Chapter 7

Network Models

7.1 Introduction

Extensive synaptic connectivity is a hallmark of neural circuitry. For ex-
ample, neurons in the mammalian neocortex each receive thousands of
synaptic inputs. Network models allow us to explore the computational
potential of such connectivity, using both analysis and simulations. As
illustrations, we study in this chapter how networks can perform the fol-
lowing tasks: coordinate transformations needed in visually guided reach-
ing, selective amplification leading to models of simple and complex cells
in primary visual cortex, integration as a model of short-term memory,
noise reduction, input selection, gain modulation, and associative mem-
ory. Networks that undergo oscillations are also analyzed, with applica-
tion to the olfactory bulb. Finally, we discuss network models based on
stochastic rather than deterministic dynamics, using the Boltzmann ma-
chine as an example.

Neocortical circuits are a major focus of our discussion. In the neocor-
tex, which forms the convoluted outer surface of the (for example) human
brain, neurons lie in six vertical layers highly coupled within cylindrical
columns. Such columns have been suggested as basic functional units, and
stereotypical patterns of connections both within a column and between
columns are repeated across cortex. There are three main classes of inter-
connections within cortex, and in other areas of the brain as well. Feed-
forward connections bring input to a given region from another region lo-
cated at an earlier stage along a particular processing pathway. Recurrent
synapses interconnect neurons within a particular region that are consid-
ered to be at the same stage along the processing pathway. These may in-
clude connections within a cortical column as well as connections between
both nearby and distant cortical columns within a region. Top-down con-
nections carry signals back from areas located at later stages. These defini-
tions depend on the how the region being studied is specified and on the
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2 Network Models

hierarchical assignment of regions along a pathway. In general, neurons
within a given region send top-down projections back to the areas from
which they receive feedforward input, and receive top-down input from
the areas to which they project feedforward output. The numbers, though
not necessarily the strengths, of feedforward and top-down fibers between
connected regions are typically comparable, and recurrent synapses typi-
cally outnumber feedforward or top-down inputs. We begin this chapter
by studying networks with purely feedforward input and then study the
effects of recurrent connections. The analysis of top-down connections, for
which it is more difficult to establish clear computational roles, is left until
chapter 10

The most direct way to simulate neural networks is to use the methods dis-
cussed in chapters 5and 6to synaptically connect model spiking neurons.
This is a worthwhile and instructive enterprise, but it presents significant
computational, calculational, and interpretational challenges. In this chap-
ter, we follow a simpler approach and construct networks of neuron-like
units with outputs consisting of firing rates rather than action potentials.
Spiking models involve dynamics over time scales ranging from channel
openings that can take less than a millisecond, to collective network pro-
cesses that may be several orders of magnitude slower. Firing-rate models
avoid the short time scale dynamics required to simulate action potentials
and thus are much easier to simulate on computers. Firing-rate models
also allow us to present analytic calculations of some aspects of network
dynamics that could not be treated in the case of spiking neurons. Finally,
spiking models tend to have more free parameters than firing-rate models,
and setting these appropriately can be difficult.

There are two additional arguments in favor of firing-rate models. The
first concerns the apparent stochasticity of spiking. The models discussed
in chapters 5and 6produce spike sequences deterministically in response
to injected current or synaptic input. Deterministic models can only pre-
dict spike sequences accurately if all their inputs are known. This is un-
likely to be the case for the neurons in a complex network, and network
models typically include only a subset of the many different inputs to indi-
vidual neurons. Therefore, the greater apparent precision of spiking mod-
els may not actually be realized in practice. If necessary, firing-rate models
can be used to generate stochastic spike sequences from a deterministically
computed rate, using the methods discussed in chapters 1and 2

The second argument comes involves a complication with spiking models
that arises when they are used to construct simplified networks. Although
cortical neurons receive many inputs, the probability of finding a synaptic
connection between a randomly chosen pair of neurons is actually quite
low. Capturing this feature, while retaining a high degree of connectiv-
ity through polysynaptic pathways, requires including a large number of
neurons in a network model. A standard way of dealing with this problem
is to use a single model unit to represent the average response of several
neurons that have similar selectivities. These ‘averaging’ units can then
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7.2Firing-Rate Models 3

be interconnected more densely than the individual neurons of the actual
network, and so fewer of them are needed to build the model. If neural
responses are characterized by firing rates, the output of the model unit is
simply the average of the firing rates of the neurons it represents collec-
tively. However, if the response is a spike, it is not clear how the spikes
of the represented neurons can be averaged. The way spiking models are
typically constructed, an action potential fired by the model unit dupli-
cates the effect of all the neurons it represents firing synchronously. Not
surprisingly, such models tend to exhibit large-scale synchronization un-
like anything seen in a healthy brain.

Firing-rate models also have their limitations. Most importantly, they can-
not account for aspects of spike timing and spike correlations that may be
important for understanding nervous system function. Firing-rate models
are restricted to cases where the firing of neurons in a network is uncor-
related, with little synchronous firing, and where precise patterns spike
timing are unimportant. In such cases, comparisons of spiking network
models with models that use firing-rate descriptions have shown that they
produce similar results. Nevertheless, the exploration of neural networks
undoubtedly requires the use of both firing-rate and spiking models.

7.2 Firing-Rate Models

As discussed in chapter 1, the sequence of spikes generated by a neuron
is completely characterized by the neural response function p(t), which
consists of § function spikes located at times when the neuron fired action
potentials. In firing-rate models, the exact description of a spike sequence
provided by the neural response function p(¢) is replaced by the approxi-
mate description provided by the firing rate r(¢). Recall from chapter 1that
r(t) is defined as the probability density of firing and is obtained from p(¢)
by averaging over trials. The validity of a firing-rate model depends on
how well the trial-averaged firing rate of network units approximates the
effect of actual spike sequences on the dynamic behavior of the network.

The replacement of the neural response function by the corresponding fir-
ing rate is typically justified by the fact that each network neuron has a
large number of inputs. Replacing p(f), which describes an actual spike
train, by the trial-averaged firing rate r(¢) is justified if the quantities of
relevance for network dynamics are relatively insensitive to the trial-to-
trial fluctuations in the spike sequences represented by p(f). In a network
model, the relevant quantities that must be modeled accurately are the
total inputs to all the neurons in the network. For any single synaptic in-
put, the trial-to-trial variability is likely to be large. However, if we sum
the input over many synapses activated by uncorrelated presynaptic spike
trains, the mean of the total input typically grows linearly with the number
of synapses, while its standard deviation grows only as the square root of
the number of synapses. Thus, for uncorrelated presynaptic spike trains,
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4 Network Models

using presynaptic firing rates in place of the actual presynaptic spike trains
may not significantly modify the dynamics of the network. Conversely, a
firing-rate model will fail to describe a network adequately if the presy-
naptic inputs to a substantial fraction of its neurons are correlated. This
can occur, for example, if the presynaptic neurons fire synchronously.

The synaptic input arising from a presynaptic spike train is effectively fil-
tered by the dynamics of the conductance changes that each presynaptic
action potential evokes in the postsynaptic neuron (see chapter 9, and the
dynamics of propagation of the current from the synapse to the soma. The
temporal averaging provided by slow synaptic or membrane dynamics
can reduce the effects of spike train variability and help justify the approx-
imation of using firing rates instead of presynaptic spike trains. Firing-rate
models are more accurate if the network being modeled has a significant
amount of synaptic transmission that is slow relative to typical presynap-
tic interspike intervals.

The construction of a firing-rate model proceeds in two steps. First, we
determine how the total synaptic input to a neuron depends on the fir-
ing rates of its presynaptic afferents. This is where we use firing rates to
approximate neural response functions. Second, we model how the firing
rate of the postsynaptic neuron depends on its total synaptic input. Firing-
rate response curves are typically measured by injecting current into the
soma of a neuron. We therefore find it most convenient to define the total
synaptic input as the total current delivered to the soma as a result of all
the synaptic conductance changes resulting from presynaptic action po-
tentials. We denote this total synaptic current by L. We then determine
the postsynaptic firing rate from L. In general, § depends on the spa-
tially inhomogeneous membrane potential of the neuron, but we assume
that, other than during action potentials or transient hyperpolarizations,
the membrane potential remains close to, but slightly below, the thresh-
old for action potential generation. An example of this type of behavior
is seen in the upper panels of figure 7.2 [ is then approximately equal to
the synaptic current that would be measured from the soma in a voltage-
clamp experiment, except for a reversal of sign. In the next section, we
model how I depends on presynaptic firing rates.

In the network models we consider, both the output from, and input to, a
neuron are characterized by firing rates. To avoid a proliferation of sub-
and superscripts on the quantity r(¢), we use the letter u to denote a presy-
naptic firing rate, and v to denote a postsynaptic rate. Note that v is used
here to denote a firing rate, not a membrane potential. In addition, we use
these two letters to distinguish input and output firing rates in network
models, a convention we retain through the remaining chapters. When
we consider multiple input or output neurons, we use vectors u and v to
represent their firing rates collectively, with the components of these vec-
tors representing the firing rates of the individual input and output units.
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7.2Firing-Rate Models 5

The Total Synaptic Current

Consider a neuron receiving N, synapticinputslabeled by b= 1,2, ..., N,
(figure 7.1). The firing rate of input bis denoted by up, and the input rates
are represented collectively by the N,-component vector u. We model how
the synaptic current [ depends on presynaptic firing rates by first consid-
ering how it depends on presynaptic spikes. If an action potential arrives
atinput bat time zero, we write the synaptic current generated in the soma
of the postsynaptic neuron at time ¢ as wK;(¢) where wj is the synaptic
weight and K(¢) is called the synaptic kernel. Collectively, the synap-
tic weights are represented by a synaptic weight vector w, which has N,
components wy. The amplitude and sign of the synaptic current generated
by input b are determined by w). For excitatory synapses, w;, > O, and for
inhibitory synapses, wy < O. In this formulation of the effect of presynaptic
spikes, the probability of transmitter release from a presynaptic terminal is
absorbed into the synaptic weight factor wp, and we do not include short-
term plasticity in the model (although this can be done by making w; a
dynamic variable).

The synaptic kernel, K;(¢) > O describes the time course of the synaptic
current in response to a presynaptic spike arriving at time =0 This time
course depends on the dynamics of the synaptic conductance activated by
the presynaptic spike and also on both the passive and active properties
of the dendritic cables that carry the synaptic current to the soma. For
example, long passive cables broaden the synaptic kernel and slow its rise
from zero. Cable calculations or multicompartment simulations, such as
those discussed in chapter 6 can be used to compute K;(t) for a specific
dendritic structure. To avoid ambiguity, we normalize K;(¢) by requiring
its integral over all positive times to be one. At this point, for simplicity,
we use the same function K;(t) to describe all synapses.

output v
weights w
input  u

Figure 7.1: Feedforward inputs to a single neuron. Input rates u drive a neuron
at an output rate v through synaptic weights given by the vector w.

Assuming that the spikes at a single synapse act independently, the total
synaptic current at time ¢ arising from a sequence of presynaptic spikes
occurring at input b at times ¢; is given by the sum

t
wo Y Klt= i) =wy [ deK(t= Do), (71
ti<t —00

In the second expression, we have used the neural response function,
pp(t) =) ;8(r — t;), to describe the sequence of spikes fired by presy-
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naptic neuron b. The equality follows from integrating over the sum of §
functions in the definition of p,(t). If there is no nonlinear interaction be-
tween different synaptic currents, the total synaptic current coming from
all presynaptic inputs is obtained simply by summing,

Ny t
L= [ k(- opuo). (72
=1 J-o0

Asdiscussed previously, the critical step in the construction of a firing-rate
model is the replacement of the neural response function p;(7) in equation
7.2by the firing rate of neuron b, namely u,(7), so that we write

Ny t
L= w [ deK(-Duo). (73
b=1 —©

The synaptic kernel most frequently used in firing-rate models is an expo-
nential, K;(¢) = exp(—t/t,)/t,. With this kernel, we can describe L by a
differential equation if we take the derivative of equation 7.3 with respect
to ¢,

d[ ]Vu
‘L'S—S=—[s+zwbub=_ls+w'u- (7.9
dt =1

In the second equality, we have expressed the sum ) wpu, as the dot
product of the weight and input vectors, w - u. In this and the follow-
ing chapters, we primarily use the vector versions of equations such as
equation 7.4, but when we first introduce an important new equation, we
often write it in its subscripted form as well.

Recall that K describes the temporal evolution of the synaptic current due
to both synaptic conductance and dendritic cable effects. For an electro-
tonically compact dendritic structure, 7; will be close to the time constant
that describes the decay of the synaptic conductance. For fast synaptic
conductances such as those due to AMPA glutamate receptors, this may
be as short as a few milliseconds. For a long, passive dendritic cable,
may be larger than this, but its measured value is typically quite small.

