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Background. The optimal allocation of scarce donor livers is
a contentious health care issue requiring careful analysis.
The objective of this article was to design a biologically based
discrete-event simulation to test proposed changes in alloca-
tion policies. Methods. The authors used data from multiple
sources to simulate end-stage liver disease and the complex
allocation system. To validate the model, they compared sim-
ulation output with historical data. Results. Simulation out-
comes were within 1% to 2% of actual results for measures
such as new candidates, donated livers, and transplants by

year. The model overestimated the yearly size of the waiting
list by 5% in the last year of the simulation and the total num-
ber of pretransplant deaths by 10%. Conclusion. The authors
created a discrete-event simulation model that represents the
biology of end-stage liver disease and the health care organi-
zation of transplantation in the United States. Key words:
liver transplantation; discrete-event simulation; simulation
modeling; Monte Carlo simulation; organ allocation; patient
survival; graft survival; policy analysis. (Med Decis Making
2005;25:199–209)

Liver transplantation is the only viable therapy that
has been demonstrated to enhance the quantity

and quality of life for patients with end-stage liver dis-
ease (ESLD).1 Unfortunately, the therapy is severely
limited by the scarcity of donated livers, as evidenced
by the more than 17,000 patients in the United States
awaiting liver transplantation.2 With this severe short-
age of a life-saving resource, policies must be devel-

oped to determine the best way to allocate the donated
livers.

Since 1984, the United Network for Organ Sharing
(UNOS) has overseen the organ-matching process in
the United States and has developed allocation poli-
cies.2 Concerns about regional preference and patient
prioritization have fueled a debate over the appropriate
allocation mechanism. As a result, there have been
multiple revisions in UNOS policies over the years.1

The debate surrounding allocation policy has oc-
curred without rigorous, biologically based estimates
of policy changes on outcomes. Conventional tech-
niques such as randomized controlled trials are im-
practical for evaluating allocation policies because
they would require many years to evaluate. Further-
more, it is unrealistic to divide a national waiting list
into multiple lists to test various proposed policy
changes. As an alternative to clinical trials, we devel-
oped a liver allocation model that uses discrete-event
simulation (DES) to estimate the effects of policy
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changes. Our goal was to provide a clinically useful
tool to test proposed changes to the allocation system
prior to possible implementation.

Two earlier models designed to inform liver alloca-
tion policy in the United States simulated the listing
process, organ availability, and donor-recipient match-
ing.3,4 Although calibrated with the same data, their re-
sults differed primarily because one model included
gradual improvement in posttransplant survival rates
whereas the other did not. In addition, both used tran-
sition probabilities between UNOS priority statuses
(prior to 2002, there were 4 statuses that determined ur-
gency level) as the only measure of disease progression.
Consequently, the 2 models could explore only
changes in allocation policies that maintained the
existing prioritization rules.

This article describes the development, calibration,
and validation of a biologically based simulation
model of ESLD that is integrated with a model of the US
liver allocation system. We modeled disease progres-
sion independent of the UNOS status assignments and
can therefore test virtually any proposed allocation
policy. We used our model to simulate the experiences
of adult patients (16 years or older) with ESLD who
were placed on the waiting list for a liver transplant be-
tween 1992 and 1996. We validated the model by com-
paring the simulation results with key UNOS statistics
over the same period, including the median waiting
time for a transplant, the length of survival of patients
who receive transplants, the number of patients who
die while waiting, and the mean time from listing until
death.

