, the plots we show of
v(θ) can be interpreted in a dual way, as both population responses andindividual neuronal tuning curves.

Figure 7.10A shows the feedforward input to the model network for fourdifferent levels of contrast. Because the parameter ε was chosen to be 0.1,the modulation of the input as a function of orientation angle is small.Due to network amplification, the response of the network is much morestrongly tuned to orientation (figure 7.10B). This is the result of the selec-tive amplification of the tuned part of the input by the recurrent network.The modulation and overall height of the input curve in figure 7.10A in-crease linearly with contrast. The response shown in figure 7.10B, inter-preted as a tuning curve, increases in amplitude for higher contrast, butdoes not broaden. This can be seen by noting that all four curves in figure7.10B go to zero at the same two points. This effect, which occurs becausethe shape and width of the response tuning curve are determined primar-ily by the recurrent interactions within the network, is a feature of orien-tation curves of real simple cells, as seen in figure 7.10C. The width of thetuning curve can be reduced by including a positive threshold in the re-sponse function of equation 7.34, or by changing the amount of inhibition,but it stays roughly constant as a function of stimulus strength.
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Figure 7.10: The effect of contrast on orientation tuning. A) The feedforward in-put as a function of preferred orientation. The four curves, from top to bottom,correspond to contrasts of 80%, 40%, 20%, and 10%. B) The output firing ratesin response to different levels of contrast as a function of orientation preference.These are also the response tuning curves of a single neuron with preferred orien-tation zero. As in A, the four curves, from top to bottom, correspond to contrastsof 80%, 40%, 20%, and 10%. The recurrent model had λ0 = 7.3, λ1 = 11, A = 40Hz, and ε = 0.1. C) Tuning curves measure experimentally at four contrast levelsas indicated in the legend. (C adapted from Sompolinsky and Shapley, 1997; basedon data from Sclar and Freeman, 1982.)

A Recurrent Model of Complex Cells in Primary Visual Cortex
In the model of orientation tuning discussed in the previous section, recur-rent amplification enhances selectivity. If the pattern of network connec-tivity amplifies nonselective rather than selective responses, recurrent in-teractions can also decrease selectivity. Recall from chapter 2 that neuronsin the primary visual cortex are classified as simple or complex depend-ing on their sensitivity to the spatial phase of a grating stimulus. Simplecells respond maximally when the spatial positioning of the light and darkregions of a grating matches the locations of the ON and OFF regions oftheir receptive fields. Complex cells do not have distinct ON and OFF re-gions in their receptive fields and respond to gratings of the appropriateorientation and spatial frequency relatively independently of where theirlight and dark stripes fall. In other words, complex cells are insensitive tospatial phase.
Chance, Nelson, and Abbott (1999) showed that complex cell responsescould be generated from simple cell responses by a recurrent network. Asin chapter 2, we label spatial phase preferences by the angle φ. The feed-forward input h(φ) in the model is set equal to the rectified response ofa simple cell with preferred spatial phase φ (figure 7.11A). Each neuronin the network is labeled by the spatial phase preference of its feedfor-ward input. The network neurons also receive recurrent input given bythe weight function M(φ − φ′) = λ1/(2πρφ) that is the same for all con-
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28 Network Models
nected neuron pairs. As a result, their firing rates are determined by

τr dv(φ)dt = −v(φ) +
[h(φ) + λ12π

∫ π

−π

dφ′ v(φ′)

]

+
. (7.38)
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Figure 7.11: A recurrent model of complex cells. A) The input to the network asa function of spatial phase preference. The input h(φ) is equivalent to that of asimple cell with spatial phase preference φ responding to a grating of zero spatialphase. B) Network response, which can also be interpreted as the spatial phasetuning curve of a network neuron. The network was given by equation 7.38 with
λ1 = 0.95. (Adapted from Chance et al., 1999.)
In the absence of recurrent connections (λ1 =0), the response of a neuronlabeled by φ is v(φ) = h(φ), which is equal to the response of a simplecell with preferred spatial phase φ. However, for λ1 sufficiently close toone, the recurrent model produces responses that resemble those of com-plex cells. Figure 7.11B shows the population response, or equivalently thesingle-cell response tuning curve, of the model in response to the tuned in-put shown in Figure 7.11A. The input, being the response of a simple cell,shows strong tuning for spatial phase. The output tuning curve, however,is almost constant as a function of spatial phase, like that of a complexcell. The spatial-phase insensitivity of the network response is due to thefact that the network amplifies the component of the input that is inde-pendent of spatial phase, because the eigenfunction of M with the largesteigenvalue is spatial-phase invariant. This changes simple cell inputs intocomplex cell outputs.

Winner-Take-All Input Selection
For a linear network, the response to two superimposed inputs is simplythe sum of the responses to each input separately. Figure 7.12 shows oneway in which a rectifying nonlinearity modifies this superposition prop-erty. In this case, the input to the recurrent network consists of activitycentered around two preferred stimulus angles, ±90◦. The output of thenonlinear network shown in figure 7.12B is not of this form, but instead
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Figure 7.12: Winner-take-all input selection by a nonlinear recurrent network. A)The input to the network consisting of two peaks. B) The output of the networkhas a single peak at the location of the higher of the two peaks of the input. Themodel is the same as that used in figure 7.9.
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Figure 7.13: Effect of adding a constant to the input of a nonlinear recurrent net-work. A) The input to the network consists of a single peak to which a constantfactor has been added. B) The gain-modulated output of the nonlinear network.The three curves correspond to the three input curves in panel A, in the same order.The model is the same as that used in figures 7.9 and 7.12.
has a single peak at the location of the input bump with the larger ampli-tude (the one at −90◦). This occurs because the nonlinear recurrent net-work supports the stereotyped unimodal activity pattern seen in figure7.12B, so a multimodal input tends to generate a unimodal output. Theheight of the input peak has a large effect in determining where the singlepeak of the network output is located, but it is not the only feature thatdetermines the response. For example, the network output can favor abroader, lower peak over a narrower, higher one.
Gain Modulation
A nonlinear recurrent network can generate an output that resembles thegain-modulated responses of posterior parietal neurons shown in figure7.6, as noted by Salinas and Abbott (1996). To obtain this result, we in-terpret the angle θ as a preferred direction in the visual field in retinal
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30 Network Models
coordinates (the variable we called s earlier in the chapter). The signal cor-responding to gaze direction (what we called g before) is represented as aconstant input to all neurons irrespective of their preferred stimulus angle.Figure 7.13 shows the effect of adding such a constant term to the input ofthe nonlinear network. The input shown in figure 7.13A corresponds toa visual target located at a retinal position of 0◦. The different lines showdifferent values of the constant input, representing three different gaze di-rections. The responses shown in figure 7.13B all have localized activitycentered around θ=0◦, indicating that the individual neurons have fixedtuning curves expressed in retinal coordinates. The effect of the constantinput, representing gaze direction, is to scale up or gain modulate thesetuning curves, producing a result similar to that shown in figure 7.6. Theadditive constant in the input shown in figure 7.13A has a multiplicativeeffect on the output activity shown in 7.13B. This is primarily due to thefact that the width of the activity profiles is fixed by the recurrent networkinteraction, so a constant positive input raises (and a negative input low-ers) the peak of the response curve without broadening the base of thecurve.