The Firing-Rate

Equation 7.4 determines the synaptic current entering the soma of a post-
synaptic neuron in terms of the firing rates of the presynaptic neurons. To
finish formulating a firing-rate model, we must determine the postsynap-
tic firing rate from our knowledge of L. For constant synaptic current, the
firing rate of the postsynaptic neuron can be expressed as v = F(L;), where
Fis the steady-state firing rate as a function of somatic input current. F
is also called an activation function. F'is sometimes taken to be a satu-
rating function such as a sigmoid function. This is useful in cases where
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7.2Firing-Rate Models 7

the derivative of F'is needed in the analysis of network dynamics. It is
also bounded from above, which can be important in stabilizing a network
against excessively high firing rates. More often, we use a threshold linear
function F(L) = [k — y]+, where y is the threshold and the notation []
denotes half-wave rectification as in previous chapters. For convenience,
we treat L in this expression as if its were measured in units of a firing rate
(Hz), i.e. asif L is multiplied by a constant that converts its units from nA
to Hz. This makes the synaptic weights dimensionless. The threshold y
also has units of Hz.

For time-independent inputs, the relation v = F{(L) is all we need to know
to complete the firing-rate model. The total steady-state synaptic current
predicted by equation 7.4 for time-independent u is ; = w - u. This gener-
ates a steady-state output firing rate v = v, given by

Voo = F(W - ). (7.9

The steady-state firing rate tells us how a neuron responds to constant cur-
rent, but not to a current that changes with time. To model time-dependent
inputs, we need to know the firing rate in response to a time-dependent
synaptic current L(¢). The simplest assumption is that this is still given
by the activation function, so v = F(L(¢)) even when the total synaptic
current varies with time. This leads to a firing-rate model in which all the
dynamics arise exclusively from equation 7.4,

I,
rs%z—ls—i-w-u with v= F(L). (7.9

An alternative formulation of a firing-rate model can be constructed by
assuming that the firing rate does not follow changes in the total synaptic
current instantaneously, as was assumed for the model of equation 7.6 Ac-
tion potentials are generated by the synaptic current through its effect on
the membrane potential of the neuron. Due to the membrane capacitance
and resistance, the membrane potential is, roughly speaking, a low-pass
filtered version of I (see the Mathematical Appendix). For this reason, the
time-dependent firing rate is often modeled as a low-pass filtered version
of the steady-state firing rate,

0% R (27
t

The constant 7, in this equation determines how rapidly the firing rate
approaches its steady-state value for constant L, and how closely v can
follow rapid fluctuations for a time-dependent k(). Equivalently, it mea-
sures the time-scale over which v averages F((t)). The low-pass filtering
effect of equation 7.7 is described in the Mathematical Appendix in the
context of electrical circuit theory. The argument we have used to moti-
vate equation 7.7 would suggest that 7, should be approximately equal to
the membrane time constant of the neuron. However, this argument really
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8 Network Models

applies to the membrane potential not the firing rate, and the dynamics of
the two are not the same. Most network models use a value of 7, that is
considerably less than the membrane time constant. We re-examine this
issue in the following section.

The second model that we have described involves the pair of equa-
tions 7.4and 7.7. If one of these equations relaxes to its equilibrium point
much more rapidly than the other, the pair can be reduced to a single equa-
tion. For example, if 7, < 15, we can make the approximation that equation
7.7rapidly sets v = F(I;(t)), and then the second model reduces to the first
model that is defined by equation 7.6 If instead, 7, > 75, we can make the
approximation that equation 7.4 comes to equilibrium quickly compared
to equation 7.7. Then, we can make the replacement ; = w - u in equation
7.7and write
dv

trzz—v—i-F(w-u). (7.8

For most of this chapter, we analyze network models described by the
firing-rate dynamics of equation 7.8 although occasionally we consider
networks based on equation 7.6

Firing-Rate Dynamics

The firing-rate models described by equations 7.6 and 7.8 differ in their
assumptions about how firing rates respond to and track changes in the
input current to a neuron. In one case (equation 7.6), it is assumed that
firing rates follow time varying input currents instantaneously without
attenuation or delay. In the other case (equation 7.8, the firing rate is a
low-pass filtered version of the input current. To study the relationship
between input current and firing rate, it is useful to examine the firing rate
of a spiking model neuron in response to a time-varying injected current,
1(?). The model used for this purpose in figure 7.2is an integrate-and-fire
neuron receiving balanced excitatory and inhibitory synaptic input along
with a current injected into the soma that is the sum of constant and oscil-
lating components. This model was discussed in chapter 5 The balanced
synaptic input is used to represent background input not included in the
computation of I, and it acts as a source of noise. The noise prevents ef-
fects such as locking of the spiking to the oscillations of the injected current
that would invalidate a firing-rate description.

Figure 7.2 shows the firing rates of the model integrate-and-fire neuron
in response to an input current I(t) = Iy + [cos(wt). The firing rate is
plotted at different times during the cycle of the input current oscillations
for w corresponding to frequencies of 1, 50 and 100 Hz. For the panels
on the left side, the constant component of the injected current (o) was
adjusted so the neuron never stopped firing during the cycle. In this case,
the relation v(f) = F(I(t)) (solid curves) provides an accurate description
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Figure 7.2 Firing rate of an integrate-and-fire neuron receiving balanced excita-
tory and inhibitory synaptic input and an injected current consisting of a constant
and a sinusoidally varying term. For the left panels, the constant component of the
injected current was adjusted so the firing never stopped during the oscillation of
the varying part of the injected current. For the right panel, the constant compo-
nent was lowered so the firing stopped during part of the cycle. The upper panels
show two representative voltage traces of the model cell. The histograms beneath
these traces were obtained by binning spikes generated over multiple cycles. They
show the firing rate as a function of the time during each cycle of the injected cur-
rent oscillations. The different rows show 1, 50, and 100Hz oscillation frequencies
for the injected current. The solid curves show the fit of a firing-rate model that
involves both instantaneous and low-pass filtered effects of the injected current.
For the left panel, this reduces to the simple prediction v = F(I(t)). (Adapted from
Chance et al., 2000)

of the firing rate for all of the oscillation frequencies shown. As long as
the neuron keeps firing fairly rapidly, the low-pass filtering properties of
the membrane potential are not relevant for the dynamics of the firing
rate. Low-pass filtering is irrelevant in this case, because the neuron is
continually being shuttled between the threshold and reset values, and so
it never has a chance to settle exponentially anywhere near its steady-state
value.

The right panels in figure 7.2 show that the situation is different if the
input current is below the threshold for firing through a significant part
of the oscillation cycle. In this case, the firing is delayed and attenuated
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at high frequencies as would be predicted by equation 7.7. In this case,
the membrane potential stays below threshold for long enough periods of
time that its dynamics become relevant for the firing of the neuron.

The essential message from figure 7.2 is that neither equation 7.6 nor 7.8
provides a completely accurate prediction of the dynamics of the firing
rate at all frequencies and for all levels of injected current. A more com-
plex model can be constructed that accurately describes the firing rate over
the entire range of input currents amplitudes and frequencies. The solid
curves in figure 7.2 were generated by a model that expresses the firing
rate as a function of both F(I) and of v computed from equation 7.8 (al-
though it reduces to v = F(I(¢t)) in the case of the left panel of figure 7.2).
In other words, it is a combination of the two models discussed in the
previous section. This compound model provides quite an accurate de-
scription of the firing rate of the integrate-and-fire model, but it is more
complex than the models used in this chapter.

Feedforward and Recurrent Networks

Figure 7.3 shows examples of network models with feedforward and re-
current connectivity. The feedforward network of figure 7.2A has N, out-
putunits withratesv, (a= 1, 2, ..., N,), denoted collectively by the vector
v, driven by N, input units with rates u. Equations 7.8and 7.6 can easily
be extended to cover this case by replacing the vector of synaptic weights
w by a matrix W, with the matrix component W}, representing the strength
of the synapse from input unit b to output unit a. Using the formulation of
equation 7.8 the output firing rates are then determined by

Tr

Nu
=—v+FW-u) or r,%:—v%—F Zmbub . (79
dt —

dt
We use the notation W- u to denote the vector with components  _, W,,up.
The use of the dot to represent a sum of a product of two quantities over
a shared index is borrowed from the notation for the dot product of two
vectors. The expression F(W - u) represents the vector with components
FO " Wyup) fora=1,2,..., N,.

The recurrent network of figure 7.3B also has two layers of neurons with
rates u and v, but in this case the neurons of the output layer are intercon-
nected with synaptic weights described by a matrix M. Matrix element
M,y describes the strength of the synapse from output unit & to output
unit a. The output rates in this case are determined by

tr%=—v+F(W~u+M~v). (7.10

It is often convenient to define the total feedforward input to each neuron
in the network of figure 7.3B as h = W-u. Then, the output rates are
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A
output A%
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Figure 7.3 Feedforward and recurrent networks. A) A feedforward network with
input rates u, output rates v, and a feedforward synaptic weight matrix W. B)
A recurrent network with input rates u, output rates v, a feedforward synaptic
weight matrix W, and a recurrent synaptic weight matrix M. Although we have
drawn the connections between the output neurons as bidirectional, this does not
necessarily imply connections of equal strength in both directions.

determined by the equation

%:—v—i—F(h—i—M-v). (7.11)

Tr
Neurons are typically classified as either excitatory or inhibitory, meaning
that they have either excitatory or inhibitory effects on all of their postsy-
naptic targets. This property is formalized in Dale’s law, which states that
a neuron cannot excite some of its postsynaptic targets and inhibit others.
In terms of the elements of M, this means that for each presynaptic neuron
d, M,y must have the same sign for all postsynaptic neurons a. To im-
pose this restriction, it is convenient to describe excitatory and inhibitory
neurons separately. The firing-rate vectors vg and vy for the excitatory and
inhibitory neurons are then described by a coupled set of equations iden-
tical in form to equation 7.11,

TET;: = —vg + Fg (hg +MEg - vg + Mg - Vi) (7.12
and
dvy
TIE:_VI+FI(hI+MIE'VE+MII‘VI)- (7.13

There are now four synaptic weight matrices describing the four possible
types of neuronal interactions. The elements of Mgr and Mg are greater
than or equal to zero, and those of Mg; and My are less than or equal to
zero. These equations allow the excitatory and inhibitory neurons to have
different time constants, activation functions, and feedforward inputs.

In this chapter, we consider several recurrent network models described
by equation 7. 11 with a symmetric weight matrix, M, = Mj, for all aand
d. Requiring M to be symmetric simplifies the mathematical analysis, but
it violates Dale’s law. Suppose, for example, that neuron a, which is exci-
tatory, and neuron &, which is inhibitory, are mutually connected. Then,
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M,y should be negative and M, , positive, so they cannot be equal. Equa-
tion 7.11 with symmetric M can be interpreted as a special case of equa-
tions 7.12 and 7.13 in which the inhibitory dynamics are instantaneous
(t1 = O and the inhibitory rates are given by v = Mjgvg. This produces
an effective recurrent weight matrix M = Mgg 4+ Mg - Mg, which can be
made symmetric by the appropriate choice of the dimension and form of
the matrices Mg; and Mjg. The dynamic behavior of equation 7.11 is re-
stricted by requiring the matrix M to be symmetric. For example symmet-
ric coupling typically does not allow for network oscillations. In the latter
part of this chapter, we consider the richer dynamics of models described
by equations 7.12and 7.13

Continuously Labeled Networks

It is often convenient to identify each neuron in a network using a pa-
rameter that describes some aspect of its selectivity rather than the integer
label a or b. For example, neurons in primary visual cortex can be charac-
terized by their preferred orientation angles, preferred spatial phases and
frequencies, or other stimulus-related parameters (see chapter 2). In many
of the examples in this chapter, we consider stimuli characterized by a
single angle ®, which represents, for example, the orientation of a visual
stimulus. Individual neurons are identified by their preferred stimulus
angles, which are typically the values of ® for which they fire at maxi-
mum rates. Thus, neuron a is identified by an angle 6,. The weight of
the synapse from neuron b or neuron & to neuron a is then expressed as a
function of the preferred stimulus angles 8, 8, and 6, of the pre- and post-
synaptic neurons, W, = W(6,, 6p) or M,y = M(6,, 65). We often consider
cases in which these synaptic weight functions depend only on the differ-
ence between the pre- and postsynaptic angles, so that W, = W6, — 6,)
or My = M(0,—04).

In large networks, the preferred stimulus parameters for different neurons
will typically take a wide range of values. In the models we consider,
the number of neurons is large and the angles 0,, for different values of a
cover the range from Oto 27 densely. For simplicity, we assume that this
coverage is uniform so that the density of coverage, the number of neurons
with preferred angles falling within a unit range, which we denote by py,
is constant. For mathematical convenience in these cases, we allow the
preferred angles to take continuous values rather than restricting them to
the actual discrete values 6, fora= 1, 2, ..., N. Thus, we label the neurons
by a continuous angle 6 and express the firing rate as a function of 6, so that
u(#) and v(0) describe the firing rates of neurons with preferred angles 6.
Similarly, the synaptic weight matrices Wand M are replaced by functions
M6, 0) and M(6, 6') that characterizes the strength of synapses from a
presynaptic neuron with preferred angle 6’ to a postsynaptic neuron with
preferred angle 6 in the feedforward and recurrent case, respectively.