METHODS

Choice of Modeling Method

DES is an analytic tool developed in industrial engi-
neering that is designed to represent complex stochas-

tic systems that include queues and competition for re-
sources and investigate potential changes in those sys-
tems. It is most often used for industrial applications
such as testing changes in manufacturing plants and
communications systems. However, DES can also in-
form the potential life-altering consequences associ-
ated with health policy and clinical decision making5

and has, in fact, been used to inform UNOS liver alloca-
tion policies.3

A model used to test organ allocation policies must
allow the interaction between the model components
to generate the waiting list and competition for organs.
Statistical summary measures from an existing waiting
list would not provide a clear understanding of how
policy changes may affect outcomes. Instead, the ac-
tual composition, size, and characteristics of the wait-
ing list must result from the execution of the model.
Furthermore, the model must be able to predict the nat-
ural history of ESLD independent of the particular or-
gan allocation prioritization rules that exist at any
given time. Because standard decision-modeling tech-
niques such as Markov models cannot represent the
generation of queues nor allow for individual patients
represented in the model to interact (or compete), we
based our model on DES.

Data Sources

Data to calibrate the model came from several
sources (Table 1). The simulation is driven by data
available from the beginning of 1991 through the end of
1996. We used 36,651 patient records from the candi-
date listing data that included 17,044 records of pa-
tients who received transplants. In addition, because
UNOS had only limited patient information between
listing, transplant, and death, we used 1,997 patient
data records from the University of Pittsburgh Medical
Center (UPMC) to obtain detailed longitudinal infor-
mation on patients’ clinical characteristics, which is
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Table 1 Data Sources and Samples Sizes for Various Model Components

Model Component Sample Size Source

Disease progression module 1,997 Clinical records of patients awaiting liver transplantation at the University of
Pittsburgh Medical Center (UPMC)

Relisted patient characteristics 655 Clinical records of patients relisted for transplant at UPMC
Patient generator 36,651 Candidate registry from the United Network for Organ Sharing (UNOS)
Survival estimation module 17,044 Liver transplant registry data from UNOS
Organ generator 17,044 Donor organ registry from UNOS
Quality-of-life module 95 Prospective evaluation of a cohort of patients awaiting liver transplantation at

UPMC
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required for the pretransplant natural history module.
To generate clinical characteristics for patients requir-
ing retransplantation, we used 655 UPMC records of
relisted patients. Quality-of-life estimates were ob-
tained from the literature6 and derived from a prospec-
tive study of patients awaiting transplant at UPMC.7

Overview of the Model

To allow for modeling flexibility and faster execu-
tion times, we built a discrete event, Monte Carlo micro
simulation of the liver allocation process in the C pro-
gramming language. The model has 5 core modules:
the patient generator, organ generator, pretransplant
natural history, matching algorithm, and posttrans-
plant survival (Figure 1). Users may set parameters to
vary the conditions of the simulation, including the al-
location matching algorithm, the number of simulation
replications, the start year, or the initial random seed.

Patient Generator Module

The patient generator 1) creates patient arrivals to
the waiting list; 2) assigns the patients various clinical
and demographic attributes such as liver disease cate-
gory, age, gender, and geographic region (Table 2); and
3) initializes patient-specific variables such as waiting
time and quality-adjusted life years.

Patients arrive to the waiting list according to a
nonstationary Poisson process with the arrival rate
varying by year, as there was a rise in patient listings
from year to year. Daily arrival rates for each year were
obtained by dividing the annual UNOS listings during
the 1992–6 period by 365. We assumed a Poisson pro-
cess within each year as this is a common approach to
modeling arrivals to a system.8 Consistent with the
Poisson process, the interarrival times between patient
listings were distributed exponentially with the
appropriate yearly rate.

UNOS assigns more than 70 separate diagnoses of
ESLD; however, concerns about having adequate sam-
ple sizes for each group led us initially to aggregate
these into 10 broader disease categories based on dis-
cussions with our National Clinical Oversight Commit-
tee (see the appendix). For the purpose of obtaining
more reliable probability distributions for certain dis-
ease characteristics, we further aggregated these to
form 5 major disease groups (Table 3). We generated
other clinical and demographic attributes based on chi-
square tests for independence and on clinical recom-
mendations (data dependencies are shown in Figure
2). Geographic data were based on the 59 organ pro-

curement organizations (OPOs) that formed 11 regions
between 1992 and 1996.