Sustained Activity
The effects illustrated in figures 7.12 and 7.13 arise because the nonlinearrecurrent network has a stereotyped pattern of activity that is largely de-termined by interactions with other neurons in the network rather thanby the feedforward input. If the recurrent connections are strong enough,the pattern of population activity, once established, can become indepen-dent of the structure of the input. For example, the recurrent network wehave been studying can support a pattern of activity localized around agiven preferred stimulus value, even when the input is uniform. This isseen in figure 7.14. The neurons of the network initially receive inputs thatdepend on their preferred angles, as seen in figure 7.14A. This producesa localized pattern of network activity (figure 7.14B). When the input isswitched to the same constant value for all neurons (figure 7.14C), the net-work activity does not become uniform. Instead, it stays localized aroundthe value θ = 0 (figure 7.14D). This means that constant input can main-tain a state that provides a memory of previous localized input activity.Networks similar to this have been proposed as models of sustained activ-ity in the head-direction system of the rat and in prefrontal cortex duringtasks involving working memory.
This memory mechanism is related to the integration seen in the linearmodel of eye position maintenance discussed previously. The linear net-work has an eigenvector e1 with eigenvalue λ1 =1. This allows v= c1e1 tobe a static solution of the equations of the network (7.17) in the absenceof input for any value of c1. As a result, the network can preserve anyinitial value of c1 as a memory. In the case of figure 7.14, the steady-stateactivity in the absence of tuned input is a function of θ − 2, for any value
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Figure 7.14: Sustained activity in a recurrent network. A) Input to the neurons ofthe network consisting of localized excitation and a constant background. B) Theactivity of the network neurons in response to the input of panel A. C) Constantnetwork input. D) Response to the constant input of panel C when it immediatelyfollowed the input in A. The model is the same as that used in figures 7.9, 7.12,and 7.13.
of the angle 2. As a result, the network can preserve any initial value of
2 as a memory (2 = 0◦ in the figure). The activities of the units v(θ) de-pend on 2 in an essentially nonlinear manner, but, if we consider linearperturbations around this nonlinear solution, there is an eigenvector witheigenvalue λ1 = 1 associated with shifts in the value of 2. In this case,it can be shown that λ1 = 1 because the network was constructed to betranslationally invariant.
Maximum Likelihood and Network Recoding
Recurrent networks can generate characteristic patterns of activity evenwhen they receive complex inputs (figure 7.9) and can maintain these pat-terns while receiving constant input (figure 7.14). Pouget, Zhang, Deneveand Latham (1998) suggested that the location of the characteristic pat-tern (i.e. the value of 2 associated with the peak of the population activityprofile) could be interpreted as a match of a fixed template curve to theinput activity profile. This curve fitting operation is at the heart of themaximum likelihood decoding method we described in chapter 3 for esti-mating a stimulus variable such as 2. In the maximum likelihood method,the fitting curve is determined by the tuning functions of the neurons, andthe curve fitting procedure is defined by the characteristics of the noiseperturbing the input activities. If the properties of the recurrent networkmatch these optimal characteristics, the network can approximate maxi-mum likelihood decoding. Once the activity of the population of neurons
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Figure 7.15: Recoding by a network model. A) The noisy initial inputs h(θ) to 64network neurons are shown as dots. The standard deviation of the noise is 0.25Hz. After a short settling time, the input is set to a constant value of h(θ) = 10. B)The smooth activity profile that results from the recurrent interactions. The net-work model was similar to that used in figure 7.9 except that the recurrent synap-tic weights were in the form of a Gabor-like function rather than a cosine, and therecurrent connections had short-range excitation and long-range inhibition. (seePouget et al., 1998.)

has stabilized to its sterotyped shape, a simple decoding method such asvector decoding can be applied to extract the estimated value of 2. Thisallows the accuracy of a vector decoding method to approach that of morecomplex optimal methods, because the computational work of curve fit-ting has been performed by the nonlinear recurrent interactions.
Figure 7.15 shows how this idea works in a network of 64 neurons re-ceiving inputs that have Gaussian (rather than cosine) tuning curves as afunction of 2. Vector decoding applied to the reconstruction of 2 from theactivity of the network or its inputs turns out to be almost unbiased. Theway to judge decoding accuracy is therefore to compute the standard devi-ation of the decoded 2 values (chapter 3). The noisy input activity shownin figure 7.15A shows a slight bump around the value θ = 10◦. Vector de-coding applied to input activities with this level of noise gives a standarddeviation in the decoded angle of 4.5◦. Figure 7.15B shows the output ofthe network obtained by starting with initial activities v(θ) = 0 and inputh(θ) as in figure 7.15A, and then setting h(θ) to a constant (θ-independent)value to maintain sustained activity. This generates a smooth pattern ofsustained population activity. Vector decoding applied to the output ac-tivities generated in this way gives a standard deviation in the decodedangle of 1.7◦. This is not too far from the Cramér-Rao bound that gives themaximum possible accuracy for any unbiased decoding scheme appliedto this system (see chapter 3), which is 0.88◦.
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Network Stability
When a network responds to a constant input by relaxing to a steady statewith dv/dt=000, it is said to exhibit fixed-point behavior. Almost all the net- fixed-point behaviorwork activity we have discussed thus far involves such fixed points. Thisis by no means the only type of long-term activity that a network modelcan display. In a later section of this chapter, we discuss networks that os-cillate, and chaotic behavior is also possible. But if certain conditions aremet, a network will inevitably reach a fixed point in response to constantinput. The theory of Lyapunov functions, to which we give an informalintroduction, can be used to prove when this occurs.
It is easier to discuss the Lyapunov function for a network if we use thefiring-rate dynamics of equation 7.6 rather than equation 7.8. For a net-work model, this means expressing the vector of network firing rates asv = F(I), where I is the total synaptic current vector, i.e. Ia represents thetotal synaptic current for unit a. I obeys the dynamic equation derivedfrom generalizing equation 7.6 to a network situation, recurrent modelwith currentdynamicsτs dIdt = −I+ h+M · F(I) . (7.39)
Note that we have made the substitution v = F(I) in the last term of theright side of this equation. Equation 7.39 is sometimes used instead ofequation 7.11 as the dynamical equation governing recurrent firing-ratemodel networks. For this form of firing-rate model with a symmetric re-current weight matrix satisfying Maa = 0 for all a, Cohen and Grossberg(1983) showed that the function Lyapunovfunction L