If the number of neurons in a network is large and the density of cover-
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7.3Feedforward Networks 13

age of preferred stimulus values is high, we can approximate the sums in
equation 7.10 by integrals over ¢#'. The number of postsynaptic neurons
with preferred angles within a range A6’ is ppA0’, so, when we take the
limit A@" — O, the integral over 8’ appears multiplied by the density fac-
tor pp. Thus, in the case of continuous labeling of neurons, equation 7.10
becomes (for constant o)

. dv(0)
"odt

=—v(0) + F(,Og do’ Wi0, 0" u(8') + M6, 9/)1)(9/)) . (7149
As we did previously in equation 7.11, we can write the first term inside
the integral of this expression as an input function A(6). We make frequent
use of continuous labeling for network models, and we often approximate
sums over neurons by integrals over their preferred stimulus parameters.

7.3 Feedforward Networks

Substantial computations can be performed by feedforward networks in
the absence of recurrent connections. Much of the work done on feed-
forward networks centers on plasticity and learning, as discussed in the
following chapters. Here, we present an example of the computational
power of feedforward circuits, the calculation of the coordinate transfor-
mations needed in visually guided reaching tasks.

Neural Coordinate Transformations

Reaching for a viewed object requires a number of coordinate transforma-
tions that turn information about where the image of the object falls on
the retina into movement commands in shoulder-, arm-, or hand-based
coordinates. To perform a transformation from retinal to body-based co-
ordinates, information about the retinal location of an image and about
the direction of gaze relative to the body must be combined. Figure 7.4A
and B illustrate, in a one-dimensional example, how a rotation of the eyes
affects the relationship between gaze direction, retinal location, and loca-
tion relative to the body. Figure 7.4C introduces the notation we use. The
angle g describes the orientation of a line extending from the head to the
point of visual fixation. The visual stimulus in retinal coordinates is given
by the angle s between this line and a line extending out to the target. The
angle describing the reach direction, the direction to the target relative to
the body, is the sum s+ g.

Visual neurons have receptive fields fixed to specific locations on the
retina. Neurons in motor areas can display visually evoked responses that
are not tied to specific retinal locations, but rather depend on the relation-
ship of a visual image to various parts of the body. Figures 7.5A and B
show tuning curves of a neuron in the premotor cortex of a monkey that

Draft: December 19 2000 Theoretical Neuroscience

continuous model



14 Network Models

Figure 7.4 Coordinate transformations during a reaching task. A, B) The location
of the target (the grey square) relative to the body is the same in A and B, and
thus the movements required to reach toward it are identical. However, the image
of the object falls on different parts of the retina in A and B due to a shift in the
gaze direction produced by an eye rotation that shifts the fixation point F. C) The
angles used in the analysis: s is the angle describing the location of the stimulus
(the target) in retinal coordinates, that is, relative to a line directed to the fixation
point; gis the gaze angle, indicating the direction of gaze relative to an axis straight
out from the body. The direction of the target relative to the body-based axis is
s+g
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Figure 7.5 Tuning curves of a visually responsive neuron in the premotor cortex
of a monkey. Incoming objects approaching at various angles provided the visual
stimulation. A) When the monkey fixated on the three points denoted by the cross
symbols, the response tuning curve did not shift with the eyes. In this panel, unlike
B and C, the horizontal axis refers to the stimulus location in head-based, not reti-
nal, coordinates (s+ g, not s). B) Turning the monkey’s head by 15 produced a 15
shift in the response tuning curve as a function of retinal location, indicating that
this neuron encoded the stimulus direction in head-based coordinates. C) Model
tuning curves based on equation 7.15 shift their retinal tuning to remain constant
in body-based coordinates. The solid, heavy dashed, and light dashed curves refer
to g= 0, 10, and —20 respectively. The small changes in amplitude arise from
the limited range of preferred retinal location and gaze angles in the model. (A,B
adapted from Graziano et al., 1997, C adapted from Salinas and Abbott, 1995)
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Figure 7.6 Gaze-dependent gain modulation of visual responses of neurons in
posterior parietal cortex. A) Average firing-rate tuning curves of an area 7a neuron
as a function of the location of the spot of light used to evoke the response. Stim-
ulus location is measure as an angle around a circle of possible locations on the
screen and is related to, but not equal to, our stimulus variable s. The two curves
correspond to the same visual image but with two different gaze directions. B)
A three-dimensional plot of the activity of a model neuron as a function of both
retinal position and gaze direction. The striped bands correspond to tuning curves
with different gains similar to those shown in A. (A adapted from Brotchie et al.,
1995 B adapted from Pouget and Sejnowski, 1995)

responded to visual images of approaching objects. Surprisingly, when the
head of the monkey was held stationary during fixation on three different
targets, the tuning curves did not shift as the eyes rotated (figure 7.5A).
Although the recorded neurons respond to visual stimuli, the responses
do not depend directly on the location of the image on the retina. When
the head of the monkey is rotated but the fixation point remains the same,
the tuning curves shift by precisely the amount of the head rotation (fig-
ure 7.5B). Thus, these neurons encode the location of the image in head- or
body-based, not retinal, coordinates.

To account for these data, we need to construct a model neuron that is
driven by visual input, but that nonetheless has a tuning curve for image
location that is not a function of s, the retinal location of the image, but
of s+ g, the location of the object in body-based coordinates. A possible
basis for this construction is provided by a combined representation of s
and g by neurons in area 7a in the posterior parietal cortex of the monkey.
Recordings made in area 7a reveal neurons that fire at rates that depend on
both the location of the stimulating image on the retina and on the direc-
tion of gaze (figure 7.6A). The response tuning curves, expressed as func-
tions of the retinal location of the stimulus, do not shift when the direction
of gaze is varied. However, shifts of gaze direction affect the magnitude
of the visual response. Thus, responses in area 7a exhibit gaze-dependent
gain modulation of a retinotopic visual receptive field.
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Figure 7.6B shows a mathematical description of a gain-modulated tuning
curve. The response tuning curve is expressed as a product of a Gaussian
function of s—&, where £ is the preferred retinal location (§=—20 in fig-
ure 7.6B), and a sigmoid function of g — y, where y is the gaze direction
producing half of the maximum gain (y =20 in figure 7.6B). Although it
does not correspond to the maximum neural response, we refer to y as the
‘preferred’ gaze direction.

To model a neuron with a body-centered response tuning curve, we con-
struct a feedforward network with a single output unit representing, for
example, the premotor neuron shown in figure 7.5 The input layer of the
network consists of a population of area 7a neurons with gain-modulated
responses similar to those shown in figure 7.6B. Neurons with gains that
both increase and decrease as a function of g are included in the model.
The average firing rates of the input layer neurons are described by tuning
curves u = f,(s—§&, g—y) with the different neurons taking a range of &
and y values.

We use continuous labeling of neurons, and replace the sum over presy-
naptic neurons by an integral over their £ and y values, inserting the ap-
propriate density factors pg and p,, which we assume are constant. The
steady-state response of the single output neuron is determined by the
continuous analog of equation 7.5 The synaptic weight from a presynap-
tic neuron with preferred stimulus location & and preferred gaze direction
y is denoted by w(&, y), so the steady-state response of the output neurons
is given by

v = F(pspy f dedy w (&, ) fy(s— &, g — y)) . (719

For the output neuron to respond to stimulus location in body-based coor-
dinates, its firing rate must be a function of s+ g. To see if this is possible,
we shift the integration variables in 7.15by § - £—gand y — y+g. Ignor-
ing effects from the end points of the integration (which is valid if sand g
are not too close to these limits), we find

voozF(/)spy/dsdyw(é—g,V+g)fu(5+g—§ —V)>- (7.19

This is a function of s+ g provided that w(§ — g, ¥y + g = w(§, y), which
holds if w(é, y) is a function of the sum & + y. Thus, the coordinate trans-
formation can be accomplished if the synaptic weight from a given neuron
depends only the sum of its preferred retinal and gaze angles. It has been
suggested that weights of this form can arise naturally from random hand
and gaze movements through correlation-based synaptic modification of
the type discussed in chapter 8

Figure 7.5C shows responses predicted by equation 7. 15when the synaptic
weights are given by a function w(£ + y). The retinal location of the tuning
curve shifts as a function of gaze direction, but would remain stationary if
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7.4Recurrent Networks 17

it were plotted instead as a function of s+ g. This can be seen by noting
that the peaks of all three curves in figure 7.5C occur at s+ g = O

Gain-modulated neurons provide a general basis for combining two dif-
ferent input signals in a nonlinear way. In the network we studied, it is
possible to find appropriate synaptic weights w(§, y) to construct output
neurons with a wide range of response tuning curves expressed as func-
tions of sand g. The mechanism by which sensory and modulatory inputs
combine in a multiplicative way in gain-modulated neurons is not known.
Later in this chapter, we discuss a recurrent network model for generating
gain-modulated responses.

74 Recurrent Networks

Recurrent networks have richer dynamics than feedforward networks, but
they are more difficult to analyze. To get a feel for recurrent circuitry, we
begin by analyzing a linear model, that is, a model for which the rela-
tionship between firing rate and synaptic current is linear, Fth+M-r) =
h+ M . r. The linear approximation is a drastic one that allows, among
other things, the components of v to become negative, which is impossi-
ble for real firing rates. Furthermore, some of the features we discuss in
connection with linear, as opposed to nonlinear, recurrent networks can
also be achieved by a feedforward architecture. Nevertheless, the linear
model is extremely useful for exploring properties of recurrent circuits,
and this approach will be used both here and in the following chapters. In
addition, the analysis of linear networks forms the basis for studying the
stability properties of nonlinear networks. We augment the discussion of
linear networks with results from simulations of nonlinear networks.

Linear Recurrent Networks

Under the linear approximation, the recurrent model of equation 7. 11takes
the form

t,ﬂ:—v+h+M~v. (7.17
dt

Because the model is linear, we can solve analytically for the vector of
output rates v in terms of the feedforward inputs h and the initial values
v(0). The analysis is simplest when the recurrent synaptic weight matrix is
symmetric, and we assume this to be the case. Equation 7.17 can be solved
by expressing v in terms of the eigenvectors of M. The eigenvectors e, for
w=12...,N,satisfy

M-e, =X1,¢e, (7.18

for some value of the constant A, which is called the eigenvalue. For a
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symmetric matrix, the eigenvectors are orthogonal, and they can be nor-
malized to unit length so that e, - e, = §,,,. Such eigenvectors define an
orthogonal coordinate system or basis that can be used to represent any
N,-dimensional vector. In particular, we can write

Ny
V(i)=Y cu(De, (7.19
n=1
where ¢, (f) for p = 1,2,..., N, are a set of time-dependent coefficients

describing v(?).

It is easier to solve equation 7.17 for the coefficients ¢, than for v directly.
Substituting the expansion 7.19into equation 7.17and using property 7.18
we find that

Ny dCH Ny
rrMZIWeuz—;(1—xu)cu(t)eu+h. (7.20

The sum over u can be eliminated by taking the dot product of each side of
this equation with one of the eigenvectors, e,, and using the orthogonality
property e, - e, = §,, to obtain

'L}% =—(1-2)c(t)+e,-h. (7.21)

The critical feature of this equation is that it involves only one of the co-
efficients, ¢,. For time-independent inputs h, the solution of equation 7.44

is
_e-h _ _t(l—)w) _t(l—)w)
cv(t)_l_)w<1 exp( 71_1 ))—i—c,,(O)eXp( 7‘@ )
(722

where ¢,(0) is the value of ¢, at time zero, which is given in terms of the
initial firing-rate vector v(O) by ¢,(0) = e, - v(0).

Equation 7.22has several important characteristics. If A, > 1, the exponen-
tial functions grow without bound as time increases, reflecting a funda-
mental instability of the network. If 1, < 1, ¢, approaches the steady-state
value e, - h/(1— X,) exponentially with time constant t,/(1— X,). This
steady-state value is proportional to e, - h, which is the projection of the
input vector onto the relevant eigenvector. For O< A, < 1, the steady-state
value is amplified relative to this projection by the factor 1/(1— A,), which
is greater than one. The approach to equilibrium is slowed relative to the
basic time constant 7, by an identical factor. The steady-state value of v(¢),
which we call v, can be derived from equation 7.19as

N,
* (e, -h
vmz;(l_ku)ev. (7.23
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7.4Recurrent Networks 19

This steady-state response can also arise from a purely feedforward
scheme if the feedforward weight matrix is chosen appropriately, as we
invite the reader to verify as an exercise.