Organ Generator Module

The organ generator 1) registers the arrival of each
donated liver; 2) determines if the liver is used for adult
transplantation, used for pediatric transplantation, or
wasted; and 3) generates the characteristics of the liver
(Table 2) that will be used in the donor-recipient
matching process if the liver is intended for adult
transplantation.

As with the patient arrivals, cadaveric livers arrive
according to a nonstationary Poisson process, with the
arrival rate varying by year, as there was also a rise in
donated livers from year to year. Because our donor file
consists only of livers that were transplanted into
adults, we used UNOS estimates to increase our arrival
rate to account for livers intended for pediatric trans-
plant and livers that are wasted because they were not
transplanted within a reasonable amount of time.
Then, as each liver becomes available, a discrete distri-
bution based on UNOS wastage and usage rates deter-
mines if and how the liver will be used. We used statis-
tical methods and clinical expertise to form
distributions for the different liver attributes, just as we
did with the patient attributes. Donor age and gender
are jointly derived from a distribution on 4 categories:
young male (younger than 45 years), old male (older
than or equal to 45 years), young female, and old fe-
male. A continuous age is then obtained for each do-
nated liver by fitting a distribution using Arena©

(Rockwell Software, Sewickley, PA) to the various ages
within each of the 4 categories and then drawing from
that distribution using the inverse transformation tech-
nique.8 Donor race is conditioned on the age and gen-
der category, and blood type is then based on race. Fi-
nally, presence of the cytomegalovirus antibody is
dependent on donor age. After the liver attributes are
assigned, the liver becomes available for donor-
recipient matching.

Pretransplant Natural History Module

The natural history module simulates the progres-
sion of disease from the time a transplant candidate is
placed on the waiting list until the occurrence of either
transplantation or death in the absence of transplanta-
tion. It does this by periodically updating a patient’s
health status with respect to clinical variables that pre-
dict future survival of ESLD patients.9,10 Variables up-
dated by the model include 4 laboratory values
(prothrombin time and levels of bilirubin, creatinine,
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Figure 1 Liver allocation simulation model.
Note: The discrete-event simulation (DES) model has 5 core modules: the patient generator, organ generator, pretransplant natural history, donor-recipient
matching algorithm, and posttransplant survival modules. OPO = organ procurement organization; CMV = cytomegalovirus.
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and albumin) and the presence or absence of
encephalopathy. These are the primary time-varying
attributes that determine pretherapy health progres-
sion and posttherapy outcomes if a donor liver be-
comes available. Because we assumed that patients out
of the hospital were more stable than those in the
hospital, our model updates outpatients monthly and
inpatients daily.

Although the average progression of disease in a co-
hort may be well behaved and easily estimated, the
progression of disease in an individual is often chaotic.
For example, a patient may undergo a slow and steady
decline for a long period and then experience an acute
exacerbation. To simulate the stochastic progression of
disease in individuals, we used laboratory data from

the records of transplant candidates at UPMC. Based
on these data, we estimated cubic spline functions
(continuous curves that fit discrete data) to obtain pre-
dicted laboratory values at intervening time points.9,10

Every historical patient had 4 spline functions, 1 for
each of the 4 laboratory values used as predictors of
posttransplant survival. Each spline-derived series
was decomposed into sequential pairs of laboratory
values measured at specified time intervals. This
method allows us to estimate daily and monthly
changes in lab values regardless of whether measure-
ments were actually taken at those intervals.10

When updating laboratory values for a particular
simulated patient, the model searches the subset of ac-
tual patients with similar lab values (according to a set
of nearness criteria), randomly chooses 1 patient from
the sample, and returns an indication if the patient is
dead by the next period, or, if the patient is alive, it re-
turns the spline-estimated laboratory profile of that pa-
tient at the next time period. The appeal of this ap-
proach is that the estimated changes in laboratory
profiles are proportional to actual changes observed in
real data. Common changes occur more frequently, but
unusual exacerbations remain possible.