L(I) =
Nv
∑

a=1

(

∫ Ia

0 dza zaF′(za) − haF(Ia) − 12
Nv
∑

a′=1
F(Ia)Maa′ F(Ia′ )

)

(7.40)
has dL/dt < 0 whenever dI/dt 6= 000. To see this, take the time derivative ofequation 7.40 and use 7.39 to obtain

dL(I)dt = − 1
τs

Nv
∑

a=1
F′(Ia)

(dIadt
)2

. (7.41)
Because F′ > 0, L decreases unless dI/dt = 000. If L is bounded from below,it cannot decrease indefinitely, so I = h+M · v must converge to a fixedpoint. This implies that v must converge to a fixed point as well.
We have required that F′(I) > 0 for all values of its argument I. However,with some technical complications, it can be shown that the Lyapunovfunction we have presented also applied to the case of the rectifying ac-tivation function F(I) = [I]+, even though it is not differentiable at I = 0and F′(I) = 0 for I < 0. Convergence to a fixed point, or one of a set offixed points, requires the Lyapunov function to be bounded from below.One way to ensure this is to use a saturating activation function F, so thatF(I) is bounded as I →∞. Another way is to keep the eigenvalues of Msufficiently small.
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Associative Memory
In an associative memory, a partial or approximate representation of astored item is used to recall the full item. Unlike a standard random ac-cess memory, recall in an associative memory is based on content ratherthan on an address. For this reason, associative memory is also knownas content-addressable memory. An example would be recalling everydigit of a known phone number given a few of its digits as an initialclue. Associative memory networks have been suggested as models ofvarious parts of the mammalian brain in which there is substantial recur-rent feedback. These include area CA3 of the hippocampus and parts ofthe prefrontal cortex, structures which have long been implicated in var-ious forms of memory. A number of network models exhibit associativememory, the best known being the so-called Hopfield networks (Hopfield,1982 & 1984).
The models of memory we discussed previously in this chapter store infor-mation by means of persistent activity, with a particular item representedby the position of a stereotyped population activity profile. The idea un-derlying an associative (more strictly, auto-associative) memory is to ex-tend persistent activity to a broader set of different population profiles,which are called memory patterns. Each of these is a fixed point of thedynamics of the network. The memory patterns are determined by andstored within the recurrent synaptic weights of the network, so memoryretention does not require persistent activity. Rather, persistent activity isused to signal memory recall and to retain the identity of the most recentlyretrieved item.
During recall, an associative memory performs the computational oper-ation of pattern matching, finding the memory pattern that most closelymatches a distorted or partial activity pattern. This is achieved by initial-izing the network with an activity profile similar (but not identical) to oneof the memory patterns, letting it relax to a fixed point, and treating thenetwork activity at the fixed point as the best matching pattern. This isexactly the analog of the way that the recurrent model of maximum like-lihood decoding executes a curve fitting procedure. Each memory patternhas a basin of attraction, defined as the set of initial states for which thenetwork relaxes to that fixed point. The structure of these basins of attrac-tion defines the matching properties of the network. The network dynam-ics is governed by a Lyapunov function of the form described above, andtherefore the network will always relax to a fixed point. Provided that nottoo many memories are stored, the fixed points will closely resemble thestored memory patterns.
The associative network satisfies the dynamic equation 7.11, with the sat-urating activation function

F(Is) = 150 Hz[tanh( Is − γ150 Hz
)]

+
(7.42)
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chosen to ensure that the Lyapunov function 7.40 is bounded from below.This is similar to a half-wave rectified activation function with threshold
γ, except that it saturates at a firing rate of 150 Hz, which is outside thenormal operating range of the units. We use a negative threshold, γ =
−20 Hz, which corresponds to a constant source of excitation rather thana conventional threshold and generates background activity.
When this model is used for memory storage, a number of patterns, de-noted by vm with m = 1,2, . . . , Nmem, are stored. Associative recall isachieved by starting the network in an initial state that is almost, but notexactly, proportional to one of the memory patterns, v(0) ≈ cvm for somevalue of m and constant c. In this case, approximately proportional meansthat a significant number, but not all, of the elements of v(0) are close tothe corresponding elements of cvm. The network then evolves accordingto equation 7.11 (with h = 000). If the recall is successful, the dynamics con-verge to a fixed point proportional to the memory pattern associated withthe initial state, that is v(t) → c′vm for large t, where c′ is another constant.Failure of recall occurs if the fixed point reached by the network is notproportional to the memory state vm.
In the example we consider, the components of the patterns to be stored areset to either 0 or 1. The assignment of these two values to the componentsof a given vm is usually random with the probability of assigning a 1 equalto α and of assigning a 0 equal to 1 −α. However, in the example we show,two of the patterns have been assigned non-randomly to make them easierto detect in the figures. The parameter α is known as the sparseness of the memorysparseness αmemory patterns. The sparser the patterns, the more can be stored, but theless information each contains. We are interested in the limit of large Nv,in which case the maximum number of patterns that can be stored, Nmem, number ofmemories Nmemis proportional to Nv.
The key to successful recall is in the choice of the matrix M, which is givenby