We have considered amplification when O < A; < 1. The linear network
becomes unstable if 11 > 1. The case A, = 1lis special and will be discussed
in a later section.

Selective Amplification

Suppose that one of the eigenvalues of a recurrent weight matrix, denoted
by A1, is very close to one, and all the others are significantly smaller than
1. In this case, the denominator of the v= 1term on the right side of equa-
tion 7.23is near zero, and, unless e; - h is extremely small, this single term
will dominate the sum. As a result, we can write

__ (e;-h)e;
N (7.29)
Such a network performs selective amplification. The response is domi-
nated by the projection of the input vector along the axis defined by ey,
and the amplitude of the response is amplified by the factor 1/(1— X,),
which may be quite large if 1; is near one. The steady-state response of
such a network, which is proportional to e;, therefore encodes an ampli-
fied projection of the input vector onto e;.

Further information can be encoded if more eigenvalues are close to one.
Suppose, for example, that two eigenvectors, e; and e, have the same
eigenvalue, A=A, close to but less than one. Then, equation 7.24 is re-
placed by

~ (er-h)e;+ (ex-h)es

- (7.29

o0

which shows that the network now amplifies and encodes the projection
of the input vector onto the plane defined by e; and e. In this case, the ac-
tivity pattern of the network is not simply scaled when the input changes.
Instead, changes in the input shift both the magnitude and pattern of net-
work activity. Eigenvectors that share the same eigenvalue are termed
degenerate, and degeneracy is often the result of a symmetry. In the ex-
amples considered in this chapter, degeneracy arises from invariance to
shifts of the parameter 6 by a constant amount. Degeneracy is not limited
to just two eigenvectors. A recurrent network with n degenerate eigenval-
ues near one can amplify and encode a projection of the input vector from
the N-dimensional space in which it is defined onto the n-dimensional
subspace spanned by the degenerate eigenvectors.
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Input Integration

If the recurrent weight matrix has an eigenvalue exactly equal to one, 1| =
1, and all the other eigenvalues satisfy A, < 1, a linear recurrent network
can act as an integrator of its input. In this case, ¢; satisfies the equation

TIE =er- h (726)
obtained by setting A; = 1in equation 7.44 For arbitrary time-dependent
inputs, the solution of this equation is

t
c1(t) = ¢1(0) + T—lfodl’el -h(¢). (7.27)

If h(¢) is constant, c;(¢) grows linearly with ¢. This explains why equation
7.24diverges as A1 — 1. Suppose, instead, that h(¢) is nonzero for a while,
and then is set to zero for an extended period of time. When h = O, equa-
tion 7.22 shows that ¢, — Ofor all v # 1, because for these eigenvectors
Ay < 1. Assuming that ¢;(0) = O this means that, after such a period, the
firing-rate vector is given, from equation 7.27and 7.19, by

t
v(t) ~ %/Odfel.h(f). (7.28

This shows that the network activity provides a measure of the running
integral of the projection of the input vector onto e;. One consequence of
this is that the activity of the network does not cease if h = O, provided that
the integral up to that point in time is nonzero. The network thus exhibits
sustained activity in the absence of input, which provides a memory of the
integral of prior input.

Networks in the brain stem of vertebrates responsible for maintaining eye
position appear to act as integrators, and networks similar to the one we
have been discussing have been suggested as models of this system. As
outlined in figure 7.7, eye position changes in response to bursts of ac-
tivity in ocular motor neurons located in the brain stem. Neurons in the
medial vestibular nucleus and prepositus hypoglossi appear to integrate
these motor signals to provide a persistent memory of eye position. The
sustained firing rates of these neurons are approximately proportional to
the angular orientation of the eyes in the horizontal direction, and activ-
ity persists at an approximately constant rate when the eyes are held fixed
(bottom trace in figure 7.7).

The ability of a linear recurrent network to integrate and display persistent
activity relies on one of the eigenvalues of the recurrent weight matrix be-
ing exactly one. Any deviation from this value will cause the persistent
activity to change over time. Eye position does indeed drift, but matching
the performance of the ocular positioning system requires fine tuning of
the eigenvalue to a value extremely close to one. Including nonlinear in-
teractions does not alleviate the need for a precisely tuned weight matrix.
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Figure 7.7: Cartoon of burst and integrator neurons involved in horizontal eye po-
sitioning. The upper trace represents horizontal eye position during two saccadic
eye movements. Motion of the eye is driven by burst neurons that move the eyes
in opposite directions (second and third traces from top). The steady-state firing
rate (labeled persistent activity) of the integrator neuron is proportional to the time
integral of the burst rates, integrated positively for the ON-direction burst neuron
and negatively for the OFF-direction burst neuron, and thus provides a memory
trace of the maintained eye position. (Adapted from Seung et al., 2000)

Synaptic modification rules can be used to establish the necessary synaptic
weights, but it is not clear how such precise tuning is accomplished in the
biological system.

Continuous Linear Recurrent Networks

For a linear recurrent network with continuous labeling, the equation for
the firing rate v(#) of a neuron with preferred stimulus angle 6 is a linear
version of equation 7.14

dv(®)

T = V(O +hO) + o ﬂd@’M(Q—Q’)v(g) (729

where h(0) is the feedforward input to a neuron with preferred stimulus
angle 6, and we have assumed a constant density py. Because 6 is an angle,
h, M, and v must all be periodic functions with period Z2r. By making Ma
function of § — 8, we are imposing a symmetry with respect to translations
or shifts of the angle variables on the network. In addition, we assume
that Mis an even function, M(6 — 6') = M(6' — 0). This is the analog, in a
continuously labeled model, of a symmetric synaptic weight matrix.

Equation 7.29 can be solved by methods similar to those used for discrete
networks. We introduce eigenfunctions that satisfy

po | 0 M©O—0)e, (0) =hue, ). (7.30

-7
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We leave it as an exercise to show that the eigenfunctions (normalized
so that py times the integral from —n to 7 of their square is one) are
1/+/2rtpg, corresponding to . = O, and cos(ub)/./mpg and sin(ub)//mpg
for w = 1,2 .... The eigenvalues are identical for the sine and cosine
eigenfunctions and are given (including the case u = O by

Ay=pg | dO' M(")cos(ub"). (7.31)
The identity of the eigenvalues for the cosine and sine eigenfunctions re-
flects a degeneracy that arises from the invariance of the network to shifts
of the angle labels.

The steady-state firing rates for a constant input are given by the continu-
ous analog of equation 7.23

1 [T d
vo(@) = - | o h(®")
+ Y U [ cosius)
n=1
+ Z sin ,u9) d—9 h(6')sin(ub) . (7329

The integrals in this expression are the coefficients in a Fourier series for
the function A and are know as cosine and sine Fourier integrals (see the
Mathematical Appendix).

Figure 7.8 shows an example of selective amplification by a linear recur-
rent network. The input to the network, shown in panel A of figure 7.8 is
a cosine function that peaks at O to which random noise has been added.
Figure 7.8C shows Fourier amplitudes for this input. The Fourier ampli-
tude is the square root of the sum of the squares of the cosine and sine
Fourier integrals. No particular u value is overwhelmingly dominant. In
this and the following examples, the recurrent connections of the network
are given by

MO —6) = n’\—[:ecos(e—e’) (733

which has all eigenvalues except A; equal to zero. The network model
shown in figure 7.8 has 1; = 0.9, so that 1/(1— Xx;) = 10 Input amplifi-
cation can be quantified by comparing the Fourier amplitude of v, for a
given u value, with the analogous amplitude for the input A. According
to equation 7.32 the ratio of these quantities is 1/(1— 1), so, in this case,
the u = 1amplitude should be amplified by a factor of ten while all other
amplitudes are unamplified. This factor of ten amplification can be seen
by comparing the i = 1 Fourier amplitudes in figures 7.8C and D (note
the different scales for the vertical axes). All the other components are un-
amplified. As a result, the output of the network is primarily in the form
of a cosine function with ¢ = 1, as seen in figure 7.8B.
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Figure 7.8 Selective amplification in a linear network. A) The input to the neu-
rons of the network as a function of their preferred stimulus angle. B) The activity
of the network neurons plotted as a function of their preferred stimulus angle in
response to the input of panel A. C) The Fourier transform amplitudes of the input
shown in panel A. D) The Fourier transform amplitudes of the output shown in
panel B. The recurrent coupling of this network model took the form of equation
7.33with 1; = 0.9 (This figure, and figures 7.9, 7.12 7.13 and 7.14 were generated
using software from Carandini and Ringach, 1998)

Nonlinear Recurrent Networks

A linear model does not provide an adequate description of the firing rates
of a biological neural network. The most significant problem is that the
firing rates in a linear network can take negative values. This problem can
be fixed by introducing rectification into equation 7.11 by choosing

Flh+M-1)=[h+M-r—yl,. (7.39)

where y is a vector of threshold values that we often take to be O. In this
section, we show some examples illustrating the effect of including such a
rectifying nonlinearity. Some of the features of linear recurrent networks
remain when rectification is included, but several new features also ap-
pear.

In the examples given below, we consider a continuous model, similar to
that of equation 7.29 with recurrent couplings given by equation 7.33 but
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Figure 7.9 Selective amplification in a recurrent network with rectification. A)
The input h(6) of the network plotted as a function of preferred angle. B) The
steady-state output v(6) as a function of preferred angle. C) Fourier transform
amplitudes of the input A(6). D) Fourier transform amplitudes of the output v(6).
The recurrent coupling took the form 7.33with A; = 1.9

now including a rectification nonlinearity, so that

I,M =—v(0)+ [h(@) + al nd@’ cos(0 — 9’)v(0’):| . (739
dt b4 n

-

If A1 is not too large, this network converges to a steady state for any con-
stant input (we consider conditions for steady-state convergence in a later
section), and therefore we often limit the discussion to the steady-state ac-
tivity of the network.

Nonlinear Amplification

Figure 7.9shows the nonlinear analog of the selective amplification shown
for a linear network in figure 7.8 Once again, a noisy input (figure 7.9A)
generates a much smoother output response profile (figure 7.98). The out-
put response of the rectified network corresponds roughly to the positive
part of the sinusoidal response profile of the linear network (figure 7.8B).
The negative output has been eliminated by the rectification. Because
fewer neurons in the network have nonzero responses than in the linear
case, the value of the parameter 1 in equation 7.33 has been increased to
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1.9 This value, being larger than one, would lead to an unstable network
in the linear case. While nonlinear networks can also be unstable, the re-
striction to eigenvalues less than one is no longer the relevant condition.

In a nonlinear network, the Fourier analysis of the input and output re-
sponses is no longer as informative as it is for a linear network. Due to
the rectification, the v = O, 1, and 2 Fourier components are all amplified
(figure 7.9D) compared to their input values (figure 7.9C). Nevertheless,
except for rectification, the nonlinear recurrent network amplifies the in-
put signal selectively in a similar manner as the linear network.

A Recurrent Model of Simple Cells in Primary Visual Cortex

In chapter 2 we discussed a feedforward model in which the elongated
receptive fields of simple cells in primary visual cortex were formed by
summing the inputs from lateral geniculate (LGN) neurons with their re-
ceptive fields arranged in alternating rows of ON and OFF cells. While this
model quite successfully accounts for a number of features of simple cells,
such as orientation tuning, it is difficult to reconcile with the anatomy and
circuitry of the cerebral cortex. By far the majority of the synapses onto
any cortical neuron arise from other cortical neurons, not from thalamic
afferents. Therefore, feedforward models account for the response prop-
erties of cortical neurons while ignoring the inputs that are numerically
most prominent. The large number of intracortical connections suggests,
instead, that recurrent circuitry might play an important role in shaping
the responses of neurons in primary visual cortex.

Ben-Yishai, Bar-Or, and Sompolinsky (1995 developed a model at the
other extreme, for which recurrent connections are the primary determin-
ers of orientation tuning. The model is similar in structure to the model
of equations 7.35and 7.33 except that it includes a global inhibitory inter-
action. In addition, because orientation angles are defined over the range
from —m/2to 7/ 2 rather than over the full 27 range, the cosine functions
in the model have extra factors of 2in them. The basic equation of the
model, as we implement it, is

. dv(6)
ot

/2 Jn/
=—v(0) + |:17(9) + / /Zd?@ (—Xo+ Aicos(2(6 —6'))) v(@’)i|
o N
(7.39

where v(6) is the firing rate of a neuron with preferred orientation 6.

The input to the model represents the orientation-tuned feedforward in-
put arising from ON-center and OFF-center LGN cells responding to an
oriented image. As a function of preferred orientation, the input for an
image with orientation angle ® = Ois

h(0) = Ac(1— €+ ecos(2)) (7.37
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where A sets the overall amplitude and c is equal to the image contrast.
The factor € controls how strongly the input is modulated by the orien-
tation angle. For € =0, all neurons receive the same input, while e =0.5
produces the maximum modulation consistent with a positive input. We
study this model in the case when € is small, which means that the input
is only weakly tuned for orientation and any strong orientation selectivity
must arise through recurrent interactions.