If the profile returned at the next time period indi-
cates that the patient died, the simulated patient is re-
moved from the model, and we increment the deaths-
while-waiting statistic. After testing revealed that our
natural history data underestimated the number of
such deaths, we included a yearly adjustment to the
death rate. We did this by first considering the differ-
ence between the yearly death probabilities implied by
the UNOS data and our simulation output and then
randomly removing patients to make up for this differ-
ence. For patients out of the hospital, the yearly adjust-
ment to the probability was an increase between 0.01
and 0.02 depending on the year, and for patients in the
hospital, the increase was between 0.0002 and 0.0006.

Matching Algorithm Module

The matching algorithm module is flexible: It can
represent allocation schemes based on any level of ag-
gregation (from OPO level to national level) and can
use any variable tracked in the model to determine a
candidate’s position within the waiting list. For base-
line model validation, we implemented the UNOS al-
location rule that existed between 1992 and 1996.11

This policy grouped patients into 4 statuses and began
its search for the most urgent patient, within the same
OPO as the harvested liver, whose blood type was com-
patible with the liver. If no such patient was found at
this OPO level, the algorithm expanded its search to
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Table 2 Study Variables and Data Sources

Variable Data Source

Demographic characteristics of
liver transplant candidate
Age UNOS candidate file
Gender UNOS candidate file
Race UNOS candidate file
Region and OPO UNOS candidate file

Clinical characteristics of liver
transplant candidate
Category of end-stage
liver disease (10 groups) UNOS candidate file

Blood type UNOS candidate file
Cytomegalovirus antibody status UNOS candidate file
Prothrombin time UPMC medical records
Bilirubin level UPMC medical records
Creatinine level UPMC medical records
Albumin level UPMC medical records
On mechanical ventilator UPMC medical records
Alive/dead indicator UPMC medical records
Presence of encephalopathy UNOS candidate file
History of nonliver transplant UNOS candidate file
Location (home, hospital ward,
intensive care unit) UNOS candidate file

Demographic characteristics
of liver donor
Age UNOS donor file
Gender UNOS donor file
Race UNOS donor file
Region and OPO UNOS donor file

Clinical characteristics of liver donor
Blood type UNOS donor file
Cytomegalovirus antibody status UNOS donor file
Note: UNOS = United Network for Organ Sharing; OPO = organ procure-
ment organization; UPMC = University of Pittsburgh Medical Center.
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patients in other OPOs within the same region as the
harvested liver. Finally, if still no match was found, it
would consider patients anywhere in the United
States.

Posttransplant Survival Module

To simulate the possibility of patient death and or-
gan rejection or loss, the posttransplant survival mod-
ule generates 2 estimates of survival time: one for the
patient and another for the organ. If patient survival is
shorter than graft survival, the patient dies and is re-
moved from the system. The graft is also removed from
the system because organs are never transplanted more
than once. If, however, the graft fails before the patient
dies, then the patient requires another transplant and is
relisted in the simulation with characteristics repre-
sentative of actual relisted patients at UPMC. In the
United States, approximately 11% of transplant recipi-
ents undergo transplantation more than once.12 After
generating the clinical characteristics, relisted patients
are handled in the same manner as all other patients in
the model.

To estimate the survival probability distributions,
we estimated disease-specific Cox proportional haz-
ards models13 for each of 10 disease groups using data
from UNOS.14 With the Cox model, a baseline hazard
rate is generated and then adjusted according to the
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Table 3 Disease Categories

Classification

5-Group 10-Group Category

1 1 Primary biliary cirrhosis: primary biliary
cirrhosis.