M = 1.25
(1 − α)αNv

Nmem
∑

m=1
(vm − αn)(vm − αn) − 1

αNv

nn . (7.43)
Here n is defined as a vector that has each of its Nv components equal vector of ones nto one. This form of coupling is called a covariance rule, because the first covariance ruleterm on the right side is proportional to the covariance matrix of the collec-tion of patterns. In chapter 8, we study synaptic plasticity rules that leadto this term. The second term introduces inhibition between the units.
Figure 7.16 shows an example of a network of Nv = 50 units exhibitingassociative memory. This network stores 4 patterns with α = 0.25. Re-call of two of these patterns is shown in figure 7.16B and 7.16C. From aninitial activity pattern only vaguely resembling one of the stored patterns,the network is able to attain a fixed activity pattern approximately propor-tional to the best matching memory pattern. Similar results would apply
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Figure 7.16: Associative recall of memory patterns in a network model. Panel Ashows two representative model neurons, while panels B and C show the firingrates of all 50 cells plotted against time. The thickness of the horizontal lines inthese plots is proportional to the firing rate of the corresponding neuron. A) Fir-ing rates of representative neurons. The upper panel shows the firing rate of oneof the excitatory neurons corresponding to a nonzero component of the recalledmemory pattern. The firing rate achieves a nonzero steady-state value. The lowerpanel shows the firing rate of another excitatory neuron corresponding to a zerocomponent of the recalled memory pattern. This firing rate goes to zero. B) Recallof one of the stored memory patterns. The stored pattern had nonzero values onlyfor cells 18 through 31. The initial state of the network was random but with a biastoward this particular pattern. The final state is similar to the memory pattern. C)Recall of another of the stored memory patterns. The stored pattern had nonzerovalues only for every fourth cell. The initial state of the network was again randombut biased toward this pattern. The final state is similar to the memory pattern.
for the other two memory patterns stored by the network, but it would bemore difficult to see these patterns in the figure because they are random.
The rationale behind the weight matrix comes from considering the effectof the recurrent interactions if the activities match one of the memories,v = c′v1 for example. A network activity pattern v = c′v1 can only be afixed point if

c′v1 = F(c′M · v1) , (7.44)
which ensures that the right side of equation 7.11 (with h = 000) vanishes.We assume that αNv components of v1 are equal to one and the remaining
(1 − α)Nv are zero. In this case,

M · v1 = 1.25v1 − (1 + 1.25α)n+ εεε (7.45)
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where

εεε = 1.25
(1 − α)αNv

Nmem
∑

m=2
(vm − αn)(vm − αn) · v1 (7.46)

is a term of order of magnitude √Nmem/Nv. To begin, suppose that εεε issmall enough to be ignored. Then, equation 7.44 amounts to two condi-tions, one arising from the nonzero components of v1 and the other fromthe zero components,
c′ = F((0.25 − 1.25α)c′) and − (1 + 1.25α)c′ − γ < 0 . (7.47)

The inequality follows from the requirement that the total synaptic currentplus the threshold is less than zero so that F(Is) = 0 for these components.On the other hand, the first equation requires that (0.25 − 1.25α)c′ − γ >0 so that F > 0 for the nonzero components of v1. If εεε can be ignoredand these two conditions are satisfied, v = c′v1 will be a fixed point of thenetwork dynamics.
The term εεε in equation 7.45, which we have been ignoring, is only negligi-ble if Nmem ¿ Nv. If Nmem ≈ N, εεε can become large enough to destabilizethe memory states as fixed points. This limits the number of memories thatcan be stored in the network. Detailed analysis of the maximum value ofNmem is complicated by correlations among the terms that contribute to
εεε, but rigorous evaluations can be made of the capacity of the network,both for binary stored patterns (as here), and for real-valued patterns forwhich the activities of each element are drawn from a probability distri-bution. Different network architectures can also be considered, includingones with very sparse connectivity between units.
The basic conclusions from studies of associative memory models withthreshold linear or saturating units is that large networks can store evenlarger numbers of patterns, particularly if the patterns are sparse (α is near0) and if a few errors in recall can be tolerated. Nevertheless, the informa-tion stored per synapse is typically quite small. However, the simple co-variance prescription for the weights in equation 7.43 is far from optimal.More sophisticated methods (such as the delta rule discussed in chapter 8)can achieve significantly higher storage densities.

7.5 Excitatory-Inhibitory Networks
In this section, we discuss models in which excitatory and inhibitory neu-rons are described separately by equations 7.12 and 7.13. These modelsexhibit richer dynamics than the single population models with symmet-ric coupling matrices we have analyzed up to this point. In models withexcitatory and inhibitory sub-populations, the full synaptic weight matrix
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is not symmetric, and network oscillations can arise. We begin by analyz-ing a model of homogeneous coupled excitatory and inhibitory popula-tions. We introduce methods for determining whether this model exhibitsconstant or oscillatory activity. We then present two network models inwhich oscillations appear. The first is a model of the olfactory bulb, andthe second displays selective amplification in an oscillatory mode.
Homogeneous Excitatory and Inhibitory Populations
As an illustration of the dynamics of excitatory-inhibitory network mod-els, we analyze a simple model in which all of the excitatory neurons aredescribed by a single firing rate vE, and all of the inhibitory neurons aredescribed by a second rate vI. Although we think of this example as amodel of interacting neuronal populations, it is constructed as if it con-sists of just two neurons. Equations 7.12 and 7.13 with threshold linearresponse functions are used to describe the two firing rates, so that

τE dvEdt = −vE + [MEEvE + MEIvI − γE]+ (7.48)
and

τI dvIdt = −vI + [MIIvI + MIEvE − γI]+ . (7.49)
The synaptic weights MEE, MIE, MEI, and MII are numbers rather thanmatrices in this model. In the example we consider, we set MEE = 1.25,MIE = 1, MII = 0, MEI = −1, γE = −10 Hz, γI = 10 Hz, τE = 10 ms, andwe vary the value of τI. The negative value of γE means that this param-eter serves as a source of constant background activity rather than as athreshold.
Phase-Plane Methods and Stability Analysis
The model of interacting excitatory and inhibitory populations given byequations 7.48 and 7.49 provides an opportunity for us to illustrate someof the techniques used to study the dynamics of nonlinear systems. Thismodel exhibits both static (constant vE and vI) and oscillatory activity de-pending on the values of its parameters. Stability analysis can be usedto determine the parameter values where transitions between these twotypes of activity take place.
The firing rates vE(t) and vI(t) arising from equations 7.48 and 7.49 canbe displayed by plotting them as functions of time, as in figures 7.18Aand 7.19A. Another useful way of depicting these results, illustrated infigures 7.18B and 7.19B, is to plot pairs of points (vE(t), vI(t)) for a rangeof t values. As the firing rates change, these points trace out a curve ortrajectory in the vE-vI plane, which is called the phase plane of the model.phase plane
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Figure 7.17: A) Nullclines, flow directions, and fixed point for the firing-ratemodel of interacting excitatory and inhibitory neurons. The two straight linesare the nullclines along which dvE/dt = 0 or dvI/dt = 0. The filled circle is thefixed point of the model. The horizontal and vertical arrows indicate the direc-tions that vE (horizontal arrows) and vI (vertical arrows) flow in different regionsof the phase plane relative to the nullclines. B) Real (upper panel) and imaginary(lower panel) parts of the eigenvalue determining the stability of the fixed point.To the left of the point where the imaginary part of the eigenvalue goes to zero,both eigenvalues are real. The imaginary part has been divided by 2π to give thefrequency of oscillations near the fixed point.