To study orientation selectivity, we want to examine the tuning curves of
individual neurons in response to stimuli with different orientation an-
gles ©. The plots of network responses that we have been using show the
firing rates v(6) of all the neurons in the network as a function of their
preferred stimulus angles 8 when the input stimulus has a fixed value,
typically ® = O As a consequence of the translation invariance of the net-
work model, the response for other values of ® can be obtained simply by
shifting this curve so that it plots v(6 — ®). Furthermore, except for the
asymmetric effects of noise on the input, v(6 — ®) is a symmetric function.
These features follow from the fact that the network we are studying is
invariant with respect to translations and sign changes of the angle vari-
ables that characterize the stimulus and response selectivities. An impor-
tant consequence of this result is that the curve v(6), showing the response
of the entire population, can also be interpreted as the tuning curve of a
single neuron. If the response of the population to a stimulus angle ® is
v(6 — ©), the response of a single neuron with preferred angle 6 = Ois
v(—0) = v(®) from the symmetry of v. Because v(®) is the tuning curve
of a single neuron with 6§ = Oto a stimulus angle ®, the plots we show of
v(6) can be interpreted in a dual way, as both population responses and
individual neuronal tuning curves.

Figure 7.10A shows the feedforward input to the model network for four
different levels of contrast. Because the parameter € was chosen to be O 1,
the modulation of the input as a function of orientation angle is small.
Due to network amplification, the response of the network is much more
strongly tuned to orientation (figure 7.10B). This is the result of the selec-
tive amplification of the tuned part of the input by the recurrent network.
The modulation and overall height of the input curve in figure 7.10A in-
crease linearly with contrast. The response shown in figure 7.10B, inter-
preted as a tuning curve, increases in amplitude for higher contrast, but
does not broaden. This can be seen by noting that all four curves in figure
7.10B go to zero at the same two points. This effect, which occurs because
the shape and width of the response tuning curve are determined primar-
ily by the recurrent interactions within the network, is a feature of orien-
tation curves of real simple cells, as seen in figure 7.10C. The width of the
tuning curve can be reduced by including a positive threshold in the re-
sponse function of equation 7.34 or by changing the amount of inhibition,
but it stays roughly constant as a function of stimulus strength.
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Figure 7.10 The effect of contrast on orientation tuning. A) The feedforward in-
put as a function of preferred orientation. The four curves, from top to bottom,
correspond to contrasts of 8%, 40, 2%, and 10%. B) The output firing rates
in response to different levels of contrast as a function of orientation preference.
These are also the response tuning curves of a single neuron with preferred orien-
tation zero. Asin A, the four curves, from top to bottom, correspond to contrasts
of 8%, 40, 2%, and 10%. The recurrent model had Ag= 7.3 ;= 11, A= 40
Hz, and € = 0.1. C) Tuning curves measure experimentally at four contrast levels
as indicated in the legend. (C adapted from Sompolinsky and Shapley, 1997, based
on data from Sclar and Freeman, 1982)

A Recurrent Model of Complex Cells in Primary Visual Cortex

In the model of orientation tuning discussed in the previous section, recur-
rent amplification enhances selectivity. If the pattern of network connec-
tivity amplifies nonselective rather than selective responses, recurrent in-
teractions can also decrease selectivity. Recall from chapter 2that neurons
in the primary visual cortex are classified as simple or complex depend-
ing on their sensitivity to the spatial phase of a grating stimulus. Simple
cells respond maximally when the spatial positioning of the light and dark
regions of a grating matches the locations of the ON and OFF regions of
their receptive fields. Complex cells do not have distinct ON and OFF re-
gions in their receptive fields and respond to gratings of the appropriate
orientation and spatial frequency relatively independently of where their
light and dark stripes fall. In other words, complex cells are insensitive to
spatial phase.

Chance, Nelson, and Abbott (1999 showed that complex cell responses
could be generated from simple cell responses by a recurrent network. As
in chapter 2, we label spatial phase preferences by the angle ¢. The feed-
forward input A(¢) in the model is set equal to the rectified response of
a simple cell with preferred spatial phase ¢ (figure 7.11A). Each neuron
in the network is labeled by the spatial phase preference of its feedfor-
ward input. The network neurons also receive recurrent input given by
the weight function M(¢ — ¢') = A1/(2rpg) that is the same for all con-
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nected neuron pairs. As a result, their firing rates are determined by

dv(¢) _ A T / /
T = —v(¢) + [h(qb) + > _ﬂd¢ v(¢o )L . (7.39
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Figure 7.11: A recurrent model of complex cells. A) The input to the network as
a function of spatial phase preference. The input h(¢) is equivalent to that of a
simple cell with spatial phase preference ¢ responding to a grating of zero spatial
phase. B) Network response, which can also be interpreted as the spatial phase
tuning curve of a network neuron. The network was given by equation 7.38 with
A1 =095 (Adapted from Chance et al., 1999)

In the absence of recurrent connections (A;=0), the response of a neuron
labeled by ¢ is v(¢) = h(¢), which is equal to the response of a simple
cell with preferred spatial phase ¢. However, for X; sufficiently close to
one, the recurrent model produces responses that resemble those of com-
plex cells. Figure 7. 11B shows the population response, or equivalently the
single-cell response tuning curve, of the model in response to the tuned in-
put shown in Figure 7.11A. The input, being the response of a simple cell,
shows strong tuning for spatial phase. The output tuning curve, however,
is almost constant as a function of spatial phase, like that of a complex
cell. The spatial-phase insensitivity of the network response is due to the
fact that the network amplifies the component of the input that is inde-
pendent of spatial phase, because the eigenfunction of M with the largest
eigenvalue is spatial-phase invariant. This changes simple cell inputs into
complex cell outputs.

Winner-Take-All Input Selection

For a linear network, the response to two superimposed inputs is simply
the sum of the responses to each input separately. Figure 7.12 shows one
way in which a rectifying nonlinearity modifies this superposition prop-
erty. In this case, the input to the recurrent network consists of activity
centered around two preferred stimulus angles, 290°. The output of the
nonlinear network shown in figure 7.12B is not of this form, but instead
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Figure 7.12 Winner-take-all input selection by a nonlinear recurrent network. A)
The input to the network consisting of two peaks. B) The output of the network
has a single peak at the location of the higher of the two peaks of the input. The
model is the same as that used in figure 7.9
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Figure 7.13 Effect of adding a constant to the input of a nonlinear recurrent net-
work. A) The input to the network consists of a single peak to which a constant
factor has been added. B) The gain-modulated output of the nonlinear network.
The three curves correspond to the three input curves in panel A, in the same order.
The model is the same as that used in figures 7.9and 7.12

has a single peak at the location of the input bump with the larger ampli-
tude (the one at —9(7°). This occurs because the nonlinear recurrent net-
work supports the stereotyped unimodal activity pattern seen in figure
7.12B, so a multimodal input tends to generate a unimodal output. The
height of the input peak has a large effect in determining where the single
peak of the network output is located, but it is not the only feature that
determines the response. For example, the network output can favor a
broader, lower peak over a narrower, higher one.

Gain Modulation

A nonlinear recurrent network can generate an output that resembles the
gain-modulated responses of posterior parietal neurons shown in figure
7.6 as noted by Salinas and Abbott (1996. To obtain this result, we in-
terpret the angle 0 as a preferred direction in the visual field in retinal
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coordinates (the variable we called s earlier in the chapter). The signal cor-
responding to gaze direction (what we called g before) is represented as a
constant input to all neurons irrespective of their preferred stimulus angle.
Figure 7.13shows the effect of adding such a constant term to the input of
the nonlinear network. The input shown in figure 7.13A corresponds to
a visual target located at a retinal position of . The different lines show
different values of the constant input, representing three different gaze di-
rections. The responses shown in figure 7.13B all have localized activity
centered around 6=, indicating that the individual neurons have fixed
tuning curves expressed in retinal coordinates. The effect of the constant
input, representing gaze direction, is to scale up or gain modulate these
tuning curves, producing a result similar to that shown in figure 7.6 The
additive constant in the input shown in figure 7.13A has a multiplicative
effect on the output activity shown in 7.13B. This is primarily due to the
fact that the width of the activity profiles is fixed by the recurrent network
interaction, so a constant positive input raises (and a negative input low-
ers) the peak of the response curve without broadening the base of the
curve.

Sustained Activity

The effects illustrated in figures 7.12and 7.13 arise because the nonlinear
recurrent network has a stereotyped pattern of activity that is largely de-
termined by interactions with other neurons in the network rather than
by the feedforward input. If the recurrent connections are strong enough,
the pattern of population activity, once established, can become indepen-
dent of the structure of the input. For example, the recurrent network we
have been studying can support a pattern of activity localized around a
given preferred stimulus value, even when the input is uniform. This is
seen in figure 7.14 The neurons of the network initially receive inputs that
depend on their preferred angles, as seen in figure 7.14A. This produces
a localized pattern of network activity (figure 7.14B). When the input is
switched to the same constant value for all neurons (figure 7.14C), the net-
work activity does not become uniform. Instead, it stays localized around
the value =0 (figure 7.14D). This means that constant input can main-
tain a state that provides a memory of previous localized input activity.
Networks similar to this have been proposed as models of sustained activ-
ity in the head-direction system of the rat and in prefrontal cortex during
tasks involving working memory.

This memory mechanism is related to the integration seen in the linear
model of eye position maintenance discussed previously. The linear net-
work has an eigenvector e; with eigenvalue A ;= 1. This allows v=c;e; to
be a static solution of the equations of the network (7.17) in the absence
of input for any value of ¢;. As a result, the network can preserve any
initial value of ¢; as a memory. In the case of figure 7.14, the steady-state
activity in the absence of tuned input is a function of 8 — ®, for any value
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Figure 7.14 Sustained activity in a recurrent network. A) Input to the neurons of
the network consisting of localized excitation and a constant background. B) The
activity of the network neurons in response to the input of panel A. C) Constant
network input. D) Response to the constant input of panel C when it immediately
followed the input in A. The model is the same as that used in figures 7.9 7.12,
and 7.13

of the angle ®. As a result, the network can preserve any initial value of
® as a memory (® = O in the figure). The activities of the units v(6) de-
pend on © in an essentially nonlinear manner, but, if we consider linear
perturbations around this nonlinear solution, there is an eigenvector with
eigenvalue A1 = 1 associated with shifts in the value of ®. In this case,
it can be shown that A; = 1 because the network was constructed to be
translationally invariant.

Maximum Likelihood and Network Recoding

Recurrent networks can generate characteristic patterns of activity even
when they receive complex inputs (figure 7.9 and can maintain these pat-
terns while receiving constant input (figure 7.14). Pouget, Zhang, Deneve
and Latham (1998 suggested that the location of the characteristic pat-
tern (i.e. the value of © associated with the peak of the population activity
profile) could be interpreted as a match of a fixed template curve to the
input activity profile. This curve fitting operation is at the heart of the
maximum likelihood decoding method we described in chapter 3for esti-
mating a stimulus variable such as ®. In the maximum likelihood method,
the fitting curve is determined by the tuning functions of the neurons, and
the curve fitting procedure is defined by the characteristics of the noise
perturbing the input activities. If the properties of the recurrent network
match these optimal characteristics, the network can approximate maxi-
mum likelihood decoding. Once the activity of the population of neurons
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Figure 7.15 Recoding by a network model. A) The noisy initial inputs A(6) to 64
network neurons are shown as dots. The standard deviation of the noise is 0.25
Hz. After a short settling time, the input is set to a constant value of h(8) = 10. B)
The smooth activity profile that results from the recurrent interactions. The net-
work model was similar to that used in figure 7.9 except that the recurrent synap-
tic weights were in the form of a Gabor-like function rather than a cosine, and the
recurrent connections had short-range excitation and long-range inhibition. (see
Pouget et al., 1998)

has stabilized to its sterotyped shape, a simple decoding method such as
vector decoding can be applied to extract the estimated value of ®. This
allows the accuracy of a vector decoding method to approach that of more
complex optimal methods, because the computational work of curve fit-
ting has been performed by the nonlinear recurrent interactions.