2 Primary sclerosing cholangitis: Crohn
disease, ulcerative colitis, cholangitis
with no bowel disease

3 Alcoholic liver disease: Laënnec
cirrhosis

4 Autoimmune disorders: cirrhosis (drug
or industrial exposure, cryptogenic,
idiopathic), chronic autoimmune
hepatitis (etiology unknown,
postnecrotic)

2 5 Hepatitis C and similar infections:
postnecrotic cirrhosis (non-A, non-B;
type C; type D; types B and C; types B
and D), Laënnec cirrhosis (post-
necrotic, other)

6 Hepatitis B: postnecrotic cirrhosis
(HBsAg-positive)

3 7 Acute hepatic failure: acute hepatic
necrosis (drug exposure; hepatitis A;
hepatitis B, HBsAg-positive; non-A,
non-B hepatitis; hepatitis C; hepatitis
D; hepatitis B and C; hepatitis B and D;
other acute viral infection), etiology
unknown

4 8 Cancers: primary liver malignancy
(hepatoma, fibrolamellar hepatocellular
carcinoma, cholangiocarcinoma,
hepatoblastoma, hemangio-
endothelioma, hemangiosarcoma,
angiosarcoma)

5 9 Metabolic disorders: alpha-1-antitrypsin
deficiency, glycogen storage disease
type I, glycogen storage disease type II,
hemochromatosis, hemosiderosis,
hyperlipidemia type II, homozygous
hypercholesterolemia, primary oxalosis
or oxaluria, hyperoxaluria, tyrosinemia,
Wilson’s disease or other copper
disorder, urea cycle disorder, Crigler-
Najjar syndrome, Wolman’s disease,
protoporphyria, Niemann-Pick disease,
abetalipoproteinemia, Gaucher’s
disease, Rendu-Osler-Weber syndrome,
carbamoylphosphate synthase
deficiency, amyloidosis, Wiskott-
Aldrich syndrome

(continued)

5 10 Other liver diseases: cirrhosis (post-
necrotic hepatitis A), secondary biliary
cirrhosis (Caroli disease, choledochal
cyst, other), familial cholestasis (Byler
disease, other), cholestatic liver disease
not listed above, neonatal hepatitis,
biliary atresia (extrahepatic biliary
atresia, hypoplasia, Alagille syndrome,
other), congenital hepatic fibrosis,
cystic fibrosis, Budd-Chiari syndrome,
benign tumor (hepatic adenoma,
polycystic liver disease, other), liver
disease induced by total parenteral
nutrition or hyperalimentation,
graft-versus-host disease, trauma,
biliary stricture or stenosis,
gastroschisis, idiopathic adult
ductopenia, unknown

Table 3 (continued)

Classification

5-Group 10-Group Category
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characteristics of a specific patient and specific do-
nated organ. The Cox model is usually used to compare
survival between groups or to describe survival as a
function of a set of variables. However, it can also be
used to create a patient-specific survival curve from
which a pseudorandom observation can be generated
to obtain the time of a particular event (e.g., patient
death or graft failure). One advantage of this approach
is that it uses the entire survival distribution, rather
than just the mean of the distribution. Alternatives to
the Cox model can also be easily incorporated into this
module.

Incorporation of Quality of Life

Quality of life is currently incorporated in the model
as a characteristic of a particular state of the patient.
Based on data from a prospective analysis of 95 pa-
tients awaiting liver transplantation at UPMC,7 we
used time tradeoff assessments to attach a utility of 0.73
for pretransplant outpatients, 0.54 for pretransplant in-
patients, and 0.83 for posttransplant patients. Because
our sample did not include patients in the intensive
care unit or on ventilators, we assigned a utility of 0.4
for each of these, based on estimates from the litera-
ture.6 Relative value scale and standard gamble quality-
of-life assessments were also collected from the 95
UPMC patients, and we can run the model with those
as well.