Phase-plane plots can be used to give a geometric picture of the dynamicsof a model.
Values of vE and vI for which the right sides of either equation 7.48 or equa-tion 7.49 vanish are of particular interest in phase-plane analysis. Sets ofsuch values form two curves in the phase plane known as nullclines. The nullclinenullclines for equations 7.48 and 7.49 are the straight lines drawn in fig-ure 7.17A. The nullclines are important because they divide the phaseplane into regions with opposite flow patterns. This is because dvE/dtand dvI/dt are positive on one side of their nullclines and negative on theother. Above the nullcline along which dvE/dt = 0, dvE/dt < 0, and be-low it dvE/dt > 0. Similarly, dvI/dt > 0 to the right of the nullcline wheredvI/dt = 0, and dvI/dt < 0 to the left of it. This determines the direction offlow in the phase plane, as denoted by the horizontal and vertical arrowsin figure 7.17A.
At a fixed point of a dynamic system, the dynamic variables remain at fixed pointconstant values. In the model being considered, a fixed point occurs whenthe firing rates vE and vI take values that make dvE/dt = dvI/dt = 0. Be-cause a fixed point requires both derivatives to vanish, it can only occurat an intersection of nullclines. The model we are considering has a sin-gle fixed point (at vE = 26.67, vI = 16.67) denoted by the filled circle infigure 7.17A. A fixed point provides a potential static configuration forthe system, but it is critically important whether the fixed point is stable
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Figure 7.18: Activity of the excitatory-inhibitory firing-rate model when the fixedpoint is stable. A) The excitatory and inhibitory firing rates settle to the fixed pointover time. B) The phase-plane trajectory is a counter-clockwise spiral collapsing tothe fixed point. The open circle marks the initial values vE(0) and vI(0). For thisexample, τI = 30 ms.
or unstable. If a fixed point is stable, initial values of vE and vI near thefixed point will be drawn toward it over time. If the fixed point is unsta-ble, nearby configurations are pushed away from the fixed point, and thesystem will only remain at the fixed point indefinitely if the rates are setinitially to the fixed-point values with infinite precision.
Linear stability analysis can be used to determine whether a fixed point isstable or unstable. This analysis starts by considering the first derivativesof the right sides of equations 7.48 and 7.49 with respect to vE and vI eval-uated at the values of vE and vI that correspond to the fixed point. Thefour combinations of derivatives computed in this way can be arrangedinto a matrixstability matrix

(

(MEE − 1)/τE MEI/τEMIE/τI (MII − 1)/τI
)

. (7.50)
As discussed in the Mathematical Appendix, the stability of the fixed pointis determined by the real parts of the eigenvalues of this matrix. The eigen-values are given by
λ = 12





MEE − 1
τE + MII − 1

τI ±

√

(MEE − 1
τE − MII − 1

τI
)2

+ 4MEI MIE
τEτI



 .

(7.51)
If the real parts of both eigenvalues are less than zero the fixed point isstable, while if either is greater than zero the fixed point is unstable. If thefactor inside the square root in equation 7.51 is positive, both eigenvaluesare real, and the behavior near the fixed point is exponential. This meansthat there is exponential movement toward the fixed point if both eigen-values are negative, or away from the fixed point if either eigenvalue is
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Figure 7.19: Activity of the excitatory-inhibitory firing-rate model when the fixedpoint is unstable. A) The excitatory and inhibitory firing rates settle into periodicoscillations. B) The phase-plane trajectory is a counter-clockwise spiral that joinsthe limit cycle, which is the closed orbit. The open circle marks the initial values
vE(0) and vI(0). For this example, τI = 50 ms.
positive. We focus on the case when the factor inside the square root isnegative, so that the square root is imaginary and the eigenvalues form acomplex conjugate pair. In this case, the behavior near the fixed point isoscillatory and the trajectory either spirals into the fixed point, if the realpart of the eigenvalues is negative, or out from the fixed point if the realpart of the eigenvalues is positive. The imaginary part of the eigenvaluedetermines the frequency of oscillations near the fixed point. The real andimaginary parts of one of these eigenvalues are plotted as a function of τIin figure 7.17B. This figure indicates that the fixed point is stable if τI < 40ms and unstable for larger values of τI.
Figures 7.18 and 7.19 show examples in which the fixed point is stableand unstable, respectively. In figure 7.18A, the oscillations in vE and vIare damped, and the firing rates settle down to the stable fixed point. Thecorresponding phase-plane trajectory is a collapsing spiral (figure 7.18B).In figure 7.19A the oscillations grow, and in figure 7.19B the trajectory is aspiral that expands outward until the system enters a limit cycle. A limit limit cyclecycle is a closed orbit in the phase plane indicating periodic behavior. Thefixed point is unstable in this case, but the limit cycle is stable. Withoutrectification, the phase-plane trajectory would spiral out from the unstablefixed point indefinitely. The rectification nonlinearity prevents the spiraltrajectory from expanding past zero and thereby stabilizes the limit cycle.
There are a number of ways that a nonlinear system can make a transi-tion from a stable fixed point to a limit cycle. Such transitions are calledbifurcations. The transition seen between figures 7.18 and 7.19 is a Hopfbifurcation. In this case, a fixed point becomes unstable as a parameter Hopf bifurcationis changed (in this case τI) when the real part of a complex eigenvaluechanges sign. In a Hopf bifurcation, the limit cycle emerges at a finite fre-
Draft: December 19, 2000 Theoretical Neuroscience



42 Network Models
quency, which is similar to the behavior of a type II neuron when it startsfiring action potentials, as discussed in chapter 6. Other types of bifurca-tions produce type I behavior with oscillations emerging at zero frequency(chapter 6). One example of this is a saddle-node bifurcation, which occurssaddle-nodebifurcation when parameters are changed such that two fixed points, one stable andone unstable, meet at the same point in the phase plane.