Figure 7.15 shows how this idea works in a network of 64 neurons re-
ceiving inputs that have Gaussian (rather than cosine) tuning curves as a
function of ®. Vector decoding applied to the reconstruction of ® from the
activity of the network or its inputs turns out to be almost unbiased. The
way to judge decoding accuracy is therefore to compute the standard devi-
ation of the decoded © values (chapter 3. The noisy input activity shown
in figure 7.15A shows a slight bump around the value 8 = 10°. Vector de-
coding applied to input activities with this level of noise gives a standard
deviation in the decoded angle of 4.5°. Figure 7.15B shows the output of
the network obtained by starting with initial activities v(6) = Oand input
h(#) as in figure 7.15A, and then setting h(6) to a constant (f-independent)
value to maintain sustained activity. This generates a smooth pattern of
sustained population activity. Vector decoding applied to the output ac-
tivities generated in this way gives a standard deviation in the decoded
angle of 1.7°. This is not too far from the Cramér-Rao bound that gives the
maximum possible accuracy for any unbiased decoding scheme applied
to this system (see chapter 3, which is 0.8%".
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Network Stability

When a network responds to a constant input by relaxing to a steady state
with dv/dt=Q0, it is said to exhibit fixed-point behavior. Almost all the net-
work activity we have discussed thus far involves such fixed points. This
is by no means the only type of long-term activity that a network model
can display. In a later section of this chapter, we discuss networks that os-
cillate, and chaotic behavior is also possible. But if certain conditions are
met, a network will inevitably reach a fixed point in response to constant
input. The theory of Lyapunov functions, to which we give an informal
introduction, can be used to prove when this occurs.

It is easier to discuss the Lyapunov function for a network if we use the
firing-rate dynamics of equation 7.6 rather than equation 7.8 For a net-
work model, this means expressing the vector of network firing rates as
v = F(I), where I is the total synaptic current vector, i.e. I, represents the
total synaptic current for unit a. I obeys the dynamic equation derived
from generalizing equation 7.6to a network situation,

dl
75E2_1+h+M-F(I). (739

Note that we have made the substitution v = F(I) in the last term of the
right side of this equation. Equation 7.39 is sometimes used instead of
equation 7.11 as the dynamical equation governing recurrent firing-rate
model networks. For this form of firing-rate model with a symmetric re-
current weight matrix satisfying M,, = Ofor all a, Cohen and Grossberg
(1983 showed that the function

N, I, 1 N,
L(I) = Zl ( /O dz,2,F (z,) — h,F(I,) — éZlFura)z\@afFurar)) (7.40

has dL/dt < Owhenever dl/dt # O To see this, take the time derivative of
equation 7.40and use 7.39to obtain

dL(I) 1 d,\°
——=——) F()|—=) . 7.41
o - ; (h) (7.4
Because F > O, L decreases unless dI/dt = O If Lis bounded from below,
it cannot decrease indefinitely, so I = h+ M - v must converge to a fixed
point. This implies that v must converge to a fixed point as well.

We have required that F (I) > Ofor all values of its argument I. However,
with some technical complications, it can be shown that the Lyapunov
function we have presented also applied to the case of the rectifying ac-
tivation function F(I) = [I];, even though it is not differentiable at / = 0O
and F(I) = Ofor I < O Convergence to a fixed point, or one of a set of
fixed points, requires the Lyapunov function to be bounded from below.
One way to ensure this is to use a saturating activation function F, so that
F(I) is bounded as I— oco. Another way is to keep the eigenvalues of M
sufficiently small.
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Associative Memory

In an associative memory, a partial or approximate representation of a
stored item is used to recall the full item. Unlike a standard random ac-
cess memory, recall in an associative memory is based on content rather
than on an address. For this reason, associative memory is also known
as content-addressable memory. An example would be recalling every
digit of a known phone number given a few of its digits as an initial
clue. Associative memory networks have been suggested as models of
various parts of the mammalian brain in which there is substantial recur-
rent feedback. These include area CA 3 of the hippocampus and parts of
the prefrontal cortex, structures which have long been implicated in var-
ious forms of memory. A number of network models exhibit associative
memory, the best known being the so-called Hopfield networks (Hopfield,
1982 & 1984).

The models of memory we discussed previously in this chapter store infor-
mation by means of persistent activity, with a particular item represented
by the position of a stereotyped population activity profile. The idea un-
derlying an associative (more strictly, auto-associative) memory is to ex-
tend persistent activity to a broader set of different population profiles,
which are called memory patterns. Each of these is a fixed point of the
dynamics of the network. The memory patterns are determined by and
stored within the recurrent synaptic weights of the network, so memory
retention does not require persistent activity. Rather, persistent activity is
used to signal memory recall and to retain the identity of the most recently
retrieved item.

During recall, an associative memory performs the computational oper-
ation of pattern matching, finding the memory pattern that most closely
matches a distorted or partial activity pattern. This is achieved by initial-
izing the network with an activity profile similar (but not identical) to one
of the memory patterns, letting it relax to a fixed point, and treating the
network activity at the fixed point as the best matching pattern. This is
exactly the analog of the way that the recurrent model of maximum like-
lihood decoding executes a curve fitting procedure. Each memory pattern
has a basin of attraction, defined as the set of initial states for which the
network relaxes to that fixed point. The structure of these basins of attrac-
tion defines the matching properties of the network. The network dynam-
ics is governed by a Lyapunov function of the form described above, and
therefore the network will always relax to a fixed point. Provided that not
too many memories are stored, the fixed points will closely resemble the
stored memory patterns.

The associative network satisfies the dynamic equation 7.11, with the sat-
urating activation function

_ Lk—y
F(L) = 150Hz [tanh(lSOHz>L (7.42)
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chosen to ensure that the Lyapunov function 7.40is bounded from below.
This is similar to a half-wave rectified activation function with threshold
y, except that it saturates at a firing rate of 150 Hz, which is outside the
normal operating range of the units. We use a negative threshold, y =
—20Hz, which corresponds to a constant source of excitation rather than
a conventional threshold and generates background activity.

When this model is used for memory storage, a number of patterns, de-
noted by v” with m= 1,2 ..., Nyem, are stored. Associative recall is
achieved by starting the network in an initial state that is almost, but not
exactly, proportional to one of the memory patterns, v(0) ~ ¢v™” for some
value of m and constant c. In this case, approximately proportional means
that a significant number, but not all, of the elements of v(0) are close to
the corresponding elements of cv”. The network then evolves according
to equation 7.11 (with h = 0. If the recall is successful, the dynamics con-
verge to a fixed point proportional to the memory pattern associated with
the initial state, that is v(¢) — ¢'v™ for large t, where ¢’ is another constant.
Failure of recall occurs if the fixed point reached by the network is not
proportional to the memory state v™.

In the example we consider, the components of the patterns to be stored are
set to either Oor 1. The assignment of these two values to the components
of a given v is usually random with the probability of assigning a 1equal
to « and of assigning a Oequal to 1— . However, in the example we show,
two of the patterns have been assigned non-randomly to make them easier
to detect in the figures. The parameter « is known as the sparseness of the
memory patterns. The sparser the patterns, the more can be stored, but the
less information each contains. We are interested in the limit of large N,
in which case the maximum number of patterns that can be stored, Npem,
is proportional to N,

The key to successful recall is in the choice of the matrix M, which is given
by

.25 Nmem 1
Mzm mgl(v —O[n)(V —Oln)_annn- (743)

Here n is defined as a vector that has each of its NV, components equal
to one. This form of coupling is called a covariance rule, because the first
term on the right side is proportional to the covariance matrix of the collec-
tion of patterns. In chapter 8 we study synaptic plasticity rules that lead
to this term. The second term introduces inhibition between the units.

Figure 7.16 shows an example of a network of N, = 50 units exhibiting
associative memory. This network stores 4 patterns with o« = 0.25. Re-
call of two of these patterns is shown in figure 7.16B and 7.16C. From an
initial activity pattern only vaguely resembling one of the stored patterns,
the network is able to attain a fixed activity pattern approximately propor-
tional to the best matching memory pattern. Similar results would apply
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Figure 7.16 Associative recall of memory patterns in a network model. Panel A
shows two representative model neurons, while panels B and C show the firing
rates of all 50 cells plotted against time. The thickness of the horizontal lines in
these plots is proportional to the firing rate of the corresponding neuron. A) Fir-
ing rates of representative neurons. The upper panel shows the firing rate of one
of the excitatory neurons corresponding to a nonzero component of the recalled
memory pattern. The firing rate achieves a nonzero steady-state value. The lower
panel shows the firing rate of another excitatory neuron corresponding to a zero
component of the recalled memory pattern. This firing rate goes to zero. B) Recall
of one of the stored memory patterns. The stored pattern had nonzero values only
for cells 18through 31. The initial state of the network was random but with a bias
toward this particular pattern. The final state is similar to the memory pattern. C)
Recall of another of the stored memory patterns. The stored pattern had nonzero
values only for every fourth cell. The initial state of the network was again random
but biased toward this pattern. The final state is similar to the memory pattern.

for the other two memory patterns stored by the network, but it would be
more difficult to see these patterns in the figure because they are random.

The rationale behind the weight matrix comes from considering the effect
of the recurrent interactions if the activities match one of the memories,
v = ¢v! for example. A network activity pattern v = ¢'v! can only be a
fixed point if

dvl=F(M- v}, (7.44)

which ensures that the right side of equation 7.11 (with h = Q) vanishes.
We assume that a N, components of v! are equal to one and the remaining
(1— a)N, are zero. In this case,

M-vi=125!— (14 L25x)n+e€ (7.45
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where

125 MNoep

€= Toman, 2 (V' mem (v —an).v! (7.40
V m=2

is a term of order of magnitude /Npem/N,. To begin, suppose that € is
small enough to be ignored. Then, equation 7.44 amounts to two condi-
tions, one arising from the nonzero components of v! and the other from
the zero components,

¢ = F(025— 1.25x)¢) and — (14 1L.25x)d —y <O. (7.47)

The inequality follows from the requirement that the total synaptic current
plus the threshold is less than zero so that F( %) = Ofor these components.
On the other hand, the first equation requires that (0.25— 1.25x)c — y >
Oso that F > O for the nonzero components of v!. If € can be ignored
and these two conditions are satisfied, v = ¢'v! will be a fixed point of the
network dynamics.

The term € in equation 7.45 which we have been ignoring, is only negligi-
ble if Npem < Ny. If Npem & N, € can become large enough to destabilize
the memory states as fixed points. This limits the number of memories that
can be stored in the network. Detailed analysis of the maximum value of
Nnem is complicated by correlations among the terms that contribute to
€, but rigorous evaluations can be made of the capacity of the network,
both for binary stored patterns (as here), and for real-valued patterns for
which the activities of each element are drawn from a probability distri-
bution. Different network architectures can also be considered, including
ones with very sparse connectivity between units.

The basic conclusions from studies of associative memory models with
threshold linear or saturating units is that large networks can store even
larger numbers of patterns, particularly if the patterns are sparse (« is near
0 and if a few errors in recall can be tolerated. Nevertheless, the informa-
tion stored per synapse is typically quite small. However, the simple co-
variance prescription for the weights in equation 7.43is far from optimal.
More sophisticated methods (such as the delta rule discussed in chapter §)
can achieve significantly higher storage densities.

7.5 Excitatory-Inhibitory Networks

In this section, we discuss models in which excitatory and inhibitory neu-
rons are described separately by equations 7.12and 7.13 These models
exhibit richer dynamics than the single population models with symmet-
ric coupling matrices we have analyzed up to this point. In models with
excitatory and inhibitory sub-populations, the full synaptic weight matrix
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is not symmetric, and network oscillations can arise. We begin by analyz-
ing a model of homogeneous coupled excitatory and inhibitory popula-
tions. We introduce methods for determining whether this model exhibits
constant or oscillatory activity. We then present two network models in
which oscillations appear. The first is a model of the olfactory bulb, and
the second displays selective amplification in an oscillatory mode.

Homogeneous Excitatory and Inhibitory Populations

As an illustration of the dynamics of excitatory-inhibitory network mod-
els, we analyze a simple model in which all of the excitatory neurons are
described by a single firing rate vg, and all of the inhibitory neurons are
described by a second rate v;. Although we think of this example as a
model of interacting neuronal populations, it is constructed as if it con-
sists of just two neurons. Equations 7.12 and 7.13 with threshold linear
response functions are used to describe the two firing rates, so that

dv
TETII'E = —vg + [Mggvg + Mgrvr — yel, (7.48
and
dvl
ug =t [Miyvy + Migve — yil 4 - (7.49

The synaptic weights Mgg, Mig, Mg1, and M are numbers rather than
matrices in this model. In the example we consider, we set Mg = 1.25
Mg =1 Mi=0 Mg =—1, yg = —10Hz, y1 = 10Hz, g = 10ms, and
we vary the value of 7;. The negative value of g means that this param-
eter serves as a source of constant background activity rather than as a
threshold.

Phase-Plane Methods and Stability Analysis

The model of interacting excitatory and inhibitory populations given by
equations 7.48and 7.49 provides an opportunity for us to illustrate some
of the techniques used to study the dynamics of nonlinear systems. This
model exhibits both static (constant vg and v) and oscillatory activity de-
pending on the values of its parameters. Stability analysis can be used
to determine the parameter values where transitions between these two
types of activity take place.