Variance Reduction

When comparing results between allocation poli-
cies, we want to increase our confidence that any sys-
tem output differences are based on real performance
differences as opposed to random sources of variance
in the waiting lists. To eliminate some differences in
random variation observed by different simulated sys-
tems, we used the standard variance-reduction tech-
nique of common random numbers.8 For example, be-
cause new patient and liver arrivals were assumed to
be independent of the allocation schemes, we used 1
random number stream to generate the same patient ar-
rivals and characteristics across different policies, and
we used a 2nd random number stream to generate the
same organ arrivals and characteristics across different
policies. By eliminating any variance attributable to
different arrival characteristics, we should obtain a
tighter confidence interval for system output
differences.

Because UNOS waiting list data did not contain suf-
ficient information to create the exact waiting list at the
beginning of 1992, and because allocation policy

changes occur when patients are already waiting under
the former policy, we warmed up the system using the
same baseline matching process for testing each alter-
native policy. We chose 1992 as the beginning of our
simulation period because it is the earliest year for
which UNOS displays complete data on its Web site.
Using the baseline allocation policy, we started our
simulation with an empty waiting list, used 1991 pa-
tient and organ arrival rates and characteristics, and let
the simulation run until the number of simulated wait-
ing patients equaled the actual number waiting at the
start of 1992. Then, from 1992 through 1996, we ap-
plied the organ allocation policy we wanted to test. For
example, if we wanted to test the difference in out-
comes between a national priority list and the current
Model for End-Stage Liver Disease (MELD) policy, we
would run 2 simulations. For both of them, we would
warm up the simulation using the same allocation pol-
icy that existed prior to 1992. Then, to simulate the
years 1992 through 1996, we would have one simula-
tion use the national policy and the other use the MELD
policy. By using the same patient and organ arrivals
and the same allocation method in the warm-up period
across policies, we guaranteed that any differences in
policies were not attributable to different types of pa-
tients waiting at the start of 1992. However, to reflect
the fact that we used our simulation to generate the
starting wait list, and doing so represents one possible
instance of waiting patients, we randomly changed the
arrival streams between replications to consider
different instances of the starting wait list.

Validation of the Model

Our model underwent various stages of validation.
We met numerous times with our National Clinical
Oversight Committee to ensure conceptual validity of
the model prior to its actual development. Two key
components of our model, the pretransplant natural
history and posttransplant survival modules, were de-
veloped as independent research projects and vali-
dated in isolation of the present simulation.10,14

Once all of the modules were completed, we vali-
dated the model by comparing simulated output mea-
sures with the same types of output measures found on
the UNOS Web site. Measures included the number of
patients awaiting transplant, number of cadaveric liver
donors, number of transplants performed, number of
deaths while waiting, 1-year graft survival, 1-year pa-
tient survival, and median time until transplant. We
calculated this last measure using the Kaplan-Meier
method for handling censored observations.15
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Traditional hypothesis testing is not the appropriate
statistical approach for measuring model validity be-
cause the null hypothesis that the true system and
model parameters are identical is almost always false8;
with enough simulation replications, any arbitrarily
small difference between the model parameter and the

actual value would be found to be statistically signifi-
cant. Rather, one may form confidence intervals
around the model estimates to understand how precise
those estimates are and then determine if there is a clin-
ically significant difference from actual data—a subjec-
tive decision for system experts to make.8

RESULTS

Table 4 compares the actual UNOS data for the years
1992–6 with the averages and standard deviations ob-
tained after 30 replications of our baseline model. For
most years, the simulation output closely matches
UNOS data for new patients listed, cadaveric donors,
transplants, median waiting time for a transplant, and
survival rates for patients and organs 1 year after re-
ceiving a transplant. Our model overestimated the
waiting list in each year and consequently overesti-
mated the deaths while waiting (more patients waiting
means more patients are at risk of dying before
transplantation).