The Olfactory Bulb
The olfactory bulb, and analogous olfactory areas in insects, provide exam-ples where sensory processing involves oscillatory activity. The olfactorybulb represents the first stage of processing beyond the olfactory receptorsin the vertebrate olfactory system. Olfactory receptor neurons respond toodor molecules and send their axons to the olfactory bulb. These axonsterminate in glomeruli where they synapse onto mitral and tufted cells,mitral cellstufted cells and also local interneurons. The mitral and tufted cells provide the out-put of the olfactory bulb by sending projections to the primary olfactorycortex. They also synapse onto the larger population of inhibitory granulecells. The granule cells in turn inhibit the mitral and tufted cells.granule cells
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Figure 7.20: A) Extracellular field potential recorded in the olfactory bulb duringrespiratory waves representing three successive sniffs. B) Schematic diagram of theolfactory bulb model. (A adapted from Freeman and Schneider, 1982; B adaptedfrom Li, 1995.)
The activity in the olfactory bulb of many vertebrates is strongly influ-enced by a sniff cycle in which a few quick sniffs bring odors past the ol-factory receptors. Figure 7.20A shows an extracellular potential recordedduring three successive sniffs. The three large oscillations in the figureare due to the sniffs. The oscillations we discuss in this section are thesmaller, higher frequency oscillations seen around the peak of each sniffcycle. These arise from oscillatory neural activity. Individual mitral cellshave quite low firing rates, and do not fire on each cycle of the oscillations.The oscillations are phase-locked across the bulb, but different odors in-duce oscillations of different amplitudes and phases.
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7.5 Excitatory-Inhibitory Networks 43
Li and Hopfield (1989) modeled the mitral and granule cells of the ol-factory bulb as a nonlinear input-driven network oscillator. Figure 7.20Bshows the architecture of the model, which uses equations 7.12 and 7.13with MEE = MII = 0. The absence of these couplings in the model is in ac-cord with the anatomy of the bulb. The rates vE and vI refer to the mitraland granule cells, respectively (figure 7.20B). Figure 7.21A shows the acti-vation functions of the model. The time constants for the two populationsof cells are the same, τE = τI = 6.7 ms. hE is the input from the receptorsto the mitral cells, and hI is a constant representing top-down input thatexists from the olfactory cortex to the granule cells.
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Figure 7.21: Activation functions and eigenvalues for the olfactory bulb model.A) The activation functions FE (solid curve) for the mitral cells, and FI (dashedcurve) for the granule cells. B) The real (solid line, left axis) and imaginary (dashedline, right axis) parts of the eigenvalue that determines whether the network modelexhibits fixed-point or oscillatory behavior. These are plotted as a function of timeduring a sniff cycle. When the real part of the eigenvalue becomes greater thanone, it determines the growth rate away from the fixed point and the imaginarypart divided by 2π determines the initial frequency of the resulting oscillations.(Adapted from Li, 1995.)
The field potential in figure 7.20A shows oscillations during each sniff,but not between sniffs. For the model to match this pattern of activity, theinput from the olfactory receptors, hE, must induce a transition betweenfixed-point and oscillatory activity. Before a sniff, the network must havea stable fixed point with low activities. As hE increases during a sniff, thissteady-state configuration must become unstable leading to oscillatory ac-tivity. The analysis of the stability of the fixed point and the onset of oscil-lations is closely related to our previous stability analysis of the model ofhomogeneous populations of coupled excitatory and inhibitory neurons.It is based on properties of the eigenvalues of the linear stability matrix(see the Mathematical Appendix). In this case, the stability matrix includescontributions from the derivatives of the activation functions evaluated atthe fixed point. For the fixed point to become unstable, the real part of atleast one of the eigenvalues that arise in this analysis must become largerthan 1. To ensure oscillations, at least one of these destabilizing eigenval-
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Figure 7.22: Activities of four of ten mitral (upper) and granule (lower) cells dur-ing a single sniff cycle for two different odors. (Adapted from Li and Hopfield,1989.)
ues should have a non-zero imaginary part. These requirements imposeconstraints on the connections between the mitral and granule cells andon the inputs.
Figure 7.21B shows the real and imaginary parts of the relevant eigen-value, labeled λ, during one sniff cycle. About 100 ms into the cycle thereal part of λ gets bigger than 1. Reading off the imaginary part of λ atthis point, we find that this sets off roughly 40 Hz oscillations in the net-work. These oscillations stop about 300 ms into the sniff cycle when thereal part of λ drops below 1. The input hE from the receptors plays twocritical roles in this process. First, it makes the eigenvalue great than 1 bymodifying where the fixed point lies on the activation function curves infigure 7.21A. Second, it affects which particular neurons are destabilizedand thus, which begin to oscillate. The ultimate pattern of oscillatory ac-tivity is determined both by the input hE and by the recurrent couplingsof the network.
Figure 7.22 shows the behavior of the network during a single sniff cyclein the presence of two different odors, represented by two different valuesof hE. The top rows show the activity of four mitral cells, and the bottomrows four granule cells. The amplitudes and phases of the oscillations seenin these traces, along with the identities of the mitral cells taking part inthem, provide a signature of the identity of the odor that was presented.
Oscillatory Amplification
As a final example of network oscillations, we return to amplification ofinput signals by a recurrently connected network. Two factors controlthe amount of selective amplification that is viable in networks such asthat shown in figure 7.9. The most important constraint on the recurrentweights is that the network must be stable, so the activity does not increasewithout bound. Another possible constraint is suggested by figure 7.14Dwhere the output shows a tuned response even though the input to the net-
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7.6 Stochastic Networks 45
work is constant as a function of θ. Tuned output in the absence of tunedinput can serve as a memory mechanism, but it would produce persistentperceptions if it occurs in a primary sensory area, for example. Avoidingthis in the network limits the recurrent weights and the amount of ampli-fication that can be supported.
Li and Dayan (1999) showed that this restriction can be significantly easedusing the richer dynamics of networks of coupled inhibitory and excita-tory neurons. Figure 7.23 shows an example with continuous neuron la-beling based on a continuous version of equations 7.12 and 7.13. The inputis either hE(θ) = 8(1 + 58 cos(2θ)) in the modulated case (figure 7.23B) orhE(θ) = 8 in the unmodulated case (figure 7.23C). Noise with standard de-viation 0.4 corrupts this input. The input to the network is constant intime.
The network oscillates in response to either constant or tuned input. Fig-ure 7.23A shows the time average of the oscillating activities of the neu-rons in the network as a function of their preferred angles for noisy tuned(solid curve) and untuned (dashed curve) inputs. Neurons respond to thetuned input in a highly tuned and amplified manner. Despite the high de-gree of amplication, the average response of the neurons to untuned inputis almost independent of θ. Figures 7.23B and 7.23C show the activities ofindividual neurons with θ = 0◦ (’o’) and θ = −37◦) (‘x’) over time for thetuned and untuned inputs respectively. The network does not producepersistent perception, because the output to an untuned input is itself un-tuned. In contrast, a non-oscillatory version of this network, with τI = 0,exhibits tuned sustained activity in response to an untuned intput for re-current weights this strong. The oscillatory network can thus operate in aregime of high selective amplification without generating spurious tunedactivity.