The firing rates vg () and v;(¢) arising from equations 7.48 and 7.49 can
be displayed by plotting them as functions of time, as in figures 7.18A
and 7.19A. Another useful way of depicting these results, illustrated in
figures 7.18B and 7.19B, is to plot pairs of points (vg (), vi(¢)) for a range
of t values. As the firing rates change, these points trace out a curve or
trajectory in the vg-v; plane, which is called the phase plane of the model.
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Figure 7.17 A) Nullclines, flow directions, and fixed point for the firing-rate
model of interacting excitatory and inhibitory neurons. The two straight lines
are the nullclines along which dvg/dt = Oor dv/dt = O The filled circle is the
fixed point of the model. The horizontal and vertical arrows indicate the direc-
tions that vg (horizontal arrows) and vy (vertical arrows) flow in different regions
of the phase plane relative to the nullclines. B) Real (upper panel) and imaginary
(lower panel) parts of the eigenvalue determining the stability of the fixed point.
To the left of the point where the imaginary part of the eigenvalue goes to zero,
both eigenvalues are real. The imaginary part has been divided by 27 to give the
frequency of oscillations near the fixed point.

Phase-plane plots can be used to give a geometric picture of the dynamics
of a model.

Values of vg and vy for which the right sides of either equation 7.48or equa-
tion 7.49 vanish are of particular interest in phase-plane analysis. Sets of
such values form two curves in the phase plane known as nullclines. The
nullclines for equations 7.48 and 7.49 are the straight lines drawn in fig-
ure 7.17A. The nullclines are important because they divide the phase
plane into regions with opposite flow patterns. This is because dvg/dt
and dv;/dt are positive on one side of their nullclines and negative on the
other. Above the nullcline along which dvg/dt = O dvg/dt < O, and be-
low it dvg/dt > O Similarly, dv;/dt > Oto the right of the nullcline where
dvi/dt = O, and dv;/dt < Oto the left of it. This determines the direction of
flow in the phase plane, as denoted by the horizontal and vertical arrows
in figure 7.17A.

At a fixed point of a dynamic system, the dynamic variables remain at
constant values. In the model being considered, a fixed point occurs when
the firing rates vg and v; take values that make dvg/dt = dvi/dt = O Be-
cause a fixed point requires both derivatives to vanish, it can only occur
at an intersection of nullclines. The model we are considering has a sin-
gle fixed point (at vg = 26.67, v; = 16.67) denoted by the filled circle in
figure 7.17A. A fixed point provides a potential static configuration for
the system, but it is critically important whether the fixed point is stable
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Figure 7.18 Activity of the excitatory-inhibitory firing-rate model when the fixed
point is stable. A) The excitatory and inhibitory firing rates settle to the fixed point
over time. B) The phase-plane trajectory is a counter-clockwise spiral collapsing to
the fixed point. The open circle marks the initial values vg (0) and v;(0). For this
example, 71 = 30ms.

or unstable. If a fixed point is stable, initial values of vg and v; near the
fixed point will be drawn toward it over time. If the fixed point is unsta-
ble, nearby configurations are pushed away from the fixed point, and the
system will only remain at the fixed point indefinitely if the rates are set
initially to the fixed-point values with infinite precision.

Linear stability analysis can be used to determine whether a fixed point is
stable or unstable. This analysis starts by considering the first derivatives
of the right sides of equations 7.48and 7.49with respect to vg and vy eval-
uated at the values of vg and v that correspond to the fixed point. The
four combinations of derivatives computed in this way can be arranged
into a matrix

(Mgg — D /7x M1/t
( M/ <MH—1)/n>' (750

Asdiscussed in the Mathematical A ppendix, the stability of the fixed point
is determined by the real parts of the eigenvalues of this matrix. The eigen-
values are given by

1 Mg —1  My—1 Mg — 1  My— 1\?  4Mg M,
EE + 11 :I:\/< EE - 11 >+ EI 1IE

A= —
2 TE T TE T TET]

(7.51)

If the real parts of both eigenvalues are less than zero the fixed point is
stable, while if either is greater than zero the fixed point is unstable. If the
factor inside the square root in equation 7.51 is positive, both eigenvalues
are real, and the behavior near the fixed point is exponential. This means
that there is exponential movement toward the fixed point if both eigen-
values are negative, or away from the fixed point if either eigenvalue is
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Figure 7.19 Activity of the excitatory-inhibitory firing-rate model when the fixed
point is unstable. A) The excitatory and inhibitory firing rates settle into periodic
oscillations. B) The phase-plane trajectory is a counter-clockwise spiral that joins
the limit cycle, which is the closed orbit. The open circle marks the initial values
vE (0) and v1(0). For this example, 77 = S0ms.

positive. We focus on the case when the factor inside the square root is
negative, so that the square root is imaginary and the eigenvalues form a
complex conjugate pair. In this case, the behavior near the fixed point is
oscillatory and the trajectory either spirals into the fixed point, if the real
part of the eigenvalues is negative, or out from the fixed point if the real
part of the eigenvalues is positive. The imaginary part of the eigenvalue
determines the frequency of oscillations near the fixed point. The real and
imaginary parts of one of these eigenvalues are plotted as a function of
in figure 7.17B. This figure indicates that the fixed point is stable if 7 < 40
ms and unstable for larger values of 1.

Figures 7.18 and 7.19 show examples in which the fixed point is stable
and unstable, respectively. In figure 7.18A, the oscillations in vg and v;
are damped, and the firing rates settle down to the stable fixed point. The
corresponding phase-plane trajectory is a collapsing spiral (figure 7.18B).
In figure 7.19A the oscillations grow, and in figure 7. 19B the trajectory is a
spiral that expands outward until the system enters a limit cycle. A limit
cycle is a closed orbit in the phase plane indicating periodic behavior. The
fixed point is unstable in this case, but the limit cycle is stable. Without
rectification, the phase-plane trajectory would spiral out from the unstable
fixed point indefinitely. The rectification nonlinearity prevents the spiral
trajectory from expanding past zero and thereby stabilizes the limit cycle.

There are a number of ways that a nonlinear system can make a transi-
tion from a stable fixed point to a limit cycle. Such transitions are called
bifurcations. The transition seen between figures 7.18and 7.19is a Hopf
bifurcation. In this case, a fixed point becomes unstable as a parameter
is changed (in this case 11) when the real part of a complex eigenvalue
changes sign. In a Hopf bifurcation, the limit cycle emerges at a finite fre-
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quency, which is similar to the behavior of a type II neuron when it starts
firing action potentials, as discussed in chapter 6 Other types of bifurca-
tions produce type I behavior with oscillations emerging at zero frequency
(chapter 6). One example of this is a saddle-node bifurcation, which occurs
when parameters are changed such that two fixed points, one stable and
one unstable, meet at the same point in the phase plane.

The Olfactory Bulb

The olfactory bulb, and analogous olfactory areas in insects, provide exam-
ples where sensory processing involves oscillatory activity. The olfactory
bulb represents the first stage of processing beyond the olfactory receptors
in the vertebrate olfactory system. Olfactory receptor neurons respond to
odor molecules and send their axons to the olfactory bulb. These axons
terminate in glomeruli where they synapse onto mitral and tufted cells,
and also local interneurons. The mitral and tufted cells provide the out-
put of the olfactory bulb by sending projections to the primary olfactory
cortex. They also synapse onto the larger population of inhibitory granule
cells. The granule cells in turn inhibit the mitral and tufted cells.

V. granule
“ Iﬁ I cells
N | IF] r" | .
| N v mitral
b [
A W | E cells
1 100 ms hE receptor inputs

Figure 7.20 A) Extracellular field potential recorded in the olfactory bulb during
respiratory waves representing three successive sniffs. B) Schematic diagram of the
olfactory bulb model. (A adapted from Freeman and Schneider, 1982 B adapted
from Li, 1995)

The activity in the olfactory bulb of many vertebrates is strongly influ-
enced by a sniff cycle in which a few quick sniffs bring odors past the ol-
factory receptors. Figure 7.20A shows an extracellular potential recorded
during three successive sniffs. The three large oscillations in the figure
are due to the sniffs. The oscillations we discuss in this section are the
smaller, higher frequency oscillations seen around the peak of each sniff
cycle. These arise from oscillatory neural activity. Individual mitral cells
have quite low firing rates, and do not fire on each cycle of the oscillations.
The oscillations are phase-locked across the bulb, but different odors in-
duce oscillations of different amplitudes and phases.
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Li and Hopfield (1989 modeled the mitral and granule cells of the ol-
factory bulb as a nonlinear input-driven network oscillator. Figure 7.20B
shows the architecture of the model, which uses equations 7.12and 7.13
with Mgg = My = O The absence of these couplings in the model is in ac-
cord with the anatomy of the bulb. The rates vg and vj refer to the mitral
and granule cells, respectively (figure 7.20B). Figure 7.21A shows the acti-
vation functions of the model. The time constants for the two populations
of cells are the same, tg = 11 = 6.7ms. hg is the input from the receptors
to the mitral cells, and hy is a constant representing top-down input that
exists from the olfactory cortex to the granule cells.

A B 1.2 100
N
200 - = L
- " granule 0 /\ =
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/ —~ 1 50
; / = ,/ \\ -
S 100 mitral E(:T ’ . ﬁ
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Figure 7.21: Activation functions and eigenvalues for the olfactory bulb model.
A) The activation functions Fy (solid curve) for the mitral cells, and F (dashed
curve) for the granule cells. B) The real (solid line, left axis) and imaginary (dashed
line, right axis) parts of the eigenvalue that determines whether the network model
exhibits fixed-point or oscillatory behavior. These are plotted as a function of time
during a sniff cycle. When the real part of the eigenvalue becomes greater than
one, it determines the growth rate away from the fixed point and the imaginary
part divided by 27 determines the initial frequency of the resulting oscillations.
(Adapted from Li, 1995)

The field potential in figure 7.20A shows oscillations during each sniff,
but not between sniffs. For the model to match this pattern of activity, the
input from the olfactory receptors, hg, must induce a transition between
fixed-point and oscillatory activity. Before a sniff, the network must have
a stable fixed point with low activities. As hg increases during a sniff, this
steady-state configuration must become unstable leading to oscillatory ac-
tivity. The analysis of the stability of the fixed point and the onset of oscil-
lations is closely related to our previous stability analysis of the model of
homogeneous populations of coupled excitatory and inhibitory neurons.
It is based on properties of the eigenvalues of the linear stability matrix
(see the Mathematical Appendix). In this case, the stability matrix includes
contributions from the derivatives of the activation functions evaluated at
the fixed point. For the fixed point to become unstable, the real part of at
least one of the eigenvalues that arise in this analysis must become larger
than 1. To ensure oscillations, at least one of these destabilizing eigenval-
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Figure 7.22 Activities of four of ten mitral (upper) and granule (lower) cells dur-
ing a single sniff cycle for two different odors. (Adapted from Li and Hopfield,
1989)

ues should have a non-zero imaginary part. These requirements impose
constraints on the connections between the mitral and granule cells and
on the inputs.

Figure 7.21B shows the real and imaginary parts of the relevant eigen-
value, labeled A, during one sniff cycle. About 100 ms into the cycle the
real part of A gets bigger than 1. Reading off the imaginary part of A at
this point, we find that this sets off roughly 40 Hz oscillations in the net-
work. These oscillations stop about 300 ms into the sniff cycle when the
real part of A drops below 1. The input hg from the receptors plays two
critical roles in this process. First, it makes the eigenvalue great than 1by
modifying where the fixed point lies on the activation function curves in
figure 7.21A. Second, it affects which particular neurons are destabilized
and thus, which begin to oscillate. The ultimate pattern of oscillatory ac-
tivity is determined both by the input hg and by the recurrent couplings
of the network.

Figure 7.22 shows the behavior of the network during a single sniff cycle
in the presence of two different odors, represented by two different values
of hg. The top rows show the activity of four mitral cells, and the bottom
rows four granule cells. The amplitudes and phases of the oscillations seen
in these traces, along with the identities of the mitral cells taking part in
them, provide a signature of the identity of the odor that was presented.

Oscillatory Amplification

As a final example of network oscillations, we return to amplification of
input signals by a recurrently connected network. Two factors control
the amount of selective amplification that is viable in networks such as
that shown in figure 7.9 The most important constraint on the recurrent
weights is that the network must be stable, so the activity does not increase
without bound. Another possible constraint is suggested by figure 7.14D
where the output shows a tuned response even though the input to the net-
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work is constant as a function of 6. Tuned output in the absence of tuned
input can serve as a memory mechanism, but it would produce persistent
perceptions if it occurs in a primary sensory area, for example. Avoiding
this in the network limits the recurrent weights and the amount of ampli-
fication that can be supported.