Table 5 shows 1-year and 3-year posttransplant pa-
tient survival rates for the years 1992–6. The UNOS re-
sults for these years were calculated from the 1-year
Kaplan-Meier analyses of the database for organ recipi-
ents aged 16 years or older. The UNOS data demon-
strate a slowly improving trend in posttransplant sur-
vival, whereas the model output shows a near constant
rate of survival. The model currently does not incorpo-
rate a time trend in the posttransplant survival analy-
sis, so it will capture only changes in survival sug-
gested by changes in the level of illness of individuals
undergoing transplantation.

DISCUSSION

The liver allocation process is a complex stochastic
system in which individual patients and livers arrive
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Table 4 Validation of Model Results

Outcome Measure 1992 1993 1994 1995 1996

Patients already listed
for transplant
UNOS 1880 2548 5072 6795
Model mean (x) 1914 2816 3824 5348 7156
Model std dev (s) 68.0 96.6 104.1 121.9 130.4
Difference (%) 1.8 10.5 7.9 5.4 5.3

New patients listed
for transplant
UNOS 3695 4315 4767 5857 6543
Model mean (x) 3682 4312 4761 5852 6482
Model std dev (s) 43.9 73.0 66.3 72.1 66.9
Difference (%) –0.4 –0.1 –0.1 –0.1 –0.9

Cadaveric donors
UNOS 3334 3764 4093 4335 4463
Model mean (x) 3358 3826 4046 4475 4631
Model std dev (s) 66.1 75.8 63.6 75.9 71.4
Difference (%) 0.7 1.6 –1.1 3.2 3.8

Transplants performed
UNOS 2599 2946 3124 3460 3583
Model mean (x) 2600 2963 3138 3464 3582
Model std dev (s) 57.4 67.4 55.6 64.6 58.9
Difference (%) 0.0 0.6 0.4 0.1 0.0

Deaths while on
waiting list
UNOS 473 514 589 754 919
Model mean (x) 519 574 678 831 1004
Model std dev (s) 22.2 28.6 34.4 35.4 29.5
Difference (%) 9.7 11.7 15.1 10.2 9.2

Median waiting time
(days)
UNOS 142 193 217 316 NA
Model mean (x) 125 177 242 343
Model std dev (s) 12.1 14.0 16.9 16.6
Difference (%) –12.0 –8.3 11.5 8.5

1-year patient survival
after transplant
UNOS 0.82 0.83 0.85 0.84 0.85
Model mean (x) 0.84 0.84 0.84 0.84 0.83
Model std dev (s) 0.01 0.01 0.01 0.01 0.01
Difference (%) 2.4 1.2 –1.2 0 –2.3

1-year graft survival
after transplant
UNOS 0.75 0.77 0.79 0.80 0.78
Model mean (x) 0.79 0.77 0.77 0.78 0.78
Model std dev (s) 0.01 0.01 0.01 0.01 0.01
Difference (%) 5.3 0 –2.5 –2.5 0
Note: UNOS = United Network for Organ Sharing; NA = not available.
Model results are presented as the mean (x) and standard deviation (s) of 30
replications performed by the model.

Table 5 Comparison of Posttransplant Survival
Rates between UNOS Data and
Rates Generated by the Model

Outcome Measure 1992 1993 1994 1995 1996

1-year survival
UNOS 0.84 0.84 0.87 0.86 0.87
Model 0.84 0.84 0.84 0.84 0.83

3-year survival
UNOS 0.75 0.76 0.78 0.78 0.79
Model 0.77 0.76 0.76 0.76 0.75
Note: UNOS = United Network for Organ Sharing. UNOS survival rates
were calculated using Kaplan-Meier plots of survival data for patients aged
16 years or older.
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with various characteristics, patient health deterio-
rates while waiting, and liver and patient characteris-
tics affect the length of graft and patient survival. At the
individual level, we used mathematical models of dis-
ease progression and posttransplant survival to track
patients’ health. In addition, a predetermined match-
ing algorithm assigns an incoming liver to one of the
many patients on the waiting list, and this policy af-
fects overall statistics such as the number of successful
transplants, median waiting time for a transplant, and
average time from listing until death. At the system
level, there is no feasible way to estimate analytically
the effects of the implemented allocation policy on the
various output measures. Hence, we built a Monte
Carlo DES that allows us to estimate these statistics em-
pirically. Our model is clinically based and modular,
allowing us to incorporate possible changes to natural
history, posttransplant survival, or patient prioritiza-
tion and allocation policy.