7.6 Stochastic Networks
Up to this point, we have considered models in which the output of a cell isa deterministic function of its input. In this section, we consider a networkmodel called the Boltzmann machine in which the input-output relation- Boltzmannmachineship is stochastic. Boltzmann machines are interesting from the perspec-tive of learning, and also because they offer an alternative interpretationof the dynamics of network models.
In the simplest form of Boltzmann machine, the neurons are treated asbinary, so va(t) = 1 if unit a is active at time t (e.g. it fires a spike betweentimes t and t +1t for some small value of 1t), and va(t) = 0 if it is inactive.The state of unit a is determined by its total input current,

Ia(t) = ha(t) +
Nv
∑

a′=1
Maa′va′ (t) , (7.52)
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Figure 7.23: Selective amplification in an excitatory-inhibitory network. A) Time-averaged response of the network to a tuned input with 2 = 0◦ (solid curve) andto an untuned input (dashed curve). Symbols ’o’ and ’x’ mark the 0◦ and −37◦

points seen in B and C. B) Activities over time of neurons with preferred angles of
θ = 0◦ (solid curve) and θ = −37◦ (dashed curve) in response to a modulated inputwith 2 = 0◦. C) Activities of the same units shown in B to a constant input. Thelines lie on top of each other showing that the two units respond identically. Theparameters are τE = τI = 10 ms, hI = 0, MEI = −δ(θ − θ′)/ρθ, MEE = (1/πρθ)[5.9 +7.8 cos(2(θ − θ′))]+, MIE = 13.3/πρθ, and MII = 0. (After Li and Dayan, 1999.)
where Maa′ = Ma′a and Maa = 0 for all a and a′ values, and ha is the totalfeedforward input into unit a. In the model, units can only change state atintegral multiples of 1t. At each time step, a single unit is selected, usuallyat random, to be updated. This update is based on a probabilistic ratherthan a deterministic rule. If unit a is selected, its state at the next time stepis set stochastically to 1 with probability

P[va(t + 1t) = 1] = F(Ia(t)) with F(Ia) = 11 + exp(−Ia) . (7.53)
Of course, it follows that P[va(t + 1t) = 0] = 1 − F(Ia(t)). F is a sigmoidalfunction, which has the property that the larger the value of Ia, the morelikely unit a is to take the value one.
Under equation 7.53, the state of activity of the network evolves as aMarkov chain. This means that the components of v at different times areMarkov chain sequences of random variables with the property that v(t + 1) dependsonly on v(t), and not on the previous history of the network. The updateof equation 7.53 is known as Glauber dynamics.Glauber dynamics
An advantage of using Glauber dyanmics to define the evolution of a net-work model is that general results from statistical mechanics can be usedto determine the equilibrium distribution of activities. Under Glauber dy-namics, v does not converge to a fixed point, but can be described by aprobability distribution associated with an energy functionenergy function

E(v) = −h · v− 12v ·M · v . (7.54)
The probability distribution characterizing v, once the network has con-
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verged to an equilibrium state, is

P[v] = exp(−E(v))Z where Z =
∑

v
exp(−E(v)) . (7.55)

The notion of convergence as t → ∞ can be formalized precisely, but in-formally, it means that after repeated updating according to equation 7.53,the states of the network are described statistically by equation 7.55. Zis called the partition function and P[v] the Boltzmann distribution. Un- partition function
Boltzmanndistribution

der the Boltzmann distribution, states with lower energies are more likely.In this case, Glauber dynamics implements a statistical operation calledGibbs sampling for the distribution given in equation 7.55. Gibbs sampling
The Boltzmann machine is an inherently stochastic device. An approxima-tion to the Boltzmann machine, known as the mean-field approximation, mean-fieldapproximationcan be constructed on the basis of the deterministic synaptic current dy-namics of a firing-rate model. In this case, I is determined by the dynamicequation 7.39 rather than by equation 7.52, and the model runs in contin-uous rather than discrete time. The function F in equation 7.39 is taken tobe the same sigmoidal function as in equation 7.53. Although the mean-field formulation of the Boltzmann machine is inherently deterministic,F(Ia) can be used to generate a probability distribution over a binary out-put vector v. This is done by treating the output of each unit a, va, as anindependent binary variable set to either 1 or 0 with probability F(Ia) or1 − F(Ia) respectively. This replaces the deterministic rule va = F(Ia) usedin the firing-rate version of the model. Because va = 1 has probability F(Ia)and va = 0 probability 1 − F(Ia) and the units are independent, the proba-bility distribution for the entire vector v is

Q[v] =
Nv
∏

a=1
F(Ia)va (1 − F(Ia))1−va . (7.56)

This is called the mean-field distribution for the Boltzmann machine. Note mean fielddistributionthat this distribution (and indeed v itself) plays no role in the dynamics ofthe mean-field formulation of the Boltzmann machine. It is rather a wayof interpreting the outputs.
We have presented two formulations of the Boltzmann machine, Gibbssampling and the mean-field approach, that lead to the two distributionsP[v] and Q[v] (equations 7.55 and 7.56). The Lyapunov function of equa-tion 7.40, that decreases steadily under the dynamics of equation 7.39 un-til a fixed point is reached, provides a key insight into the relationshipbetween these two distributions. In the appendix, we show that this Lya-punov function can be expressed as