Li and Dayan (1999) showed that this restriction can be significantly eased
using the richer dynamics of networks of coupled inhibitory and excita-
tory neurons. Figure 7.23 shows an example with continuous neuron la-
beling based on a continuous version of equations 7.12and 7.13 The input
is either hg () = 8(1+ gcos(29)) in the modulated case (figure 7.23B) or
hg (6) = 8in the unmodulated case (figure 7.23C). Noise with standard de-
viation 0.4 corrupts this input. The input to the network is constant in
time.

The network oscillates in response to either constant or tuned input. Fig-
ure 7.23A shows the time average of the oscillating activities of the neu-
rons in the network as a function of their preferred angles for noisy tuned
(solid curve) and untuned (dashed curve) inputs. Neurons respond to the
tuned input in a highly tuned and amplified manner. Despite the high de-
gree of amplication, the average response of the neurons to untuned input
is almost independent of 6. Figures 7.23B and 7.23C show the activities of
individual neurons with 6 = @ (0’) and 8 = —37°) ('x’) over time for the
tuned and untuned inputs respectively. The network does not produce
persistent perception, because the output to an untuned input is itself un-
tuned. In contrast, a non-oscillatory version of this network, with 71 = O
exhibits tuned sustained activity in response to an untuned intput for re-
current weights this strong. The oscillatory network can thus operate in a
regime of high selective amplification without generating spurious tuned
activity.

7.6 Stochastic Networks

Up to this point, we have considered models in which the output of a cell is
a deterministic function of its input. In this section, we consider a network
model called the Boltzmann machine in which the input-output relation-
ship is stochastic. Boltzmann machines are interesting from the perspec-
tive of learning, and also because they offer an alternative interpretation
of the dynamics of network models.

In the simplest form of Boltzmann machine, the neurons are treated as
binary, so v,(¢) = 1if unit ais active at time ¢ (e.g. it fires a spike between
times tand ¢+ At for some small value of Af), and v,(t) = Oif it is inactive.
The state of unit a is determined by its total input current,

N,
L(O) = ha(D) + ) Mayva (D), (7.59

a=1
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Figure 7.23 Selective amplification in an excitatory-inhibitory network. A) Time-
averaged response of the network to a tuned input with ® = O (solid curve) and
to an untuned input (dashed curve). Symbols ‘0’ and 'x’ mark the O and —37
points seen in B and C. B) Activities over time of neurons with preferred angles of
0 = @ (solid curve) and 6 = —37 (dashed curve) in response to a modulated input
with ® = 0. C) Activities of the same units shown in B to a constant input. The
lines lie on top of each other showing that the two units respond identically. The
parameters are g = 17 = 10ms, iy = O Mgy = —38(0—0')/ps, Mg = (1/7ps)[5.9+
7.8cos(2(6 — 0'))]+, Mig = 133/mpy, and Mj; = O (After Li and Dayan, 1999)

where M,y = My, and M,, = Ofor all a and & values, and A, is the total
feedforward input into unit a. In the model, units can only change state at
integral multiples of A¢. At each time step, a single unit is selected, usually
at random, to be updated. This update is based on a probabilistic rather
than a deterministic rule. If unit a is selected, its state at the next time step
is set stochastically to 1with probability

1

Plo,(t+ At = 11 = F(I,() with FI) = Tfexp(—L)"

(7.53

Of course, it follows that Plv,(t+ At) =0 = 1— F(I,(¢)). Fis a sigmoidal
function, which has the property that the larger the value of I, the more
likely unit a is to take the value one.

Under equation 7.53 the state of activity of the network evolves as a
Markov chain. This means that the components of v at different times are
sequences of random variables with the property that v(¢+ 1) depends
only on v(¢), and not on the previous history of the network. The update
of equation 7.53is known as Glauber dynamics.

An advantage of using Glauber dyanmics to define the evolution of a net-
work model is that general results from statistical mechanics can be used
to determine the equilibrium distribution of activities. Under Glauber dy-
namics, v does not converge to a fixed point, but can be described by a
probability distribution associated with an energy function

E(v)=—h-v——;v~M-v. (7.59

The probability distribution characterizing v, once the network has con-
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verged to an equilibrium state, is

exp(—E(v))

Plv] = -

where Z= Zexp(—E(v)) . (7.55

The notion of convergence as ¢ — oo can be formalized precisely, but in-
formally, it means that after repeated updating according to equation 7.53
the states of the network are described statistically by equation 7.55. Z
is called the partition function and P[v] the Boltzmann distribution. Un-
der the Boltzmann distribution, states with lower energies are more likely.
In this case, Glauber dynamics implements a statistical operation called
Gibbs sampling for the distribution given in equation 7.55.

The Boltzmann machine is an inherently stochastic device. An approxima-
tion to the Boltzmann machine, known as the mean-field approximation,
can be constructed on the basis of the deterministic synaptic current dy-
namics of a firing-rate model. In this case, I is determined by the dynamic
equation 7.39rather than by equation 7.52 and the model runs in contin-
uous rather than discrete time. The function Fin equation 7.39is taken to
be the same sigmoidal function as in equation 7.53 Although the mean-
field formulation of the Boltzmann machine is inherently deterministic,
F(I,) can be used to generate a probability distribution over a binary out-
put vector v. This is done by treating the output of each unit a, v,, as an
independent binary variable set to either 1 or Owith probability F(1I;) or
1— F(I,) respectively. This replaces the deterministic rule v, = F(I,) used
in the firing-rate version of the model. Because v, = 1has probability F(1;)
and v, = Oprobability 1— F(I;) and the units are independent, the proba-
bility distribution for the entire vector v is

N,
QIvl =[] FL) ™ (1= F(L)) . (7.59

a=1

This is called the mean-field distribution for the Boltzmann machine. Note
that this distribution (and indeed v itself) plays no role in the dynamics of
the mean-field formulation of the Boltzmann machine. It is rather a way
of interpreting the outputs.

We have presented two formulations of the Boltzmann machine, Gibbs
sampling and the mean-field approach, that lead to the two distributions
Plv] and Qlv] (equations 7.55and 7.56). The Lyapunov function of equa-
tion 7.40, that decreases steadily under the dynamics of equation 7.39un-
til a fixed point is reached, provides a key insight into the relationship
between these two distributions. In the appendix, we show that this Lya-
punov function can be expressed as

L@ = Dx.(Q, P)+ K (7.57)

where Kis a constant, and Dk, is the Kullback-Liebler divergence defined
in chapter 4 Dk (Q, P) is ameasure of how different the two distributions
Q and P are from each other. The fact that the dynamics of equation 7.39
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reduces the Lyapunov function to a minimum value means that it also
reduces the difference between Q and P, as measured by the Kullback-
Liebler divergence. This offers an interesting interpretation of the mean-
field dynamics; it modifies the current value of the vector I until the dis-
tribution of binary output values generated by the mean-field formulation
of the Boltzmann machine matches as closely as possible (to at least a local
minimum of Dy, (Q, P)) the distribution generated by Gibbs sampling. In
this way, the mean-field procedure can be viewed as an approximation of
Gibbs sampling.

The power of the Boltzmann machine lies in the relationship between the
distribution of output values, equation 7.55 and the quadratic energy
function of equation 7.54 This makes it is possible to determine how
changing the weights M affects the distribution of output states. In chap-
ter 8 we present a learning rule for the weights of the Boltzmann machine
that allows P[v] to approximate a probability distribution extracted from
a set of inputs. In chapter 10, we study other models that construct output
distributions in this way.

Note that the mean field distribution Q[v] is simpler than the full Boltz-
mann distribution P[v] because the units are statistically independent.
This prevents Q[v] from providing a good approximation in some cases,
particularly if there are negative weights between units, which tend to
make their activities mutually exclusive. Correlations such as these in the
fluctuations of the states about their mean values can be important for
learning. The mean-field analysis of the Boltzmann machine illustrates
the limitations of rate-based descriptions in capturing the full extent of the
correlations that can exist between spiking neurons.

7.7 Chapter Summary

The models in this chapter mark the start of our discussion of computa-
tion, as opposed to coding. Using a description of the firing rates of net-
work neurons, we showed how to construct linear and nonlinear feedfor-
ward and recurrent networks that transform information from one coordi-
nate system to another, selectively amplify input signals, integrate inputs
over extended periods of time, select between competing inputs, sustain
activity in the absence of input, exhibit gain modulation, allow simple de-
coding with performance near the Cramér-Rao bound, and act as content
addressable memories. We used network responses to a continuous stim-
ulus variable as an extended example. This led to models of simple and
complex cells in primary visual cortex. We described a model of the ol-
factory bulb as an example of a system for which computation involves
oscillations arising from asymmetric couplings between excitatory and in-
hibitory neurons. Linear stability analysis was applied to a simplified ver-
sion of this model. We also considered a stochastic network model called
the Boltzmann machine.
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Appendix

Lyapunov Function for the Boltzmann Machine

Here, we show that the Lyapunov function of equation 7.40can be reduced
to equation 7.57 when applied to the mean-field version of the Boltzmann
machine. Recall, from equation 7.40, that

N, I N,
v a 1 v
=2 ( /O dz,2,F (22) = haF(Ly) = Z;ZIF(Ia)mF(Ia/)) (759
When Fis given by the sigmoidal function of equation 7.53
I
/ dz,2,F (25) = F(I) In F(I,) + (1= F(I))In(1— F([p)) + k= (7.59
0

where k is a constant, as can be verified by differentiating the right side.
The non-constant part of the right side of this equation is just the entropy
associated with the binary variable v,. In fact,

Ny rl
> [ dzaz @) = (n Qo+ Nik (760
a=1

where the average is over all values of v with probabilities Q[v].

To evaluate the remaining terms in equation 7.58 we note that, because the
components of v are binary and independent, relations such as (v,) g =
F(I) and (v,vp) o = F(I;) F(1p) are valid. Then, using equation 7.54, we
find

N, Ny
Lh=)" (—haF(Lo - —;Z F(lawwagF(la/)) = (~E(W))g.  (7.6))
a=1 a=1

Similarly, from equation 7.55 we can show that

(InPlv]))o=(—E(V))po—InZ. (7.62

Combining the results of equations 7.60, 7.61, and 7.61, we obtain
L) =(InQv] -InPv])o+ Nyk—1InZ. (7.63

which gives equation 7.57 with K = N,k — log Z because (In Q[v] —
In Plv]) o is, by definition, the Kullback-Liebler divergence Dk, (Q, P) (see
chapter 4 although there we use base 2logarithms, while here we use base
elogarithms in the definition of Dk, but the difference is only an overall
multiplicative constant).
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7.8 Annotated Bibliography

Wilson & Cowan (1972 1973 provide pioneering analyses of firing-rate
models. Subsequent analyses related to the discussion in this chapter are
presented in Abbott (1994, Ermentrout (1998, Amit & Tsodyks (191a &
b) and Bressloff & Coombes (2000). Rinzel and Ermentrout (1998 discuss
phase-plane methods; XPP (see http://www.pitt.edu/ phase) provides
a computer environment for performing phase-plane and other forms of
mathematical analysis on neuron and network models.

Our discussion of the feedforward coordinate transformation model fol-
lowed Pouget & Sejnowski (1995, 1997) and Salinas & Abbott (1995), which
built on theoretical work by Zipser & Andersen (1988 to explain parietal
gain fields (see Andersen, 1989).

We followed Seung’s (1996 discussion of neural integration for eye posi-
tion, which builds on Robinson (1989).

The notion of a regular repeating unit of cortical computation dates back
to the earliest investigations of cortex (see Douglas & Martin 1998. We
followed Seung (19969); Zhang (1996 in adopting the theoretical context of
continuous line or surface attractors, that has the many applications dis-
cussed in the chapter (see also Hahnloser et al., 2000. Sompolinsky &
Shapley 1997review a recently active debate about the balance of control
of orientation selectivity in primary visual cortex between feedforward in-
put and a recurrent line attractor. We presented a model of a hypercolumn;
the extension to multiple hypercolumns is used to link psychophysical and
physiological data on contour integration and texture segmentation by Li

(1998 1999).

Network associative memories are described and analyzed by Hopfield
(1982 1984) and Cohen & Grossberg (1983), who described a general Lya-
punov function. Grossberg (1988); Amit (1989; Hertz, et al. (199]) present
a host of theory about associative networks, in particular about their ca-
pacity to store information. Associative memory in non-binary recurrent
networks has been studied in particular by Treves and collaborators (see
Rolls & Treves, 1998 and, in the context of line attractor networks, by
Samsonovich & McNaughton (1997) and Battaglia & Treves (1998).

We followed Li's (1995 presentation of Li & Hopfield's (1989 oscillatory
model of the olfactory bulb.

The Boltzmann machine was invented by Hinton & Sejnowski (1986), and
is a stochastic generalization of the Hopfield net (Hopfield, 1982). The
mean-field model is due to Hopfield (1984), and we followed the proba-
bilistic discussion in Jordan et al. (1998).
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