As mentioned in the Results section and shown in
Table 4, the baseline model results are close to UNOS
data for multiple measures. This gives us confidence
that the model can reasonably approximate certain im-
portant measures of interest to the transplant commu-
nity. As a result, one can use our model to test various
allocation policies to get some idea of how they will
perform. However, we recognize that the current ver-
sion has several limitations, and by addressing these,
we can create a more accurate decision-making tool for
policy makers to use in determining allocation rules.

First, the main limitation to developing an empirical
distribution of natural history was that no national da-
tabases contained the necessary level of clinical detail
on natural history, a problem that we describe else-
where.9 We used a single institution (UPMC) that
treated sicker patients on average, so the results may
not be representative of transplant candidates in gen-
eral. Furthermore, by using a single institution, we lost
patients to follow-up at other transplant centers and
deaths that occurred at non-UPMC hospitals. Both of
these issues caused us to underestimate the number of
deaths while waiting for a transplant and required ad-
justments of the pretransplant death rates in our model
to match the UNOS experience.

Second, our matching algorithm discards some do-
nated livers on the basis of estimated wastage rates, but
it does not consider specific factors that would influ-
ence these rates, such as the liver characteristics, the
time it takes for the liver to reach the patient, or the rea-
sons that a patient and physician decline an offered
liver. The collection of information on all organ arrivals
and detailed data on the factors affecting organ wastage

will allow us to model liver arrivals and usage more
accurately in the future.

Third, there are reasons other than death for a pa-
tient’s removal from the UNOS waiting list, including
improving condition without a transplant or being too
sick for a transplant, which accounted for 3% and 4%,
respectively, of 1996 list removals.2 UNOS also in-
cludes a removal category labeled “other” that ac-
counted for 5% of the 1996 removals; however, it is not
clear what patients comprise this group.2 Our data did
not include removal information other than deaths, so
we used clinical expertise to approximate improved
patient conditions in our model. To account for other
removal reasons, we randomly removed patients each
day according to probabilities implied by the UNOS
data. We believe the lack of data to support more de-
tailed modeling of patient list removals relates to our
overestimation of patients waiting at the end of each
year.

Fourth, our natural history data did not include the
actual patient statuses assigned by UNOS. Instead, we
mapped each patient’s location (in the intensive care
unit on a ventilator, in the intensive care unit not on a
ventilator, in a hospital ward, at home) to statuses 1
through 4. With longitudinal data that include status
assignments, we could derive more accurate status
mappings based on location and other clinical factors.

We are currently involved in efforts to address the
above limitations, especially those related to data
sources. In addition, we plan to improve our model’s
ability to inform policy decisions about trans-
plantation by adding cost components, enhancing the
quality-of-life components, and incorporating cost-
effectiveness analyses. The cost component will in-
clude the costs of pretransplant and posttransplant
care for patients who have different diagnoses of ESLD,
along with the costs of transplantation itself.

In summary, we have built a DES model of the liver
allocation process in the United States that represents
both the stochastic biological progression of ESLD and
the deterministic assignment of livers to patients. The
model includes sufficient detail to estimate the effects
of a wide range of questions regarding liver allocation
and policy change.16 For example, one may use the
model to examine differences between the current
MELD allocation rules and a national allocation policy
with regard to important outcome measures such as to-
tal transplants, average waiting time for a transplant,
and the average posttransplant survival time. Because
our pretransplant natural history runs independently
of the UNOS allocation policy in place at the time, one
can test virtually any hypothetical policy change with
our model.
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