L(I) = DKL(Q, P) + K (7.57)
where K is a constant, and DKL is the Kullback-Liebler divergence definedin chapter 4. DKL(Q, P) is a measure of how different the two distributionsQ and P are from each other. The fact that the dynamics of equation 7.39
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reduces the Lyapunov function to a minimum value means that it alsoreduces the difference between Q and P, as measured by the Kullback-Liebler divergence. This offers an interesting interpretation of the mean-field dynamics; it modifies the current value of the vector I until the dis-tribution of binary output values generated by the mean-field formulationof the Boltzmann machine matches as closely as possible (to at least a localminimum of DKL(Q, P)) the distribution generated by Gibbs sampling. Inthis way, the mean-field procedure can be viewed as an approximation ofGibbs sampling.
The power of the Boltzmann machine lies in the relationship between thedistribution of output values, equation 7.55, and the quadratic energyfunction of equation 7.54. This makes it is possible to determine howchanging the weights M affects the distribution of output states. In chap-ter 8, we present a learning rule for the weights of the Boltzmann machinethat allows P[v] to approximate a probability distribution extracted froma set of inputs. In chapter 10, we study other models that construct outputdistributions in this way.
Note that the mean field distribution Q[v] is simpler than the full Boltz-mann distribution P[v] because the units are statistically independent.This prevents Q[v] from providing a good approximation in some cases,particularly if there are negative weights between units, which tend tomake their activities mutually exclusive. Correlations such as these in thefluctuations of the states about their mean values can be important forlearning. The mean-field analysis of the Boltzmann machine illustratesthe limitations of rate-based descriptions in capturing the full extent of thecorrelations that can exist between spiking neurons.

7.7 Chapter Summary
The models in this chapter mark the start of our discussion of computa-tion, as opposed to coding. Using a description of the firing rates of net-work neurons, we showed how to construct linear and nonlinear feedfor-ward and recurrent networks that transform information from one coordi-nate system to another, selectively amplify input signals, integrate inputsover extended periods of time, select between competing inputs, sustainactivity in the absence of input, exhibit gain modulation, allow simple de-coding with performance near the Cramér-Rao bound, and act as contentaddressable memories. We used network responses to a continuous stim-ulus variable as an extended example. This led to models of simple andcomplex cells in primary visual cortex. We described a model of the ol-factory bulb as an example of a system for which computation involvesoscillations arising from asymmetric couplings between excitatory and in-hibitory neurons. Linear stability analysis was applied to a simplified ver-sion of this model. We also considered a stochastic network model calledthe Boltzmann machine.
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Appendix
Lyapunov Function for the Boltzmann Machine
Here, we show that the Lyapunov function of equation 7.40 can be reducedto equation 7.57 when applied to the mean-field version of the Boltzmannmachine. Recall, from equation 7.40, that

L(I) =
Nv
∑

a=1

(

∫ Ia

0 dza zaF′(za) − haF(Ia) − 12
Nv
∑

a′=1
F(Ia)Maa′ F(Ia′ )

)

(7.58)
When F is given by the sigmoidal function of equation 7.53,

∫ Ia

0 dza zaF′(za) = F(Ia) ln F(Ia) + (1 − F(Ia)) ln(1 − F(Ia)) + k (7.59)
where k is a constant, as can be verified by differentiating the right side.The non-constant part of the right side of this equation is just the entropyassociated with the binary variable va. In fact,

Nv
∑

a=1
∫ Ia

0 dza zaF′(za) = 〈ln Q[v]〉Q + Nvk (7.60)
where the average is over all values of v with probabilities Q[v].
To evaluate the remaining terms in equation 7.58, we note that, because thecomponents of v are binary and independent, relations such as 〈va〉Q =F(Ia) and 〈vavb〉Q = F(Ia)F(Ib) are valid. Then, using equation 7.54, wefind

L(I) =
Nv
∑

a=1

(

−haF(Ia) − 12
Nv
∑

a′=1
F(Ia)Maa′ F(Ia′ )

)

= 〈−E(v)〉Q . (7.61)
Similarly, from equation 7.55, we can show that

〈ln P[v]〉Q = 〈−E(v)〉Q − ln Z . (7.62)
Combining the results of equations 7.60, 7.61, and 7.61, we obtain

L(I) = 〈ln Q[v] − ln P[v]〉Q + Nvk − ln Z . (7.63)
which gives equation 7.57 with K = Nvk − log Z because 〈ln Q[v] −ln P[v]〉Q is, by definition, the Kullback-Liebler divergence DKL(Q, P) (seechapter 4, although there we use base 2 logarithms, while here we use basee logarithms in the definition of DKL, but the difference is only an overallmultiplicative constant).
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7.8 Annotated Bibliography
Wilson & Cowan (1972, 1973) provide pioneering analyses of firing-ratemodels. Subsequent analyses related to the discussion in this chapter arepresented in Abbott (1994), Ermentrout (1998), Amit & Tsodyks (1991a &b) and Bressloff & Coombes (2000). Rinzel and Ermentrout (1998) discussphase-plane methods; XPP (see http://www.pitt.edu/˜phase) providesa computer environment for performing phase-plane and other forms ofmathematical analysis on neuron and network models.
Our discussion of the feedforward coordinate transformation model fol-lowed Pouget & Sejnowski (1995, 1997) and Salinas & Abbott (1995), whichbuilt on theoretical work by Zipser & Andersen (1988) to explain parietalgain fields (see Andersen, 1989).
We followed Seung’s (1996) discussion of neural integration for eye posi-tion, which builds on Robinson (1989).
The notion of a regular repeating unit of cortical computation dates backto the earliest investigations of cortex (see Douglas & Martin 1998). Wefollowed Seung (1996); Zhang (1996) in adopting the theoretical context ofcontinuous line or surface attractors, that has the many applications dis-cussed in the chapter (see also Hahnloser et al., 2000). Sompolinsky &Shapley 1997 review a recently active debate about the balance of controlof orientation selectivity in primary visual cortex between feedforward in-put and a recurrent line attractor. We presented a model of a hypercolumn;the extension to multiple hypercolumns is used to link psychophysical andphysiological data on contour integration and texture segmentation by Li(1998, 1999).
Network associative memories are described and analyzed by Hopfield(1982; 1984) and Cohen & Grossberg (1983), who described a general Lya-punov function. Grossberg (1988); Amit (1989); Hertz, et al. (1991) presenta host of theory about associative networks, in particular about their ca-pacity to store information. Associative memory in non-binary recurrentnetworks has been studied in particular by Treves and collaborators (seeRolls & Treves, 1998) and, in the context of line attractor networks, bySamsonovich & McNaughton (1997) and Battaglia & Treves (1998).
We followed Li’s (1995) presentation of Li & Hopfield’s (1989) oscillatorymodel of the olfactory bulb.
The Boltzmann machine was invented by Hinton & Sejnowski (1986), andis a stochastic generalization of the Hopfield net (Hopfield, 1982). Themean-field model is due to Hopfield (1984), and we followed the proba-bilistic discussion in Jordan et al. (1998).
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